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A Plug-in Critiquing Approach for Knowledge Graph
Recommendation Systems via Representative Sampling.

Anonymous Author(s)
ABSTRACT
Incorporating a critiquing component into recommender applica-
tions facilitates the enhancement of user perception. Typically,
critique-able recommender systems adapt the model parameters
and update the recommendation list in real-time through the anal-
ysis of user critiquing keyphrases in the inference phase. The
current critiquing methods necessitate the designation of a ded-
icated recommendation model to estimate user relevance to the
critiquing keyphrase during the training phase preceding the rec-
ommendations update. This paradigm restricts the applicable sce-
narios and reduces the potential for keyphrase exploitation. Fur-
thermore, these approaches ignore the issue of catastrophic for-
getting caused by continuous modification of model parameters
in multi-step critiquing. Thus, we present a general Representative
Items Sampling Framework for Critiquing on Knowledge Graph Rec-
ommendation (RISC) implemented as a plug-in, which offers a new
paradigm for critiquing in mainstream recommendation scenarios.
RISC leverages the knowledge graph to sample important represen-
tative items as a hinge to expand and convey information from user
critiquing, indirectly estimating the relevance of the user to the
critiquing keyphrase. Consequently, the necessity for specialized
user-keyphrase correlation modules is eliminated with respect to
a variety of knowledge graph recommendation models. Moreover,
we propose aWeight Experience Replay (WER) approach based on
KG to mitigate catastrophic forgetting by reinforcing the user’s
prior preferences during the inference phase. Our extensive exper-
imental findings on three real-world datasets and three knowledge
graph recommendation methods illustrate that RISC with WER
can be effectively integrated into knowledge graph recommenda-
tion models to efficiently utilize user critiquing for refining rec-
ommendations and mitigate catastrophic forgetting. Our codes are
shared on https://anonymous.4open.science/r/Critique-44F8.

CCS CONCEPTS
• Information systems→ Recommender systems.

KEYWORDS
Critiquing, Recommendation, Collaborative Filtering, Knowledge
Graph
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1 INTRODUCTION
Modern recommendation systems place a greater emphasis on the
user experience while researching on enhancing recommendation
accuracy[25, 36]. Numerous applications have devised channels for
users to critique. Figure 1 illustrates screenshots of feedback inter-
faces for two different video software, wherein users can specify
the keyphrases for why they dislike these videos. Afterward, these
videos will be removed from the recommended list and substituted
with new ones, significantly improving user satisfaction.

The recent research on critique-able recommender systems
has concentrated on conversational recommendation systems
(CRS)[17, 22, 28, 47].These methods typically entail two steps. Dur-
ing the training phase, an original model is trained based on the
user’s historical data to generate initial recommendations. In the
subsequent inference phase, the model analyzes the user’s positive
or negative critiquing on items or keyphrases presented in the com-
munication dialogue, updates the model parameters and gradually
refines the recommendations. Due to the explicit semantic informa-
tion provided by keyphrases, themajority of research focusesmore
on keyphrases. Despite the demonstrated ability of these method-
ologies to adapt recommendations with critiquing in CRS, three
concerns remain to be addressed. Firstly, the previous approaches
have all designed specifically mechanisms that can directly model
the correlation between users and keyphrases in the training phase
for the benefit of comprehending critiquing in the inference phase.
These strategies, while enabling the systems to handle critiquing,
restrict the available scenarios and exhibit weak initial recommen-
dation performance. Secondly, these methods generally neglect to
consider collaborative critiquing information, lacking the adjust-
ment of items with similar content and making relatively low uti-
lization of keyphrases. Finally, these efforts have overlooked the
cumulative change in successive parameter fine-tuning during the
inference phase, which can reduce the capacity of themodel to cap-
ture the user’s old preferences, leading to catastrophic forgetting
[4, 20, 35].

In order to leverage critiquing to more general recommenda-
tion scenarios in a reasonable manner, considering the knowledge
graph (KG) enhanced recommendation models [10, 37, 38], which
are powerful and contain rich knowledge that assists in efficiently
understanding user feedback [18, 27, 39]. We prefer to implement
critiquing based on knowledge graph recommender systems. Nev-
ertheless, the attempt to generalize the critiquing framework based
on knowledge graph recommendation models is inherently chal-
lenging. Most of these algorithms are formulated on collaborative

1
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Figure 1: Illustration of critiquing interfaces from two video
applications. Both software provide users with a wide range
of alternative keyphrases available for critiquing as the rea-
son for “not interested”.

filtering (CF) strategies [8, 45], which only model the direct rel-
evance of users to items and lack a straightforward correlation
between users and keyphrases. Thus, it is necessary to develop a
mechanism that can be universally applied to the KG recommenda-
tionmodel to estimate the relevance between users and keyphrases
and to realize the mining of collaborative critiquing information.
Moreover, the detrimental effects of catastrophic forgetting, which
have been ignored in previous research, dictate that our critique-
able model must possess the capability to preserve prior knowl-
edge.

This paper introduces a generic Representative Items Sampling
framework for Critiquing on Knowledge Graph Recommendation
(RISC), which operates as a plug-in to mostly KG recommender
systems. RISC presents a mechanism for sampling important rep-
resentatives with the objective of estimating the relevance of the
users to keyphrases. Given that the KG recommendation model
normally aggregates the neighborhood information of items dur-
ing the training phase to optimize parameters, we believe that
selecting items as representatives to deliver information for cri-
tiquing keyphrases is a reasonable choice. The employment of rep-
resentative items permits us to concentrate only on the direct re-
lationships between users and items during the inference phase,
aligning naturally with the original CF model. The optimal ap-
proach for ensuring the integrity of information delivery is to se-
lect the entire item neighbors as the representatives. This strategy
minimizes the potential for loss and noise in the transmission of
information. However, given the large number of neighbors, these
nodes possess within the KG participating in the model training
is impractical. Sampling important representative items as an esti-
mate of the relevance of users to critiquing keyphrases can best ac-
complish our expectations. Furthermore, RISC naturally addresses
the challenge of collaborative critiquing through its intuitive ap-
proach to adapt items with similar components, efficiently lever-
age critiquing keyphrases for collaborative recommendation ad-
justments, and respond to users in real-time. Additionally, based
on RISC, we designed a Weight Experience Replay method (WER)
with a simplified loss function to reduce the computational over-
head of replay. WER mitigates catastrophic forgetting by reusing
a weighted average of historical samples, thereby deepening the
model’s image of users’ stable preferences. In general, our contri-
butions are presented as follows:

• We propose a generic RISC framework that indirectly estimates
the relevance of the users to critiquing keyphrases through sam-
pling important representative items, thereby empowering the
majority of knowledge graph recommendermodels to refine rec-
ommendations efficiently.

• We present an experience replay methodWER, which mitigates
the forgetting of significant user preferences prior learned by
the original model during the inference phase.

• Extensive experimentation was conducted on three benchmark
datasets and three state-of-the-art knowledge graph recommen-
dation algorithms.The results demonstrate the effectiveness and
generalizability of RISC with WER.

2 PRELIMINARIES
2.1 Problem Formulation
In this section, we introduce the knowledge graph recommenda-
tion and formulate the critiquing task.
Knowledge Graph-based Recommendation. Let U be a set
of users and V a set of items. Let DT = {⟨𝑢, 𝑣⟩ |𝑢 ∈ U, 𝑣 ∈ V}
be a set of observed implicit feedback, where ⟨𝑢, 𝑣⟩ pair indicates
that user 𝑢 has interacted with item 𝑖 before. Let G be a knowl-
edge graph containing a large number of semantic keyphrases,
where keyphrases are entities in the KG. The objective of the
knowledge graph recommendation system is, given DT and G,
to predict the probability of users interacting with items based
on 𝑝𝑡 (DT ,G|𝑈 ,𝑉 , 𝐾), where 𝑈 , 𝑉 , and 𝐾 represent the user
embedding, item embedding, and keyphrase embedding, respec-
tively. Additionally, it can provide recommendation explanations
K𝑒 for users from KG. For convenience, we use the function
𝑦 (⟨𝑢, 𝑣⟩ ,𝑈 ,𝑉 , 𝐾) to denote the assignment of predicting the rel-
evance score of users to each item.
Critiquing Task Formulation. The critique-able recommender
system offers users the opportunity to express their recognition
of recommendations, including the option to critique keyphrases
𝑘 ∈ K𝑒 . Specifically, based on the 𝑈 , 𝑉 , and 𝐾 generated by
the original KG recommender model, we aim to achieve an iter-
ative critiquing mode for general KG recommender systems. It al-
lows the user to interact with the system repeatedly and gener-
ates an updated user embedding 𝑈 ∗ with the user critiquing data
D+/−

C = {⟨𝑢, 𝑘⟩ |𝑢 ∈ U, 𝑘 ∈ K} to renew scores for the candidate
items and re-recommend top-k items, where the ⟨𝑢, 𝑘⟩ pair indi-
cates the user 𝑢 has submitted keyphrase 𝑘 and +/− represents
positive or negative user critiquing.

2.2 Comparisons to Previous Work
The research on critiquing is focused on conversational recom-
mender systems [12, 16, 17, 44], where the iterative communica-
tion between the user and the system gradually refines the recom-
mendations to meet the genuine needs of the user. However, the
majority of these studies are conducted with a bespoke Variational
Autoencoder (VAE) [1–3, 19, 22, 47].They establish correlations be-
tween users and keyphrases in the implicit space by redesigning
the encoder of the VAE in the training phrase. Subsequently, the
keyphrase embedding is updated through direct manipulation of
the implicit features of keyphrases [17, 19] or the application of a
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Bayesian approach [22, 47].Thesemodels are all capable of embrac-
ing critique with keyphrases and decoding to generate adjusted
recommendations. Recently, BCIE [28] attempted to combine KG
to realize critiquing in CRS by employing a belief propagation ap-
proach to convey critiquing messages.This endeavor substantiates
the assertion that KGs can prove instrumental in critiquing oper-
ations. While these methods demonstrate the capacity to adapt
recommendations, they tend to exhibit suboptimal initial perfor-
mance and limited utilization of the critiquing information. More-
over, these models are designed specifically for the critiquing task
and are incapable of applying to traditional list-based recommen-
dation scenarios as well as state-of-the-art methods.

The critiquing task bears resemblance to incremental learning
in its formal description, but in practice they are quite distinct
[20, 35]. Although the critiquing data streams are provided pro-
gressively one after another and suffer from the catastrophic for-
getting problem, most of the incremental learning methods are un-
able to recognize user critiquing straightforwardly. They require
coupling with a critiquing framework and proper adaptation in or-
der to yield meaningful results. On the one hand, the optimization
objective in the inference phase is not aligned with the training
phase, unlike the current mainstream setup for incremental learn-
ing. This also signifies that most incremental learning methods, es-
pecially recommender incremental learning models, cannot han-
dle the task of critiquing in recommendation [7, 41, 46]. On the
other hand, while some recent work on recommender incremental
learning has achieved notable success by contrasting learning or
experience replay methods [40, 54], the majority of these methods
introduce additional terms to the original loss function. However,
given the necessity of responding to user critiques in a timely man-
ner and the detrimental impact of the original loss function on the
response time of the critiquing model, it is imperative to optimize
the loss function for incremental learning to ensure a balance be-
tween efficacy and response time.

In conclusion, KG recommender algorithms have become one
of the mainstream methods due to their superior performance.
Furthermore, the utilization of KG enables better prehension of
critiquing keyphrases. Accordingly, our objective is to develop a
generic critique-able recommender paradigm based on KG recom-
mender models that are adaptable to a broader range of recommen-
dation scenarios, patching the weaknesses of previous approaches
and enabling rapid and efficient adaptation to user feedback. Not
only does it overcome many of the shortcomings of previous ap-
proaches, but it also integrates seamlessly with state-of-the-art
methodologies.

3 METHODOLOGY
3.1 Knowledge graph-based Critiquing

Framework
The overall objective of knowledge graph-based critiquing is to
update recommendations based on the 𝑈 , 𝑉 , and 𝐾 generated by
the original KG recommender model and the user feedback. Refer-
ring to previous work and extended to KG recommendation, the
model is required to update the user embedding according to any
critiquing without disturbing the results of other users. Thus, the
𝑉 and 𝐾 of the original model need to be invariant. The updated

user embedding 𝑈 ∗ is obtained depending on 𝑝
(
𝑈 ∗ |D+/−

C ,𝑉 , 𝐾
)
,

according to the Bayesian formula:

log𝑝𝑐
(
𝑈 ∗ |D+/−

C ,𝑉 , 𝐾
)
∝ 𝑝𝑐

(
D+/−

C |𝑈 ∗,𝑉 , 𝐾
)

︸                   ︷︷                   ︸
𝑐𝑟𝑖𝑡𝑖𝑞𝑢𝑖𝑛𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

× 𝑝
(
𝑈 ∗)︸ ︷︷ ︸

𝑢𝑠𝑒𝑟 𝑝𝑟𝑖𝑜𝑟

(1)

The first term in Eq. 1 is the critiquing likelihood, which de-
scribes the model updating its parameters after observing user
feedback keyphrases. The second term is the user prior, which rep-
resents the empirical knowledge of the model regarding the user’s
preferences. Given the Maximum A Posteriori Estimation (MAP),
the optimization objective is to maximize the user embedding pos-
terior estimate:

𝑈 ∗ = argmax
𝑈 ∗

(
log𝑝𝑐

(
D+/−

C |𝑈 ∗,𝑉 , 𝐾
)
+ log 𝑝

(
𝑈 ∗) ) (2)

Specifically, for critiquing likelihood, we expect to reasonably cal-
culate the correlation of users for critiquing keyphrases to effi-
ciently optimize the user embedding posterior. In the critiquing
scenario, the keyphrase provides substantial indirect evidence of
the user’s preference. Considering the challenges of timeliness and
effectiveness, we have developed a straightforward parameter up-
date method to facilitate timely feedback. Furthermore, the exten-
sive knowledge contained in the knowledge graph is employed to
mine critiquing collaborative information, thereby enhancing the
refinement of recommendations.

The user prior represents the user preferences that have been
learned by the original model and we need to minimize the for-
gotten during the recommendation adjustment process. In essence,
the prior can be described as the discrepancy between the pre-
diction outcome of the recommender model on historical training
data and the fundamental facts in the inference phase: log𝑝 (𝑈 ∗) =
L (DT ,Θ) , whereΘ denoting the parameters of the currentmodel.
Notice that the form of user prior is consistent with the recom-
mended incremental learning. However, in critiquing, we expect
to minimize the computational expense associated with preserv-
ing the user prior. Therefore, we simplify the general incremen-
tal learning method and use the strategy of experience replay to
reserve the prior knowledge instead of maintaining the original
loss function of continuous training. The subsequent section will
analyze how to calculate the critiquing likelihood in a reasonable
manner and preserve the user prior.

3.2 Sampling Representative Items for
Critiquing

We denote the critiquing likelihood as the user’s preference for
keyphrase in D+/−

C :

log𝑝
(
D+/−

C |𝑈 ∗,𝑉 , 𝐾
)
=

∑
⟨𝑢𝑖 ,𝑘 𝑗 ⟩∈DC

log𝑝+/−𝑐
(〈
𝑢𝑖 , 𝑘 𝑗

〉)
(3)

where 𝑝+/−𝑐
(〈
𝑢𝑖 , 𝑘 𝑗

〉)
denotes the estimate of the relevance of user

𝑢𝑖 to keyphrase 𝑘 𝑗 . In previous studies, researchers have devel-
oped specific modules during the training phase to intuitively por-
tray user preferences for keyphrases. However, determination of
𝑝
+/−
𝑐

(〈
𝑢𝑖 , 𝑘 𝑗

〉)
is challenging in the most KG recommender meth-

ods since they do not establish a verifiable connection between
3
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Figure 2: The overall framework of our proposed RISC andWER, which leverages knowledge graph sampling the importance
representatives and implement weight experience replay refine recommendations according to user critiquing.

the users and the keyphrases. Instead, the model is optimized by
aggregating items’ neighbor nodes using the KG topological in-
formation during the training stage. Inspired by the aforemen-
tioned aggregation, we put forth a generic Sampling Represen-
tative Items method for Critiquing on KG recommender meth-
ods (RISC), which conversely treats the items node in the KG as
a hinge to propagate information from critiquing keyphrases to
users, thereby indirectly estimating the relevance of the users to-
wards the keyphrases. Given that each node in the knowledge
graph has a large number of neighbors, it is impractical to include
all these neighbors in the inference procedure. Consequently, we
determine in sampling representative items as the proxy for cri-
tiquing keyphrases. Formally, 𝑝+/−𝑐

(〈
𝑢𝑖 , 𝑘 𝑗

〉)
is transformed into

the product of the score between user and proxy 𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)
and the representative coefficient between 𝑣𝑠 and 𝑘 𝑗 , 𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
. To

facilitate the calculation, the Jensen inequality is employed to con-
vert the optimization objective into maximizing the lower bound
of the critiquing likelihood:

log𝑝
(
D+/−

C |𝑈 ∗,𝑉 , 𝐾
)

=
∑

⟨𝑢𝑖 ,𝑘 𝑗 ⟩∈D+/−
C

log
∑
𝑣𝑠 ∈𝑉

𝑝
+/−
𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩) · 𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
=

∑
⟨𝑢𝑖 ,𝑘 𝑗 ⟩∈D+/−

C

logE𝑣𝑠∼𝑝𝑟 (𝑣𝑠 |𝑘 𝑗 )𝑝
+/−
𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)

⩾
∑

⟨𝑢𝑖 ,𝑘 𝑗 ⟩∈D+/−
C

E𝑣𝑠∼𝑝𝑟 (𝑣𝑠 |𝑘 𝑗 ) log 𝑝
+/−
𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)

(4)

Since 𝑉 and 𝐾 remains invariant, for simplicity we concisely de-
note the 𝑦 (⟨𝑢𝑖 , 𝑣𝑠 ⟩ ,𝑈 ∗,𝑉 , 𝐾) as 𝑦 (⟨𝑢𝑖 , 𝑣𝑠 ⟩ ,𝑈 ∗) below. And given
𝑝+𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩) = 𝑦 (⟨𝑢𝑖 , 𝑣𝑠 ⟩ ,𝑈 ∗) denotes the user positive critiquing,
and 𝑝−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩) = 1−𝑦 (⟨𝑢𝑖 , 𝑣𝑠 ⟩ ,𝑈 ∗) indicates the negative. Mean-
while, sampling important representative items also intuitively sat-
isfies our goal of mining collaboratively critiquing items with con-
tent similar to keyphrases using knowledge graph, sufficiently ex-
ploiting the user feedback. Nevertheless, there are variety of ways
to learn KG structural information in different original models,
which makes it difficult to compute the coefficient between rep-
resentative items and critiquing keyphrases straight away. As a

result, we apply importance sampling to the expectation 𝜇𝑝 =

E𝑣𝑠∼𝑝𝑟 (𝑣𝑠 |𝑘 𝑗 ) log𝑝
+/−
𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩), which gives:

𝜇𝑞 = E𝑣𝑠∼𝑞(𝑣𝑠 |𝑘 𝑗 )
𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
𝑞

(
𝑣𝑠 |𝑘 𝑗

) log𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩) (5)

where 𝑞
(
𝑣𝑠 |𝑘 𝑗

)
is defined as the auxiliary probability of sampling

according to keyphrase 𝑘 𝑗 . To reduce the computational complex-
ity of the inference phrase and accelerate the calculation, we ap-
proximate the expectation 𝜇𝑞 using the Monte Carlo method:

𝜇𝑞 =
1
𝑁

𝑁∑
𝑠=1

𝑝𝑟
(
𝑣𝑠 |𝑘 𝑗

)
𝑞

(
𝑣𝑠 |𝑘 𝑗

) log 𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩), 𝑣𝑠 ∼ 𝑞
(
𝑣𝑠 |𝑘 𝑗

)
(6)

where 𝜇𝑞 is an unbiased estimate of 𝜇𝑞 . The remaining question is
how we define the supplementary sampler 𝑞

(
𝑣𝑠 |𝑘 𝑗

)
, which should

reduce the variance induced by importance sampling. Excessive
variance can prevent effective training. From the derivation of the
importance sample in [6], we can give the variance:
Var

(
𝜇𝑞

)
=

1
𝑛

©­«E𝑣𝑠∼𝑞(𝑣𝑠 |𝑘 𝑗 )
©­«
(
log𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩) · 𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
𝑞

(
𝑣𝑠 |𝑘 𝑗

) )2ª®¬ − 𝜇2𝑝ª®¬
(7)

Therefore, the optimal sampler that minimizes the variance
Var

(
𝜇𝑞

)
in Eq.7 is given by:

𝑞∗ =
𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
·
���log𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)

���∑𝑁
𝑠=1 𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
·
���log𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)

��� (8)

Unfortunately, in RISC, the probability of representing the relation-
ship between items and keyphrases cannot be measured uniformly,
making it difficult to calculate an optimal sampler. Considering
that these methods learn more about the topological structure of
the knowledge graph, we replace 𝑝𝑟

(
𝑣𝑠 |𝑘 𝑗

)
by applying a function

similar to the attention mechanism:

𝑞∗ =
𝛼

(
𝑣𝑠 , 𝑘 𝑗

)
·
���log𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)

���∑𝑁
𝑠=1 𝛼

(
𝑣𝑠 , 𝑘 𝑗

)
·
���log𝑝+/−𝑐 (⟨𝑢𝑖 , 𝑣𝑠 ⟩)

���
𝛼

(
𝑣𝑠 , 𝑘 𝑗

)
=

exp
(
𝜎

(
𝑣𝑠 · 𝑘 𝑗

) )∑
𝑣𝑠′ ∈𝐻 (𝑘 𝑗 ) exp

(
𝜎

(
𝑣𝑠′ · 𝑘 𝑗

) ) (9)
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The 𝐻
(
𝑘 𝑗

)
represents the first-order items neighbors set of 𝑘 𝑗 ,

𝛼
(
𝑣𝑠 , 𝑘 𝑗

)
denotes the representative coefficient between 𝑘 𝑗 and

𝑣𝑠 , and 𝜎 is the sigmoid function. While we could not claim that
𝛼

(
𝑣𝑠 , 𝑘 𝑗

)
properly fits arbitrary recommendation methods, impor-

tance sampling can effectively reduce the sample size required and
the variance of the estimation using the Monte Carlo method.

3.3 Experience Reply in Multi-step Critiquing
During the inference phase, the user-system interaction undergoes
a constantly evolving process. In section 3.2, we discussed the
methodology for refining recommendations based on critiquing.
However, when faced with a continuous stream of user feed-
back, recommendation performance may collapse after multiple
critiquing. The reason is that during the continuous fine-tuning
of the user embedding, important features learned by the original
model may be forgotten, resulting in catastrophic forgetting. Con-
sequently, Eq. 2 attempts to deepen the knowledge learned from
the original model in inference phrase. Following the experience
replay strategy, we can explicitly maintain a reservoir to buffer a
small subset of historical data, which serves to alleviate the ten-
dency to forget previously learned knowledge.

Based on RISC, the critiquing target ⟨𝑢, 𝑘⟩ pair changes from
to ⟨𝑢, 𝑣⟩ pair, which is consistent with the training stage. Using
the loss function of the original model as L𝑝𝑟𝑖𝑜𝑟 is the most direct
way. However, this will inevitably result in an increased cost and a
notable impact on the response speed because of the complicated
design of original model. We want a simple and efficacious way
to reproduce historical data that remembers old user perferences.
Given that the loss function of the original model is frequently
constituted of multiple components, we have selected the recom-
mender loss from these methods as the replay loss:
log𝑝

(
𝑈 ∗)

=
∑

(𝑢𝑖 ,𝑣𝑗 )∈D∗
T

∑(
𝑢𝑖 ,𝑣′𝑗

)
∉D∗

T

log
(
𝑦

(〈
𝑢𝑖 , 𝑣 𝑗

〉
,𝑈 ∗) − 𝑦 (〈

𝑢𝑖 , 𝑣
′
𝑗

〉
,𝑈 ∗

))
(10)

where D∗
T ⊆ DT denotes the reservoir. The most influential data

in the buffer determines replay quality and model performance. In
incremental learning, previous research has demonstrated that em-
ploying the nearest-mean-of-exemplars classification rule is not
only computationally straightforward but also effective in avoid-
ing catastrophic forgetting [20]. In light of the necessity to hold
the items embedding invariant with the function outlined in Eq.
10, we posit that the mean-of-exemplars itself is an optimal replay
object within critiquing scenario, as it relies on the storage of a sin-
gle item for each user in the reservoir. Specifically, the utilization
of the mean-of-exemplars replay can be abstracted as follows:

𝑈 ∗ = argmin
𝑈 ∗

∑
(𝑢𝑖 ,𝑣𝑗 )∈D𝑢𝑖

T

(
𝑦

(
⟨𝑢𝑖 , 𝑣⟩ ,𝑈 ∗) − 𝑦 (〈

𝑢𝑖 , 𝑣 𝑗
〉
,𝑈

) )
(11)

, where 𝑣𝑖 = 1��D𝑢𝑖
T

�� ∑
(𝑢𝑖 ,𝑣𝑗 )∈D𝑢𝑖

T

𝑣 𝑗 . While mean-of-exemplars con-

siders the entirety of the training set, it fails to account for the
disparate influence of individual items. More powerful items can
reinforce the model’s memory of stable user preferences than the
less frequently considered, e.g., long-tail items. Hence, we present

weight experience replay (WER), a method that aims to amplify
the influence of these items and assign weights to different items
to generate new replay examples:

𝑣∗𝑖 =
∑

(𝑢𝑖 ,𝑣𝑗 )∈D𝑢𝑖
T

𝜉
(
𝑣 𝑗 |𝑢𝑖

)
· 𝑣 𝑗 (12)

Since the original model incorporates the aggregation of side in-
formation from KG, we consider using KG to calculate the weights
of different items would be beneficial. To elaborate, the subgraph
comprising the items that the user has interacted with in DT and
their neighbors can be regarded as a representation of the user,
which is referred to as the user subgraph. We assume that the
weight of each item on the user can be determined by the simi-
larity between the item neighbor subgraph and the user subgraph.
We use Jaccard coefficient to calculate the weight: 𝜉

(
𝑣 𝑗 |𝑢𝑖

)
=

|𝐴(𝑢𝑖 )∩𝑆 (𝑣𝑗 ) |
|𝐴(𝑢𝑖 )∪𝑆 (𝑣𝑗 ) | , 𝐴 (𝑢𝑖 ) = 𝑆 (𝑣1) ∪ · · · ∪ 𝑆 (𝑣𝑚), 𝑣𝑚 ∈ D𝑢𝑖

T , where
𝑆 (·) refers to the set of neighbors of a node. Ultimately, the replay
loss is given by:

log 𝑝
(
𝑈 ∗) = ∑

(𝑢𝑖 ,𝑣′ 𝑗 )∉DT

log
(
𝑦

(〈
𝑢𝑖 , 𝑣

∗
𝑖

〉
,𝑈 ∗) − 𝑦 (〈

𝑢𝑖 , 𝑣
′
𝑗
〉
,𝑈 ∗) )

(13)
Update embedding Finally, the maximum posteriori probabil-
ity of the user embedding can be transformed to minimize the
loss function. Making 𝑦 (⟨𝑢, 𝑣⟩ ,𝑈 ∗) = 𝜎 (𝑈 ∗ [𝑢]⊺ ·𝑉 [𝑣]), and for
brevity, we simply denote the 𝑈 ∗ [𝑢] as ∗

u and the 𝑉 [𝑣] as v. For
the proposed RISC and WER, we have the following loss function:

minL𝑅𝐼𝑆𝐶+𝑊𝐸𝑅

= − log
(
𝑝𝑐

(
D+/−

C |𝑈 ∗,𝑉 , 𝐾
)
· 𝑝

(
𝑈 ∗) )

= −𝜂 · 1
𝑁

∑
⟨𝑢𝑖 ,𝑘 𝑗 ⟩∈D+

C

𝑁∑
𝑠=1

(
log𝜎

(∗
u
⊺
𝑖 · v̂𝑠

)
+ log𝜎

(∗
u
⊺
𝑖 · v∗𝑖

))
, 𝑜𝑟

= −𝜂 · 1
𝑁

∑
⟨𝑢𝑖 ,𝑘 𝑗 ⟩∈D−

C

𝑁∑
𝑠=1

(
log

(
1 − 𝜎

(∗
u
⊺
𝑖 · v̂𝑠

))
+ log𝜎

(∗
u
⊺
𝑖 · v∗𝑖

))
(14)

where 𝜂 is the learning rate. This formula excludes the random
negative sampling term in the user prior and substitutes it with 0.
That’s not affect the training and reduces the computational cost.
Experiments have also validated this statement.

4 EXPERIMENTS
We present empirical results to substantiate the efficacy of the pro-
posed RISC with WER. The experiment is intended to answer the
following research questions.
RQ1: How does the performance of RISCwithWER in refining rec-
ommendations according to user critiquing compare to a diverse
range of baselines? Does it generalize to the knowledge graph rec-
ommender models? Does WER have advantages over other incre-
mental learning methods in the RISC framework?
RQ2: Can sampling important representatives extract critiquing
information more productively? Does the WER can genuinely mit-
igate the issue of catastrophic forgetting?
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RQ3: What is the effect of varying number of samples on RISC?
Can the experiment give an intuitive visualization of the critiquing
task?

4.1 Experiment Settings
We validate all methods on three real-world datasets: MovieLens-
1M, Last-FM, and Alibaba-iFashion. In the inference phase, we sim-
ulate a total of 10 rounds of critiquing tasks, adopting some regu-
lar settings from previous research, and each round represents a
new critiquing from users [22, 47]. In order to simulate authentic
user feedback without exposing the practical test dataset, we used
only negative critiquing (positive critiquing will inevitably include
attributes of the items in the test set). By using a program indepen-
dent of RISC, we calculated the differences between the average
frequency of keyphrases occurrences corresponding to the Top-
10 items predicted by the model in each round and corresponding
to the target items (the results of the first round were taken from
the predictions of the original model). We then selected the top-5
keyphrases with the largest differences as the user critiquing.

Two metrics, NDCG@5 and HR@5, were employed in a multi-
step critiquing to determine the performance of the models in en-
hancing recommendations based on user feedback. It is important
to note that meaningful comparisons of curve trends can only be
conducted if the starting scores are approximately the same, as
previously discussed in the literature. However, as illustrated in
Table 1, the base recommender scores of the critiquing baselines
are markedly inferior to those KG approaches. They are therefore
unsuitable for use in general KG recommender models. To ensure
fair comparisons, we have re-implemented their methodology in
the KG recommender system, although this may cause potential
issues. Besides, a more detailed description of the datasets, evalua-
tion criteria, and experimental settings can be found in the appen-
dix.

4.2 Overall Performance Comparison (RQ1)
For a comprehensive evaluation, we will first introduce three state-
of-the-art KG recommender models KGAT [37], KGIN [38], and
DiffKG [10]. We then use the NDCG@5 (HR@5 is reported in the
Appendix) trend over multiple rounds of critiquing to compare
RISC+WER with two different types of state-of-the-art baselines:
the critiquing methods CE-VAE [17], BK-VAE [47], DCE-VAE [22],
and BCIE [28]; and the recommender incremental learning meth-
ods iCaRL [20], lwcKD [40], and INFER [54], respectively. We de-
scribe these methods and how we applied them in KG critiquing
scenarios in more detail in the Appendix.
• The base recommendation rating of diverse models is illustrated

in Table 1, which demonstrates that all three KG recommenda-
tion methods are more competitive than the specially designed
critiquing methods. A superior original model provides users
with an optimal experience while improving the ability of the
more efficacious models is evidently more challenging.

• Evaluations of the performance of all methods on three datasets
consistently indicate that RISC+WER outperforms all baseline
methods. Although the experiments simulate an ideal condition,
the superiority of RISC+WER in enhancing recommendations
and preserving previously learned knowledge is evident from

Table 1: Performance of different originalmethods.Themet-
rics are NDCG@5 and HR@5.

MovieLens Last-FM Alibaba
ndcg hr ndcg hr ndcg hr

CE-VAE 0.0680 0.1701 0.0191 0.0379 0.0103 0.0387
BK-VAE 0.0793 0.2037 0.0232 0.0462 0.0134 0.0497
DCE-VAE 0.0842 0.2171 0.0231 0.0463 0.0138 0.0515

BCIE 0.0690 0.1559 0.0397 0.0745 0.0196 0.0722

KGAT 0.1967 0.5172 0.0612 0.1789 0.0356 0.1174
KGIN 0.2687 0.6368 0.0743 0.1960 0.0460 0.1486
DiffKG 0.2589 0.6322 0.0843 0.2153 0.0467 0.1490

the results of the continuous 10-step critiquing task. Specifically,
the meticulously crafted important sampling framework capi-
talizes on user critiquing and expands keyphrase collaborative
information to refine recommendations through KG rationally.
Concurrently, the WER significantly strengthens the memory
of the user stable perferences, thus producing the phenomenon
of a continuously ascending curve in the experiments.

• The CE, BK, DCE, and BCIE all demonstrate suboptimal results.
This is due to their direct optimization of the correlation of
users to keyphrases, which is beneficial in specially designed
critiquing models but has minimal impact on the mostly KG rec-
ommender models. Some methods have been found to have a
negative effect. Additionally, all of these methods have been
observed to exhibit the typical characteristics of catastrophic
forgetting and have been found to confirm the capability of
RISC+WER.

• The line trend of iCaRL, lwcKD, and INFER unambiguously re-
veals distinctions between the critiquing and the incremental
learning task. While these incremental learning methods show
a slight tendency to refine recommendation capability by sus-
taining prior knowledge in some cases, the obvious discrepan-
cies with the RISC+WER illustrate the difficulty of using incre-
mental learning methods in isolation to deal with the form of
critiquing data streams, which highlights the advantage of the
RISC in exploring user feedback keyphrases through KG.

4.3 Performance Comparison of Incremental
Learning on RISC (RQ1)

The experience reply is essentially decoupled from the process of
updating user embedding posteriors. To assess the proposed WER
in capturing old user preferences, we investigate the impact of dif-
ferent incremental learning methods within the RISC framework.
Table 2 depicts the final performance of different incremental learn-
ing methods on the Last-FM dataset following ten rounds of cri-
tiquing. Table 3 illustrates the time required to complete one round
of training for eachmethod.The results are averaged 5 repeated ex-
periments, where the best performance is denoted in bold.

Firstly, we can observe that all the continuous learning meth-
ods in the RISC framework demonstrate an excellent ability to ad-
just recommendations based on user critiquing, which proves our
previous point. And INFER, which finds the most influential exam-
ples, shows better results than the nearest-mean method in most

6
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Figure 3: Comparison of RISC+WER and baseline methods for NDCG@5 on Last-FM, Alibaba-iFashion and MovieLens, where
the original models are KGAT ,KGIN and DiffKG.

Table 2: Performance Comparison of Incremental Learn-
ing Baselines within RISC. The metrics are NDCG@5 and
HR@5.

Last-FM

RISC+/ KGAT KGIN DiffKG
NDCG HR NDCG HR NDCG HR

iCaRL 0.0938 0.2530 0.1160 0.2892 0.1268 0.3088
lwcKD 0.0885 0.2377 0.1047 0.2634 0.1083 0.2723
INFER 0.0995 0.2612 0.1162 0.2870 0.1250 0.3056
WER 0.0996 0.2625 0.1196 0.2957 0.1270 0.3114

Alibaba-iFashion

RISC+/ KGAT KGIN DiffKG
NDCG HR NDCG HR NDCG HR

iCaRL 0.0457 0.1439 0.0622 0.1838 0.0589 0.1779
lwcKD 0.0461 0.1449 0.0626 0.1834 0.0584 0.1768
INFER 0.0460 0.1452 0.0629 0.1844 0.0593 0.1791
WER 0.0464 0.1452 0.0642 0.1872 0.0601 0.1804

MovieLens-1M

RISC+/ KGAT KGIN DiffKG
NDCG HR NDCG HR NDCG HR

iCaRL 0.2159 0.5233 0.3216 0.6725 0.3407 0.7238
lwcKD 0.2152 0.5276 0.3229 0.6814 0.3429 0.7250
INFER 0.2168 0.5279 0.3226 0.6741 0.3535 0.7265
WER 0.2179 0.5316 0.3301 0.6817 0.3623 0.7380

situations. Although the difference in performance between these
methods is insignificant, WER performs better than other incre-
mental learning methods.That’s because WER considers all user
data for replay and leverages a knowledge graph to maintain sta-
ble user preferences. Additionally, its smaller pool of replay allows
for faster recommendation adjustments.

Table 3: Comparison of time overhead and reservoir size for
different incremental learning baselines.

RISC+/ reservoir MovieLens Last-FM Alibaba
iCaRL 10 21s 51s 1.1s
lwcKD - 67s 86s 4s
INFER 10 22s 59s 1.2s
WER 1 10s 33s 0.6s

4.4 Effect of Important Sampling (RQ2)
This study aims to ascertain the impact of importance sampling
and the role of knowledge graph in selecting important represen-
tatives. For intuitive illustration, we elected to compare the first-
round critiquing ratings of importance sampling, random sam-
pling, and not utilizing KG sampling. The number of representa-
tives sampled for each keyphrase is fixed at 10. The results of the
experiment on the Last-FM are shown in Table 4. Results indicate
that the importance sampling method is indeed superior to the ran-
dom sampling method, which shows that sampling important rep-
resentatives can more fully exploit collaborative critique informa-
tion to tune recommendations efficiently. In contrast, the observed
increase in the experiment without using KG is minimal, which
highlights the importance of KG in selecting representative items.
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Figure 4: Illustration of the experiment results of explor-
ing the effect of WER on three datasets, where the original
model is DiffKG and the metric is NDCG@5.
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Table 4: Comparison of the performance on Last-FM of dif-
ferent sampling methods after the first step critiquing. The
metrics are NDCG@5 and HR@5.

Last-FM (1st step critiquing)
KGAT KGIN DiffKG

NDCG HR NDCG HR NDCG HR

Intial
rating 0.0612 0.1789 0.0743 0.1960 0.0843 0.2153

Sample
w/o KG 0.0614 0.1792 0.0742 0.1957 0.0842 0.2153

Random
sample 0.0692 0.1986 0.0824 0.2141 0.0918 0.2360

RISC 0.0724 0.2072 0.0872 0.2271 0.0969 0.2473
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Figure 5: Illustration of the investigation of the number of
importance sampling onMovieLens-1M, where themetric is
NDCG@5.
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Figure 6: An example of the whole process of user Id: 91 cri-
tiquing.

4.5 Effect of Experience Replay (RQ2)
As observed in Section 4.2, the critiquing methods obviously suf-
fered catastrophic forgetting, while the incremental learning meth-
ods appeared to resist forgetting somewhat, which suggests that
incremental learning methods may offer a valuable contribution
to multi-step critiquing tasks. The combination of RISC and WER
demonstrated the power of steady adaptation recommendations,
although it was unclear whether this was due to the RISC itself
or the WER method. A further investigation was therefore con-
ducted to ascertain the specific effects of the experience replay
method. As shown in Figure 4, the absence of WER is evident in
the observation that, despite the RISC’s notable tuning capability,
the recommended performance declines after multiple iterations
of critiquing. It should be noted that WER does serve to preserve
prior knowledge of user preferences and provides powerful assis-
tance in preventing catastrophic forgetting. In addition, we have
also experimentally verified the effect of adding randomly sampled
negative examples to the WER for training, as represented by the
grey curve in Figure 4. Seeing the negative items actually interferes
with the model’s ability to resist forgetting. This might be because

these negative examples erroneously prompt the model to capture
the user’s old preferences, reducing the model’s performance.

4.6 Impact of Sampling Number (RQ3)
The quality of the important sampling representatives for cri-
tiquing keyphrases determines the effectiveness of refined rec-
ommendations. According to the Monte Carlo method, a greater
quantity of samples will produce superior results. However, an ex-
cessive number of samples would result in unnecessary expendi-
ture of time and space. Identifying the optimal number of sam-
ples would be beneficial to achieve an effective balance between
performance and overhead. We exposed the number of samples
in the Movielens-1M dataset in N = {5, 10, 20}. As shown in Fig-
ure 5, a small sample size of N=5 indicates that the representa-
tive items cannot fully leverage the critiquing collaborative infor-
mation. While the sample size of N=20 may appear more impres-
sive, it does not match the significant performance improvement
and shows a decline in model performance towards the end of the
multi-step critiquing process.The impact of varying the number of
samples on the model is negligible. Consequently, N=10 represents
the optimal choice.

4.7 Case Study (RQ3)
We illustrate the critiquing process using a randomly selected user
with ID 91 from the Movielens dataset. As shown in Figure 6,
the initial recommendation includes only two movies he is inter-
ested in, “Toy Story” and “E.T. the Extra-Terrestrial”. Subsequently,
he selected four items based on the system’s critiquing interface,
namely preferences, namely ”Fantasy,” ”Germany,” ”George Lucas,”
and ”Spanish”. The recommendation system then updated his rec-
ommendations based on these keyphrases, successfully aligning
them with the user’s interests. This example demonstrates that
RISC+WER is effective in refining recommendations based on ini-
tial recommendations that already have a high degree of accuracy.

5 CONCLUSION
This research proposes RISC and WER, a general plugin acting on
most KG recommendation models, to provide new options for re-
fining recommendations through critiques in mainstream recom-
mendation scenarios. The framework employs a knowledge graph
to suggest a method for sampling important representative items
as a hinge for transferring information and mining critiquing col-
laborative information. It also designs the KG-based experience
replay method WER to strengthen stable user preference. Exten-
sive evaluations on benchmark datasets and KG recommendation
models demonstrate that our proposed RISC+WER framework can
operate with different KG model architectures and mitigate cat-
astrophic forgetting. Furthermore, it demonstrates a notable im-
provement in recommendation refinement compared to various
baselines.

Furthermore, our work is limited as it only concentrates on KG
recommender models. In the future, we aim to broaden the scope
of critiquing and the development of more efficient methods for
linking users with relevant keyphrases and identifying items that
users are uninterested in.
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A RELATEDWORK
Knowledge Graph Recommendations have emerged as one of
the most popular and well-performing models in the field of rec-
ommender systems, offering a powerful way to enhance recom-
mendations by utilizing a large amount of knowledge in KG. Early
approaches like CKE [52] and DKN [31] leveraged pre-training
on KG to strengthen item embeddings for improved recommen-
dations [29]. In recent years, end-to-end models based on graph
convolution [34, 37, 38] or graph attention networks[30, 32, 42, 53]
have proven more effective in mining information from KG, which
are state-of-the-art solutions that exhibit strong competitiveness.
In addition, a multimodal knowledge graph has been attempted
to be applied [26], and there are also methods that try to reduce
the noise from higher-order information [13]. Some methods [33]
consider the coupling between the KG representation task and the
recommendation task, incorporate collaborative information [42],

or try to mine the information more valuable to the recommen-
dation task in KG. More recent schemes have incorporated graph
contrastive learning on the basis of GNN to reduce the potential
noise [48, 49, 57, 58] or used data augmentationmethods [10] to op-
timize knowledge graphs, yielding better recommendation perfor-
mance. Overall, the objectives of researchers mainly focus on min-
ing semantic and higher-order information in kg more efficiently
and accurately and better integrating knowledge graph represent-
ing with collaborative filtering recommendations. While KG rec-
ommendations are highly competitive and can provide users with
explanations, the overhead of time and space makes it challenging
to update recommendations immediately with user critiquing.
Critique-able Recommendation differs from a traditional rec-
ommendation system in that it requires the modeling of not only
user preferences for items but also the correlation between users
and keyphrases [1–3, 19, 22, 47]. Recent work primarily focused
on conversational recommender systems, gradually adapting rec-
ommendations to the practical demands of the user through iter-
ative interactions between the user and the conversational sys-
tem [5, 9, 55, 56]. However, most of these approaches are imple-
mented within specially designed frameworks in order to model
the association between users and keyphrases. Some VAE-based
[14, 23, 24] methods encode the association between users and
keyphrases into the latent space by redesigning the encoder dur-
ing the training phase. This allows the latent state of keyphrases
to be directly manipulated in the latent space during subsequent
inference [17, 19]. Alternatively, the generated items and user em-
bedding can be influenced by updating the posterior of keyphrase
feature representation through Bayesian methods [22, 47]. These
models are designed to accept feedback on keyphrases, allowing
for the decoding of adjusted recommendation results. Moreover,
BCIE [28] is, to our knowledge, the first method to attempt to in-
corporate KG into CRS to implement critiquing. It represents user
preferences in the form of triples using knowledge representation
methods and implements the transfer of critiquing information us-
ing belief propagation methods. It effectively utilizes the topolog-
ical structure information of the KG to demonstrate that KG can
play a role in the critiquing task. While these methods demon-
strate the ability to adjust recommendations based on user feed-
back, they are designed specifically for the critiquing task, result-
ing in poor initial recommendation performance and low utiliza-
tion of keyphrases. Nonetheless, they are incapable of being em-
ployed in traditional list-based recommendation scenarios or state-
of-the-art methods.
Incremental learning provides intelligent models with the abil-
ity to continuously learn new knowledge [4, 20, 35].Themain chal-
lenge is that adapting to new data can lead to a decrease in the
ability to capture the old distribution, i.e., catastrophic forgetting.
The Incremental learning (IL) method attracted significant inter-
est from researchers in the field of computer vision [43, 50]. Over
time, it has been adopted in a growing number of sectors. Accord-
ing to mainstream research, IL methods can generally be divided
into three categories. The first category is the regularization-based
approach [11, 51], which is characterized by adding explicit reg-
ularization terms to balance the old and new tasks. The second
category is the optimization-based approach [15], which gener-
ally explicitly designs and manipulates the optimization programs.
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Figure 7: Comparison of RISC+WER and baselinemethods forHR@5 on Last-FM, Alibaba-iFashion andMovieLens, where the
original models are KGAT ,KGIN and DiffKG.

The third category is the replay-based approach [21], which imple-
ments incremental learning by approximating and recovering old
data distributions. In addition, most of the above methods are de-
signed for image processing tasks. Recently, a few attempts have
been made to apply incremental learning to recommender systems
[7, 40, 41, 46, 54]. They achieved some results by comparing learn-
ing optimization programs with experience replay methods.

B EXPERIMENTS
B.1 Dataset Description
We validate IPGC on three real-world datasets for movie, music,
and business in the experiments: (1) We use the Movielens-1M,
a widely used movie benchmark dataset released by RippleNet
[30]; and (2) Last-FM, a music benchmark dataset collected from
the Last.fm online music system released by KGAT [37]; and (3)
Alibaba-iFashion, a fashion outfit dataset collected from Alibaba
online shopping systems released by KGIN [38]. For Movielen-1M,
since it incorporates the user’s explicit scores of the movie (rating
from 1 to 5), we convert it to implicit feedback (with setting the
rating threshold to 1). As for Last-FM and Alibaba-iFashion we fol-
low exactly the protocol given by KGAT and KGIN for processing
and slicing the dataset in order to avoid inaccuracy.

Table 5: Statistics of MovieLens-1M ,Last-FM and Alibaba-
iFashion

Movielens-1M Last-FM Alibaba-iFashion
#Users 6036 23566 114737
#Items 2445 48123 30040

#Interactions 376886 1712638 1781093
#Entities 182011 106389 89196

#Keyphrases 179566 58266 59156
#Triplets 309172 464567 279155

The statistical information of these datasets is summarized in
Table 5. Keyphrases refer to the entities in the knowledge graph
that are not items. We split the datasets into training and testing
sets at 8:2. The other training settings for KGAT, KGIN, and DiffKG
followed the configurations provided in their papers. We stopped
training the original model until it got the highest recommenda-
tion score. We use the all-ranking strategy to evaluate the recom-
mendations, which is to rank all the items, excluding the training
set.

B.2 Baselines
For a comprehensive evaluation, we conduct a thorough compar-
ison of RISC+WER with a diverse set of baselines derived from
different research areas.
Knowledge Graph Recommender Methods.

• KGAT [37]: It introduces the concept of collaborative knowl-
edge graph to apply attentive aggregation on the joint user-item-
entity graph.

• KGIN [38]: It models user intents for relations and employs rela-
tional path-aware aggregation to capture rich information from
the composite knowledge graph.

• DiffKG [10]: It introduces the graph diffusion model, enriches
the knowledge graph, and enhances the effectiveness of data
augmentation.

Critiquing Methods. For critiquing models, we present the
methodology used to critique and how we reproduce them in the
KG recommendation model.

• CE-VAE [17]: It operates by directly setting the weights of the
VAE latent variable corresponding to critiquing keyphrase em-
beddings to zero. In the KG recommender framework, we ex-
clude critiquing keyphrase from user embedding aggregation.

• BK-VAE [47]: It employs a Bayesian algorithm to update user
embeddings bymodifying the corresponding keyphrases. In this
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research, we update the user embeddings by directly construct-
ing a BPR loss functionwith the user embeddings and keyphrase
embeddings.

• DCE-VAE [22]: It refines critiquing by constructing a keyphrase
tree based on BK-VAE, allowing for more accurate mining of
user feedback. Since KG inherently contains a wealth of detailed
knowledge, we map keyphrases to all their neighbors to en-
hance their precision.

• BCIE [28]: It models triplets (user, like, items) in the knowledge
graph through knowledge representation methods and trans-
mits user feedback using belief propagation methods. We tra-
verse the set of all nodes in the KG on the relation paths between
the user’s historical items and the critiquing keyphrase nodes as
the object to update recommendations.

Incremental LearningMethods.The datasets for these methods
are directly using user critiquing as a continuous data stream.
• iCaRL [20]: It selects an equal number of old training samples

that are closest to the feature mean of each class.
• lwcKD [40]: it designs contrastive learning with knowledge dis-

tillationmechanisms to preserve keymodel knowledge that was
learned from historical data.

• INFER [54]: It identifies the most valuable replay examples by
observing the impact of small perturbations on model predic-
tions.

B.3 Supplemental Experimental Results
Figure 7 present the multi-step critiquing’s performance of HR@5
score.
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