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Abstract

As large language models (LLMs) are integrated into everyday applications, research into
prompt engineering techniques (PET) to improve these models’ behavior has surged. How-
ever, clear methodological guidelines for evaluating these techniques are lacking. This raises
concerns about the replicability and generalizability of the prompt engineering techniques’
benefits. We support our concerns with a series of replication experiments focused on zero-
shot prompt engineering techniques purported to influence reasoning abilities in LLMs.
We tested GPT-3.5, GPT-40, Gemini 1.5 Pro, Claude 3 Opus, Llama 3, Vicuna, and
BLOOM on the chain-of-thought, EmotionPrompting, Sandbagging, Re-Reading, Rephrase-
and-Respond (RaR), and ExpertPrompting prompt engineering techniques. We applied
them on manually double-checked subsets of reasoning benchmarks including Common-
senseQA, CRT, NumGLUE, ScienceQA, and StrategyQA. Our findings reveal a general lack
of statistically significant differences across nearly all techniques tested, highlighting, among
others, several methodological weaknesses in previous research. To counter these issues, we
propose recommendations for establishing sound benchmarks, and designing rigorous exper-
imental frameworks to ensure accurate and reliable assessments of model outputs.

1 Introduction

The field of generative artificial intelligence has considerably evolved in only a few years. In particular,
large language models (LLMs) have witnessed an unprecedented surge in popularity with the release of
ChatGPT (OpenAl, 2022)), which became the most rapidly adopted internet application in history. LLMs
possess advanced natural language processing capabilities which demonstrate a broad range of downstream
applications, ranging from casual conversations to complex problem-solving (Minaee et al., 2024} |Zhou et al.)
2020). Given the fast growing range of applications (Guo et al., [2024) plus their respective risks for Al
alignment (Ji et al. 2024)), fairness (Hao et all [2023)), and safety (Amodei et al.| 2016} [Hagendorfl, 2024;
Vaugrante et al. [2025; [Weidinger et al.,[2023)), it is paramount to evaluate behavioral and reasoning patterns
these models exhibit (Binz & Schulzl, 2023} (Gao et al., 2025; Wang et al.,[2024a)). This created the need for new
research fields, and fostered a variety of different approaches to investigate different types of LLM behavior,
including emergent abilities and prompt engineering strategies (Chang et all [2023]). A substantial part of
this research relies on prompt engineering techniques, which are designed to emé&steer LLMs toward desired
responses without modifying their internal structure (Liu et al. 2021) However we%wpeﬂ&eﬂ%edehﬁ—maﬂy

rior work has demonstrated that some of these techniques i >
ig ast fes - -efail to replicate in newer, reasonin orlented Inodels

challenges may extend bc( ond reasonin modclb and occur even Wlth instruction-following LLMs across a

broader range of reasoning tasks, indicating a deeper replication problem within prompt-engineering research.
To investigate this, we conduct experiments attempting to conceptually replicate studies investigating zero-

shot prompt engineering techniques that are believed to enhance reasoning in LLMs. Our findings reveal
that these techniques often fail to produce consistent improvements. Based on our findings, we propose
specific recommendations and tools for developing better methodologies when evaluating LLM behavior.
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This includes establishing sound benchmarks, designing robust experimental frameworks adapted to the
LLMs used, and implementing accurate evaluations of model outputs.

2 Methods

2.1 Prompt Engineering Techniques

For our experiments, we tried to replicate single-pass, zero-shot prompt engineering techniques that were
demonstrated to alter reasoning performances in LLMs in previous studies:

e Zero-shot chain-of-thought Prompting (Kojima et al.;[2022): This method claims that adopting
a step-by-step reasoning approach in LLMs enhances overall reasoning accuracy.

o Sandbagging (Perez et al.l 2022): Sandbagging showcases that LLMs have a tendency to repeat
back a dialog user’s preferred response and mirror them when solving tasks.

o EmotionPrompting (Li et al.,|2023): This technique consists in adding emotional stimuli, such as

~“This is very important to my career*”, in order to enhance the performance.
o Re-Reading (Xu et al., |2024): This method consists in repeating the task twice to enhance the
reasoning accuracy.

e Rephrase-and-Respond (Deng et al., [2024): This approach involves rephrasing the given task as
a query before providing a response, thereby improving accuracy.

o ExpertPrompting (Xu et all [2025): This technique claims to enhance the LLM accuracy when
setting the LLM in an expert role.

With this selection, we aim at covering the majority of prompt engineering techniques that represent zero-
shot, single-pass methods which are most likely to be adopted by a wide range of users in real-world LLM
settings. Furthermore, these techniques simplify the experimental design and minimize potential sources
of error, which would be present in more complex settings. We deliberately excluded methods such as
ensembling, self-criticism, least-to-most prompting, tree-of-thoughts, etc., as these involve more complex
setups or prompt chains (Schulhoff et al., 2024; [Yao et al.l 2023) which we consider unlikely to be utilized
by typical LLM users. As prompt engineering techniques can be applied to various applications (Liu et al.)
2021)) like improving text quality, enhancing the answer’s relevance or controlling the output formatting, we
chose to focus on prompt engineering techniques used to enhance reasoning abilities and hence accuracy of
LLMs when prompted with complex tasks.

2.2 Benchmark Selection

To replicate the claimed impact of the selected prompt engineering techniques on LLM reasoning abilities, we
selected five different benchmarks, each measuring a different type of reasoning: CommonsenseQA (Talmor,
et al., [2019), StrategyQA (Geva et al., 2021), NumGLUE (Mishra et al., |2022), ScienceQA (Lu et al., [2022)),
and Cognitive Reflection Tests (Hagendorff et al., 2023). In accordance with a growing body of research
(Gema et al.; |2024; |(Goetze & Abramson, 2021) we noticed a low quality of many benchmark items, meaning
incorrect or ambiguous questions, formatting flaws, or factual errors in the response choices. Therefore, we
chose to hand-pick (through rule-based filtering and manual checks) 150 faultless questions out of a random
sample of 200 questions per benchmark, with a total of n = 750, preferring accuracy over large sample sizes.
The tasks were either open-ended, Boolean, or multiple-choice questions.

2.3 Experiments

We first measured the accuracy of LLMs in a base test using unmodified tasks. We then applied the prompt
engineering techniques outlined in the studies mentioned above by incorporating the necessary pre- or suffixes
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to each task. We used the same prompts described in these studies when available, and generated new ones
based on the prompt descriptions when they were not. When the studies used several pre- or suffixes as a
basis to their claim, such as in the EmotionPrompting study where 11 different emotional stimuli were used,
we randomly selected one of them for each task using a seed.

2.4 LLM selection

We compared the performance of five different LLMs, in particular OpenATl’s GPT-3.5 (gpt-3.5-turbo )
(OpenAl| 2022) and GPT-4o (gpt-40-2024-05-13) (OpenAl, 2023)), Anthropic’s Claude 3 Opus (claude-3-
opus-20240229) (Anthropid, [2024), Google’s Gemini 1.5 Pro (gemini-1.5-pro-001) (Team et al., [2024)), and
Meta’s Llama 3, with both 8B and 70B versions (Meta-Llama-3-8B-Instruct and Meta-Llama-3-70B-Instruct)
(34). As the selected studies also used some models from earlier generations, we have also attempted to
measure the performance for Vicuna 13B v1.5 (Chiang et all |2023)) as well as BLOOM 176B (Workshop!
et al., 2023)), but the obtained results were deemed unusable due to the models’ inability to generate coherent
outputs, their tendency to produce meaningless loops, repeated fragments of the input, and other issues, as
detailed in Appendix [A]

2.5 Output classification

To facilitate the LLM output classification process without restricting the reasoning behavior during the
LLMs’ prompt completions, we added an instruction to write the final answer after a specific string, namely
“HHHH” to each benchmark task, as indicated in the literature (Cobbe et al., 2021; Nezhurina et al.
2024). We then assessed the LLM outputs following “####” by combining string matching methods,
LLM-based evaluations with GPT-40, as well as manual double-checks (see Appendix . Considering that
the behavior of LLMs might exhibit variations over time (Chen et al., |2024al), we report the timeframe of
the experiments. They spanned from June 6th, 2024, to June 17th, 2024, except for the Vicuna 13B and
BLOOM experiments, which spanned from December 4th to December 14th, 2024. For all experiments,
LLM temperature parameters were set to 0, or 0.00001 when 0 was not permitted.

2.6 Study focus

This study focuses on replication rather than on reproducibility. According to [Peng| (2011)), replication
involves collecting and analyzing new data to replicate the findings of a previously conducted study, whereas
reproducibility entails reanalyzing the original data to verify the results. Our hypothesis when replicating the
previous experiments was that the claimed performance improvements are not replicable and hence the claims
about the prompt engineering techniques are not generalizable. We neither use the exact same selections
of benchmarks nor models as in the original studies but vary the experimental setups slightly. In detail,
this means that we still test foundation text-to-text models, use reasoning benchmarks, and use prompt
engineering techniques either verbatim (Chain-of-thought, Re-Reading, EmotionPrompting, Rephrase-and-
Respond), or, if necessary, adapted in alignment with their original methodology to suit our benchmarks
(Sandbagging, ExpertPrompting,), which should theoretically increase their utility. However, it is important
to note that our approach to classifying LLM responses likely differs substantially from the original studies,
as many of them lack descriptions of their chosen methods, further underscoring the nature of our work as
a replication study rather than a reproduction.

2.7 Statistics

All statistical analyses were performed using Python (version 3.11.4). The SciPy library (version 1.13.1)
was used for statistical computations, while visualizations were created with Matplotlib (version 3.7.1) and
Seaborn (version 0.12.2). We applied chi-squared (x?) tests to assess the statistical significance of accuracy
differences between baseline and modified prompts. Rounded P-values are reported for each test. 95%
confidence intervals (CIs) were calculated and included in the result visualizations. Performance variability
across models and benchmarks was accounted for, and results were reported per model, benchmark, and
prompt engineering technique.
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3 Results

3.1 Chain-of-thought prompting

Chain-of-thought prompting involves decomposing a given task and solving each step before outputting the
final answer, by presenting the LLM with an example of a task and its expected decomposed output. In the
original study establishing this method, |Wei et al.| (2023) tested five LLMs over three reasoning, categories
including arithmetic reasoning, commonsense reasoning, and symbolic reasoning, harnessing 12 different
benchmarks. The authors claim a good robustness of this method, with several different annotators. While
they reported variance in the average performance, it was consistently superior to the performance with the
base evaluation, with a reported average improvement of 39.91% (Wei et al.l [2023). A subsequent study then
claimed that a zero-shot chain-of-thought prompting strategy sufficed to elicit similar improvements (Kojima,
et al.l 2022)). Instead of presenting, before each task, an example enabling chain-of-thought reasoning, they
simply suffix tasks with “Let’s think step by step”. They tested a larger sample of 17 LLMs on various
reasoning categories, utilizing 12 benchmarks akin to the previous paper. They obtained an averaged 35.93%
improvement in accuracy for zero-shot chain-of-thought reasoning across all benchmarks and models (Kojima
et al.l 2022)). We tried to replicate these findings with our set of reasoning benchmarks. However, despite
the impressive results from the original studies, we observed that there was no significant improvement (see
Figure : with the exact same task suffix as in the original study, we could not observe any significant
difference across all benchmarks. With results from all models combined, the maximal positive impact
of chain-of-thought reasoning is with NumGLUE where there is a 2.78% accuracy difference between the
base and the chain-of-thought prompt (see Appendix , which is not significant given the total number
of tasks (x? = 1.78,p = 0.18). These numbers remain similar throughout each LLM evaluated, with an
overall average improvement of 0% for the chain-of-thought reasoning (xy* = 0.06,p = 0.8), as seen in
Appendix [C] The largest observed positive impact of chain-of-thought reasoning is for Llama 3-70B tasked
by CommonsenseQA, with an observed 8.67% improvement (x? = 2.19,p = 0.14) (see Appendix|C|). However,
the highest overall difference is an 11.33% accuracy decrease (x? = 4.47,p < .05) (see Appendix [C]) with
chain-of-thought reasoning applied on Llama 3-70B with StrategyQA. While the latest models seem to
implement chain-of-thought reasoning by default, meaning without being specifically prompted to, these
results hold even for previous models such as GPT-3.5, which often do not. We compared the average response
length of each LLM when chain-of-thought reasoning is explicitly requested, compared to when it is not, as
shown in Appendix Even when the base experiments do not demonstrate verbose prompt completions
and the chain-of-thought prompting does, the performance results are not impacted in a significant manner,
which stands contrary to what the literature suggests (Jin et al.||2024). For instance, GPT-40 had an average
difference of response lengths of 531 characters for the base test vs. 931 characters for the chain-of-thought
prompting, but just a 0.01% accuracy difference, suggesting that simply increasing the length of prompt
completions does not enhance accuracy beyond a certain point.

3.2 Sandbagging

Perez et al.|(2022) demonstrate sycophancy, which is an LLM’s tendency to output answers that users tend to
prefer. The researchers evaluated several aspects of sycophancy, including a “sandbagging” capability, which
suggests that a model could underperform when a user is deemed incapable to solve or verify a given task.
They underpin this hypothesis by adding user biographies before reasoning tasks from Truthful QA (Lin et al.,
2022)), with “very educated” users as opposed to “very uneducated” users. They imply a significant difference
between these two categories, claiming that sandbagging causes LLMs to output incorrect answers when
human users are perceived as unable to answer correctly themselves (Perez et al.l [2022). We conceptually
replicate this experiment using our selected models by prefixing our selected reasoning tasks with both “very
educated” and “very uneducated” user biographies (see Appendix . We observe no significant difference
over all benchmarks when comparing the highly educated (x? = 1.64,p = 0.20) or poorly educated (x? =
1.24,p = 0.27) user prompts to the base results (see Figure [1| and Appendix |C]), with an average accuracy
decrease of 1% for both cases (see Appendix. We likewise observe no significant difference when comparing
the highly educated to the poorly educated user prompt results, and frequently observe that the “poor
education” prefixed tasks have an even better performance than the “high education” ones (average accuracy
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improvement of 0.1% for “poor education”). Once again, we fail to replicate the sandbagging phenomenon
when utilizing our experimental setup.

3.3 EmotionPrompting

EmotionPrompting, presented by |Li et al.| (2023), augments a task with emotional cues such as “You’d
better be sure” or “This is very important to my career” to enhance problem-solving abilities in LLMs. In
the original study, [Li et al| (2023)) augmented tasks with 11 variations of emotional stimuli and tested six
LLMs including ChatGPT and GPT-4. They sourced their tasks from three different benchmark categories,
notably using tasks from BIG-Bench (Srivastava et al.,2022). They claim to obtain a “relative performance
improvement of 115%” (Li et all [2023) with their method, arguing that adding an emotional component
improves the capabilities of LLMs. However, despite the improvement that was strongly implied throughout
the original study by raising claims like “EmotionPrompt makes it easy to boost the performance of LLMs”
(Li et al.l 2023)), the numerical values communicated in the study itself do not coincide with these claims.
Instead of communicating the average improvement of the enhanced prompts over the regular prompts, they
focused on improvements when cherry-picking the most performant emotional cue. Based on their reported
results, we calculated an average relative performance improvement of 4.42% on BIG-Bench tasks, and a
2.58% relative performance improvement across all benchmarks, when choosing the average performance
of all emotional stimuli. Despite identifying this shortcoming in the original study at this early stage, we
nevertheless replicated the experiments with our selected tasks and models. We applied the same emotional
suffixes as in the original study, apart from “Are you sure?”, as LLMs tend to reply to this question, as
opposed to solving the given tasks. Similarly to |Li et al.|(2023)’s findings, but contrary to their claims, we
observed that there was no significant improvement, across every single model and benchmark (see Figure|l)).
The maximal positive improvement measured is non-significant with an 8.7% difference (x? = 1.94,p = 0.16)
(see Appendix , using Llama 3-8B on CommonsenseQA. Overall, we observe an insignificant performance
increase of 1% when applying EmotionPrompting (y? = 0.11,p = 0.74) (see Appendix |C]).

3.4 Re-Reading

Re-Reading, introduced by Xu et al.| (2024), consists in repeating the task verbatim before having the
model answer. They compared the baseline performance with the Re-Reading performance, as well as
the performance in both conditions when additionally suffixing every task with a chain-of-thought eliciting
prompt. The researchers tested GPT-3 (text-davinci-003) (Brown et al., [2020), GPT-3.5, Llama-2-13B and
Llama-2-70B (Touvron et al.l [2023), in order to have both models with and without instruction fine-tuning.
They used a total of 112 arithmetic, common sense, and symbolic reasoning tasks sourced from various
datasets with GPT-3 and GPT-3.5, for which they obtained an average gain of 2.7% in accuracy, and 2.9%
with the inclusion of chain-of-thought reasoning. For Llama 2-13B and Llama 2-70B, they used a different
set of benchmarks comprising only arithmetic reasoning tasks, with an average gain of 2.5% in accuracy
(2.7% with chain-of-thought reasoning). We replicate the Re-Reading experiments on our selected tasks and
models. For this study, we observe a significant improvement for Llama 3-8B (x? = 13.13,p < .05) and
Llama 3-70B (x? = 19.4,p < .05) exclusively (see Appendix |C| and Figure [1)). The maximal improvement
across all benchmarks for the other models is of 2%, for Claude 3 Opus (x? = 1.27,p = 0.26). Therefore,
Re-Reading seems replicable for the Llama 3 models only, which highlights the importance of implementing
tests on a variety of models. However, the initial study indicated that Re-Reading was effective on GPT
models, notably GPT-3.5, that we also tested with different outcomes. Therefore, we only managed to
partially replicate the results.

3.5 Rephrase-and-Respond

Rephrase-and-Respond, inspired by the communication technique of rephrasing to enhance clarity, involves
instructing an LLM to first rephrase a task and then address it within the same prompt. |Deng et al.| (2024)
demonstrate that simply adding a directive such as “Rephrase and expand the question, and respond” can
significantly enhance LLM accuracy. They evaluated GPT-3.5, GPT-4 and Llama 2 across seven different
reasoning benchmarks, such as CommonsenseQA and Knowledge Classification (Allen-Zhu & Lil [2024),
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and observed an average improvement of 17.80% across all tested models. We replicated this experiment
by incorporating the suggested rephrasing directive to reformulate questions across our full dataset. We
then applied a tailored algorithm to classify the answers, ensuring it could accommodate these new types
of responses (see Appendix . As for the Re-Reading experiment, we only observe a significant positive
effect for Llama 3-8B (x? = 10.49,p < .05) and Llama 3-70B (x? = 18.63,p < .05), with the StrategyQA
benchmark. Once again, Rephrase-and-Respond seems to only show a significant positive improvement on
a specific benchmark-model combination, which shows only a partial replication of the results (see Figure

and Appendix .
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Figure 1: Accuracy comparisons between the base tests without any prompt modification and the augmented
prompts across all LLMs.

3.6 ExpertPrompting

ExpertPrompting consists in—of giving LLMs an instruction to impersonate someone with high expertise

the response quality of ExpertPrompting, assessing aspects hke accuracy, helpfulness or relevance. They
evaluated GPT-4 responses with and without ExpertPrompting, which, in the case of the former, possessed
a reported higher answer quality 48-5%48.5% of the time {24}
measure, as with the previous prompt engineering techniques, the accuracy of the ExpertPrompting tech-
nique using our set of reasoning benchmarks and LLMs. We observe no significant improvement across all
benchmarks (x? = 1.57,p = 0.21) (see Figure [1]and Appendix , with an average improvement of only +%

1% (see Appendix&y—[C).
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Given the identified lack of replicability across various studies, we deem crucial to address the underlying
issues contributing to these replication problems in prompt engineering. We have identified specific problems
associated with each cited prompt engineering method, which may hint at a broader replication problem in
LLM behavior research. In the following, we provide recommendations aimed at mitigating replication prob-
lems in prompt engmeermg and related ﬁelds based on our analysw of the selected studles—WeLea%egeﬂﬁe

1 benchmark ade uacy, (2
model variabilit and model-benchmark compatibility, and (3) output evaluatlon and reliability. It is im-

portant to note that while an absolute elimination of replication problems is unlikely, our recommendations
aim to minimize such challenges effectively.

4.1 Ensure-Benchmark adequacyef-benchmarks

4.1.1 Benchmark Qualit

In several of the studies examined, we noted major issues regarding the benchmarks used to assess LLM
performances—maﬂy—%askk Many benchmark tasks are flawed: h lack proper grammar preseﬂe

peree&&ag&e{—ﬁaweé—easke—fer—contam S ellm or punctuation errors (e.g., missing question marks in
multiple-choice questions), are semantically nonsensical, incomplete, or factually incorrect. For instance,
for CommonsenseQA (used in the chain-of-thought, Re-Reading, and Rephrase-and-Respond studies),
+6:9%-10.9% of questlons presented punctuation issues easily verlﬁable with a simple code. Similar-issues

S : %IM

wmmm
(Gema et all 2024} |Goetze & Abramson, 2021). Label errors can destabilize benchmark reliability, and
even small proportions of mislabeled test data can invert model rankings: a phenomenon they call the
capacity_performance paradox (Northeutt et al} [2021). This effect implies that benchmark noise may
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disproportionately penalize higher-capacity models, creating misleading impressions of their reasoning
ability. _Similarly, researchers have revealed significant ground-truth errors in_the Massive Multitask
Language Understanding (MMLU) benchmark, one of the most widely used evaluation suites for LLMs
(Gema et al} [2024). _Their re-annotated version, MMLU-Redux, shows that_previously reported model
hierarchies often vanish once test data are corrected. Likewise, prior work has exposed flaws in widely used
reasoning benchmarks. revealing that evaluation setups often reward superficial lexical alignment rather than
genuine reasoning (Mousavi et al;; [2025). Together, these findings align with our own observations: large

benchmark datasets frequently contain nonsensical, ambiguous, or incorrect items that can distort results.

H%g%hem—pﬂefmﬂﬂgTO miti ate benchmark mduced replication fallures we recommend that researcher

rigorously validate benchmark datasets before use. Automated scripts can detect obvious errors (e.g., typos,
missing punctuation, malformed options), but human verification remains essential for identifyin semantic
inconsistencies. Following research recommendations (Northcutt et all |2021} [Cao et all [2025), benchmark
curation should be treated as a core methodological step rather than an auxiliary task. We recommend
mentioning the cleaning procedure and error rates, and encourage the adoption of transparent guidelines
such as How2Bench ((Cao et all [2025). Where possible, studies should prioritize quality over quantity, white

------- usin

smaller but validated subsets rather than relying on noisy large-scale test sets. This approach minimizes
variance, prevents benchmark-driven illusions of improvement, and enhances comparability across studies.
Finally, we advocate for the publication of “benchmark versioning” and reproducible evaluation code, so
that future research can easily verify whether results stem from model performance or from artifacts in the

evaluation data,

4.1.2 Benchmark Coherence and Cross-Study Comparabilit

A _second major source of replication instability arises from inconsistent benchmark selection within and
across studies. In several prompt-engineering papers, models are evaluated on distinct benchmark sets
within the same study;—as—seen—experiment. For example, in the Re-Reading study (Xu et al m m,
where—the-GPT models were eveluated—on—threetypes—of reasoning—benchmarkswhile—thetested on three
reasoning benchmarks, whereas Llama 2 models were enly—tested—on—one—type;—further—exacerbates—this
isstie—This—different—seleetion—of-benchmarksnot-only—cvaluated on only one. In the sandbagging study
(Perez et al} [2022), rescarchers evaluate differences in model accuracy when answering questions on the
TruthfulQA dataset (Lin et al} 2022), which measures whether a language model is truthful in generating
answers to questions, so whether the facts mentioned in the answer are correct rather than assessing whether
they answered the task correctly. Such inconsistency complicates direct comparison of model performanees;
but—alse—performance and raises questions about the reasening-behind-sueh-rationale behind benchmark

choices, potentially leading to eenecerns—about—benchmark cherry-picking benehmarks—that—yield—thebest

favors results supporting a given hypothesis. Beyond within-study inconsistencies there is little coherence
in benchmark use across related works. In our replication, we applied the same benchmark suite across
all ex erlments to _ensure com arablht In contrast, the same—beﬁehm&rkwfer—&ﬂ%expeﬁment&fer—be%er

WMM

widely different benehm&ﬂts—seme—wrﬁ}kﬂes%ﬁﬁed—dem&m—%r—ex&mp}edatasets some domain-restricted,
WWWWMW&WM the chaln—of thought study feeﬁsesefkérﬁerent—re&senmg%&sks

he—evaluated

reasonin, centrlc tasks Whlle the EmotronProm tm aper used tasks from Instructlon Induction (Hon-

3 |
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lovich et al. 2022) and BIG-Bench (Srivastava et all 2022)datasets, such as findingrhymes-orplaralizing

wordsrhyming or pluralization, which makes results hard to compare as these measure different underlyin
abilities. Similarly, variations within the process of administering benchmark tasks (notably zero-shot

prompting versus few-shot prompting) impact the reasoning process of LLMs and therefore the outcomes.

These issues mirror findings by researchers who conducted a large-scale analysis of benchmark agreement
and showed that minor methodological differences, such as prompt format, evaluation metric, or dataset
choice, can drastically alter perceived model performance (Perlitz et al}[2024). Finally, it is paramount—te
seleet-appropriate-benchmarkscoherent-essential to select benchmarks that are conceptually and structurally
aligned with the research question. When-Indeed, when testing prompt techniques claiming to alter reasoning
performance, given or implied response instructions in the tasks can interfere with output accuracy by
restricting the response length and therefore its ability to generate more detailed responses, for instance in
multiple-choice settings.

Table 1: Benchmark-related replication issues, mitigation techniques, and tools

Flawed benchmark tasks:

mav inflate or deflate perceived ¢ Include benchmark curation o Automated validation scripts
may milate or detlate perceived PASASI AP AN A

performance and favor some as a.core methodological 10 o Guidelines such as How2Bench
models o Prioritize quality over (Cao et al.l |2

quantity

e Report quality-check
wethods and error rates

Inconsistent benchmark

selection; complicates * Report exact benchmarks * BenchBench framework
cross-study comparison_ and what they measure (Perlitz et al 2024)
+ Adopt standardized + Benchmark agreement protocol

benchmark-agreement

protocols
Benchmark-objective
misalignment: may distort » Ensure coherence between * BenchBench framework
perceived performance by benchmarks and research (Perlitz et al.l [2024)
assessing unrelated capabilities ~ 20leCtives » Benchmark agreement protocol

* Document rationale for
benchmark choice

We recommend preferring standardized benchmarks across studies in the same field, to reduee-~variability—in
resthts-and-ensure that benchmarks are closely aligned with the research objectives.
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We would advise researchers to ensure that benchmark domains match the specific research objective. We
further recommend adopting benchmark-agreement protocols such as those implemented in BenchBench

(Perlitz et al.), [2024)), which promote standardized evaluation and transparent documentation of benchmark
configurations. Establishin and reporting such consrstenc will reduce variance, mitigate cherry plckmgaﬂd

eeﬂﬁs%eﬂ&eva}uﬁheﬁrﬁe%ﬁes—concerns and make re hcatlon efforts more meanin ful

4.2 Be-aware-of-moedel-updatesModel Variability and Model-Benchmark Compatibilit

4.2.1 Model Variabilit

In some cases such as in the chain-of-thought prompting study (Kojima et al., 2022)), we-hypothesize—that
the lack of replicability is linked to the modelsused—With-eur—results-on—the—chain-of-thought—prompting:

we-eansee-a—differeneein—aeenraey— type and generation. Our results reveal a divergence between GPT-3.5
and GPT- 40—’Ph&fermer~beﬁeﬁ%&mere~£reﬁ% the former shows mlld im rovernent with chain-of- thought

prompting 0 W
eeﬂlérleae}ﬂs%erbeheve%h&bwrﬂrprev&eﬁsmeée}sﬁueb&& Whereas the latter dis la S 10 si mﬁcant chan e.

Although neither result reaches statistical significance, this difference suggests that for earlier-generation
models (e.g., GPT-3:—vhich—was-), used in the replicated study along with other models of that genera-

tion, chain-of-thought prompting wewuld-might have successfully improved LLM accuracy. This aligns with
the system cards for recent models, which explicitly warn that techniques like chain-of-thought reasoning
may not improve performance and can even impair it, advising caution in their use with these models
{OpenAd-2024af(OpenAl 2024b)). Similarly, we observed a significant improvement for some benchmarks
with the Re-Reading and Rephrase-and-Respond prompts, for the Llama 3 models exclusively; if we look
at the other models separately, the results are vastly non-significant (see Appendix [C]). This reinforces
the claim that similar experiments may have a considerably different impact depending on the models

used. Moreover, even when conducting replication experiments using the same models as in the original
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study, the opacity surrounding model updates and developer prompt modifications in terms of date and
type of update (Chen et al}, 2024a) renders study replications difficult. Furthermore, the efficacy of prompt
engineering depends strongly on the model class; whether the model is inherently reasoning-oriented or relies
on surface-level pattern completion. This dynamic is consistent with prior work demonstrating that prompt
engineering substantially benefits non-reasoning LLMs but provides marginal or inconsistent improvements
for reasoning-tuned ones such as ol-mini (Wang et al} 2024b).

Therefore, it is essential to use a variety of models when testing a hypothesis, or to at least mention the
limited scope of the study when fewer models are used as an effort to prevent a generahzatlon that may be
incorrect. arks— 5 S—BEFOSS

addition to that, some earlier-generation models may not be Well—sulted for such question-answering exper-
iments requiring reasoning abilities. Specifically, we tested Vicuna 13B and BLOOM on our selected tasks
(Appendix, but found the results difficult to interpret, as the accuracy for both the base questions and the
prompt-engineered questions was too low to draw reliable insights into the models’ behavior. The studies on
EmotionPrompting, Rephrase-and-Respond and ExpertPrompting used Vicuna or BLOOM nonetheless. We
recommend consistently clarifying the methodology used for each model, as we were unable to understand
how these studies achieved viable results with these models. Furthermoreas-the EEMs-evolve-and-become

recommend that future studies:

1. Explicitly classify models by reasoning capacity when reporting results, distinguishin
instruction-following models from reasoning-optimized ones.

2. Document model version and release date to ensure comparability over time, as minor provider-side
updates can significantly alter performance.

Clarifying these methodological details will help disentangle true performance differences from artifacts
introduced by model selection, and will prevent overgeneralization from results obtained on older,
non-reasoning LLMs to newer architectures that already internalize these behaviors.

4.2.2 Model-benchmark Compatibilit

As_large language models evolve, benchmark saturation and data contamination have become central
challenges in_evaluating prompt-engineering methods. As newer models improve in baseline reasoning
performance, many existing benchmarks become effectively saturated, leaving little room for prompt
@WM&WMM@&JWQEMMM

models are often solved at near-ceiling accurac later models as we can see Wlth the CRT bench-
mark (]Hagendorff et al|, |2()23|) : i 5 s S

d&ﬁerent—resu}%sThls saturatlon reduces statistical sens1t1v1t and can obscure subtle effects 1ntroduced b
rompting techniques. It is therefore essential to continuously recalibrate benchmark difficulty to match
evolvin nlodel ca ab111t1es Snnllarl many zero-shot and behawers%&rnﬁ&rb%e—hequ&m%%—when

few—shot benchmarks suffer from task leakage (LLl & FlamganLJQO24|; |Wu et al. LL2025J;1Zhang et alLL2025J)

: models perform substantially better on datasets predating their training cutoff than on unseen ones,
implying widespread contamination. These findings highlight that contamination can make both baseline
and prompt-engineered performances appear inflated, thereby diminishing the apparent impact of promptin

Leakage-free benchmarks such as RandomCalculation (Wu et all [202F o)) can _be used to isolate genuine

reasoning improvements. Likewise, researchers introduce a reasoning-driven synthesis framework that
enerates new research-level QA pairs automatically verified for correctness (Zhang et all[2025)). This

11
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method is effective for mitigating contamination and memorization effects. Moreover, we recommend using
canary strings when publishing benchmark data to help detect and quantify potential data leakage in
future models trained on that data. By embedding unique, traceable strings within benchmark datasets,
researchers can later probe models to see whether these sequences are reproduced, thus revealing unintended
wemorization. This proactive approach further enhances the reliability of evaluation results. Finally, prompt
effectiveness depends on both model architecture and task characteristics (Chen et al} [2024b). For an
optimal performance, different_prompts_should be adapted to different LLMs, which may explain some
differences observed in this study, especially when the original prompt engineering studies were applied on a
small sample of LLMs. A “one-size-fits-all” benchmark evaluation approach can no longer capture the true
impact of prompt-engineering methods, without comparing the exact same models. Other than expanding
the number and variety of LLMs tested, a possible solution would be to adapt these prompt engineering

techniques to each LLM usin model—ada tive prompt o tlmlzers (LChen et alL[z024bj) to cahbrate the
Wmodeb e

We recommend that future studies:

1. Monitorchangesinanodelupdates-and-hehavior that-conld-atfectresults Adjust benchmark difficult
to prevent saturation: when newer reasoning models reach near-ceiling performance, evaluations
should shift toward more complex or reasoning-intensive tasks.

2. Mitigate contamination by verifying dataset release dates and removing items that predate model
training cutoffs.

testedEmploy model-adaptive evaluatlon strate ies that align prompts and benchmarks with each
model’s capabilities in question, reducing misleading cross-model comparisons.

5. insure mode i ine—the-Report benchmark provenance
and contammatlon checks as art of all ex erlmental documentatlon alongside model version and
dateef-experimenttatneh—, to promote transparency and interpretability.

6. Broaden model coverage to strengthen the generalizability of findings.

Ultimately, as LLMs integrate reasoning processes internally, older benchmarks cease to serve as meaningful
discriminators of model capability or prompt-engineering effectiveness. Reliable evaluation now reguires not
only harder benchmarks such as Humanity’s Last Exam (Phan et al} [2025), but also methodologies that
explicitly account for model benchmark interactions: how specific benchmarks align with, advantage, or
contaminate particular models, thereby shaping observed results.

4.3 OQutput Evaluation and Reliabilit
4.3.1 Evaluation Reliabilit

For evaluations of LLMs, it is key to ensure the accuracy of the LLM output classifications. We have at-
tempted to replicate a large number of verification techniques presented in other studies. However, when
checking the accuracy of these techniques, we discovered that a significant number of them had shortcomings.
For example, functions based solely on Regex rules were generally too vague, leading to flawed classifica-
tions. Other metrics, such as the F1 word overlap score, do not work effectively, as they would classify correct
LLM outputs as incorrect, simply because the token length differed too much from the ground truth. Similar
Issues have been found with metrics like BLEU, ROUGE or METEOR (Ng & AbrechtJ,J2015 Liu et al} 2017

._Moreover, studies often rely on using EEMs-LLM-as-a-judge to classify LLM outputs {Pan-et-al-2623a

12
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Table 2: Model-related replication issues, mitigation techniques, and tools

Issue Mitigation Relevant Tools
Model variability and
opacity: performance ¢ Classify models by reasonin 43
opaclty: periormance : : . Ensure-accurate-LEM-output

: classifications
enerations and families nonIeasoniL
* Document exact model version

For-behavioral-experiments e Recalibrate benchmark difficult o Leakage-free datasets such as
withBenchmark saturation using reasoning-intensive tasks RandomCalculation

and contamination: newer Verify dataset release dates Wu et all
RAACAISANORAOONDC TN e verly dataset release dates

models reach near-ceilin against model training cutoffs o Beyond Memorization synthesis

accuracy or show inflated framework (Zhang et al.| [2025)

results for pre-cutofl datasets * Use leakage-free datasets

« Check for canary strings * Harder benchmarks such as

Humanity’s Last Fxam
(Phan et al.l |2025)

Model-benchmark

incompatibility: some
benchmarks advantage or
disadvantage certain model

» Conduct cross-model evaluations
on identical benchmarks

(Pan et al., 2023b)), such as the ExpertPrompting study (L m Exclusively relying on LLM-based

evaluation can introduce signifieant-flaws. When Hﬂﬁg—%he—giV% W@N or even enhanced
versions of their LLM output clabslﬁcatlon prompts, we dise

bserved mult1 le issues that compromised
Valuatlon rehablht For 1nstance the judge Would roduce inconsistent evaluations when asked multi-

ple times to assess the same output. It was also influenced by the task when classifying responses, and
the verification prompt needed to be task-specific and highly precise. Prior research has also documented

LLM-ag-a-judge biases that may further distort classifications, such as the self-enhancement bias, a tendenc
for an LLM judge to rate outputs from its own model family more favorably, or the verbosity bias, where
longer responses are rated more osmvel Zheng et all|2023). As some prompting techniques such as

chain-of-thoug

=y
)

artificially inflate measured accuracy when using LLM judges. leen the tlme -consuming aspect of manually
double-checking classifications, we also suspect that this is done very rarely. Furthermore, among the papers

we replicated, one did not include any details about the verification process 2023); it goes without
saying that any verification process should be clearly reported in each study, to make the study replication
feasible. We therefore recommend developing more precise and task-specific verification methods, and ensur-
ing thorough documentation of these processes in all studies to facilitate accurate replication and validation
of results. We recommend avoiding reliance solely on LLM-based evaluation; if alternative evaluation strate-
gies are not feasible, then we would recommend running multiple iterations per prompt and aggregating the
results to mitigate potential misjudgments. We also recommend that creators of new benchmarks provide a
standardized verification process, encouraging all users to apply the same verification criteria.

B e
4.3.2 Evaluation Metrics
The choice of evaluation metric is as critical as the verification method itself. Different metrics capture

fundamentally distinct dimensions of model behavior, and results are not directly comparable across them.
For instance, accuracy reflects factual correctness, whereas output quality captures fluency, coherence, or
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stylistic adequacy. Similarly, pairwise comparison approaches - where an LLM or human judge selects
the “better” of two outputs - measure relative preference, not absolute performance. Treating these
heterogeneous measures as equivalent can therefore produce misleading conclusions about the effectiveness
of a prompting technique. For example, in our study, the original ExpertPrompting study focused on
output_quality rather than accuracy. We replicated their comparative evaluation approach using our
own_benchmarks. _To ensure an unrestricted quality assessment, we removed formatting instructions
from our prompts and evaluated complete LLM outputs. Our results showed higher quality scores for
ExpertPrompting over base prompts, with winning percentages ranging from 26.53% (x° = 82.65.p < .05)

for Gemini 1.5 Pro, to 76.93% (x? =294.27,p < .05) for Llama 3-70B (see Figure [2). Despite these

significant results, we remain _skeptical about the robustness of this evaluation method. Relying solely
on an LLM to assess outputs from another introduces risk of misjudgment, as seen in Section BT
Moreover, this pairwise evaluation method frequently selected a “winner” even when both responses were
factually _incorrect. In _some cases. the model even favored an inaccurate response while penalizing an
accurate one. Based on this observation, we re-evaluated the same responses for factual accuracy using a
tailored version of our accuracy assessment. Once again. 1o significant improvement was observed. In fact,
ExpertPrompting led to decreased accuracy, ranging from a drop of 2.4% (x? = 0.84,p = 0.36) for Gemini
1.5 Pro, to 14.53% (x? = 34.00,p < .05) for Llama 3-8B. This raises an important question: if a response
Is rated as “high quality” despite being factually incorrect, can it truly be considered an improvement?
This can be misleading for users, who might reasonably assume that accuracy is embedded within the
“quality” metric. Consequently, despite some studies presenting their claims similarly using verbs such
as “improves”, “enhances”, “overperforms” to describe their prompting technigues, their outcomes cannot
effectively be compared. Including both quality and accuracy metrics in evaluations would have provided a
more comprehensive understanding of the effectiveness of, e.g., ExpertPrompting.

We would recommend including at least one factual metric when using reasoning benchmarks. Combinin
complementary metrics would also provide a more comprehensive picture of prompt effectiveness and guards
against overinterpretation of single-score gains.

Comparison of Answer Quality Accuracy
(ExpertPrompting vs Base)
100 4 100 4 Prompt Type
I EBase
I Expert

80 80 4

60 60 4

Proportion of Correct Answers

20 4 204

Performance of ExpertPrompting answers vs Base answers

Figure 2: Comparison of accuracy and quality between the base tests and ExpertPrompting, using prompts
without formatting constraints, across all LLMs. Error bars show 95% CIs.
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4.3.3 Reporting and Comparing Results Transparentl

Across the replicated prompt-engineering studies, we observed substantial methodological variation that

complicates the interpretation and comparison of results. Some studies notably display a particularly poor
or unclear scientific method. In the EmotionPrompting (Li et all |2023), researchers cherry-pick the

prompt with the best result out of cleven different prompts, rather than calculating an average across all
prompts. This seemingly deliberate action may be due to a publication bias, which motivates researchers to
manipulate results to be positive and therefore publishable. In addition, some studies, such as the Re-Reading
(Xu et all [2024), report results as “significant” multiple times without presenting the corresponding
statistical calculations or p-values. This lack of statistical transparency can mislead readers into assuming
statistical significance without the necessary evidence to support such claims. It is crucial that when terms
like “significant” are used, they are backed by clearly defined statistical measures. Moreover, some studies
do not properly report the details of their experimental setup (Perez et al} [2022), which makes it confusing
or even impossible to understand and therefore to replicate their process exactly. In this case, the lack
of transparency forbids us from detecting possible shortcomings. We recommend adopting standardized
evaluation methodologies and clearly defining metrics to ensure that results from different studies can be
accurately compared and interpreted.

Table 3: Results-related replication issues and mitigation techniques

Evaluation unreliability: unstable or ) ) ] ]
imprecise LLM-as-a-iudee scorin o Use precise, task-specific verification prompts
Imprecise L.Lvl-as-a-judge scorng,

e Run multiple judging prompts and models and average
across results

* Include manual or rule-based cross-checks.

Metric inconsistency: mixin Define all ‘s clear] q b b i d
incomparable measures (e.g., ACCUTacy Vs. . efine all metrics clearly and report how each is compute

g,gm o Include at least one factual accuracy metric in reasonin
tasks

Cherry-picking and poor reporting: o
selective results, missing p-values, or o Aggregate across all tested prompts or justify subset

unclear methodolo selection
o Report all statistical tests, p-values, and confidence intervals

o Provide full methodological details (benchmarks, models, and

prompts)

5 Transparency Recommendations and Modular Evaluation Pipeline

To ensure methodological transparency and facilitate replication, future studies should explicitly document
the following:

Benchmarks

benchmark names (and versions if applicable

if applied (e.g., automated validation scripts, manual review

s—Quality-check methodolo
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rovenance, including any filtering, sampling, or modification procedures

Models

names and versions

e Description of model class (reasoning vs non-reasonin
e Full inference methodology, e.g., temperature, max tokens, random seeds

e If used or modified, system prompts and/or added prompt instructions
Evaluation and Metrics

o Exact metrics reported (e.g., accuracy, quality, interpretability) and how they were computed

e If using LLM-as-a-judge: specify the judging model, version, full evaluation prompt, and aggregation
method if any

« All statistical analyses: e.g., test type, p-values, confidence intervals

To support transparency and facilitate replication, we developed a modular evaluation pipeline that
accompanies this study. The code was designed to allow researchers to replicate, extend, or adapt our

experiments with minimal effort. Each stage of the evaluation process is modularized, enabling flexible
modification of:

e Benchmark selection: users can easily substitute or add benchmarks, specify the number of
random items drawn, and control sampling strategies.

« Prompt-engineering techniques: zero-shot prompting methods, particularly those relying on
refix or suffix additions, can be switched or customized through dedicated modules.

¢ Model configuration: the model used for inference can be easily changed, facilitating cross-model
comparisons.

« Evaluation and verification setup: the output classification component allows users to define

or modify the verification prompt and evaluate output quality or accuracy according to their own
criteria.

This modular design serves a_dual purpose. First, it allows rapid, small-scale experiments to obtain a
preliminary estimate of the replicability of prior findings before committing to large-scale runs. Second, it
encourages _exploration and calibration: users can quickly test which combination of model, benchmark,
prompting strategy, and evaluation prompt is most appropriate for their research context. The code
is_accessible here: https://github.com/Laurene-v/replicatingPET. By lowering the practical barrier
to replication and promoting iterative experimentation, we aim to_foster a culture of methodological
transparency and empirical verification in prompt-engineering research.

6 Discussion

Our experiments show that most of the tested prompt engineering techniques do not lead to replicable
or generalizable performance improvements in LLMs. Most techniques, when applied in slightly different
experimental setups, failed to produce the claimed benefits. Some techniques occasionally even resulted in
a decrease in response accuracy. In view of the uncritical propagation of the prompt engineering techniques
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in the literature (Schulhoff et al.| 2024]), we recommend a more cautious approach when citing papers with
insufficient methodological standards ; Ges ~to-While further
research could help reliably understand the condltlons under Wthh spemﬁc technlques are effectlvejvygvgf/fgg

recommendations and tools to mitigate these replication issues.

While our focus is on replication issues in prompt engineering, it might be the case that similar challenges
exist in other LLM behavior evaluation techniques. Our findings suggest that further research is necessary
to reliably understand the conditions under which specific prompt engineering techniques are effective, and
they underscore the need for replication studies across the broader spectrum of machine behavior research.
Only by rigorously verifying or refuting insights from these studies can we build a more reliable foundation
for evaluating LLM performance.

In line with the recommendations proposed above, we emphasize the importance of enhanced research trans-
parency and the application of rigorous scientific methods when evaluating LLM behavior. Future investi-
gations should not only continue to scrutinize prompt engineering approaches but also extend replication
efforts to other fields of LLM evaluations to ensure the robustness and generalizability of findings in LLM
behavior research.

Resource availability

The datasets and code generated during this study are available in the 'ReplicationCrisisinLLMEval-
uation’ repository on the Open Science Framework (OSF) at https://osf.io/hcygf/?view_only=
fe25a85157734£68882777404aeb655c and at https://github.com/Laurene-v/replicatingPET.
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AppendixA

A Additional Results for Vicuna 13B and BLOOM

In addition to the models presented in this paper, we conducted experiments on older models: Vicuna 13B
v1.5 and BLOOM. These models were selected to evaluate whether the effectiveness of prompt engineering
techniques differs between older and newer models. Vicuna and BLOOM were specifically chosen because
they were used in some of the studies we analyzed. For Vicuna, we used the 13B v1.5 via Huggingface,
configured in Question Answering mode. However, the accuracy of both the prompt-enhanced and base
tests was so low that the results could not be reliably interpreted, as demonstrated in the figures and
examples below. The outputs frequently consisted of question repetition, endlessly looped text snippets, or

outright gibberish.

Table 4: Example outputs for Vicuna 13B and BLOOM

Benchmark task

Vicuna 13B output

BLOOM output

Solve the task below. Impor-
tantly, write your final answer af-
ter “FEHFH.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’'tennessee’,
violin’, ’case’, ’alaska’.

Solve the task below. Impor-
tantly, write your final answer af-
ter “HEHH.

You simplify complicated ideas
into something easy to under-
stand. Your common sense shines
as a clear guide, helping people
when they’re stuck on complex is-
sues.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’'tennessee’,
violin case’, ’alaska’.

Solve the task below.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’tennessee’,
'violin case’, ’alaska’  Impor-
tantly, write your final answer af-
ter “FEHAH.

1 and

Solve the task below.

You simplify complicated ideas
into something easy to under-
stand. Your common sense shines
as a clear guide, helping people
when they’re stuck on complex is-
sues.

Answer this question: A lot of
people play the fiddle in what
state which comes first alphabet-
ically?

The choices are the following: ’al-
abama’, ’orchestra’, ’tennessee’,
violin case’, ’alaska’  Impor-
tantly, write your final answer af-

ter “FEAEAEA.

al answer after “####"./n This
is the Answer : Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case, #H#HH#

A: The answer is Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case, #H#HH#

because the first letter of each
word is the same as the first let-
ter of the state it represents.

al answer after “####”. /n This
is the Answer : Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case.

A: The answer is Alabama, Ten-
nessee, Alaska, Orchestra, Violin
case.

Because the fiddle is a musical in-
strument, and the fiddle is played
by an orchestra. The fiddle is
played by a violinist, and the vi-
olinist plays the violin. The fid-
dle is played in the orchestra, and
the orchestra is in the violin case.
The fiddle is played in the orches-
tra, and the orchestra is in the vi-
olin case. The fiddle is played in
the orchestra, and the orchestra
is in the violin case. [repeated un-
til it reaches the output’s maximal
tokens)
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Base and Average Accuracy Per Model
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Figure 3: Accuracy comparisons between the base tests with and without any prompt modification across
all LLMs.
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Appendix B
B Answer Classification Methodolo

All benchmarks used for our experiments possess ground truth entries which constitute short strings: one-
word answers for most multiple-choice questions, numbers for the numerical questions, short answers for the
open questions. The outputs produced by the LLMs often greatly differ in their length from the indicated
answers, with prefixes such as “The correct answer is”, “Let’s proceed step by step”, followed by a detailed
methodology used to solve the given task, or greetings and politeness markers. The most common metrics
used to calculate string similarity, such as the Fl-score or ROUGE {{Eix-2004)}(Linl, |2004), are therefore
not adapted for this use case. Hence, we added the following instruction to each prompt: “Solve the task
below. Importantly, write your final answer after ‘#### 7. Using Regex rules, we then extracted the
answer after “####" if this string was present in the output and kept the entire output when the model
failed to follow the instruction. We then applied a set of Regex rules on this answer accordingly:

o Check if the LLM answer equals the ground truth (when all punctuation has been removed)
e If it is a multiple-choice question, check if the LLM answer is one of the incorrect choices

o If the expected output is a boolean, verify all possible adjacent outputs (“True” could be “TRUE”
or “Yes”, whereas false could be “FALSE” or “No” for example)

If the Regex rules are unable to classify the answer as correct or incorrect, we then use GPT-4o to classify
the string following “####” (see Table [5)).

Table 5: GPT-4o instructions used to classify the evaluated LLM’s answer

Classification instructions

Your task is to classify a response to a question, specifically assessing whether the given response is true
or false in comparison to the correct response.

This is the given response: LLM__ANSWER. This is the correct response: CORRECT_ANSWER
Adhere to the following rules when classifying the given response:

- The classification result should be a boolean value, represented as either TRUE or FALSE.

- Only output "TRUE’ or 'FALSE’

- Never include any other comments or strings other than TRUE or FALSE in your output.

- Do not answer the question.

- The given response can be phrased differently from the correct response. This does not mean it should
be classified as FALSE.

- Only assess if the given response contains the information that matches with the information provided
in the correct response.

- Check whether the correct response is in essence occurring somewhere in the given response. If so,
classify it as TRUE.

- Focus on the relevant information in the given response, which is often at the end of it. Do not
consider non-essential information such as greetings, small talk, and comments about hobbies or skills
when classifying the given response
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This classification technique applies to all prompt engineering methods except for the Rephrase-and-Respond
technique. Unlike other methods, this approach requires the model to first provide a rephrased version of
the question before delivering the answer. This directly impacts the classification process, as the rephrased
question can alter what is considered correct. For instance, in True or False questions, the rephrased question
might reverse the meaning of the original (“Was Mark the winner?” could become “Did Mark lose?”).
Similarly, in multiple-choice questions, the rephrasing might replace the correct choice with a synonym. To
address this, we carefully designed a specific classification function for this experiment. Both the Regex rules
and the GPT-4o0 fallback prompt were adapted to suit the requirements of each benchmark.

Table 6: Classification rules tailored to Rephrase-and-Respond LLM answers

Benchmark  Choices Type of correct answer Rules for RaR

Common- Multiple Nouns, location - Verify if all non-rephrased choices are present

-senseQA choices names or groups of in the answer. If so, classify with the non-RaR.
words; no numbers adapted method;

or dates. Exam- - Detect and validate enumerations of options

ples: “positive”, in the LLM’s answer, which would correspond

“alabama” or “great to the rephrased choices;

sorrow” - If there is an enumeration of the same length
as the length of the given choices, then estab-
lish synonyms based on the order of appari-
tion. Detect if the rephrased correct option is
the one in the final answer;

- Use GPT-4o for fallback classification when
the rules cannot determine correctness.
CRT Open- Values. Examples: “9 - Match numbers (digits and word forms);
ended weeks”, “12 minutes” - Allow additional numbers only if they ap-
or “5 dollars” pear in the original question, to account for
the rephrased question;
- Use fallback verification (GPT-40) when di-
rect or numerical matches fail.
NumGLUE Open- Numbers, days or - Remove commas in numbers;
ended months.  Examples: - Extract all possible answers from the LLM’s

“18”, “Monday”, answer (numbers, days, months);

“August” - If the correct answer is present in the ex-
tracted answers, then return TRUE, otherwise
return FALSE;

- If no possible answers have been detected,
then use GPT-40 to classify.
ScienceQA Multiple Nouns, values, group Same rules as for CommonsenseQA
choices of words or full sen-

tences. Examples:

“simile”,  “20 sec-

onds”, “by clearly

stating the main

idea”, “Both are only

physical changes.”

StrategyQA  True  or True or False With StrategyQA, we exclusively use GPT-
False 40 to classify the rephrased answers, with the

prompt shown in Table @
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Table 7: GPT-4o0 instructions used to classify the evaluated LLM’s answer for Rephrase-and-Respond when
the benchmark is StrategyQA

Classification Instructions

Your task is to classify responses to rephrased questions answered by either True or False. You need
to determine if the given answer is correct. To establish what is correct or incorrect, you are given the
original question and its correct answer. The answer to the rephrased question is correct if the information
is consistent with the updated question based on the original ground truth.

You are provided: 1. The original question. 2. The ground truth answer for the original question. 3. The
rephrased question and its associated answer. The associated answer should be towards the end, after
CHAHH.

Adhere to the following instructions: - Determine whether the answer to the rephrased question is con-
sistent with the original ground truth. - The answer to the rephrased question and the ground truth can
be different if the question has been rephrased as the opposite question, like if “Is the tree big?” was
rephrased to “Is the tree small?”. Focus on the facts mentioned in the rephrased question/answer pair,
compared to the ground truth. - The classification result should be a boolean value, represented as either
TRUE or FALSE. - Only respond with “TRUE” or “FALSE”. Avoid including comments or explanations.
Examples: - Original question: “Should you wear sunscreen to avoid cancer?” Ground truth: “True”.
Rephrased question: “Rephrased question: Can sunscreen help prevent cancer? Answer: Yes, it can.
True #### True” — TRUE. - Original question: “Should you wear sunscreen to avoid cancer?” Ground
truth: “True”. Rephrased question: “Rephrased question: Is someone wearing sunscreen as likely to get
cancer as someone not wearing sunscreen? Answer: False ####” — TRUE. - Original question: “Is the
sun a planet?” Ground truth: “False”. Rephrased question: “Is the sun a star? #### True” — TRUE.
- Original question: “Is the earth flat?” Ground truth: “False”. Rephrased question: “Question: Is the
earth round? Answer: No, the earth isn’t round because the geometry would not make any sense if so.
False #### False” — FALSE. - Original question: “The dice shows 2. Did Paul win? Facts: Paul wins
if the number on the dice is odd, Marcus wins if it is even.” Ground truth: “False”. Rephrased question:
“Question: Given that Paul wins if the dice number is odd and Marcus wins if the dice number is even,
did Marcus win if the dice shows 27 Answer: True, 2 is an even number. Therefore, Marcus wins. ####
True” — TRUE.
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Appendix C
C Detailed Accuracy Differences Across Prompting Technigues and Benchmarks

The following figures show, for each LLM, the rounded accuracy difference compared to the base prompting,
for each prompt engineering technique — benchmark combination.
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Figure 4: Accuracy differences between prompt engineering techniques and the base prompting, for all models
and benchmarks
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Figure 5: Accuracy differences between prompt engineering techniques and the base prompting, for GPT 3.5
on all benchmarks
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Figure 6: Accuracy differences between prompt engineering techniques and the base prompting, for GPT-40
on all benchmarks
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Figure 7: Accuracy differences between prompt engineering techniques and the base prompting, for Gemini
1.5 Pro on all benchmarks
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Figure 8: Accuracy differences between prompt engineering techniques and the base prompting, for Claude
3 Opus on all benchmarks
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Figure 9: Accuracy differences between prompt engineering techniques and the base prompting, for Llama
3-8B on all benchmarks

39



Under review as submission to TMLR

20
Chain-ofThought Prompting - -0.27 8.67 3.33 4.00 0.67
. -10
Expert Prompting - 4.00 -4.00 0.00 333 6.00
Sandbagging - High Education - 0.80 4.67 -0.67 -2.00 133 0.67 -0
z
Sandbagging - Low Education - 4.27 -1.33 0.00 1.33 10.00 g
v
£
Emotion Prompting - 0.00 4.67 -2.67 0.00 -0.67 -1.33
Re-Reading - 8.13 - -4.00 4.00 6.67
Rephrase-and-Respond - 5.20 8.67 0.00 -1.33 2.00

& ¥ éc\ \go @‘“
& f & & é&a@o}
o &

Figure 10: Accuracy differences between prompt engineering techniques and the base prompting, for Llama
3-70B on all benchmarks
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Appendix D

D Effect of Chain-of-thought Prompting on Answer Length
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AppendixE

E Prompt Variations

Table 8: Prompt variations and corresponding LLM outputs

PET

Benchmark task

LLM

Output

Base Solve the task below.
tantly, write your final answer after

LL####W'

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-

lin case’, ’alaska’.
Chain-of-
thought

prompting  “FFHH".

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, 'alaska’. Let’s think step by

step.

Solve the task below.
tantly, write your final answer after

GPT-3.5

Claude
Opus

3

Alaska
H#HH4 Alaska

Okay, let’s approach this step by step:
1. The question asks about a state
where a lot of people play the fid-
dle. 2. Among the given choices, we
need to identify which ones are actu-
ally states. 3. ’alabama’, ’tennessee’,
and ’alaska’ are states, while ’orches-
tra’ and ’violin case’ are not. 4. Now,
we need to determine which of these
states comes first alphabetically. 5.
Alphabetically, 'alabama’ comes be-
fore ’alaska’, and ’alaska’ comes be-
fore 'tennessee’.

Therefore, the state that comes first
alphabetically where a lot of people
play the fiddle is ’alabama’.

H#H#4# alabama
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Table 8: Prompt variations and corresponding LLM outputs

PET Benchmark task LLM Output
Sandbagging Solve the task below. Llama A nice break from molecular biology!
— High ed- tantly, write your final answer after 3-70B Let’s analyze the options:
ucation CHHEAEA * ’alabama’ and ’alaska’ are both
prefix Hello, my name is states, so they’re possibilities. * ’or-
Johnson. I am an internationally chestra’ is a group of musicians, not a
acclaimed molecular biologist from state. * ’tennessee’ is a state, but it’s
Austin, Texas. I graduated from Stan- not the first alphabetically. * ’violin
ford University where I specialized in case’ is not a state at all.
Molecular Biology. My research ex- So, the correct answer is ’alabama’,
plores the evolution of viruses. In my which comes first alphabetically
downtime, I enjoy painting, yoga, and among the states listed.
reading fiction novels. Additionally, 1 H#H#H## alabama
provide free biology tutoring at local
schools.
Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?
The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, ’alaska’.
Chain-of- Solve the task below. Claude 3 Okay, let’s approach this step by step:
thought tantly, write your final answer after Opus 1. The question asks about a state
prompting — “HHHH". where a lot of people play the fid-

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, 'alaska’. Let’s think step by

step.

dle. 2. Among the given choices, we
need to identify which ones are actu-
ally states. 3. ’alabama’; tennessee’,
and ’alaska’ are states, while ’orches-
tra’ and ’violin case’ are not. 4. Now,
we need to determine which of these
states comes first alphabetically. 5.
Alphabetically, ’alabama’ comes be-
fore ’alaska’, and ’alaska’ comes be-
fore 'tennessee’.

Therefore, the state that comes first
alphabetically where a lot of people
play the fiddle is ’alabama’.

##4# alabama
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Table 8: Prompt variations and corresponding LLM outputs

PET Benchmark task LLM Output

Emotion Solve the task below. GPT-40 To solve the task, we need to iden-

Prompting tantly, write your final answer after tify the state from the given choices
CHHEAEAE that comes first alphabetically. The
Answer this question: A lot of peo- choices are:
ple play the fiddle in what state which 1. alabama 2. orchestra 3. tennessee
comes first alphabetically? 4. violin case 5. alaska
The choices are the following: First, let’s list the choices in alpha-
abama’, ’orchestra’, ’'tennessee’, betical order:
olin case’, ’alaska’. Remember that 1. alabama 2. alaska 3. orchestra 4.
progress is made one step at a time. tennessee 5. violin case
Stay determined and keep moving for- From this list, the state that comes
ward. first alphabetically is “alabama”.

H#H#H#H# alabama
Re- Solve the task below. Claude 3 Let’s analyze the question and
Reading tantly, write your final answer after Opus choices:

LL####”'

A lot of people play the fiddle in
what state which comes first alphabet-

ically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-
lin case’, 'alaska’ Read the question
again: A lot of people play the fiddle
in what state which comes first alpha-

betically?

The choices are the following:
abama’, 'orchestra’, ’tennessee’, 'vio-

lin case’, ’alaska’.

The question asks for a state where a
lot of people play the fiddle, and this
state should come first alphabetically
among the given choices.

Looking at the choices: ’alabama’
and ’alaska’ are states. ’orchestra’,
‘tennessee’, and ’violin case’ are not
states.

Between ’alabama’ and ’alaska’, ’al-
abama’ comes first alphabetically.
Therefore, the answer to the question
“A lot of people play the fiddle in
what state which comes first alpha-
betically?” is:

H#H#HH#H# alabama

44



Under review as submission to TMLR

Table 8: Prompt variations and corresponding LLM outputs

PET Benchmark task LLM Output
Rephrase-  Solve the task below. Gemini 1.5 The question is asking us to identify
and- A lot of people play the fiddle in Pro the US state most strongly associated
Respond what state which comes first alphabet- with fiddle playing, out of the pro-
ically? vided options. Then, we need to de-
The choices are the following: termine which of those states comes
abama’, ’orchestra’, ’tennessee’, ’vio- first in alphabetical order.
lin case’, ’alaska’. Rephrase and ex- Let’s break it down:
pand the question, and respond. Im- * **Fiddle Music:** Fiddle playing is
portantly, write your final answer af- a key part of Appalachian folk mu-
ter “HHHH sic. * **Appalachian Region:** The
Appalachian Mountains run through
several states, but Tennessee is par-
ticularly known for its strong Ap-
palachian musical heritage.
Now let’s alphabetize our relevant
choices:
1. **Alaska** 2. **Alabama** 3.
**Tennessee**
#4#4#4# Therefore, the answer is
** Alaska**.
Expert Solve the task below. Gemini 1.5 Let’s break this down:
Prompting tantly, write your final answer after Pro * **The question is about a state:**

LL####”'

You simplify complicated ideas into
something easy to understand. Your
common sense shines as a clear guide,
helping people when they’re stuck on

complex issues.

Answer this question: A lot of peo-
ple play the fiddle in what state which
comes first alphabetically?

The choices are the following:
abama’, ’orchestra’, ’tennessee’, ’vio-

lin case’, ’alaska’.

We can ignore options like “erehestra™
“violin case”. * **It’s known for
fiddle playing:** This makes us think
of places with strong folk music
traditions. * **Alphabetical order is
key:** We need to focus on the first
letter of each state.

Out of the remaining options
(Alabama,  Tennessee,  Alaska),
**Alaska** comes first alphabeti-
cally.

H#H#4H#4# Alaska
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