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Abstract

Diffusion denoising has emerged as a powerful approach for modeling data distributions,
treating data as particles with their position and velocity modeled by a stochastic diffu-
sion processes. While this framework assumes data resides in a fixed vector spaces (e.g.,
images as pixel-ordered vectors), point clouds present unique challenges due to their un-
ordered representation. Existing point cloud diffusion methods often rely on voxelization to
address this issue, but this approach is computationally expensive, with cubically scaling
complexity. In this work, we investigate the misalignment between point cloud irregularity
and diffusion models, analyzing it through the lens of denoising implicit priors. First, we
demonstrate how the unknown permutations inherent in point cloud structures disrupt de-
noising implicit priors. To address this, we then propose a novel folding-based approach that
reorders point clouds into a permutation-invariant grid, enabling diffusion to be performed
directly on the structured representation. This construction is exploited both globally and
locally. Globally, it can be used to represent point clouds in a fixed vector space (like im-
ages), therefore it enables us to extend the work of denoising as implicit priors to point
clouds. On the other hand, exploiting this idea locally, allows us to create efficient and
novel token representations that can improve existing transformer-based point cloud diffu-
sion models. Our experiments show that the proposed folding operation integrates effectively
with both denoising implicit priors as well as advanced diffusion architectures, such as UNet
and Diffusion Transformers (DiTs). Notably, DiT with folded tokens achieves competitive
generative performance compared to state-of-the-art models while significantly reducing
training and inference costs relative to voxelization-based methods. Code is available at
http://anonymous.4open.science/r/FoldDiff-3B36/.

1 Introduction

Modern representations of images and surfaces are often high-dimensional, encompassing thousands of pixels
or 3D points. These representations typically reside on low-dimensional manifolds, either explicitly defined
or inferred. Recently advancements in diffusion models (Ho et al., |2020; [Sohl-Dickstein et al., [2015} |Song
& Ermon, 2019 |Song et al., 2021; [Peebles & Xie) |2023) have demonstrated their efficacy in capturing
implicit data distributions, and are conceptually linked to thermal systems. The forward diffusion process
simulates thermal agitation, gradually transforming data into a standard Gaussian; while the reverse process
mimics cooling, reconstructing data via Langevin-style probabilistic gradient ascent. However, this thermal-
dynamics-inspired framework treats data as particles and assumes that the data reside in a structured vector
space (e.g., images as pixel-ordered vectors). The irregularity and lack of inherent order in point clouds pose
significant challenges to the direct application of diffusion or Langevin dynamics.

The problems are illustrated in Fig. 1} where a diffusion process or Langevin dynamics describes the motion
of a particle in an arbitrary space. When we consider RGB images of height H and width W as particles, their
positions are described by vectors in R¥*W >3 and updated by diffusion denoising or Langevin dynamics.
Each entry in such vectors follows the same permutation across objects, and such a correspondence is
preserved during denoising. This correspondence is missing in unordered point clouds. Thus, unlike image
“particles,” the motions of “particles” that represent the point cloud objects cannot be properly described
due to the absence of this structured space. Permutation invariant choices for denoising loss further impose
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irretrievable permutation matrices on the noisy point clouds.

This observation aligns with the findings

reported in |Zhou et al.| (2021) and [Mo et al.| (2023]), where similar challenges were encountered in designing

diffusion models for unstructured point clouds.

The theoretical framework of “denoising implicit
priors” investigates diffusion from its fundamental
building blocks: Denoising Autoencoders (DAEs).
As first shown in [Vincent| (2011), a DAE that min-
imizes the [ norm between a recovered signal and
a clean one is equivalent to an energy model that
tries to match its score to that of a non-parametric
Parzen density estimator of the data. The theoret-
ical connection between DAEs and score-matching
(Vincent)|, |2011)) guarantees that each denoising step
moves the data towards higher probability regions.
Thus, authentic samples can be drawn from the im-
plicit priors that DAEs learned from I noise re-
gression. In this work, we employ the theoretical
framework of denoising implicit priors to, for the
first time, offer a comprehensive theoretical analy-
sis of diffusion denoising in unstructured spaces. In
Sec. [3] we theoretically prove that such unknown
permutations breaks the proportional relationship
between an Iy denoising residual and the probabil-
ity score, which are also empirically demonstrated

X X1

(a) Structured space with
consistent axis.

(b) Unstructured space with
unknown permutation.

Figure 1: (a) Particle motions can be properly de-
scribed in a shared and structured space (e.g., RGB
images with the same height and width). (b) Particle
motions cannot be properly described in unstructured
spaces (e.g., unknown permutation between unordered
point cloud objects) or during unstructured motion
(e.g., unknown permutation imposed by permutation
invariant denoising). Axes correspondence are noted
by colors.

in our experiments (Sec. |5.3)).

Recent diffusion models for point clouds have opted for voxel grids (Zhou et al., 2021; [Zeng et al.| [2022;
Mo et al.| [2023)) or triplanes (Shue et al., 2023) as structured representations for the diffusion processes.
However, these methods suffers from cubically or quadratically scaling computational complexities as well as
quantization errors. In this work, we proposed a compact alternative based on the folding operation (Yang
et al., 2018), which reconstructs a permutation-invariant, grid-like representation of the input point cloud.
The folded reconstruction can be viewed as a fixed permutation that approximates the original geometry,
providing a structured representation for point cloud diffusion. This novel framework, FoldDiff, is different
from preview methods that performs diffusion on a voxelized space. It enjoys a linearly scaling computational
complexity with the number of points in each object during diffusion denoising. The resulting grid-like
representation, akin to a Geometry Image (GI) (Gu et al. |2002), pairs effectively with image denoisers
to learn implicit priors of the original manifold of 3D objects. By combining image denoisers trained on
folded objects with the Langevin-style sampling algorithm from Kadkhodaie & Simoncelli (2021)), 3D objects
can be sampled from the denoising implicit priors. Additionally, we test our framework on the Denoising
Diffusion Probabilistic Models (DDPMs) (Ho et al., |2020]) with both UNet (Ronneberger et al., [2014]) and
DiT (Peebles & Xiel |2023) backbones, and observed qualitatively and quantitatively competitive generative
performances at significantly reduced cost. Notably, the use of folded tokens significantly reduces the token
count in DiTs relative to its voxelization-based variant, leading to substantial improvements in training and
sampling efficiency for point cloud diffusion.

Our main contributions can be summarized as follows:

e We present a theoretical analysis of the intractability of applying diffusion or Langevin dynamics to
unordered data structures, grounded in the theory of “denoising implicit priors.”

e We propose a novel folding-based point cloud diffusion framework, dubbed FoldDiff, offering greater
efficiency than popular voxelization-based methods while enabling a seamless unification of 2D and
3D diffusion methods.
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e We empirically validate our novel framework on denoising implicit priors, UNet-based DDPMs and
DiT-based DDPMs, demonstrating competitive generative performance with a lower training and
inferencing cost.

2 Related work

Diffusion models and denoising implicit priors. Diffusion models (Ho et al) [2020; |Sohl-Dickstein|
let al.} [2015} [Song & Ermonl, [2019; [Song et al., [2021}; [Peebles & Xie, [2023) have recently emerged as powerful
generative models, outperforming earlier approaches like VAEs (Kingma & Welling| [2014), normalizing flows
(Kobyzev et al., 2020), and GANs (Goodfellow et all) 2014). Denoising Diffusion Probabilistic Models
(DDPMs) (Ho et al., [2020) utilize a fixed Markovian forward process that incrementally corrupts the data
with Gaussian noise, paired with a learned noise-conditioned denoiser that constructs the reverse Markovian
process. These models can be interpreted as Hierarchical Variational Autoencoders (HVAEs) (Kingma et al.)
[2016} |Spnderby et al.} [2016)), Score-based Generative Models (SGMs) (Song & Ermon, [2019; Song et al., [2021)),
or stacks of Denoising Autoencoders (DAEs) (Kadkhodaie et al., 2024).

In this work, we explore diffusion models through the lens of DAEs, focusing on their connection to score
matching and probability gradient ascent (Vincent et al.l [2008). Central to their success is the use of DAEs
to estimate the data distribution’s score at varying noise levels, enabling denoising implicit priors on the data
manifold. In particular, Kadkhodaie & Simoncelli| (2021)) proposed a stochastic gradient ascent procedure
to sample from image denoisers. Our work builds upon this idea, but addresses the unique challenges in
extending it for the first time to the point cloud domain. Building on the concept of denoising implicit
priors, we propose a novel folding-based solution to address point cloud irregularity, which is compatible
with models such as DDPMs using both UNet (Ronneberger et al [2014) and DiT (Peebles & Xiel 2023)
architectures.

Diffusion models for point clouds. Generative models for point clouds aims to capture “distribution
(objects in RV*3) of distributions (points in R?).” Diffusion process was first adopted in [Luo & Hul (2021b)
to model the distribution of points in R? conditioned on a PointNet (Qi et a1.|, 2017a) encoded shape latent.
Our work instead examines the diffusion models at the object level, where the “particles” are point cloud
objects in RV*3,

Due to the irregularity of point clouds, mainstream 3D diffusion models perform diffusion either on a voxelized
space following Point Voxel Diffusion (Zhou et al., [2021)), or on a encoded triplane representation following
Triplane diffusion . These two strctured representations are easy to optimize and intuitively
analogous to 2D pixels, but they both suffer from quantization errors and higher computational complexity.
Comparing to generative models modeled on raw point clouds in RY %3, voxelization-based methods
let al. 2021} |Zeng et al., 2022 Mo et al., 2023) perform diffusion in the voxel space in RE*V*V*V " Here,
C denotes the number of feature channels per voxel, and V represents the resolution of the voxel grid along
each spatial dimension. Similarly, triplane-based methods (Shue et al. 2023)) perform diffusion in the space
of encoded triplane latents in R3“*#*W wwhere H and W specify the spatial resolution of each triplane
feature map of dimension C'. Our proposed folded structure fundamentally differs from previous structured
representations, offering computational complexity at the order of the original point cloud (RV*3) while
being fully compatible with established 2D diffusion architectures.

Point cloud denoisers. The unordered nature of point clouds poses a key challenge in applying image-
based deep learning methods to 3D data. PointNet pioneered using permutation invari-
ant operations, e.g., pointwise convolutions followed by channel-wise pooling, to address this. Subsequent
works improved the expressiveness (Qi et all 2017b; [Wang et all 2018)) or efficiency (Liu et al.| of
this approach. State-of-the-art point cloud denoisers (Rakotosaona et al., 2020; Luo & Hu, 2020; [2021a}
|de Silva Edirimuni et al., 2023) adopt a similar permutation invariant encoder-decoder architecture, but fo-
cus on recovering local surface details rather than global shape of an object. We do not consider these local
denoisers since we are interested in modeling the distribution of point cloud objects globally. As described
in Sec. we performed experiments on a PointNet-based object-level denoiser paired with the Chamfer
Distance loss. We provide theoretical and empirical analysis on why this object-level denoiser cannot be
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directly used to sample shapes using “denoiser as prior” techniques (Sec. . We solve this problem with
the approach here introduced (Sec. |4.1)), and demonstrate the empirical applications of these ideas (Sec.

13).

Folding-based autoencoders and geometry images. Folding-based decoders (Yang et al. 2018;
Groueix et al., [2018; |[Pang et al., |2020|) became a popular design choice due to their expressiveness power.
In general, the decoding process simulates a deformation process from a genus-0 primitive surface (i.e., a 2D
grid lattice) to a shape that reconstructs the inputting point cloud. This 2D-to-3D deformation is deeply
connected with Geometry Images (GIs) (Gu et al.l [2002), which aims to simplify shape analysis with image-
processing tools including CNNs (Zhang et all [2022; [Sinha et al., |2016; 2017} [Maron et al., [2017)). In our
work, folding is adopted to obtain a permutational-invariant order of the inputting point cloud, creating a
structured vector space for diffusion systems.

3 Denoising implicit priors on point clouds

3.1 Denoising on images and point clouds.

We represent the original input data (image or point cloud) as a vector x € RV*3. The N dimensions, can
be associated to an RGB image of N pixels or a point cloud of N (3D) points. The goal is to efficiently
represent the prior probability P(x) (i.e., the manifold on the original space where data lies). In both image
and point cloud denoising, it is common to assume that the noisy observation is a distribution conditioned
on the clean observation, expressively y = x + z, where y € RV*3 is the noisy observation, x € RV*3 is
the clean observation, and z ~ N(0,0%Iy) is the Gaussian noise modeled as both additive and Gaussian
(Kadkhodaie & Simoncelli, [2021]). Thus, a denoiser is optimized to approximate the residual z to recover
the clean image x given y. If x is drawn from a prior distribution P(x), its created noisy version can be
considered a Gaussian convolved distribution P(y) that can be rewritten via marginalization,

mwz/Pmmmmmzjﬁw—mmmm7 (1)

where g(z) is the multivariate Gaussian PDF with variance 0% that models the noise residual z.

Even though the additive noise is modeled by a Gaussian distribution in both scenarios, point cloud denoising
differs from image denoising in its optimization objectives. A key observation is that point clouds are
unstructured data while images are structured. In image denoising, each noisy pixel y; has a one-to-one
correspondence with its ground truth clean pixel x;. In this case, optimizing a denoiser fy(y) =y — x is
equivalent to minimizing the objective

arg;nin Ey p(y) [£(x,x)], (2)

where £ is commonly the ls norm, and X =y — fy(y) is the recovered signal. Unlike images, a clean point
cloud is a discrete set of samples from a surface S embedded in 3D space. Hence, each noisy point y; can
have multiple origins from the clean surface S, which breaks the point-wise correspondence between noisy
and clean point clouds. If we naively treat every point cloud with its given permutation as a vector and
supervise denoising with the [ norm, the point-wise correspondence is still unknown during test time. As
reported in |Rakotosaona et al.|(2020]), a denoiser optimized to minimize the objective given in Equation [2]is
not recovering the original clean point but an average of all possible candidates that the noisy point originates
from. This leads to worse denoising performance as it does not guarantee the average to be a point on the
surface. Another option is to minimize the distance from denoised points to the underlying surface through

argénin Ey py) [I(X,S)]. (3)

In practice, we only have access to clean points x as discretized samples from the underlying surface. Prox-
imity to the surface is thus the Euclidean distance between a noisy point y,; and its nearest neighbor (NN)
in x,

lyi = NN(yi,x)] - (4)
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A common loss function [(x,S) (Rakotosaona et al., 2020; [Roveri et al., [2018) is then

X = NN(y,x)13 = foly) — (y = NN(y,x))|3. (5)

This strategy presents two main challenges: (1) nearest neighbors need to be computed online, which is
computationally very demanding; and (2) the process of denoising introduces an unknown permutation in
the points representations. Next, we discuss the challenges of this permutation matrix.

3.2 Denoising implicit priors in structured and unstructured spaces.

Denoising CNNs can be viewed as least squares estimators that recover the true signal by computing the
conditional mean of the posterior,

X(y) = /xP(x|y)dx = /xp(yP)z)y];(X)dm, (6)

where X(y) is the best (in the I3 sense) approximation of the recovered signal. This solution can be expressed
as (Miyasaway, [1961])

x(y) =y +0°Vylog P(y). (7)

The predicted residual %X(y) — y is then proportional to the score function Vy log P(y). This implies that
the training objective of a CNN denoiser is equivalent to score matching. The noise residual provides a
direction to move up a probability gradient toward a clean image density. Thus, as proposed in |Kadkhodaie
& Simoncelli| (2021)), we can gradually converge to the manifold P(x) using Langevin style gradient ascent.

Unfortunately, Equation [7] no longer holds when the data is unstructured, and therefore the whole idea
of “denoiser as prior” collapses. To formalize this problem, let’s consider a noisy observed point set ) =
{x;+2z;:i=1,...,N}, where we assume z; ~ N(0,0?) for all i, and x = (x1,...,xy) is the “correct”
vectorization of clean points. Any vectorization of ) can be rewritten as

y =Tl(x+32), (8)

where II is a permutation matrix. Since z; ~ N(0,0?), we have IIz ~ N(0,0%II), i.e., z and IIz have the
same distribution, and since z is not directly observed, without loss of generality, we can write

y =X+ 2z, (9)

where X = IIx is a permutation of the original vectorization and z ~ A(0,5%I). Note that IT = Iy« if and
only if y; = x; 4+ z; for all 7. Suppose we naively vectorize ) to obtain y by a random permutation. Given
a permutation II, we can rewrite the marginal distribution of the observation P(y|II) and the least squares
estimate X(y) as

P(y[II) = /P(Y|X7H)P(X|H)d><: /g(yfﬁ)P(Xm)dxv (10)
x(y) = /xP(x|y, II)dx = /xp(yb;(l;,ﬂ)l]_;)(xn)dx. (11)

The following proposition then follows.
Proposition 1. The denoiser residual f(y) = X —Yy is proportional to Vy log P(y) if and only if II = Inxn.
The proof is presented in the Appendix This proposition implies that Equation [7| can only be applied

to a structured data format that always follows its original permutation, which is not generally the case in
point cloud denoising, validating the empirical observations in Sec.
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Figure 2: Overviews of the original FoldingNet and our proposed modifications.

4 FoldDiff for 3D shape generation

4.1 FoldingNet as reordering module

To solve the challenge of permutation and irregularity in point cloud denoising, we choose to reorder the
irregular inputting point cloud via a Folding-based autoencoder (Yang et al. 2018). The original Fold-
ingNet architecture is illustrated in Fig. a), which encompasses a permutation-invariant encoder, based
on PointNet (Qi et al., 2017a)), and a folding-based decoder. The encoder outputs a one-dimensional latent
vector invariant to the input point cloud’s ordering. This latent vector is concatenated with coordinates
from a predefined 2D grid as a primitive structure. The decoder then models the “deforming forces” acting
on the 2D grid to reconstruct the input point cloud. Since the decoder uses two inputs—the global latent
vector and the predefined 2D grid—Dboth of which are permutation-invariant to the original point cloud, the
reconstructed output also inherits this property. Consequently, the folding operation produces a reordered
point cloud reconstruction embedded in a structured vector space, enabling us to treat the reconstruction as
“particles” suitable for diffusion systems.

4.2 Modified FoldingNet

In our framework, we introduce two modifications to the original FoldingNet. Fig. [2| shows an overview of
the original FoldingNet and our proposed alternative. First, while FoldingNet was originally optimized using
Chamfer Distance (CD), we replace it with the Sinkhorn Distance (Cuturi, |2013; [Feydy et all [2019). Since
our goal is to use the FoldingNet to find a fixed permutation that reconstructs the inputting point clouds,
it can be formulated as an optimal transport problem that aims to transport the source unordered points
to the target reordered reconstructions, and the Sinkhorn Distance is a differentiable solution. Second, we
incorporate an attention block following [Wen et al.| (2020)) to improve the reconstruction quality without
breaking the permutation-invariant property. As illustrated in Fig. b)7 the queries are generated by a
multilayer perceptron (MLP) that processes the 2D coordinates concatenated with the max-pooled global
feature. Subsequently, the attention module automatically selects the most informative encoded point-wise
features corresponding to these queries, thereby establishing a mapping—a permutation—from an input
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Figure 3: An overview of the proposed FoldDiff framework. Folding operation provides a reordered recon-
struction that is permutation invariant to the input. The resulting structured global or local representation
can be paired with various 2D diffusion techniques and enables efficient point cloud diffusion sampling with-
out the need for voxelization.
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point to a specific position on the 2D grid. This process yields integrated features that guide the decoder
in producing more precise reconstructions, while the decoder in the original design (Fig. a)) relies solely
on the global feature. Given that the attention mechanism is permutation-equivariant with respect to the
queries, and considering that our queries are permutation-invariant features, the permutation-invariance of
the reordered reconstruction is preserved.

To validate our just introduced modifications to the local FoldingNet, we report the reconstruction errors in
Chamfer Distances (CD) and Earth Moving Distances (EMD) on small local patches. Training local patches
are extracted from chairs, cars, and airplanes in the ShapeNet dataset, where each object contains 2048
uniformly sampled points via farthest point sampling. In our default setting, each local patch resembles a
k x k geometry image that aggregates 16 nearest neighbors of a randomly chosen center point. The models
were trained for 1,000 epochs with a batch size of 65,536 and a learning rate annealing from 2 x 10~% to
2 x 1076 with a cosine schedule. The experimental results in Table [1| demonstrates that our modifications
boost the reconstruction quality of folded local patches with only a 0.2 Gflops overhead.

While the modified FoldingNet demonstrated in Fig. 2] Table 1: FoldingNet performance on small local

is sufficient for tokenizing local patches, we use a hier- patches of 16 points with different modifications.
archical FoldingNet to better reconstruct point clouds

globally. The architecture is inspired by PointNet+-+ Attention Gflops loss CD(107%) EMD(1072)
(Qi et al., 2017b) and the Laplacian Pyramid, and the X 1.6799 CD 3.9188 7.5919
details ar.e coxferefdl in AI;lpencéb? A2 I’;he ;Iisulting re- % 18716 CD 31273 7.0969
constructions is then reshaped into a X geometry 7 18716 Sinkhorn _ 2.9870 0.4456

image (GI), where each pixel encodes the (z,y,z) coor-
dinates of the reconstructed geometry. The GI is then naturally compatible with 2D UNet denoiser and
UNet-DDPMs trained with [y noise residuals.

4.3 The FoldDiff framework

To address the irregularity in point clouds for diffusion models without incurring the high computational
complexities and quantization errors of voxelization-based approaches, we propose FoldDiff (demonstrated
in Fig. [3), which performs denoising diffusion on folded point clouds. We explore three variants of our
framework: (1) 2D UNet denoising implicit priors paired with folded objects; (2) 2D UNet-based DDPMs
paired with folded objects; and (3) DiT-based DDPMs paired with folded tokens.

Sampling folded objects from UNet implicit priors. Modeling the manifold of reordered reconstruc-
tions instead of unordered inputs circumvents the challenges posed by permutation matrices as shown in
Proposition [I} The folded reconstructions can be trivially reshaped into an image-like representation (i.e.,
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Geometry Image), making them compatible with 2D CNN-based denoisers. As demonstrated in Equation
the predicted noise residual gives us a direction (i.e., score estimation) toward the clean manifold, thereby
providing access to the density p(x). A general denoiser can be considered a score approximator adaptive
to different noise levels. It’s connection to denoising diffusion provides us a proof-of-concept algorithm to
illustrate the necessity of structured permutation. Following [Kadkhodaie & Simoncelli| (2021)), we trained a
2D CNN UNet denoiser (Ronneberger et al., |2014)) as our implicit prior. Architectural details of the UNet
are covered in Appendix The training objective is the ls-norm between the denoised residuals and
the ground truth additive Gaussian noise on each reordered point. To sample high-probability objects from
a denoiser, we follow the Langevin-style stochastic gradient ascent algorithm in [Kadkhodaie & Simoncelli
(2021). A detailed explanation of the sampling algorithm is included in Appendix

Sampling folded objects from Unet-based DDPMs. Extending this approach, we perform Denoising
Diffusion Probabilistic Models (DDPMs) sampling using noise-conditioned UNet denoisers trained on globally
folded point clouds. Unlike general denoisers, noise-conditioned UNets are specifically trained to predict the
score at fixed noise levels rather than adapting to a wide range of noise levels. This specialization allows for
more accurate score estimation, enhancing the sampling quality and diversity.

In DDPMs, the forward diffusion process corrupts data xo by adding Gaussian noise over T' timesteps, forming
latent variables xi,Xa,...,x7r. The joint distribution of the forward process is defined as ¢(x1.7|x9) =
Hthl q(x¢|x¢—1), where q(x¢|x¢—1) = N (x¢; \/arx¢—1, (1 — ay)I). With the reparametrization trick, samples
x¢ ~ q(x¢|x¢—1) can be rewritten as v/ayxo + /1 — @€g, where ¢g ~ N(0,I). The reverse process learns a
score estimation network pg(x¢_1|x;) such that py(xo.7) = p(x7) Hthl po(x¢—1|x¢), where p(xr) ~ N(0,I).
The parameters 6 are optimized to minimize the evidence lower bound (ELBO) on a negative log-likelihood
of xo under py(xo.7). The ELBO then reduces to minimizing the ls-norm between the ground truth noise and
the predicted noise up to a irrelevant constant multiplier, which coincides with the denoising score matching
results as introduced in Sec Bl

Sampling from DiT-based DDPMs with folded tokens. If UNet based diffusion predicts the dy-
namics of “a particle” (i.e., an image or a point cloud), Diffusion Transformer (DiT) (Peebles & Xie, [2023)
predicts the dynamics of “a particle group” (i.e., a group of tokens in an image or a point cloud). Here, an
indestructible particle is no longer the entire object, but the tokens. In this case, the movement direction
(i.e., probability gradient) of each “particle” (i.e., each token) is dependent not only on noise levels, but also
on the interactions within a “particle group” (i.e., group of tokens), and such interactions are captured by
the transformer (Vaswani et al.l |2017)).

The original DiT for images consists of two main components. The first is a pretrained tokenizer, which
compresses the high-resolution image x into a lower-resolution latent image z. This latent image is then
divided into patch embeddings in the raster order. The second component is the latent diffusion trans-
former, which replaces the UNet in DDPMSs. In the latent diffusion transformer, the l5 noise on each token
is predicted conditioned on token interactions captured by self-attention. The original DiT added positional
embeddings to the image patch embeddings to retain positional information.

We dub our DiT as DiT-fold, where the tokenizer is a lightweight FoldingNet as described in Sec. [4.2]
and the folded reconstructions serve as our tokens. We applied sinusoidal positional embeddings on the
barycenter of each folded token, allowing the transformer to capture the spatial relationship between tokens.
Additionally, without the constraints of voxel grids, our approach allows for any integer number of token
length L, with each token a k x k local geometry image. We considered choices such that Lk? ~ 2N for
objects of N points. This design offers greater flexibility in sequence length compared to DiT architectures
based on voxelization such as Mo et al.| (2023), which is restricted to voxel dimensions V' € {16,32,64},
and patch widths p € {2,4,8}, resulting in token lengths L = (V/p)® € {23,43,83,163,32%}. In their
largest configuration (V' = 64,p = 2), the token count reaches 32,768—significantly exceeding the number
of points (N = 2048) in the experiments—leading to highly inefficient training and inference. Our proposed
FoldDiff provides a more compact and efficient alternative to point-voxel representations for point cloud
diffusion, despite some computational overhead for training a lightweight folding tokenizer. Such overhead
can be minimized by training a universal local patch tokenizer applicable across all object categories. A well-
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Figure 4:  Single-class
point  cloud  gener-
ation for airplanes,
cars, and chairs. The
proposed DiT-fold
avoids the quantiza-
tion error introduced
from voxelization, thus
generates smoother
shapes.

DiT-fold

optimized, lightweight tokenizer can then be directly paired with DiTs of any size to model diverse target
distributions efficiently. Aside from the above modifications, our implementations align with the original
DiT (Peebles & Xie, [2023)).

5 Experiments

5.1 Experimental setup

Datasets. We compare the performance of different methods on single-category 3D shape generation using
ShapeNet (Chang et all,2015|) chairs, cars, and airplanes as primary datasets. We use the same dataset splits
of previous works (Luo & Hul, [2021b; [Yang et al., |2019; [Zhou et al.| 2021} |Zeng et al.l [2022; Mo et al., |2023]).
Throughout our experiments, each object contains 2048 uniformly sampled points. During evaluation, both
the generated shapes and the reference shapes are inversely transformed with the global mean and variance
of the training set.

Implementation details. All models are trained with PyTorch. UNet implicit priors and DDPMs are
trained on globally folded point clouds. DiT-based DDPMs use the folded local patches with a lightweight
FoldingNet (see Sec. . Model details are covered in Appendix

Evaluation metrics. Following previous works (Luo & Hul [2021b}|Yang et al.| 2019} |Zhou et al., 2021} |Zeng
let al.| [2022; Mo et all 2023)), we adopt coverage score (COV) and 1-Nearest-Neighbor classifier Accuracy
(1-NNA) to quantitatively evaluate the sampling quality and diversity of different methods. Specifically,
1-NNA evaluates whether the generated distribution is identical to the reference distribution (e.g. test-set
distribution). Closer to 50% implies better similarity between distributions, thus capturing both the sampling
quality and diversity. COV calculates the proportion of shapes from the reference dataset to be matched
with at least one generated shape. Higher COV implies better diversity. 1-NNAs and COVs are computed
from the full pair-wise distance matrix of elements from both test set and the sampled set. Chamfer Distance
(CD) and Earth Mover’s Distance (EMD) were used as our distance metrics to compute 1-NNA and COV.
[Yang et al. (2019)) provided a more detailed discussion over different evaluation metrics.

5.2 3D shape generation

We evaluate the generative performance and efficiency of DiT-DDPM-based FoldDiff against previous point
cloud generative frameworks, as demonstrated in Table 2] We compared previous works with similar Gflops
(Yang et al. 2019; Kim et al., |2020; 2021} |Klokov et al., [2020; Luo & Hu, 2021b; Zhou et al., [2021;
et all 2023). Among them, point-voxel architectures (Zhou et al., 2021} [Zeng et al., 2022; Mo et al.
2023) demonstrate the most competitive generative performance, with DiT-3D-XL (Mo et al., 2023) recently
achieving state-of-the-art results. Since LION (Zeng et al.,|2022)) has Gflops of 247.38 and DiT-3D-XL(64/2)
in Mo et al.| (2023) has Gflops of 1.12 x 10%, they are omitted in our experiments for fair comparison.
The point-voxel representation provides a structured space for point cloud diffusion, yet suffers from a
cubically scaling complexity and quantization errors. In contrast, our folded representation avoids the above
restrictions. As illustrated in Fig. [4] our framework reduces quantization noise, producing smoother point
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Table 2: Comparison results (%) on shape metrics of our DiT-fold and baseline models. (*) denotes re-
implemented performances on 2048 uniformly sampled points. Here we considered the methods with Gflops
from 0 to 100. We report the average performance of 3 generative runs.

Chair Airplane Car
Method Gflops 1-NNA (1) COV (1) 1-NNA (1) COV (1) 1-NNA ({) COV (1)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

- 83.69  99.70 24.27 15.13 98.40 96.79  30.12 14.32 9446 99.01 19.03  6.539

r-GAN |Achlioptas et al.|(
) 68.58 83.84 4199 2931 87.30 93.95 38.52 21.23 66.49 88.78 38.92 23.58

I-GAN (CD) |A

1-GAN (EMD][Achlioptas et al.| (201 ~ 7190 6465 3807 44.86 8949 7691 3827 3852 7116 6619 37.78 4517
PointFlow [Yang et al.| (2010} 210 6284 60.57 42.90 50.00 75.68 7074 47.90 4641 5810 5625 46.88  50.00
SoftFlow [Kim et al.|(2020] 1129 5921  60.05 41.39 4743 7605 65.80 4691 47.90 6477 60.09 42.90 44.60
SetVAE 021 161 5884 6057 46.83 4426 7654 67.65 4370 4840 59.94 59.94 49.15 46.59
DPF-Net 2 302 6200 5853 4471 4879 7518 6555 4617 48.89 6235 5448 4574 49.43
DPM [Luo & 209  60.05 7477 4486 3550 7642 86.91 48.64 33.83 68.89 79.97 44.03 34.94

PVD|Zhou et al. 81.12  57.09 60.87 36.68 49.24 73.82 64.81 48.88 52.09 54.55 53.83 41.19  50.56
PVD*|Zhou et al.|[(202] 81.12 56.85 55.91 46.68 51.41 73.57 67.97 4722 4820 57.79 53.07 47.51 53.30
DiT-3D-S(32/4) M 21.95 56.31 55.82 47.21  50.75 - - - - - - - -
87.42  55.59 5491  50.09 52.80 - - - - - - - -

DiT-3D-S(32/4)* Mo et al.|(2023 21.95 59.19 55.82 44.96 51.16 78.57 67.86 45.57 47.78 63.99 61.65 40.06  50.28
DiT-fold-S(256/16 12.80 5548 53.56 48.03 51.69 72.19 66.06 47.28 51.11 58.74 52.26 48.53 53.79
DiT-fold-S(512/9) (Ours) 23.92 55.06 53.25 46.83 53.78 67.24 64.78 50.99 5197 56.63 52.85 47.73 5240

clouds than PVD (Zhou et all, 2021)), LION (Zeng et al., |2022)), and DiT-3D (Mo et al., [2023)). Moreover,
we observed a generalized generative behavior as covered in Appendix [A-4] by comparing a generated shape
to its nearest neighbors in the training set.

Due to constraints on training budget, we compare the point-voxel framework with our FoldDiff framework
under the same model size: DiT-S. We denote different configurations of DiT-fold as DiT-fold(L/k?), where
L stands for token length, and each token is a k x k local geometry image. We denote different configurations
of our baseline, DiT-3D , as DiT-3D(V /p), where V is the voxel dimension, and p is the
patch width. We re-implement point-voxel diffusion methods with similar Gflops including PVD and DiT-
3D-S for a more comprehensive comparison in ShapeNet (Chang et all [2015) chairs, cars, and airplanes,
while the results for other methods are reported as in their original paper. For fairness, we report both the
available published performance metrics and re-implemented results (denoted with *).

In our default configuration, we use DiT-S with 256 tokens, each containing 16 folded points, which corre-
sponds to 4 x 4 local geometry images. During training, each token is captured from 16 nearest neighbors
of 256 farthest sampled centers. During sampling, tokens are directly inferred and contains 3D position of
points. We train the DiT-S with folded tokens for 10,000 epochs with AdamW optimizers using a learning
rate of 2 x 1074, Following DiT (Peebles & Xiel 2023), we maintain an exponential moving average (EMA)
of model weights over training with a decay of 0.9999 and the EMA weights were used during sampling for
evaluation. This technique was also used in re-implemented DiT-3D.

As shown in Table 2} with similar or lower computational costs, our default configuration DiT-fold-S(256/16)
demonstrates superior performance over traditional methods (Yang et al., 2019} Kim et al., 2020} 2021} Klokov|
let all, [2020% [Luo & Hul [2021b). More importantly, DiT-fold-S(256/16) surpasses the performances of point-
voxel methods, PVD (Zhou et al [2021)) and DiT-3D-S 2023)), with equivalent or less Gflops. In
particular, DiT-fold-S(256/16) outperforms re-implemented DiT-3D-S(32/4) with only 1/2 of the Gflops. It
also achieves on-par performance on ShapeNet chairs with the reported DiT-3D-B(32/4) performance with
only 1/8 of the Gflops and smaller model. We further boost the performance of DiT-fold by scaling to 512
tokens. Due to restrictions on our training budget, we didn’t scale our models to DiT-B, DiT-L, and DiT-XL.
Nevertheless, FoldDiff demonstrates its superiority over the point-voxel diffusion framework. Please refer to
Appendix [A75.T] for more visualizations.

5.3 Implicit priors and DDPMs
Here we demonstrate the necessity of a structured space in both denoising implicit priors and DDPMs,

also showcasing the flexibility of FoldDiff as a general framework. In total, we experiment on four different
options: (1) PointNet denoising implicit prior with unstructured space; (2) UNet denoising implicit prior with
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Table 3: Generative performances of denoising implicit priors with unstructured and structured spaces on
ShapeNet objects. Structured spaces means we use globally folded reconstructions for training and sampling.

Chair Airplane Car
Denoiser ~ Structured Space 1-NNA ({) COV (1) 1-NNA (}) COV (1) 1-NNA (1) COV (1)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD
PointNet X Fails to generate any visible shapes
2D UNet v 85.73 87.24 28.85 28.40 96.13 96.09 20.82 22.63 90.62 92.14 34.09 36.93

Table 4: Generative performances of UNet DDPMs and DiT DDPMs with unstructured and structured
spaces on ShapeNet objects. Structured spaces means we use globally or locally folded points for training
and sampling.

Chair Airplane Car
Denoiser Structured Space 1-NNA ({) COV (1) 1-NNA () COV (1) 1-NNA (1) COV (1)
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

PointNet++ X Fails to generate any visible shapes
2D UNet v 59.29 6254 4213 4592 8444 8531 39.51 38.52 67.33 70.03 42.05 40.91
DiT-raw X Fails to generate any visible shapes
DiT-fold v 55.48 53.56 48.03 51.69 72.19 66.06 47.28 51.11 58.74 52.26 48.53 53.79

globally folded structured space; (3) UNet DDPM with globally folded structured space; and (4) DiT DDPM
with locally folded structured space. Denoising implicit priors works with slightly different preprocessing
steps, where objects are individually normalized into a bounding box of [—1,1]3>. DDPM methods follows
the default data preprocessing steps.

Implicit priors with unstructured and structured space. In Sec. we demonstrated that the
theoretical foundation of denoising implicit priors fails with unknown permutations. It supports the failures
reported by |Zhou et al.| (2021)) and Mo et al.| (2023)) when they perform diffusion on unstructured point
clouds. Our theoretical and empirical results provides for the first time an explanation to the problems
they encountered. Here we show the empirical results using object-level point cloud denoisers. Our object-
level denoiser is implemented with the segmentation-variant of PointNet (Qi et al.,2017al). Implementation
details are covered in Appendix We use the surface proximity (Equation [5]) as training objective, and
the model predicts a denoising direction for each point. Langevin stochastic gradient ascent fails to generate
any visible shape on such unstructured space of point clouds, agreeing with the empirical findings in [Zhou
et al.| (2021)) and Mo et al.| (2023)). Generative performances are covered in Table

The FoldDiff framework offers a structured space for denoising implicit priors. We can prepare a globally
folded dataset from ShapeNet |Chang et al.| (2015) chairs, airplanes, and cars. On each subset, a 2D UNet
(with architecture described in Appendix was trained to denoise the folded objects, treating them as
geometry images of (H x W x 3). The denoiser is trained to remove a gaussian noise of variance from
[0,0.8]. Finally, we apply the Langevin stochastic gradient ascent (Algorithm (1)) to sample 3D shapes from
the denoiser, with initial parameters oo = 1.0, 01, = 0.01, hy = 0.01, and 3 = 0.1. As reported in Table [3] a
structured space is necessary to sample authentic and diverse shapes from denoising implicit priors.

DDPMs with unstructured and structured space. Following previous works, here we confirm again
that DDPMs on unstructured space with PointNet++ as in [Zhou et al| (2021) and DiT on raw points as
in Mo et al.|(2023) fail to generate any visible shapes. Moreover, as discussed in Sec. [4] noise-conditioned
denoisers gives a more accurate score estimation for diffusion sampling. We performed experiments on two
versions of DDPMs using folded point clouds: (1) 2D UNet-based DDPMs and (2) DiT-based DDPMs. We
use the default DiT-fold-S(256/16).

The 2D UNet-based DDPM uses a similar UNet architecture as in 2D UNet-based denoising implicit priors,
except being conditioned on noise levels. As reported in Table 4] DDPMs provides better sampling quality
and diversity than denoising implicit priors in Table However, since the UNet DDPMs are modeling
the manifold of globally folded shapes, the sampling performance is limited by the performance of the
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Table 5: Ablation studies. MMD-CD is multiplied with 1 x 10~3, MMD-EMD is multiplied with 1 x 1072,

Folding Configs 1-NNA (%) COVH(%) MMD/ Configs 1-NNA (%) COVH(%) MMD/]
token source attention loss ~ CD EMD CD EMD CD EMD Method EMA CD EMD CD EMD CD EMD
Chair X CD 56.38 55.83 47.83 53.45 255 1.45 DiT-3D-S(32/4) X 68.35  69.18 39.73 40.33 290 1.63
Chair v CD 56.35 54.39 4771 51.90  2.59 1.47 DiT-3D-S(32/4) v 59.19  55.82 4496 51.16 2.54 1.49
Chair,Airplane,Car v CD 5593 54.15 47.53 5252 2.51 1.43 DiT-fold-S(256/16) X 56.85  55.20 45.78 50.60 2.62 1.48
Chair,Airplane,Car v CD 55.48 53.56 48.03 51.69 2.51 1.44 DiT-fold-S(256/16) v 55.48 53.56 48.03 51.69 2.51 1.44

(a) Ablating FoldingNets. (b) Ablating EMA.

autoencoder. DiT-based FoldDiff avoids rediscovering a globally autoencoded manifold. As discussed in
Sec. [ DiTs predict the denoising direction for “particle groups” instead of the autoencoded “particles,”
thus is more flexible than the 2D UNet-based DDPMs with globally folded reconstructions. As reported in
Table 4] DiTs generates more authentic and diverse shapes comparing to UNets.

5.4 Ablation studies

Local FoldingNet. Here we ablate our DiT-fold with different local FoldingNets discussed in Sec.
We evaluate the default DiT-fold-S(256/16) on the chair subset with different FoldingNet configurations.
Minimum Matching Distance (MMD) were included as additional metrics to evaluate the quality of generated
shapes for experiments. Lower MMD implies better fidelity. The experimental results, summarized in
Table reveal several key insights. As observed, introducing attention mechanisms into the local folding
tokenizers is necessary for accurately reconstructing local patches, leading to improved overall performance.
Changing the optimization goal from the Chamfer Distance (CD) to the Sinkhorn Distance further boosts
the performance, as the Sinkhorn Distance is better at continuously approximating a permutation from
reconstructions. Moreover, training the local folding tokenizer on a diverse set of object categories (e.g.,
chairs, airplanes, and cars) enhances both the accuracy and generalization capability of the learned tokens.
This diversity proves to be a critical factor in achieving better performance in DiT-fold.

Exponential Moving Average. Exponential Moving Average (EMA) is a widely adopted weight averag-
ing technique in deep learning, where an EMA of the raw weights is maintained during training and used for
evaluation or inference. This approach typically leads to improved generalization compared to using the raw,
last-step weights. In our experiments, both the baseline (DiT-3D-S) and our model (DiT-fold-S) utilize EMA
to obtain a more robust noise estimator, resulting in better quality and diversity in the generated shapes. As
observed in Table EMA is crucial for enhancing generative quality and diversity. Notably, without using
EMA weights, our DiT-fold exhibits more robust performance compared to the point-voxel-based DiT-3D.

6 Conclusion

In this work, we provide a theoretical explanation to the impact of irregularity in point cloud diffusion.
To solve this problem, we propose FoldDiff, a novel framework for 3D point cloud diffusion with linear
complexity. By transforming point cloud diffusion from an unstructured space to a reordered structured
space, FoldDiff eliminates the need for voxelization and integrates seamlessly with 2D denoising priors and
DDPM-based methods. The framework leverages the folding operation to output a reordered reconstruction
of the inputting geometry, enabling direct integration with off-the-shelf 2D denoising implicit priors and
DDPM-based methods. This facilitates efficient modeling of the distribution of clean 3D objects and high-
probability sampling from the learned distribution. Leveraging folded tokens with Diffusion Transformers,
FoldDiff outperforms voxel-based approaches in both performance and efficiency, offering a new direction
for tokenizers and transformer architectures in point cloud modeling.

Future work includes exploring similar frameworks for meshes, as well as integrating texture information
into the generative process. Additionally, our evaluations were conducted under a relatively small model
setting due to computational constraints (i.e., DiT-S), and while sufficient to show the power of the proposed
framework, it mainly lays the groundwork for future research to scale up our results or design optimized DiT
variants tailored to the folding operation, potentially unifying approaches for 3D generative modeling with
2D methods.
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A Appendix

A.1 Proof of Proposition 1

In Sec. [3:2] we explained why gradient denoising in Equation [7] cannot be naively extended to unstructured
data. This is formalized through our Proposition [I] below, which implies that Equation [7] holds only if we
pick a permutation of the point set that is exactly equal to a true underlying structure. For unstructured
data, such permutation matrix is non-retrievable, thus Equation |7] no longer holds. In this appendix we
include the proof of this proposition.

Proposition 1. The denoiser residual f(y) = X—Yy is proportional to Vy log P(y) if and only if II = Iny .

Proof. Starting from Equation we can write
VPO = 07 [ (%= ) gty - %) P,
— o [ (Ix—y) Py x/mx

where we use X = IIx and replace g(y — IIx) with P(y|x,II) to obtain the second row. Dividing by
o2 P(y|II) gives

0?Vy log P(y|II) = /HXP(X|y7 IT)dx — /yP(X|y7 IT)dx,
= H)A( -y,
where in the first row we used Vy log P(y|II) = %, and in the second row we used Equation This
gives us the estimator x(y) as

x(y) =" [y + 0*Vy log P(y|II)] . (12)
Therefore, we can evaluate how much f(y) = % — y differs from being proportional to Vy log P(y|II) as
f(y) = o*Vylog P(y[IT) = (I - II) X(y),

which is 0 if and only if II = 1. O

A.2 Implementation details

Here we cover the implementation details of each model we used for experiments. We will discuss important
components for each model. For more details, please refer to our public repo.

Architectural details of unstructured PointNet denoiser. We use a PointNet-based denoiser for
denoising implicit priors experiments in unstructured spaces as discussed in Sec. The network design
follows the segmentation-variant of PointNet (Qi et al., 2017a). The encoder is composed of MLP layers
with an input dimension of 3 (spatial coordinates) and output dimensions of [64, 64, 64, 128, 512]. The
N x 512-dimensional point-wise features then maxpooled over the N-points to achieve a 512-dimensional 1D
vector. The 1D vector is then concatenated with the local feature at dimension 128, creating a global-local
mixture of point-wise latent code in N x (512 + 128). The point-wise latent code is then fed into a decoder
of output dimensions [256, 128, 64, 3] to predict the point-wise denoising direction. The loss is computed
with the mean-squared-error between the predicted denoising direction and the displacement from the noisy
point to the nearest clean point.

Architectural details of hierarchical FoldingNet. This section continues Sec. to provide more

architectural and training details of the proposed hierarchical folding autoencoder. We first adopt a stack of
Set Abstraction modules as proposed in PointNet++|Qi et al.[(2017b)) to encode information in different levels
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of resolution. After three Set Abstraction operations, we acquire 3 sets of points in decreasing resolutions
N1,N5,N3 and their aggregated features N1 x C7,No x C3,N3 x C3. During decoding, the first folding block
will reconstruct N3 points as our base geometry image (GI) Iy. The last-layer features before reconstruction
are fed forward. Then we expand base GI Py to the same resolution as N», and use the second folding
block that outputs a difference image to add on Up(ly) to achieve a higher resolution GI I;. We iterate
this process in our decoder until we get a GI with the same resolution as our inputting point cloud. In our
implementation, Ny = 512, Ny = 256, and N3 = 64. The corresponding resolution of GIs are Iy = (8,8),
I, = (16,16), and I = (32,16). Set Abstraction blocks and Folding blocks follow the same design in SA-Net
Wen et al.| (2020)). Note that in our architecture, we follow SA-Net to apply cross-attention layers [Vaswani
et al.| (2017) analogously as skip-connections [Ronneberger et al.| (2014). This design preserves permutation
invariance of resulting Gls, as the queries of the cross-attention layers are permutation-invariant features
extracted by the encoder. Note that we train seperate hierarchical foldingnet for each category. This is less
efficient than the DiT case where a lightweight folding tokenizer can be trained on multi-class objects as a
generalized tokenizer and be used for different DiTs.

Architectural details of 2D UNet. This section continues Sec. {4|to provide more architectural and
training details of the UNet (Ronneberger et al., 2014) model we applied to model denoiser implicit pri-
ors. The UNet contains 4 pairs of downsampling-upampling modules with feature dimensions [32, 64, 128,
256], each pair connected by skip connections. Each module contains 2 convolutional layers with residual
connections. The same architecture is used in all experiments for fair comparison. We first construct a GI
dataset converted from point clouds that contains 512 points farthest sampled from ShapeNet (Chang et al.,
2015) single-class objects, which further normalized into a bounding-box of [—1,1]% across the dataset. In
Kadkhodaie & Simoncelli (2021)), the UNet is trained with Gaussian noise with standard deviations drawn
from o ~ U]0,0.4] (relative to image intensity range [0,1]). Thus, given our GIs have an intensity range
[—1,1], we train the UNet with absolute noise intensity o ~ [0, 0.8].

The UNet used in the diffusion model have similar feature dimensions and architecture, except each layer is
conditioned on diffusion time step t ~ sigmoid(U[0, 1]).

Architectural details of DiT-fold and the folding tokenizer. This section continues Sec. and
covers implementation details of DiT with our FoldDiff framework. The lightweight folding tokenizer follows
the modified architecture as shown in Sec. We train a generalized tokenizer across the chair, airplane, car
subsets of ShapeNet (Chang et al.l 2015, and use this tokenizer for each of the following experiments related
to DiT. The tokenizer contains a shallow PointNet-based (Qi et al., |2017a)) encoder of output dimensions
[64,128,128]. The max-pooled 128-dimensional 1D vector is then concatenated with the coordinates of a
k x k 2D grid, and fed into a MLP to output a point-wise latent code of dimension 128 that mixes the
primitive information and the global information. Then we compute the attention scores between the point-
wise latent code and the 128-dimensional point-wise feature before max-pooling, further merging local and
global information of the point cloud patch. Two folding layers then takes the merged point-wise latent as
input and output a reordered reconstruction of the inputting local patch.

A.3 Langevin gradient ascent details

This section continues Sec. [4] to provide a more detailed explanation for the Langevine dynamics sampling
algorithm in |Kadkhodaie & Simoncellil (2021) which is detailed in Algorithm

In the hyperparameters, o is the initial noise level, oy, is the convergence threshold, hy controls the step
size of each denoising correction, and 3 controls the proportion of injected noise in each iteration.

As shown in the algorithm, we update noisy image y; after each denoising step with

Vi1 + hdy + vz
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Here h; controls the step size of the denoising correction d;, while 7; controls the magnitude of noise injection
after each denoising step. Thus the effective noise variance o? of y; after each iteration is
of = (1=h)0f 4 +7,

(1 - Bhi)?of_;. (13)
In the first expression, the first term is the remaining noise variance after the denoiser correction, and the
second term is the additional variance from the injected noise. To ensure convergence, o7 can be rewritten
as the second expression in Equation [13|by enforcing Sh; < 1, with hy = #‘Ei_l) given an initial parameter
ho € [0,1], and 3 € [0, 1] that controls the proportion of injected noise. When 3 = 1, we have 72 = 0, which
indicates no noise injection; when 8 = 0, a noise with a variance equivalent to the removed noise is injected.
The noise injection amplitude =y is relevant to both h; and 8 with the expression:

o= (A=) = (1= )] oiy,
= [(1 - 5ht)2 - (1= ht)Q] ||f(yt,1)||2 /N, (14)

where || f(y:—1)||> /N = 02, denotes the magnitude of predicted noise variance, and N is the number of
pixels in the image.

To sample high-probability objects from a denoiser, we first sample from random Gaussian noise yg ~
N(0,031). Then the residual of our 2D UNet denoiser is applied as the score Vylogp(y). In each iteration,
we take a small step toward the suggested direction, thus moving closer to the manifold of clean folded
reconstructions, then inject an additional Gaussian perturbation to avoid getting stuck in local maxima
(Kadkhodaie & Simoncelli, [2021]).

Algorithm 1: Coarse-to-fine stochastic ascent method for sampling from the implicit prior of a denoiser,
using denoiser residual f(y) = %(y) —y. (Kadkhodaie & Simoncelli, [2021])

Parameters: og, o1, hg, 8

Initialization: ¢ = 1, draw yo ~ N(0,021)

while 0,_1 <o do

he = #ﬁ—l) ; // step size for denoising step
dy = f(ye-1) ; // denoising direction
2
th = % : // effective noise variance
V= ((1 — Bhe)? — (1 - ht)2) o7 ; // shrinking noise variance
Draw z; ~ N(0,1) ; // sampling Gaussian noise
Yi < Yio1 + hedy + 7124 ; // update data with Langevin dynamics
t+t+1
end

A.4 Nearest neighbors of generated shapes

Fig. demonstrates the top 5 nearest neighbors of a sampled chair using both Chamfer Distance (CD)
and Earth Moving Distance (EMD). As one can notice, the sampled chair is novel comparing to its nearest
neighbors, showcasing a generalized generative behavior of our DiT-fold.

i & F . Figure 5: Top 5 near-
o L Ny R S | & est neighbors of the sam-
= r E ‘; g f h 7 | e, l pled chair from the training
h§ ; " ;’ ;’k e set. Top: nearest neighbors

of Chamfer Distance (CD).
Bottom: nearest neighbors
of Earth Moving Distance
(EMD).
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A.5 Qualitative visualizations

A.5.1 More visualizations of synthesized shapes

Here we show more abundant synthesized shapes from DiT-fold trained on ShapeNet [Chang et al. (2015)
Airplane (Fig. [6)), Car (Fig. [7)), and Chair (Fig. [8).

S M M
M i v M

Figure 6: Synthesized airplanes using DiT based on the proposed FoldDiff framework.
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Figure 7: Synthesized cars using DiT based on the proposed FoldDiff framework.
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Figure 8: Synthesized chairs using DiT based on the proposed FoldDiff framework.
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