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Abstract

As large language models (LLMs) are integrated into everyday applications, research into
prompt engineering techniques (PET) to improve these models’ behavior has surged. How-
ever, clear methodological guidelines for evaluating these techniques are lacking. This raises
concerns about the replicability and generalizability of the prompt engineering techniques’
benefits. We support our concerns with a series of replication experiments focused on zero-
shot prompt engineering techniques purported to influence reasoning abilities in LLMs.
We tested GPT-3.5, GPT-40, Gemini 1.5 Pro, Claude 3 Opus, Llama 3, Vicuna, and
BLOOM on the chain-of-thought, EmotionPrompting, Sandbagging, Re-Reading, Rephrase-
and-Respond (RaR), and ExpertPrompting prompt engineering techniques. We applied
them on manually double-checked subsets of reasoning benchmarks including Common-
senseQA, CRT, NumGLUE, ScienceQA, and StrategyQA. Our findings reveal a general lack
of statistically significant differences across nearly all techniques tested, highlighting, among
others, several methodological weaknesses in previous research. To counter these issues, we
propose recommendations for establishing sound benchmarks, and designing rigorous exper-
imental frameworks to ensure accurate and reliable assessments of model outputs.

1 Introduction

The field of generative artificial intelligence has considerably evolved in only a few years. In particular, large
language models (LLMs) have witnessed an unprecedented surge in popularity with the release of ChatGPT
(OpenAl, 2022)), which became the most rapidly adopted internet application in history. LLMs possess
advanced natural language processing capabilities which demonstrate a broad range of downstream applica-
tions, ranging from casual conversations to complex problem-solving (Minaee et al., 2024} [Zhou et al., 2020).
Given the fast growing range of applications (Guo et al.| [2024) plus their respective risks for Al alignment (Ji
et al., 2024, fairness (Hao et al.l [2023), and safety (Amodei et al., |2016; Hagendortf] 2024} |Vaugrante et al.,
2025; |Weidinger et al., |2023)), it is paramount to evaluate behavioral and reasoning patterns these models
exhibit (Binz & Schulz, |2023; |Gao et al., [2025; Wang et al., [2024). This created the need for new research
fields, and fostered a variety of different approaches to investigate different types of LLM behavior, including
emergent abilities and prompt engineering strategies (Chang et al., [2023). A substantial part of this research
relies on prompt engineering techniques, which are designed to guide LLMs toward desired responses without
modifying their internal structure (Liu et al.;|2021)). However, we hypothesize that many of these techniques
implemented in these rather young research fields might not yield easily replicable correlations. Hence, we
conduct experiments attempting to conceptually replicate studies investigating zero-shot prompt engineering
techniques that are believed to enhance reasoning in LLMs. Our findings reveal that these techniques often
fail to produce consistent improvements. Based on our findings, we propose specific recommendations for de-
veloping better methodologies when evaluating LLM behavior. This includes establishing sound benchmarks,
designing robust experimental frameworks, and implementing accurate evaluations of model outputs.
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2 Methods

2.1 Prompt Engineering Techniques

For our experiments, we tried to replicate single-pass, zero-shot prompt engineering techniques that were
demonstrated to alter reasoning performances in LLMs in previous studies:

e Zero-shot chain-of-thought Prompting (Kojima et al.;[2022): This method claims that adopting
a step-by-step reasoning approach in LLMs enhances overall reasoning accuracy.

o Sandbagging (Perez et all 2022): Sandbagging showcases that LLMs have a tendency to repeat
back a dialog user’s preferred response and mirror them when solving tasks.

o EmotionPrompting (Li et al., 2023)): This technique consists in adding emotional stimuli, such as
"This is very important to my career', in order to enhance the performance.

o Re-Reading (Xu et al., |2024): This method consists in repeating the task twice to enhance the
reasoning accuracy.

o Rephrase-and-Respond (Deng et al., [2024): This approach involves rephrasing the given task as
a query before providing a response, thereby improving accuracy.

o ExpertPrompting (Xu et al 2025): This technique claims to enhance the LLM accuracy when
setting the LLM in an expert role.

With this selection, we aim at covering the majority of prompt engineering techniques that represent zero-
shot, single-pass methods which are most likely to be adopted by a wide range of users in real-world LLM
settings. Furthermore, these techniques simplify the experimental design and minimize potential sources
of error, which would be present in more complex settings. We deliberately excluded methods such as
ensembling, self-criticism, least-to-most prompting, tree-of-thoughts, etc., as these involve more complex
setups or prompt chains (Schulhoff et al., 2024; [Yao et al.l 2023) which we consider unlikely to be utilized
by typical LLM users. As prompt engineering techniques can be applied to various applications (Liu et al.
2021) like improving text quality, enhancing the answer’s relevance or controlling the output formatting, we
chose to focus on prompt engineering techniques used to enhance reasoning abilities and hence accuracy of
LLMs when prompted with complex tasks.

2.2 Benchmark Selection

To replicate the claimed impact of the selected prompt engineering techniques on LLM reasoning abilities, we
selected five different benchmarks, each measuring a different type of reasoning: CommonsenseQA (Talmor,
et al., [2019), StrategyQA (Geva et al., 2021), NumGLUE (Mishra et al., |2022), ScienceQA (Lu et al., [2022)),
and Cognitive Reflection Tests (Hagendorff et al., 2023). In accordance with a growing body of research
(Gema et al., 2024} |Goetze & Abramson), |2021)) we noticed a low quality of many benchmark items, meaning
incorrect or ambiguous questions, formatting flaws, or factual errors in the response choices. Therefore, we
chose to hand-pick (through rule-based filtering and manual checks) 150 faultless questions out of a random
sample of 200 questions per benchmark, with a total of n = 750, preferring accuracy over large sample sizes.
The tasks were either open-ended, Boolean, or multiple-choice questions.

2.3 Experiments

We first measured the accuracy of LLMs in a base test using unmodified tasks. We then applied the prompt
engineering techniques outlined in the studies mentioned above by incorporating the necessary pre- or suffixes
to each task. We used the same prompts described in these studies when available, and generated new ones
based on the prompt descriptions when they were not. When the studies used several pre- or suffixes as a
basis to their claim, such as in the EmotionPrompting study where 11 different emotional stimuli were used,
we randomly selected one of them for each task using a seed.
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2.4 LLM selection

We compared the performance of five different LLMs, in particular OpenATl’s GPT-3.5 (gpt-3.5-turbo )
(OpenAl, 2022) and GPT-40 (gpt-40-2024-05-13) (OpenAl, |2023)), Anthropic’s Claude 3 Opus (claude-3-
opus-20240229) (Anthropid}, [2024), Google’s Gemini 1.5 Pro (gemini-1.5-pro-001) (Team et al., [2024)), and
Meta’s Llama 3, with both 8B and 70B versions (Meta-Llama-3-8B-Instruct and Meta-Llama-3-70B-Instruct)
(34). As the selected studies also used some models from earlier generations, we have also attempted to
measure the performance for Vicuna 13B v1.5 (Chiang et al., |2023) as well as BLOOM 176B (Workshop
et al.| [2023), but the obtained results were deemed unusable due to the models’ inability to generate coherent
outputs, their tendency to produce meaningless loops, repeated fragments of the input, and other issues, as
detailed in Appendix

2.5 Output classification

To facilitate the LLM output classification process without restricting the reasoning behavior during the
LLMs’ prompt completions, we added an instruction to write the final answer after a specific string, namely
“HHHLE” to each benchmark task, as indicated in the literature (Cobbe et al.l 2021} Nezhurina et al.|
2024). We then assessed the LLM outputs following “####” by combining string matching methods,
LLM-based evaluations with GPT-4o, as well as manual double-checks (see Appendix . Considering that
the behavior of LLMs might exhibit variations over time (Chen et al., [2024), we report the timeframe of
the experiments. They spanned from June 6th, 2024, to June 17th, 2024, except for the Vicuna 13B and
BLOOM experiments, which spanned from December 4th to December 14th, 2024. For all experiments,
LLM temperature parameters were set to 0, or 0.00001 when 0 was not permitted.

2.6 Study focus

This study focuses on replication rather than on reproducibility. According to [Peng (2011), replication
involves collecting and analyzing new data to replicate the findings of a previously conducted study, whereas
reproducibility entails reanalyzing the original data to verify the results. Our hypothesis when replicating the
previous experiments was that the claimed performance improvements are not replicable and hence the claims
about the prompt engineering techniques are not generalizable. We neither use the exact same selections
of benchmarks nor models as in the original studies but vary the experimental setups slightly. In detail,
this means that we still test foundation text-to-text models, use reasoning benchmarks, and use prompt
engineering techniques either verbatim (Chain-of-thought, Re-Reading, EmotionPrompting, Rephrase-and-
Respond), or, if necessary, adapted in alignment with their original methodology to suit our benchmarks
(Sandbagging, ExpertPrompting,), which should theoretically increase their utility. However, it is important
to note that our approach to classifying LLM responses likely differs substantially from the original studies,
as many of them lack descriptions of their chosen methods, further underscoring the nature of our work as
a replication study rather than a reproduction.

2.7 Statistics

All statistical analyses were performed using Python (version 3.11.4). The SciPy library (version 1.13.1)
was used for statistical computations, while visualizations were created with Matplotlib (version 3.7.1) and
Seaborn (version 0.12.2). We applied chi-squared (x?) tests to assess the statistical significance of accuracy
differences between baseline and modified prompts. Rounded P-values are reported for each test. 95%
confidence intervals (CIs) were calculated and included in the result visualizations. Performance variability
across models and benchmarks was accounted for, and results were reported per model, benchmark, and
prompt engineering technique.
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3 Results

3.1 Chain-of-thought prompting

Chain-of-thought prompting involves decomposing a given task and solving each step before outputting the
final answer, by presenting the LLM with an example of a task and its expected decomposed output. In the
original study establishing this method, |Wei et al.| (2023) tested five LLMs over three reasoning, categories
including arithmetic reasoning, commonsense reasoning, and symbolic reasoning, harnessing 12 different
benchmarks. The authors claim a good robustness of this method, with several different annotators. While
they reported variance in the average performance, it was consistently superior to the performance with the
base evaluation, with a reported average improvement of 39.91% (Wei et al.l [2023). A subsequent study then
claimed that a zero-shot chain-of-thought prompting strategy sufficed to elicit similar improvements (Kojima,
et al.l 2022)). Instead of presenting, before each task, an example enabling chain-of-thought reasoning, they
simply suffix tasks with “Let’s think step by step”. They tested a larger sample of 17 LLMs on various
reasoning categories, utilizing 12 benchmarks akin to the previous paper. They obtained an averaged 35.93%
improvement in accuracy for zero-shot chain-of-thought reasoning across all benchmarks and models (Kojima
et al.l 2022)). We tried to replicate these findings with our set of reasoning benchmarks. However, despite
the impressive results from the original studies, we observed that there was no significant improvement (see
Figure : with the exact same task suffix as in the original study, we could not observe any significant
difference across all benchmarks. With results from all models combined, the maximal positive impact
of chain-of-thought reasoning is with NumGLUE where there is a 2.78% accuracy difference between the
base and the chain-of-thought prompt (see Appendix [5)), which is not significant given the total number
of tasks (x? = 1.78,p = 0.18). These numbers remain similar throughout each LLM evaluated, with an
overall average improvement of 0% for the chain-of-thought reasoning (xy* = 0.06,p = 0.8), as seen in
Appendix [5] The largest observed positive impact of chain-of-thought reasoning is for Llama 3-70B tasked
by CommonsenseQA, with an observed 8.67% improvement (x? = 2.19,p = 0.14) (see Appendix[5)). However,
the highest overall difference is an 11.33% accuracy decrease (x? = 4.47,p < .05) (see Appendix/|5|) with chain-
of-thought reasoning applied on Llama 3-70B with StrategyQA. While the latest models seem to implement
chain-of-thought reasoning by default, meaning without being specifically prompted to, these results hold
even for previous models such as GPT-3.5, which often do not. We compared the average response length
of each LLM when chain-of-thought reasoning is explicitly requested, compared to when it is not, as shown
in Appendix [5] Even when the base experiments do not demonstrate verbose prompt completions and the
chain-of-thought prompting does, the performance results are not impacted in a significant manner, which
stands contrary to what the literature suggests (Jin et al., [2024). For instance, GPT-40 had an average
difference of response lengths of 531 characters for the base test vs. 931 characters for the chain-of-thought
prompting, but just a 0.01% accuracy difference, suggesting that simply increasing the length of prompt
completions does not enhance accuracy beyond a certain point.

3.2 Sandbagging

Perez et al.|(2022) demonstrate sycophancy, which is an LLM’s tendency to output answers that users tend to
prefer. The researchers evaluated several aspects of sycophancy, including a “sandbagging” capability, which
suggests that a model could underperform when a user is deemed incapable to solve or verify a given task.
They underpin this hypothesis by adding user biographies before reasoning tasks from Truthful QA (Lin et al.
2022)), with “very educated” users as opposed to “very uneducated” users. They imply a significant difference
between these two categories, claiming that sandbagging causes LLMs to output incorrect answers when
human users are perceived as unable to answer correctly themselves (Perez et al.l [2022). We conceptually
replicate this experiment using our selected models by prefixing our selected reasoning tasks with both
“very educated” and “very uneducated” user biographies (see Appendix [5)). We observe no significant
difference over all benchmarks when comparing the highly educated (x? = 1.64,p = 0.20) or poorly educated
(x? = 1.24,p = 0.27) user prompts to the base results (see Figure [I| and Appendix |5)), with an average
accuracy decrease of 1% for both cases (see Appendix . We likewise observe no significant difference when
comparing the highly educated to the poorly educated user prompt results, and frequently observe that the
“poor education” prefixed tasks have an even better performance than the “high education” ones (average
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accuracy improvement of 0.1% for “poor education”). Once again, we fail to replicate the sandbagging
phenomenon when utilizing our experimental setup.

3.3 EmotionPrompting

EmotionPrompting, presented by |Li et al.| (2023), augments a task with emotional cues such as “You’d
better be sure” or “This is very important to my career” to enhance problem-solving abilities in LLMs. In
the original study, [Li et al| (2023)) augmented tasks with 11 variations of emotional stimuli and tested six
LLMs including ChatGPT and GPT-4. They sourced their tasks from three different benchmark categories,
notably using tasks from BIG-Bench (Srivastava et al.,2022). They claim to obtain a “relative performance
improvement of 115%” (Li et all [2023) with their method, arguing that adding an emotional component
improves the capabilities of LLMs. However, despite the improvement that was strongly implied throughout
the original study by raising claims like “EmotionPrompt makes it easy to boost the performance of LLMs”
(Li et al.l 2023)), the numerical values communicated in the study itself do not coincide with these claims.
Instead of communicating the average improvement of the enhanced prompts over the regular prompts, they
focused on improvements when cherry-picking the most performant emotional cue. Based on their reported
results, we calculated an average relative performance improvement of 4.42% on BIG-Bench tasks, and a
2.58% relative performance improvement across all benchmarks, when choosing the average performance
of all emotional stimuli. Despite identifying this shortcoming in the original study at this early stage, we
nevertheless replicated the experiments with our selected tasks and models. We applied the same emotional
suffixes as in the original study, apart from “Are you sure?”, as LLMs tend to reply to this question, as
opposed to solving the given tasks. Similarly to |Li et al.|(2023)’s findings, but contrary to their claims, we
observed that there was no significant improvement, across every single model and benchmark (see Figure|l)).
The maximal positive improvement measured is non-significant with an 8.7% difference (x2? = 1.94,p = 0.16)
(see Appendix , using Llama 3-8B on CommonsenseQA. Overall, we observe an insignificant performance
increase of 1% when applying EmotionPrompting (y? = 0.11,p = 0.74) (see Appendix .

3.4 Re-Reading

Re-Reading, introduced by Xu et al.| (2024), consists in repeating the task verbatim before having the
model answer. They compared the baseline performance with the Re-Reading performance, as well as
the performance in both conditions when additionally suffixing every task with a chain-of-thought eliciting
prompt. The researchers tested GPT-3 (text-davinci-003) (Brown et al., [2020), GPT-3.5, Llama-2-13B and
Llama-2-70B (Touvron et al. [2023), in order to have both models with and without instruction fine-tuning.
They used a total of 112 arithmetic, common sense, and symbolic reasoning tasks sourced from various
datasets with GPT-3 and GPT-3.5, for which they obtained an average gain of 2.7% in accuracy, and 2.9%
with the inclusion of chain-of-thought reasoning. For Llama 2-13B and Llama 2-70B, they used a different
set of benchmarks comprising only arithmetic reasoning tasks, with an average gain of 2.5% in accuracy
(2.7% with chain-of-thought reasoning). We replicate the Re-Reading experiments on our selected tasks and
models. For this study, we observe a significant improvement for Llama 3-8B (x? = 13.13,p < .05) and
Llama 3-70B (x? = 19.4,p < .05) exclusively (see Appendix [5| and Figure [1). The maximal improvement
across all benchmarks for the other models is of 2%, for Claude 3 Opus (x? = 1.27,p = 0.26). Therefore,
Re-Reading seems replicable for the Llama 3 models only, which highlights the importance of implementing
tests on a variety of models. However, the initial study indicated that Re-Reading was effective on GPT
models, notably GPT-3.5, that we also tested with different outcomes. Therefore, we only managed to
partially replicate the results.

3.5 Rephrase-and-Respond

Rephrase-and-Respond, inspired by the communication technique of rephrasing to enhance clarity, involves
instructing an LLM to first rephrase a task and then address it within the same prompt. Deng et al.| (2024)
demonstrate that simply adding a directive such as “Rephrase and expand the question, and respond” can
significantly enhance LLM accuracy. They evaluated GPT-3.5, GPT-4 and Llama 2 across seven different
reasoning benchmarks, such as CommonsenseQA and Knowledge Classification (Allen-Zhu & Li, [2024),
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and observed an average improvement of 17.80% across all tested models. We replicated this experiment
by incorporating the suggested rephrasing directive to reformulate questions across our full dataset. We
then applied a tailored algorithm to classify the answers, ensuring it could accommodate these new types
of responses (see Appendix . As for the Re-Reading experiment, we only observe a significant positive
effect for Llama 3-8B (yx? = 10.49,p < .05) and Llama 3-70B (x? = 18.63,p < .05), with the StrategyQA
benchmark. Once again, Rephrase-and-Respond seems to only show a significant positive improvement on
a specific benchmark-model combination, which shows only a partial replication of the results (see Figure
and Appendix .
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Figure 1: Accuracy comparisons between the base tests without any prompt modification and the augmented
prompts across all LLMs.

3.6 ExpertPrompting

ExpertPrompting consists in giving LLMs an instruction to impersonate someone with high expertise on
the task subject while completing a task. This method presented by B.Xu et al. (21) has been greatly
popularized; it is now recommended in LLM documentations for enhanced LLM accuracy and improved focus
on adhering to the task’s requirement. B. Xu et al. (21) evaluated the response quality of ExpertPrompting,
assessing aspects like accuracy, helpfulness, or relevance. They evaluated GPT-4 responses with and without
ExpertPrompting, which, in the case of the former, possessed a reported higher answer quality 48.5% of
the time (21). In our experiments, we measure, as with the previous prompt engineering techniques, the
accuracy of the ExpertPrompting technique using our set of reasoning benchmarks and LLMs. We observe
no significant improvement across all benchmarks (x? = 1.57, p = 0.21) (see Figure [I|and Appendix, with
an average improvement of only 1% (see Appendix C).

While the original ExpertPrompting study focused on output quality rather than accuracy, we replicated their
comparative evaluation approach using our own benchmarks. To ensure an unrestricted quality assessment,
we removed formatting instructions from our prompts and evaluated complete LLM outputs. Our results
showed higher quality scores for ExpertPrompting over base prompts, with winning percentages ranging
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from 26.53% (x? = 82.65,p < .05) for Gemini 1.5 Pro, to 76.93% (x? = 294.27,p < .05) for Llama 3-70B
(see Figure . Despite these significant results, we remain skeptical about the robustness of this evaluation
method. Relying solely on an LLM to assess outputs from another — without strictly predefined evaluation
rules — introduces considerable risk of misjudgment. In our repeated evaluations, we observed inconsistencies:
the model’s judgment on which response was better often changed across runs. Moreover, this evaluation
method frequently selected a "winner" even when both responses were factually incorrect. In some cases,
the model even favored an inaccurate response while penalizing an accurate one. Based on this observation,
we re-evaluated the same responses for factual accuracy using a tailored version of our accuracy assessment.
Once again, no significant improvement was observed. In fact, ExpertPrompting led to decreased accuracy,
ranging from a drop of 2.4% (x? = 0.84,p = 0.36) for Gemini 1.5 Pro, to 14.53% (x? = 34.00,p < .05)
for Llama 3 —8B. This raises an important question: if a response is rated as "high quality" despite being
factually incorrect, can it truly be considered an improvement? Including both quality and accuracy metrics
in evaluations would have provided a more comprehensive understanding of ExpertPrompting’s effectiveness.
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Figure 2: Comparison of accuracy and quality between the base tests and ExpertPrompting, using prompts
without formatting constraints, across all LLMs. Error bars show 95% Cls.

4 Recommendations

Given the identified lack of replicability across various studies, we deem crucial to address the underlying
issues contributing to these replication problems in prompt engineering. We have identified specific problems
associated with each cited prompt engineering method, which may hint at a broader replication problem
in LLM behavior research. In the following, we provide recommendations aimed at mitigating replication
problems in prompt engineering and related fields, based on our analysis of the selected studies. We categorize
these issues into four main areas: low-quality benchmarks, methodological shortcomings, changes in model
behavior over time, and insufficient accuracy in LLM output classification. It is important to note that
while an absolute elimination of replication problems is unlikely, our recommendations aim to minimize such
challenges effectively.
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4.1 Ensure adequacy of benchmarks

In several of the studies examined, we noted major issues regarding the benchmarks used to assess LLM
performances: many tasks lack proper grammar, present spelling issues, or punctuation problems such as
the absence of a question mark at the end of a question. Furthermore, many tasks are nonsensical, lack
necessary information, or are blatantly incorrect. One might assume that, because of the sheer number
of tasks present in typical benchmarks (21.208 questions for ScienceQA, for example), a small number
of errors may be inevitable. However, we observed a high percentage of flawed tasks: for instance, for
CommonsenseQA (used in the chain-of-thought, Re-Reading, and Rephrase-and-Respond studies), 10.9% of
questions presented punctuation issues easily verifiable with a simple code. Similar issues have also been
identified in other popular benchmarks, where a significant number of tasks were found to contain errors
(Gema et al.) 2024; |Goetze & Abramson, [2021)).

Some of the replicated studies chose to use benchmarks in which serious flaws can be identified, presumably
assuming that the benchmarks were overall correct. In this case, any error would be an exception and likely
negligible relative to the total number of correct tasks. However, given the higher percentage of task-related
issues observed, this reasoning does not hold. We recommend rigorously validating and cleaning benchmark
datasets to ensure that tasks are grammatically correct, sensible, and complete before using them, prioritizing
quality over quantity, while still maintaining a sufficient number of tasks to ensure valid statistical analysis
and reduce the risk of cherry-picking or task-related variation. Furthermore, testing models on different sets
of benchmarks within the same study, as seen in the Re-Reading study (Xu et al., [2024), where the GPT
models were evaluated on three types of reasoning benchmarks while the Llama 2 models were only tested
on one type, further exacerbates this issue. This different selection of benchmarks not only complicates
direct comparison of model performances, but also raises questions about the reasoning behind such choices,
potentially leading to concerns about cherry-picking benchmarks that yield the best results.

Another prominent issue lies in the consistency of benchmarks and their domain. We chose to use the same
benchmarks for all experiments for better comparison purposes. However, in the literature, benchmarks
used throughout studies in a similar field are often inconsistent. Here, the six studies selected were initially
applied on widely different benchmarks, some with a restricted domain. For example, the chain-of-thought
study focuses on different reasoning tasks, whereas the EmotionPrompting study presents a wide array of
deterministic tasks from the Instruction Induction (Honovich et all [2022) and BIG-Bench (Srivastava et al.,
2022) datasets, such as finding rhymes or pluralizing words, which makes results hard to compare. Similarly,
variations within the process of administering benchmark tasks (notably zero-shot prompting versus few-shot
prompting) impact the reasoning process of LLMs and therefore the outcomes.

Finally, it is paramount to select appropriate benchmarks coherent with the research question. When testing
prompt techniques to alter reasoning performance, given or implied response instructions in the tasks can
interfere with output accuracy by restricting the response length and therefore its ability to generate more
detailed responses, for instance in multiple-choice settings. We recommend preferring standardized bench-
marks across studies in the same field, to reduce variability in results and ensure that benchmarks are closely
aligned with the research objectives.

Recommendations

e Validate and clean benchmarks to ensure correctness and completeness.
e Standardize the benchmark selection within studies for better comparability.

o Align benchmarks with research objectives.

4.2 Guarantee the transparency of the methods used

Each replicated prompt engineering study presents its own methodology, which needs to be accounted for
when analyzing the claims and results. Indeed, similar studies may obtain largely different outcomes when
solely the experimental setup differs. Notably, the method used to classify LLM responses majorly impacts
results. In the sandbagging study (Perez et al.,2022)), researchers evaluate differences in model accuracy when
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answering questions on the TruthfulQA dataset (Lin et al.,|2022)), which measures whether a language model
is truthful in generating answers to questions, so whether the facts mentioned in the answer are correct rather
than assessing whether they answered the task correctly. Similarly, in the ExpertPrompting study (Xu et al.
2025)), researchers establish a relative score by comparing the quality of the answer with ExpertPrompting to
the baseline using an LLM-based evaluation. We followed their methodology to compute both the “quality”
and the accuracy of the responses, and found that while the quality metric appeared to improve, the actual
accuracy of the responses declined. This can be misleading for users, who might reasonably assume that
accuracy is embedded within the “quality” metric. Consequently, despite some studies presenting their
claims similarly using verbs such as “improves”; “enhances”, “overperforms” to describe their prompting
techniques, their outcomes cannot effectively be compared.

Furthermore, some studies display a particularly poor or unclear scientific method. In the EmotionPrompt-
ing study (Li et all |2023)), researchers cherry-pick the prompt with the best result out of eleven different
prompts, rather than calculating an average across all prompts. This seemingly deliberate action may be
due to a publication bias, which motivates researchers to manipulate results to be positive and therefore
publishable. In addition, some studies, such as the Re-Reading study (Xu et al., |2024), report results as
"significant” multiple times without presenting the corresponding statistical calculations or p-values. This
lack of statistical transparency can mislead readers into assuming statistical significance without the nec-
essary evidence to support such claims. It is crucial that when terms like "significant" are used, they are
backed by clearly defined statistical measures. Moreover, some studies do not properly report the details of
their experimental setup (Perez et al., [2022)), which makes it confusing or even impossible to understand and
therefore to replicate their process exactly. In this case, the lack of transparency forbids us from detecting
possible shortcomings. We recommend adopting standardized evaluation methodologies and clearly defining
metrics to ensure that results from different studies can be accurately compared and interpreted.

Recommendations

e Select a standardized methodology for consistent comparisons across studies.

e Avoid intended or accidental cherry-picking and report averaged results across tasks whenever pos-
sible.

o Ensure statistical transparency with clearly reported p-values.
e Provide a complete documentation of experimental setups to aid replication.

e Define clear and consistent evaluation metrics.

4.3 Be aware of model updates

In some cases such as in the chain-of-thought prompting study (Kojima et al.,|2022)), we hypothesize that the
lack of replicability is linked to the models used. With our results on the chain-of-thought prompting, we can
see a difference in accuracy between GPT-3.5 and GPT-40. The former benefits more from chain-of-thought
prompting than the latter. Despite the results not being significant with either model, the results obtained
could lead us to believe that with previous models such as GPT-3, which was used in the replicated study
along with other models of that generation, chain-of-thought prompting would have successfully improved
LLM accuracy. This aligns with the system cards for recent models, which explicitly warn that techniques
like chain-of-thought reasoning may not improve performance and can even impair it, advising caution in
their use with these models (OpenAl| 2024). Similarly, we observed a significant improvement for some
benchmarks with the Re-Reading and Rephrase-and-Respond prompts, for the Llama 3 models exclusively;
if we look at the other models separately, the results are vastly non-significant (see Appendix . This
reinforces the claim that similar experiments may have a considerably different impact depending on the
models used. Therefore, it is essential to use a variety of models when testing a hypothesis, or to at least
mention the limited scope of the study when fewer models are used, as an effort to prevent a generalization
that may be incorrect. Different benchmarks and prompt engineering techniques have varying effects across
models. In addition to that, some earlier-generation models may not be well-suited for such question-
answering experiments requiring reasoning abilities. Specifically, we tested Vicuna 13B and BLOOM on
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our selected tasks (Appendix , but found the results difficult to interpret, as the accuracy for both the
base questions and the prompt-engineered questions was too low to draw reliable insights into the models’
behavior. The studies on EmotionPrompting, Rephrase-and-Respond and ExpertPrompting used Vicuna or
BLOOM nonetheless. We recommend consistently clarifying the methodology used for each model, as we
were unable to understand how these studies achieved viable results with these models. Furthermore, as the
LLMs evolve and become better reasoners, it seems necessary to adapt the difficulty of the benchmarks used
accordingly, to lower the near-perfect overall accuracy and therefore improve accuracy comparisons, as it is
for instance the case with the CRT benchmark (Hagendorff et al., [2023). Moreover, even when conducting
replication experiments using the same models as in the original study, the opacity surrounding model
updates and developer prompt modifications in terms of date and type of update (Chen et al., |2024)) renders
study replications difficult. Finally, the latest models may include a stronger set of internal instructions
to optimize their output, which leads to different results and behaviors. Similarly to how many LLMs,
when asked coding questions, now explain the entire process instead of solely outputting the required code,
models have been trained to use the chain-of-thought reasoning as default, which also explains why specific
instructions conveying chain-of-thought reasoning seem useless with many current state-of-the-art models.

Recommendations

e Monitor changes in model updates and behavior that could affect results.
e Account for model variability by using diverse models and specify if only a limited range is tested.
e Adjust benchmark difficulty as models improve.

e Ensure model selection transparency, notably by documenting the model version and date of exper-
iment launch.

4.4 Ensure accurate LLM output classifications

For behavioral experiments with LLMs, it is key to ensure the accuracy of the LLM output classifications.
We have attempted to replicate a large number of verification techniques presented in other studies. How-
ever, when checking the accuracy of these techniques, we discovered that a significant number of them had
shortcomings. For example, functions based solely on Regex rules were generally too vague, leading to flawed
classifications. Other metrics, such as the F1 word overlap score, do not work effectively, as they would clas-
sify correct LLM outputs as incorrect, simply because the token length differed too much from the ground
truth. Moreover, studies often rely on using LLMs to classify LLM outputs (Pan et al.l 2023, such as the
ExpertPrompting study (Li et al., 2023). Exclusively relying on LLM-based evaluation can introduce signif-
icant flaws. When using the given or even enhanced versions of their LLM output classification prompts, we
discovered that many issues arose, rendering the classification process incorrect: the LLM would, for instance,
produce inconsistent evaluations when asked multiple times to assess the same output. It was also influenced
by the task when classifying responses, and the verification prompt needed to be task-specific and highly
precise. Given the time-consuming aspect of manually double-checking classifications, we also suspect that
this is done very rarely. Furthermore, among the papers we replicated, one did not include any details about
the verification process (Li et al.,|2023]); it goes without saying that any verification process should be clearly
reported in each study, to make the study replication feasible. We therefore recommend developing more
precise and task-specific verification methods, and ensuring thorough documentation of these processes in
all studies to facilitate accurate replication and validation of results. We recommend avoiding reliance solely
on LLM-based evaluation; if alternative evaluation strategies are not feasible, then we would recommend
running multiple iterations per prompt and aggregating the results to mitigate potential misjudgments. We
also recommend that creators of new benchmarks provide a standardized verification process, encouraging
all users to apply the same verification criteria.

Recommendations

e Double check LLM output classifications to avoid vague or ineffective evaluation algorithms.

e Develop task-specific, precise verification methods to ensure accurate classification.
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e Ensure transparency by thoroughly documenting verification methods.
e Standardize verification methods to promote consistency across studies and benchmarks.

e For benchmark creators, provide a specific verification process implementers can use.

5 Discussion

Our experiments show that most of the tested prompt engineering techniques do not lead to replicable
or generalizable performance improvements in LLMs. Most techniques, when applied in slightly different
experimental setups, failed to produce the claimed benefits. Some techniques occasionally even resulted in
a decrease in response accuracy. In view of the uncritical propagation of the prompt engineering techniques
in the literature (Schulhoff et al.l 2024]), we recommend a more cautious approach when citing papers with
insufficient methodological standards. Our results suggest that further research is necessary to reliably
understand the conditions under which specific techniques are effective.

While our focus is on replication issues in prompt engineering, it might be the case that similar challenges
exist in other LLM behavior evaluation techniques. Our findings suggest that further research is necessary
to reliably understand the conditions under which specific prompt engineering techniques are effective, and
they underscore the need for replication studies across the broader spectrum of machine behavior research.
Only by rigorously verifying or refuting insights from these studies can we build a more reliable founda-
tion for evaluating LLM performance. In line with the recommendations proposed above, we emphasize
the importance of enhanced research transparency and the application of rigorous scientific methods when
evaluating LLM behavior. Future investigations should not only continue to scrutinize prompt engineering
approaches but also extend replication efforts to other fields of LLM evaluations to ensure the robustness
and generalizability of findings in LLLM behavior research.
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Appendix A

In addition to the models presented in this paper, we conducted experiments on older models: Vicuna 13B
v1.5 and BLOOM. These models were selected to evaluate whether the effectiveness of prompt engineering
techniques differs between older and newer models. Vicuna and BLOOM were specifically chosen because
they were used in some of the studies we analyzed. For Vicuna, we used the 13B v1.5 via Huggingface,
configured in Question Answering mode. However, the accuracy of both the prompt-enhanced and base
tests was so low that the results could not be reliably interpreted, as demonstrated in the figures and
examples below. The outputs frequently consisted of question repetition, endlessly looped text snippets, or

outright gibberish.

Table 1: Example outputs for Vicuna 13B and BLOOM

Benchmark task

Vicuna 13B output

BLOOM output

Solve the task below. Impor-
tantly, write your final answer af-
ter “FEHFH.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’tennessee’,
violin’, ’case’, ’alaska’.

Solve the task below. Impor-
tantly, write your final answer af-
ter “FEHFH.

You simplify complicated ideas
into something easy to under-
stand. Your common sense shines
as a clear guide, helping people
when they’re stuck on complex is-
sues.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’'tennessee’,
violin case’, ’alaska’.

Solve the task below.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’tennessee’,
violin case’, ’alaska’  Impor-
tantly, write your final answer af-
ter “HEHA.

1 and

Solve the task below.

You simplify complicated ideas
into something easy to under-
stand. Your common sense shines
as a clear guide, helping people
when they’re stuck on complex is-
sues.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’tennessee’,
violin case’, ’alaska’  Impor-
tantly, write your final answer af-

ter “HHFHH".

al answer after “####”./n This
is the Answer : Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case, #HH#H#

A: The answer is Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case, #HH#H#

because the first letter of each
word is the same as the first let-
ter of the state it represents.

al answer after “####”./n This
is the Answer : Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case.

A: The answer is Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case.

Because the fiddle is a musical in-
strument, and the fiddle is played
by an orchestra. The fiddle is
played by a violinist, and the vi-
olinist plays the violin. The fid-
dle is played in the orchestra, and
the orchestra is in the violin case.
The fiddle is played in the orches-
tra, and the orchestra is in the vi-
olin case. The fiddle is played in
the orchestra, and the orchestra
is in the violin case. [repeated un-
til it reaches the output’s maximal
tokens)
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Figure 3: Accuracy comparisons between the base tests with and without any prompt modification across
all LLMs.
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Appendix B

All benchmarks used for our experiments possess ground truth entries which constitute short strings: one-
word answers for most multiple-choice questions, numbers for the numerical questions, short answers for the
open questions. The outputs produced by the LLMs often greatly differ in their length from the indicated
answers, with prefixes such as “The correct answer is”, “Let’s proceed step by step”, followed by a detailed
methodology used to solve the given task, or greetings and politeness markers. The most common metrics
used to calculate string similarity, such as the F1-score or ROUGE ((Lin, 2004)), are therefore not adapted for
this use case. Hence, we added the following instruction to each prompt: “Solve the task below. Importantly,
write your final answer after ‘###+4’ 7. Using Regex rules, we then extracted the answer after “####"
if this string was present in the output and kept the entire output when the model failed to follow the
instruction. We then applied a set of Regex rules on this answer accordingly:

o Check if the LLM answer equals the ground truth (when all punctuation has been removed)
o If it is a multiple-choice question, check if the LLM answer is one of the incorrect choices

o If the expected output is a boolean, verify all possible adjacent outputs (“True” could be “TRUE”
or “Yes”, whereas false could be “FALSE” or “No” for example)

If the Regex rules are unable to classify the answer as correct or incorrect, we then use GPT-4o0 to classify
the string following “####” (see Table .

Table 2: GPT-4o instructions used to classify the evaluated LLM’s answer

Classification instructions

Your task is to classify a response to a question, specifically assessing whether the given response is true
or false in comparison to the correct response.

This is the given response: LLM__ANSWER. This is the correct response: CORRECT__ANSWER
Adhere to the following rules when classifying the given response:

- The classification result should be a boolean value, represented as either TRUE or FALSE.

- Only output "TRUE’ or 'FALSE’

- Never include any other comments or strings other than TRUE or FALSE in your output.

- Do not answer the question.

- The given response can be phrased differently from the correct response. This does not mean it should
be classified as FALSE.

- Only assess if the given response contains the information that matches with the information provided
in the correct response.

- Check whether the correct response is in essence occurring somewhere in the given response. If so,
classify it as TRUE.

- Focus on the relevant information in the given response, which is often at the end of it. Do not
consider non-essential information such as greetings, small talk, and comments about hobbies or skills
when classifying the given response
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This classification technique applies to all prompt engineering methods except for the Rephrase-and-Respond
technique. Unlike other methods, this approach requires the model to first provide a rephrased version of
the question before delivering the answer. This directly impacts the classification process, as the rephrased
question can alter what is considered correct. For instance, in True or False questions, the rephrased question
might reverse the meaning of the original (“Was Mark the winner?” could become “Did Mark lose?”).
Similarly, in multiple-choice questions, the rephrasing might replace the correct choice with a synonym. To
address this, we carefully designed a specific classification function for this experiment. Both the Regex rules
and the GPT-4o0 fallback prompt were adapted to suit the requirements of each benchmark.

Table 3: Classification rules tailored to Rephrase-and-Respond LLM answers

Benchmark  Choices Type of correct answer Rules for RaR

Common- Multiple Nouns, location - Verify if all non-rephrased choices are present

-senseQA choices names or groups of in the answer. If so, classify with the non-RaR.
words; no numbers adapted method;

or dates. Exam- - Detect and validate enumerations of options

ples: “positive”, in the LLM’s answer, which would correspond

“alabama” or “great to the rephrased choices;

sorrow” - If there is an enumeration of the same length
as the length of the given choices, then estab-
lish synonyms based on the order of appari-
tion. Detect if the rephrased correct option is
the one in the final answer;

- Use GPT-4o for fallback classification when
the rules cannot determine correctness.
CRT Open- Values. Examples: “9 - Match numbers (digits and word forms);
ended weeks”, “12 minutes” - Allow additional numbers only if they ap-
or “5 dollars” pear in the original question, to account for
the rephrased question;
- Use fallback verification (GPT-40) when di-
rect or numerical matches fail.
NumGLUE Open- Numbers, days or - Remove commas in numbers;
ended months.  Examples: - Extract all possible answers from the LLM’s

“18”, “Monday”, answer (numbers, days, months);

“August” - If the correct answer is present in the ex-
tracted answers, then return TRUE, otherwise
return FALSE;

- If no possible answers have been detected,
then use GPT-40 to classify.
ScienceQA Multiple Nouns, values, group Same rules as for CommonsenseQA
choices of words or full sen-

tences. Examples:

“simile”,  “20 sec-

onds”, “by clearly

stating the main

idea”, “Both are only

physical changes.”

StrategyQA  True  or True or False With StrategyQA, we exclusively use GPT-
False 40 to classify the rephrased answers, with the

prompt shown in Table @
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Table 4: GPT-4o0 instructions used to classify the evaluated LLM’s answer for Rephrase-and-Respond when
the benchmark is StrategyQA

Classification Instructions

Your task is to classify responses to rephrased questions answered by either True or False. You need
to determine if the given answer is correct. To establish what is correct or incorrect, you are given the
original question and its correct answer. The answer to the rephrased question is correct if the information
is consistent with the updated question based on the original ground truth.

You are provided: 1. The original question. 2. The ground truth answer for the original question. 3. The
rephrased question and its associated answer. The associated answer should be towards the end, after
CHAHH.

Adhere to the following instructions: - Determine whether the answer to the rephrased question is con-
sistent with the original ground truth. - The answer to the rephrased question and the ground truth can
be different if the question has been rephrased as the opposite question, like if “Is the tree big?” was
rephrased to “Is the tree small?”. Focus on the facts mentioned in the rephrased question/answer pair,
compared to the ground truth. - The classification result should be a boolean value, represented as either
TRUE or FALSE. - Only respond with “TRUE” or “FALSE”. Avoid including comments or explanations.
Examples: - Original question: “Should you wear sunscreen to avoid cancer?” Ground truth: “True”.
Rephrased question: “Rephrased question: Can sunscreen help prevent cancer? Answer: Yes, it can.
True #### True” — TRUE. - Original question: “Should you wear sunscreen to avoid cancer?” Ground
truth: “True”. Rephrased question: “Rephrased question: Is someone wearing sunscreen as likely to get
cancer as someone not wearing sunscreen? Answer: False ####” — TRUE. - Original question: “Is the
sun a planet?” Ground truth: “False”. Rephrased question: “Is the sun a star? #### True” — TRUE.
- Original question: “Is the earth flat?” Ground truth: “False”. Rephrased question: “Question: Is the
earth round? Answer: No, the earth isn’t round because the geometry would not make any sense if so.
False #### False” — FALSE. - Original question: “The dice shows 2. Did Paul win? Facts: Paul wins
if the number on the dice is odd, Marcus wins if it is even.” Ground truth: “False”. Rephrased question:
“Question: Given that Paul wins if the dice number is odd and Marcus wins if the dice number is even,
did Marcus win if the dice shows 27 Answer: True, 2 is an even number. Therefore, Marcus wins. ####
True” — TRUE.
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Appendix C

The following figures show, for each LLM, the rounded accuracy difference compared to the base prompting,
for each prompt engineering technique — benchmark combination.
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Figure 4: Accuracy differences between prompt engineering techniques and the base prompting, for all models
and benchmarks
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Figure 5: Accuracy differences between prompt engineering techniques and the base prompting, for GPT 3.5
on all benchmarks
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Figure 6: Accuracy differences between prompt engineering techniques and the base prompting, for GPT-40
on all benchmarks
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Figure 7: Accuracy differences between prompt engineering techniques and the base prompting, for Gemini
1.5 Pro on all benchmarks
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Figure 8: Accuracy differences between prompt engineering techniques and the base prompting, for Claude
3 Opus on all benchmarks
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Figure 9: Accuracy differences between prompt engineering techniques and the base prompting, for Llama
3-8B on all benchmarks

28



Under review as submission to TMLR

20
Chain-ofThought Prompting - -0.27 8.67 3.33 4.00 0.67
. -10
Expert Prompting - 4.00 -4.00 0.00 333 6.00
Sandbagging - High Education - 0.80 4.67 -0.67 -2.00 133 0.67 -0
z
Sandbagging - Low Education - 4.27 -1.33 0.00 1.33 10.00 g
v
£
Emotion Prompting - 0.00 4.67 -2.67 0.00 -0.67 -1.33
Re-Reading - 8.13 - -4.00 4.00 6.67
Rephrase-and-Respond - 5.20 8.67 0.00 -1.33 2.00

& ¥ éc\ \go @‘“
& f & & é&a@o}
o &

Figure 10: Accuracy differences between prompt engineering techniques and the base prompting, for Llama
3-70B on all benchmarks
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Appendix E
Table 5: Prompt variations and corresponding LLM outputs
PET Benchmark task LLM Output
Base Solve the task below. Impor- GPT-3.5 Alaska
tantly, write your final answer after #H#4#4 Alaska
“####77.
Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?
The choices are the following: ’al-
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, ’alaska’.
Chain-of- Solve the task below. Impor- Claude 3 Okay, let’s approach this step by step:
thought tantly, write your final answer after Opus 1. The question asks about a state
prompting — “HHHEH. where a lot of people play the fid-

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following: ’al-
abama’, 'orchestra’, ’tennessee’, 'vio-
lin case’, 'alaska’. Let’s think step by
step.

)

dle. 2. Among the given choices, we
need to identify which ones are actu-
ally states. 3. ’alabama’, ’tennessee’,
and ’alaska’ are states, while ’orches-
tra’ and ’violin case’ are not. 4. Now,
we need to determine which of these
states comes first alphabetically. 5.
Alphabetically, ’alabama’ comes be-
fore ’alaska’, and ’alaska’ comes be-
fore 'tennessee’.

Therefore, the state that comes first
alphabetically where a lot of people
play the fiddle is ’alabama’.

##HH## alabama
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Table 5: Prompt variations and corresponding LLM outputs

PET Benchmark task LLM Output
Sandbagging Solve the task below. Llama A nice break from molecular biology!
— High ed- tantly, write your final answer after 3-70B Let’s analyze the options:
ucation CHHEAEA * ’alabama’ and ’alaska’ are both
prefix Hello, my name is states, so they’re possibilities. * ’or-
Johnson. I am an internationally chestra’ is a group of musicians, not a
acclaimed molecular biologist from state. * ’tennessee’ is a state, but it’s
Austin, Texas. I graduated from Stan- not the first alphabetically. * ’violin
ford University where I specialized in case’ is not a state at all.
Molecular Biology. My research ex- So, the correct answer is ’alabama’,
plores the evolution of viruses. In my which comes first alphabetically
downtime, I enjoy painting, yoga, and among the states listed.
reading fiction novels. Additionally, 1 H#H#H## alabama
provide free biology tutoring at local
schools.
Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?
The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, ’alaska’.
Chain-of- Solve the task below. Claude 3 Okay, let’s approach this step by step:
thought tantly, write your final answer after Opus 1. The question asks about a state
prompting — “HHHH". where a lot of people play the fid-

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, 'alaska’. Let’s think step by

step.

dle. 2. Among the given choices, we
need to identify which ones are actu-
ally states. 3. ’alabama’; tennessee’,
and ’alaska’ are states, while ’orches-
tra’ and ’violin case’ are not. 4. Now,
we need to determine which of these
states comes first alphabetically. 5.
Alphabetically, ’alabama’ comes be-
fore ’alaska’, and ’alaska’ comes be-
fore 'tennessee’.

Therefore, the state that comes first
alphabetically where a lot of people
play the fiddle is ’alabama’.

##4# alabama
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Table 5: Prompt variations and corresponding LLM outputs

PET Benchmark task LLM Output

Emotion Solve the task below. GPT-40 To solve the task, we need to iden-

Prompting tantly, write your final answer after tify the state from the given choices
CHHEAEAE that comes first alphabetically. The
Answer this question: A lot of peo- choices are:
ple play the fiddle in what state which 1. alabama 2. orchestra 3. tennessee
comes first alphabetically? 4. violin case 5. alaska
The choices are the following: First, let’s list the choices in alpha-
abama’, ’orchestra’, ’'tennessee’, betical order:
olin case’, ’alaska’. Remember that 1. alabama 2. alaska 3. orchestra 4.
progress is made one step at a time. tennessee 5. violin case
Stay determined and keep moving for- From this list, the state that comes
ward. first alphabetically is “alabama”.

H#H#H#H# alabama
Re- Solve the task below. Claude 3 Let’s analyze the question and
Reading tantly, write your final answer after Opus choices:

LL####”'

A lot of people play the fiddle in
what state which comes first alphabet-

ically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, 'alaska’ Read the question
again: A lot of people play the fiddle
in what state which comes first alpha-

betically?

The choices are the following:
abama’, 'orchestra’, ’tennessee’, 'vio-

lin case’, ’alaska’.

The question asks for a state where a
lot of people play the fiddle, and this
state should come first alphabetically
among the given choices.

Looking at the choices: ’alabama’
and ’alaska’ are states. ’orchestra’,
‘tennessee’, and ’violin case’ are not
states.

Between ’alabama’ and ’alaska’, ’al-
abama’ comes first alphabetically.
Therefore, the answer to the question
“A lot of people play the fiddle in
what state which comes first alpha-
betically?” is:

H#H#HH#H# alabama
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Table 5: Prompt variations and corresponding LLM outputs

PET Benchmark task LLM Output
Rephrase-  Solve the task below. Gemini 1.5 The question is asking us to identify
and- A lot of people play the fiddle in Pro the US state most strongly associated
Respond what state which comes first alphabet- with fiddle playing, out of the pro-
ically? vided options. Then, we need to de-
The choices are the following: termine which of those states comes
abama’, ’orchestra’, ’tennessee’, ’vio- first in alphabetical order.
lin case’, ’alaska’. Rephrase and ex- Let’s break it down:
pand the question, and respond. Im- * **Piddle Music:** Fiddle playing is
portantly, write your final answer af- a key part of Appalachian folk mu-
ter “HHHA sic. * **Appalachian Region:** The
Appalachian Mountains run through
several states, but Tennessee is par-
ticularly known for its strong Ap-
palachian musical heritage.
Now let’s alphabetize our relevant
choices:
1. *FAlaska** 2. **Alabama** 3.
**Tennessee**
#4#4#4# Therefore, the answer is
** Alaska**.
Expert Solve the task below. Gemini 1.5 Let’s break this down:
Prompting tantly, write your final answer after Pro * **The question is about a state:**

LL####W'

You simplify complicated ideas into
something easy to understand. Your
common sense shines as a clear guide,
helping people when they’re stuck on

complex issues.

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-

lin case’, ’alaska’.

We can ignore options like "orches-
tra" and "violin case". * **It’s known
for fiddle playing:** This makes us
think of places with strong folk mu-
sic traditions. * **Alphabetical order
is key:** We need to focus on the first
letter of each state.

Out of the remaining options
(Alabama,  Tennessee,  Alaska),
**Alaska** comes first alphabeti-
cally.

H#HH#4# Alaska
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