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ABSTRACT

Large language models (LLMs) have achieved remarkable success, yet aligning
their generations with human preferences remains a critical challenge. Existing
approaches to preference modeling often rely on an explicit or implicit reward
function, overlooking the intricate and multifaceted nature of human preferences
that may encompass conflicting factors across diverse tasks and populations. To
address this limitation, we introduce Latent Preference Coding (LPC), a novel
framework that models the implicit factors as well as their combinations behind
holistic preferences using discrete latent codes. LPC seamlessly integrates with
various offline alignment algorithms, automatically inferring the underlying fac-
tors and their importance from data without relying on pre-defined reward func-
tions and hand-crafted combination weights. Extensive experiments on multi-
ple benchmarks demonstrate that LPC consistently improves upon three align-
ment algorithms (DPO, SimPO, and IPO) using three base models (Mistral-7B,
Llama3-8B, and Llama3-8B-Instruct). Furthermore, deeper analysis reveals that
the learned latent codes effectively capture the differences in the distribution of
human preferences and significantly enhance the robustness of alignment against
noise in data. By providing a unified representation for the multifarious prefer-
ence factors, LPC paves the way towards developing more robust and versatile
alignment techniques for the responsible deployment of powerful LLMs.

1 INTRODUCTION

Alignment has emerged as a key step in the development of large language models (LLMs) (Ouyang
et al., 2022; Bai et al., 2022; Touvron et al., 2023; Dubey et al., 2024). The goal of alignment is to
leverage human feedback to gauge the generative distributions of LLMs, steering their outputs to be
helpful, honest, and harmless (Askell et al., 2021). To this end, human annotators are tasked with ex-
pressing preferences among human-curated or machine-generated texts, and these preference anno-
tations serve as supervision signals to further optimize LLMs. Amid the surge in alignment research,
significant attention has been focused on optimization objectives, considering both online (Schulman
et al., 2017; Munos et al., 2023; Calandriello et al., 2024; Yang et al., 2024b) and offline (Rafailov
et al., 2024; Zhao et al., 2023; Azar et al., 2024; Meng et al., 2024; Tang et al., 2024) environments
as well as different types of preference annotations, such as scalar ratings (Richemond et al., 2024)
and pairwise rankings (Rafailov et al., 2024). Optimization with the well-designed objectives has
been widely validated for effectively reducing toxicity (Dai et al., 2024) while significantly improv-
ing the truthfulness and coherence of LLM outputs (Touvron et al., 2023). In this work, we study
the alignment of LLMs from a different perspective: Can we exploit the supervision signals more
effectively through fine-grained modeling of complex human preference?

The common practice for preference modeling typically involves estimating a single reward func-
tion from human annotations as a proxy for human preference (Schulman et al., 2017; Gulcehre
et al., 2023). Recently, human annotations have also been used directly as supervision signals in
optimization (Rafailov et al., 2024). These approaches, however, often overlook the challenges in
preference modeling that arise from the inherent complexity of human preference (Casper et al.,
2023): (1) Human preference may hinge on multiple factors. The multifaceted factors entailed
by a prompt may not be easily represented by a single reward function, especially when some factors
conflict with one another. A typical example is the divergence between “helpfuness” and “safty,”
which differ dramatically in their preferred response patterns, making it difficult for a single reward
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model to achieve the best of both worlds (Mu et al., 2024). (2) The factors may vary across tasks
and populations. There lacks a unified way to represent all factors. For instance, in text generation,
pivotal factors that influence human preference may include informativeness, adherence to length
constraints, diversity of expressions, etc. In contrast, when solving math problems, correctness of
answers, rigor of reasoning, and clarity and conciseness of solutions could be more dominant. (3)
Accurately determining the relative weights of factors for a prompt is challenging, even if the
factors are well-defined. This is particularly significant when the weights are sensitive to nuances
in prompt expression. For example, the prompt “how can I kill a Python process” demands less
consideration on safety than “how can I kill someone” despite similar superficial phrasing.

In light of the challenges in preference modeling, we aim to develop a unified framework for cap-
turing the intricate nature of human preferences, with the goal of achieving (1) the framework can
broadly represent human preferences across diverse tasks; (2) the framework allows for automatic
learning of preference representations without the need for pre-defined sub-rewards and hand-crafted
weights that are required by many existing approaches (Zhou et al., 2024; Rame et al., 2024; Yang
et al., 2024c); and (3) the framework is generally applicable to various alignment algorithms and
can effectively and consistently enhance their performance.

To this end, we propose Latent Preference Coding (LPC), a novel framework that captures the multi-
faceted nature of human preferences through discrete latent codes. LPC introduces a discrete latent
space where each code represents an underlying factor influencing holistic preferences. Through
variational inference, LPC estimates the latent codes from data, and learns both a prior network and
a posterior network. The posterior network infers weights of the latent codes from observed pref-
erence annotations, while the prior network is trained to predict the inferred weights based on the
input prompt. Together, the latent codes and the predicted combination weights form a mixture of
factors that represent prompt-specified human preferences, guiding the generation of completions in
LLMs1. More importantly, the formulation of LPC is general, allowing for integration with a wide
range of offline preference algorithms, including DPO (Rafailov et al., 2024), SimPO (Meng et al.,
2024), IPO (Azar et al., 2024), and others.

We conduct extensive experiments to assess LPC across diverse downstream tasks, employing
Mistral-7B (Jiang et al., 2023), Llama3-8B, and Llama3-8B-Instruct (Dubey et al., 2024) as base
LLMs, paired with DPO, SimPO, and IPO as alignment algorithms. Evaluation results indicate
that LPC consistently improves LLM performance across various combinations of base models and
alignment algorithms. More interestingly, further analysis over the learned latent codes reveals that
LPC effectively captures the underlying distribution of human preferences collected from different
data sources, and exhibits robustness against noisy annotations. These results confirm that LPC pro-
vides a unified approach for representing the complex structures underlying human preferences and
is readily applicable to a wide range of existing alignment algorithms.

Our contributions are threefold: (1) We identify the critical challenge of modeling complex human
preferences in LLM alignment and propose Latent Preference Coding (LPC) to address the chal-
lenge through discrete latent variables; (2) We derive a tailored optimization objective under the
LPC framework, which can seamlessly integrate with and enhance the performance of various of-
fline preference learning algorithms; and (3) Extensive experiments on multiple benchmarks, using
various base LLMs and alignment algorithms, validate the consistent effectiveness of LPC over the
vanilla counterparts.

2 RELATED WORK

2.1 LATENT VARIABLE MODELS

The inherent complexity of natural language has motivated the employment of latent variable mod-
els in natural language generation (NLG) tasks. These models capture the language characteristics
by learning latent variables that govern the generation process. A crucial aspect is the specifica-
tion of the posterior distribution over the latent variables. Continuous distributions, such as the

1LPC facilitates the automatic learning of prompt-specific preference representations. On the other hand,
human preferences are also shaped by differences across populations. While extending LPC to account for pop-
ulation differences is feasible, it falls outside the scope of this paper. We leave the exploration of personalized
LPC for future work.
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Gaussian distribution used in the variational auto-encoder (VAE) framework (Kingma, 2013), have
been widely adopted for modeling response diversity (Zhao et al., 2017; Ke et al., 2018). Recently,
discrete distributions have emerged as a promising alternative, offering several compelling advan-
tages, including mitigating the notorious posterior collapse issue (Bowman et al., 2016), enabling
enhanced controllability through latent variable manipulation (Bartolucci et al., 2022), and demon-
strating remarkable interpretability by revealing correspondences between latent variables and cat-
egorical language features like dialogue acts (Zhao et al., 2018), entity states (Guan et al., 2023),
and writing actions (Cornille et al., 2024). The discrete latent variable models typically rely on
a multinomial distribution over a learnable codebook (Van Den Oord et al., 2017) or a predefined
vocabulary (Zelikman et al., 2024) to represent the discrete latent space. Despite the extensive ex-
ploration of latent variable models, their applications to the alignment of LLMs remains largely
unexplored. Our work represents a pioneering effort to leverage the expressive power of discrete
latent variables for capturing multifaceted human preferences. While a concurrent study by Poddar
et al. (2024) employs continuous latent variables to represent various personalized needs, we aim to
model the intricate preferences obscured in the prompts through the more interpretable approach of
discrete latent variables.

2.2 LEARNING FROM HUMAN FEEDBACK

Learning from human feedback has been a crucial paradigm in aligning LLMs. Various forms of
feedback have been explored, including labels (Hastie et al., 2009), scalar ratings (Silver et al., 2021;
Richemond et al., 2024), expert trajectories (Hussein et al., 2017), and pairwise rankings (Wirth
et al., 2017; Rafailov et al., 2024), all of which can be viewed as carriers of underlying human
preferences. Recently, reward modeling techniques, particularly those based on pairwise rankings,
have emerged as a promising approach for providing scalable feedback, such as the Bradley-Terry
model (Bradley & Terry, 1952). Such reward models can then be leveraged to align LLMs with hu-
man preference through reinforcement learning algorithms like PPO (Schulman et al., 2017). This
has been applied to ensure safety (Dai et al., 2024), enhance helpfulness (Nakano et al., 2021),
and promote honesty (Tian et al., 2024) in LLMs. However, the complex implementation, hyper-
parameter tuning, sample inefficiency, and computational overhead of PPO (Choshen et al., 2020)
have motivated the exploration of simpler approaches, including rejection sampling (Touvron et al.,
2023) that fine-tunes LLMs on responses with the highest reward among a number of samples, and
direct preference optimization (DPO) (Rafailov et al., 2024) that directly optimizes LLMs from
human preference data without an explicit reward model. Following DPO, various preference opti-
mization objectives have been proposed, such as KTO (Ethayarajh et al., 2024), DRO (Richemond
et al., 2024), SimPO (Meng et al., 2024), and GPO (Tang et al., 2024). Despite these advancements,
a common limitation of existing methods is their assumption of a single, unified reward function,
which may fail to capture the multifaceted nature of human preferences.

2.3 MULTI-OBJECITVE OPTIMIZATION

Multi-objective optimization for aligning LLMs has garnered significant attention, as it mitigates
potential dichotomies between competing objectives (Bai et al., 2022) and caters to diverse user
needs (Dong et al., 2023). Existing approaches to multi-objective alignment can be broadly cat-
egorized into three groups: (1) Reward Model Combination, which transforms multi-objective
alignment into a single-objective optimization problem by linearly combining rewards from individ-
ual reward models (Wu et al., 2023) or via parameter interpolation (Rame et al., 2023). Then, they
use standard RL approaches to maximize the scalar reward. (2) Policy Model Combination, which
applies the spirit of linear combination to policy models, i.e., combining policy models learned
from different reward models through token-wise probability interpolation (Jang et al., 2023). (3)
Combination-aware Learning, which trains a single policy model conditioned on both the user
instruction and the expected combination weights of different objectives (Dong et al., 2023; Wang
et al., 2024). All these methods require explicit human feedback for each objective and demand pre-
specified weights for combining multi-objective rewards, imposing a substantial burden on human
annotators. In contrast, our approach aims to automatically infer both the implicit factors and their
relative importance from holistic feedback data, without relying on pre-defined objective weights or
explicit reward models.

3
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Figure 1: Overview of Latent Preference Coding. The framework is comprised of a discrete
codebook and three modules: a policy model πθ(y|x, z) conditioned on a latent variable z, a prior
network p(z|x) that learns to infer z from the prompt, and a posterior network q(z|x, yw ≻ yl) that
guides the training of the prior network and latent code embeddings.

3 METHODOLOGY

We elaborate Latent Preference Coding (LPC) in this section. Starting from a brief review of existing
efforts in reinforcement learning from human feedback (RLHF) (§3.2), we derive the optimization
objective of LPC (§3.2), and then formulate the latent representation of preferences and other im-
portant components in LPC (§3.3). Finally, we demonstrate how LPC can be seamlessly integrated
into a variety of offline RLHF algorithms (§3.4).

3.1 PRELIMINARIES: REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

The goal of RLHF is to optimize a language model πθ(y|x) parameterized by θ, initialized from a
reference model πref(y|x) obtained through pre-training or supervised fine-tuning. The optimization
of πθ(y|x) is guided by a reward model parameterized as rϕ(x, y), whose responsibility is to evaluate
how well the output y ∼ πθ(y|x) aligns with human preference. Specifically, the policy model
πθ(y|x) is optimized to maximize the expected reward from rϕ(x, y) while constrained by a KL
penalty with respect to the reference model πref(y|x) (Ouyang et al., 2022):

maxπθ
Ex∼D,y∼πθ(y|x)[rϕ(x, y)]− β · DKL[πθ(y|x)||πref(y|x)], (1)

where β acts as a trade-off between the expectation of the reward and the KL term.

Normally, rϕ(x, y) is estimated from a preference dataset D = {(xi, yiw, y
i
l)}Ni=1 by optimizing a

Bradley-Terry (BT) model (Bradley & Terry, 1952):

E(x,yw,yl)∼D log p(yw ≻ yl|x) = E(x,yw,yl)∼D log[σ(rϕ(x, yw)− rϕ(x, yl))], (2)

where for prompt xi, completion yiw is more preferred than yil .

Problem 1 often requires a complex and unstable online algorithm (Schulman et al., 2017), which
motivates the exploration on offline RLHF. In fact, as pointed out in Go et al. (2023), the solution to
the KL-constrained reward maximization objective 1 can be analytically written as:

π⋆
θ(y|x) =

1

Z(x)
πref(y|x)exp(β−1rϕ(x, y)), (3)

where Z(x) is the partition function. Hence, reward rϕ(x, y) can be represented by:

rϕ(x, y) = βlog(
π⋆
θ(y|x)

πref(y|x)
) + βlog(Z(x)). (4)

4
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Putting Eq. 2 and Eq. 4 together, RLHF can be performed offline without the need of an explicit
reward by learning from the following loss (Rafailov et al., 2024):

LDPO = −E(x,yw,yl)∼D log p(yw ≻ yl|x)

= −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)]
.

(5)

Due to its simplicity and effectiveness, offline RLHF has been adopted in the development of several
leading LLMs (Touvron et al., 2023; Dubey et al., 2024; Yang et al., 2024a). Therefore, we choose
offline RLHF as the starting point for our research on preference modeling, and leave the exploration
for online RLHF as future work.

3.2 LEARNING OBJECTIVE OF LATENT PREFERENCE CODING

Recognizing the diverse and multifaceted nature of human preferences, our approach deviates from
traditional RLHF methods that rely on a single reward model rϕ(x, y) to evaluate all data in-
stances (either explicitly (Schulman et al., 2017) or implicitly (Rafailov et al., 2024)). Instead,
we aim to capture the factors that underpin intricate holistic human preferences. To this end, two
problems must be addressed: (1) How to model the mixture of factors implied by a prompt? And (2)
How to automatically and effectively learn the mixtures of factors from data in an unsupervised fash-
ion? To answer these questions, we propose latent preference coding (LPC) that implicitly models
the underlying factors behind human preferences using latent variables.

We assume that holistic human preference is a mixture of multiple unobserved factors, and can be
modeled by a latent variable z. Hence, the preference model p(yw ≻ yl|x) in Eq. 5 can be factorized
as p(yw ≻ yl|z, x) · p(z|x), where p(z|x) is a prior modeling the induction of a mixture of factors
as a specific preference pattern with respect to prompt x, and p(yw ≻ yl|z, x) measures how yw is
preferred over yl under the prompt and the preference pattern. Following the assumption, the loss
given by Eq. 5 can be re-formulated as:

LLPC-DPO = −E(x,yw,yl)∼D log p(yw ≻ yl|x)
= −E(x,yw,yl)∼D logEz∼p(z|x)p(yw ≻ yl|x, z)

= −E(x,yw,yl)∼D

[
logEz∼p(z|x)σ

(
β log

πθ(yw|x, z)
πref(yw|x, z)

− β log
πθ(yl|x, z)
πref(yl|x, z)

)]
,

(6)

where π{θ,ref}(y|x, z) represent policy models conditioned on z that will be detailed later.

Normally, it is difficult to directly optimize Eq. 6 due to the intractability of p(z|x). Therefore,
we consider a posterior q(z|x, yw ≻ yl) and perform learning through variational inference. The
posterior takes the observed preference between yw and yl as input and predicts a distribution of z,
which is then used to guide the direction of the prior. By this means, the negative evidence lower
bound (ELBO) for LLPC-DPO is given by:

L̃LPC-DPO = −E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl) log σ

(
β log

πθ(yw|x, z)
πref(yw|x)

− β log
πθ(yl|x, z)
πref(yl|x)

)
− λDKL[q(·|x, yw ≻ yl)||pz(·|x)]

]
,

(7)

where λ is a hyper-parameter. Details of derivation are presented in Appendix A.

During inference, LPC first samples a latent variable z according to the prior p(z|x), and then
generates the completion y from πθ(y|x, z).

3.3 MODELING OF LATENT PREFERENCE CODING

Figure 1 illustrates the architecture of LPC. To effectively represent the multifaceted factors that
shape holistic human preferences, we propose to model the underlying factors through discrete la-
tent variables. Unlike continuous representations, discrete latent variables have been shown to mit-
igate the notorious posterior collapse issue (Bowman et al., 2016) and enjoy better interpretability
(Guan et al., 2023). Basically, we implement LPC based on the standard decoder-only Transformer

5
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architecture (Vaswani et al., 2017) parameterized by θ, taking the input prompt x and generating the
output completion y. We use hx and hx,y to denote the hidden states of the last layer at the last
token of x and the concatenation of x and y, respectively.

Discrete Latent Space. We introduce a discrete codebook E = {ek ∈ Rd}Kk=1 that comprising K
codes, where each code ek corresponds to an underlying factor influencing the holistic preference.
We assume that both the prior and posterior distributions are categorical distributions over the latent
codes in E, making it easy to derive the KL divergence between them in Eq. 7.

Posterior network. Given a triple of (x, yw, yl), we implement the posterior network by applying
a two-layer MLP on the concatenation of hx,yw

and hx,yl
:

q(z|x, yw ≻ yl) = softmax (MLPposterior([hx,yw
;hx,yl

])) . (8)

Prior network. Given an input prompt x, the prior network feeds hx to another MLP, which
predicts the prior distribution over the latent codes:

p(z|x) = softmax (MLPprior(hx)) . (9)

Policy Model. To effectively leverage the insights gained from LPC, the policy model should
seamlessly integrate the holistic preference representation derived from the latent variable z into the
language generation process. Formally, we model the conditional probability πθ(y|x, z) as follows:

πθ(y|x, z) =
∏
t

πθ(yt, |x, z, y<t)

=
∏
t

softmax(LMHead(hx,y<t
+ z)), (10)

where LMHead is the language model head mapping the hidden states to the vocabulary, hx,y<t

denotes the hidden state of the language model encoding the prompt x and the partially generated
completion y<t, and z denotes the representation of the holistic human preference derived from the
prior or posterior distributions of the latent variable z.

To circumvent the non-differentiability of sampling from discrete categorical distributions, we lever-
age the Gumbel-softmax reparameterization trick (Jang et al., 2017), which allows us to obtain con-
tinuous and differentiable samples from the prior and posterior distributions over the latent codes.
Specifically, we derive z as a convex combination of all latent code embeddings in E, weighted by
the Gumbel-softmax samples from the prior and the posterior distributions:

z =

K∑
k=1

ckek,

{ck}Kk=1 = g · Gumbel-softmax(p(z|x))
+ (1− g) · Gumbel-softmax(q(z|x, yw ≻ yl)), (11)

where {ck}Kk=1 is the categorical distribution over the latent codes after applying Gumbel-softmax
on the prior or posterior distributions, and g ∈ [0, 1] is a weight that determines the relative con-
tributions of the prior and the posterior distributions in deriving z. We employ a linear scheduling
strategy to gradually increase g from 0 to 1 during training, allowing the model to initially rely
more on the more accurate posterior distribution for guidance, and progressively shift towards the
prior distribution as the training goes on. In this way, LPC can automatically infer their relative
importance between different underlying factors during training.

3.4 EXTENSION TO OTHER OFFLINE RLHF OBJECTIVES

While the derivation of LPC originates from the DPO objective, its versatile formulation readily
extends to other offline RLHF objectives if the obejctives can be formulated as − log(f(·)). This
enables a unified framework for capturing the intricate nature of human preferences across different
optimization paradigms.

6
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Specifically, when applying LPC to SimPO (Meng et al., 2024), we derive the following loss:

LLPC -SimPO = −E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl) log σ

(
β

|yw|
log πθ(yw|x, z)

− β

|yl|
log πθ(yl|x, z)− γ

)
− λDKL[q(·|x, yw ≻ yl)||pz(·|x)]

]
.

(12)

Furthermore, drawing inspiration from Eq. 7, we can also apply LPC to objectives that do not strictly
satisfy − log(f(·))2. While the extension sacrifices some mathematical rigor, it proves beneficial in
practice, as will be seen in Experiments. Specifically, when applied to IPO (Azar et al., 2024), the
loss for learning is given by:

LLPC -IPO = E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl)

(
log

πθ(yw|x, z)
πref(yw|x)

− log
πθ(yl|x, z)
πref(yl|x)

− 1

2τ

)2

+ λDKL[q(·|x, yw ≻ yl)||pz(·|x)]
]
.

(13)

Similarly, one can also extends LPC to more objectives as presented in Tang et al. (2024).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Configuration. To comprehensively evaluate the efficacy of LPC, we conduct experiments us-
ing three open-source LLMs: Mistral-7B (Jiang et al., 2023), Llama3-8B, and Llama3-8B-
Instruct (Dubey et al., 2024). Furthermore, to demonstrate the compatibility and flexibility of LPC,
we integrate it with three widely used offline preference learning algorithms: DPO, IPO, and SimPO.
These algorithms encompass different optimization strategies and inductive biases, enabling a com-
prehensive evaluation of LPC’s performance across diverse preference learning methods. In total,
we investigate nine distinct configurations, resulting from the combination of three base models and
three preference learning algorithms. For each configuration, we compare against two baselines: the
base model and its optimized version using the corresponding preference learning algorithm.

Dataset. We utilize the widely-adopted UltraFeedback dataset (Cui et al., 2023) in experiments.
The dataset is a comprehensive collection of user preferences spanning diverse domains. It contains
63,967 instances from 6 publicly available datasets, including TruthfulQA, FalseQA, Evol-Instruct,
UltraChat, ShareGPT, and FLAN. We randomly sample 1,000 instances for validation and an addi-
tional 1,000 instances for testing. The rest of the instances are used for training LPC and the baseline
alignment methods. We adopt the same data preprocessing pipeline as outlined in (Tunstall et al.,
2023) to construct the preference pairs. For each instance, four completions are generated by dif-
ferent LMs. The completion with the highest overall score is denoted as yw, while yl is randomly
sampled from the remaining completions.

Evaluation. We first evaluate LPC and the baselines on several representative downstream bench-
marks in terms of three aspects: (1) Commonsense Reasoning: we employ ARC-challenge
and ARC-easy (Clark et al., 2018) as the evaluation datasets. (2) Mathematical Reasoning:
GSM8K (Cobbe et al., 2021), a collection of grade-school problems, is exploited for evaluation.
(3) Truthfulness: we use TruthfulQA (Lin et al., 2022) to assess the honesty of aligned LLMs.

Then, we assess how well the models capture the holistic human preferences by calculating the pref-
erence accuracy for ranking completion pairs. Specifically, the accuracy accounts for the proportion
of instances where yw has a higher reward score than yl based on Eq. 4. We calculate the preference
accuracy on the test set of UltraFeedback comprising 1,000 examples.

Implementation Details. We leverage the OpenRLHF library (Hu et al., 2024) for model training.
All models are trained for one epoch, employing the AdamW optimizer (Loshchilov, 2017) and a

2In this case, a rigorous derivation of the KL term is not feasible. Therefore, we retain the KL term in Eq. 7
and just replace the expectation term analogously to the formulation used in LPC for DPO.
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Table 1: Evaluation results on the downstream tasks.

Method Arc-challenge Arc-easy GSM8K TruthfulQA Average(0-shot) (0-shot) (5-shot) (0-shot)

Mistral-7B

Base Model 49.74 80.72 37.30 41.13 52.22

DPO 55.38 83.33 40.11 48.10 56.73
DPO w. LPC 55.55 83.54 44.28 47.86 57.81 (+1.08)

IPO 58.19 84.76 30.48 48.96 55.60
IPO w. LPC 57.17 83.88 42.61 50.80 58.61 (+3.01)

SimPO 58.11 84.68 31.01 49.33 55.78
SimPO w. LPC 56.40 83.59 32.60 51.29 55.97 (+0.19)

Llama3-8B

Base Model 50.43 80.05 49.51 43.82 55.95

DPO 54.01 81.27 54.36 43.70 58.33
DPO w. LPC 54.18 81.48 55.34 44.68 58.92 (+0.59)

IPO 51.37 80.89 50.42 44.19 56.72
IPO w. LPC 51.54 80.81 50.95 45.41 57.18 (+0.46)

SimPO 54.95 81.90 46.02 39.53 55.60
SimPO w. LPC 53.33 81.36 45.87 53.61 58.54 (+2.94)

Llama3-8B-Instruct

Base Model 52.90 81.52 75.66 46.88 64.24

DPO 54.35 82.24 77.03 47.00 65.16
DPO w. LPC 55.29 82.41 77.79 48.10 65.90 (+0.74)

IPO 53.84 81.57 73.69 47.25 64.09
IPO w. LPC 54.69 82.24 76.80 46.51 65.06 (+0.97)

SimPO 55.97 83.50 66.79 56.79 65.77
SimPO w. LPC 57.34 82.91 73.62 56.06 67.48 (+1.71)

linear learning rate scheduler peaking at 5e-7 with a 10% warm-up phase. The global batch size
is set to 64 and the max length is 1,024. For LPC, we search λ in Eq.7 from {0.01, 0.05, 0.1} and
find λ = 0.05 yields good performance across all methods. For the DPO and SimPO methods,
we regulate the deviation from the reference model by setting β in Eq. 5 and Eq. 12 to 0.1. In
the case of IPO, we explore the optimal τ value in Eq. 13 from {0.01, 0.05, 0.1, 0.5} based on the
validation performance and empirically choose τ = 0.01. For downstream task evaluation, we
utilize the Language Model Evaluation Harness library (Gao et al., 2024), adhering to the default
hyper-parameters and evaluation settings.

4.2 MAIN RESULTS

Downstream Benchmark Evaluation. As demonstrated in Table 1, it is evident that the proposed
LPC framework consistently enhances the performance of LLMs across a diverse range of down-
stream tasks, base models, and preference methods. A closer examination of the results reveals
several key insights: (1) DPO emerges as the most robust alignment method, yielding consistent per-
formance gain over the base models across all datasets. Notably, when augmented with LPC, DPO’s
performance is further amplified, accentuating the synergistic benefits of LPC in modeling the un-
derlying preference factors. (2) SimPO and IPO exhibit more variability in their performance, oc-
casionally underperforming the base models on certain tasks, particularly GSM8K. However, when
integrated with LPC, these performance deficits are mitigated, and in some cases, even surpassed
(e.g., IPO w. LPC for Mistral-7B and Llama3-8B-Instruct on GSM8K, and SimPO w. LPC for
Llama3-8B on TruthfulQA), underscoring LPC’s ability to elucidate and harmonize the disparate
preference factors. (3) LPC’s impact is not uniformly distributed across all tasks. Specifically, on
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Table 2: Comparison of preference accuracy before and after integrating LPC.

Algorithm Llama3-8B Llama3-8B-Instrcut Mistral-7B

DPO 69.3 / 70.8 (+1.5) 70.1 / 69.9 (-0.2) 71.9 / 73.4 (+1.5)
IPO 68.0 / 70.6 (+2.6) 68.3 / 70.3 (+2.0) 74.2 / 74.7 (+0.5)
SimPO 69.2 / 71.8 (+2.6) 74.1 / 73.2 (-0.9) 73.5 / 75.6 (+2.1)

tasks that heavily rely on the model’s intrinsic capabilities, such as abstraction and reasoning skills in
the case of the ARC datasets, LPC’s fine-grained preference modeling yields relatively modest im-
provements. This suggests that while LPC excels in capturing the nuances of human preferences, it
may have a limited influence on enhancing the model’s commonsense reasoning capabilities, which
are primarily shaped during the pre-training stage.

Preference Accuracy. Subsequently, we delve into the preference accuracy evaluation to assess
the efficacy of LPC in distinguishing between favorable and unfavorable completions. As presented
in Table 2, the integration of LPC generally elevates preference accuracy across various base mod-
els and alignment algorithms. This empirical evidence corroborates LPC’s capacity to elucidate and
harmonize the intricate factors that shape human preferences. Notably, for the Llama3-8B-Instruct
model, the impact of LPC on preference accuracy appears relatively muted. We conjecture that this
is because Llama3-8B-Instruct has been extensively fine-tuned for instruction-following, which im-
bues it with an enhanced ability to adhere to diverse human instructions. Consequently, the influence
of LPC’s fine-grained preference modeling may be somewhat constrained. Nevertheless, as afore-
mentioned, LPC continues to confer substantial performance improvements on downstream tasks,
even for Llama3-8B-Instruct, underscoring its versatility and robustness.

4.3 LATENT CODE ANALYSIS

To gain deeper insights into the proposed LPC framework, we conduct experiments to unravel two
pivotal research questions: (1) What is the optimal size of the latent codebook to effectively cap-
ture the intricate landscape of human preferences? (2) Does LPC truly capture the implicit factors
underpinning holistic preferences as hypothesized?

Investigating the Optimal Codebook Size. To investigate the optimal codebook size, we train
a series of models with distinct codebook sizes ranging from the set {8, 16, 32, 64, 128, 256}. As
illustrated in Figure 2 (Top Left), the preference accuracy exhibits a distinct pattern: initially in-
creasing with larger codebook sizes, peaking around 32 to 64 codes, and then gradually declining,
suggesting that it is crucial for LPC’s performance to striking the right balance in the size of the
latent codebook. When the codebook is small (e.g., 8 codes), it may be insufficiently expressive
to capture the diversity of implicit preference factors, thereby limiting performance. Conversely,
when the codebook is excessively large (e.g., 256 codes), LPC does not appear to derive significant
benefits from an expanded latent space. This could be attributed to several factors: (1) the model
may struggle to effectively utilize such a high-dimensional latent space given the limited training
data, or (2) the risk of overfitting increases as the codebook size grows.

Investigating the Capability to Distinguish Implicit Factors. The core rationale behind predict-
ing implicit preference factors using the prior network p(z|x) lies in the assumption that the prompt
x accurately reflects the underlying preference structure. To validate this critical assumption, we
devise a probing experiment by intentionally distorting the preference annotations in the UltraFeed-
back dataset. Specifically, we randomly flip 50% of the preference labels in the training data (i.e.,
replacing “yw ≻ yl” with “yw ≺ yl”), appending a special token [FLIP] to the prompts associ-
ated with these flipped instances. Subsequently, we train Llama3-8B using DPO with or without
LPC on this distorted dataset to assess whether LPC can effectively differentiate between flipped
preferences and normal ones. Then, we calculate the preference accuracy on the original test set of
UltraFeedback. As illustrated in Figure 2 (Bottom Left), LPC outperforms the baseline DPO by a
larger margin than in the ordinary setting, indicating that in more complex preference environments
with intermixed preferences—some of which are even completely opposite—LPC’s capability to
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Figure 2: Top left: Preference accuracy (PA) of DPO w. LPC on Llama3-8B varying with the latent
codebook size. Bottom Left: Flipping-label experiment on Llama3-8B. Models are evaluated on the
original test set with unflipped labels. Right: Visualization of the latent variable z produced by the
prior network of Llama3-8B. The alignment method is DPO. For each data source in UltraFeedback,
we randomly select 100 instances and visualize the T-SNE features of these instances.

Table 3: Results on AlpacaEval 2 judged by GPT-4-turbo-2024-04-09. “LC” and “WR” denote
length-controlled and raw win rate, respectively. All methods are based on Llama3-8B-Instruct. The
baseline model compared against is GPT-4-1106-preview. We use the official evaluation script (Li
et al., 2023), adopting the same decoding hyper-parameters as Meng et al. (2024), with the temper-
ature set to 0.9.

Algorithm DPO IPO SimPO
LC(%) WR(%) LC(%) WR(%) LC(%) WR(%)

w/o. LPC 15.03 13.55 14.44 12.96 12.77 8.12
w. LPC 15.31 13.57 15.04 13.50 15.56 9.63

model implicit preference factors enables it to distinguish and disentangle these conflicting signals,
thereby enhancing overall performance.

Additionally, we employ T-SNE (Van der Maaten & Hinton, 2008) to visualize the latent variable
z. As depicted in Figure 2 (Right), instances from different data sources cluster into several distinct
groups. This clustering phenomenon arises because data from various sources typically emphasize
different preferences. This observation further corroborates the effectiveness of LPC in modeling
implicit preference factors, as it can capture the intricate preference structures inherent in diverse
data sources.

4.4 WIN RATE AGAINST GPT-4

To further validate LPC’s efficacy in aligning LLMs with human preferences, we evaluate LPC on
AlpacaEval 2 (Li et al., 2023) using GPT-4 as a judge. As depicted in Table 3, LPC brings perfor-
mance improvements across all alignment algorithms on Llama3-8B-Instruct, further solidifying its
prowess in aligning LLMs with human preferences.

5 CONCLUSIONS

In this work, we propose LPC, a framework that enables LLMs to capture the multifaceted nature of
human preferences. LPC introduces discrete latent codes where each code represents an underlying
factor influencing holistic preferences. Through variational inference, LPC can model the implicit
factors without the need for fine-grained preference annotations. Besides, LPC can be integrated
with a variety of offline preference algorithms, including DPO, IPO, SimPO, and so on. We conduct
extensive experiments evaluating LPC on three open-source LLMs, showing that LLMs can achieve
better performance across multiple benchmarks by modeling the underlying factors of human pref-
erence.
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A DERIVING THE EVIDENCE LOWER BOUND OF LPC

We start with the standard DPO, where the objective is to maximize the log-likelihood
E(x,yw,yl)∼D log p(yw ≻ yl|x). After introducing latent variable z, we have:

log p(yw ≻ yl|x) = logEz∼p(z|x)p(yw ≻ yl|x, z)

= log

∫
p(yw ≻ yl|x, z)p(z|x)

q(z|x, yw ≻ yl)

q(z|x, yw ≻ yl)
dz

= logEz∼q(·|x,yw≻yl)
p(yw ≻ yl|x, z)p(z|x)

q(z|x, yw ≻ yl)

≥ Ez∼q(·|x,yw≻yl) log
p(yw ≻ yl|x, z)p(z|x)

q(z|x, yw ≻ yl)

= Ez∼q(·|x,yw≻yl)

[
log p(yw ≻ yl|x, z) + log

p(z|x)
q(z|x, yw ≻ yl)

]
= Ez∼q(·|x,yw≻yl) log p(yw ≻ yl|x, z)− DKL[q(·|x, yw ≻ yl)||p(·|x)].

(14)

By this means, we have:

L̃LPC-DPO = −E(x,yw,yl)∼D
[
Ez∼q(·|x,yw≻yl) log p(yw ≻ yl|x, z)− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
.

(15)

Then we need to derive the mathematical solution for p(yw ≻ yl|x, z). We assume that each latent
z corresponds to an implicit reward model rϕz

(x, y). The derivation process is quite similar to
standard DPO.

For each implicit preference factor z, we optimize the following objective:

max
πθ

Ex∼D,y∼πθ(·|x,z)[rϕz
(x, y)]− βDKL[πθ(y|x, z)||πref(y|x, z)]. (16)

Because the parameter of the reference model is fixed during training, the output of πref would not
be affected by z, i.e., πref(y|x, z) = πref(y|x). We now have:

max
πθ

Ex∼D,y∼πθ(·|x,z)[rϕz
(x, y)]− βDKL[πθ(y|x, z)||πref(y|x, z)]

= max
πθ

Ex∼D,y∼πθz (·|x,z)

[
rϕz

(x, y)− β log
πθz (y|x, z)
πref(y|x)

]
= min

πθz

Ex∼D,y∼πθz (·|x,z)

[
log

πθz (y|x, z)
πref(y|x)

− β−1rϕz
(x, y)

]
= min

πθz

Ex∼D,y∼πθz (·|x,z)

[
log

πθz (y|x, z)
π∗(y|x, z)

− logZz(x)

]
= min

πθz

Ex∼D[DKL(πθz (y|x, z)||π∗(y|x, z))− logZz(x)],

(17)

where:

Zz(x) =
∑
y

πref(y|x) exp
(
β−1rϕz (x, y)

)
(18)

and

π∗(y|x, z) = 1

Zz(x)
πref(y|x) exp

(
β−1rϕz

(x, y)
)
. (19)

The KL-divergence in Eq.17 reaches the minimum when πθz (y|x, z) = π∗(y|x, z)). As a result, we
obtain the expression of optimal reward:

r∗ϕz
(x, y) = β log

π∗(y|x, z)
πref(y|x)

+ β logZz(x). (20)
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Combining Eq.15 and Eq.20, we can get the final training objective of LPC.

L̃LPC-DPO = −E(x,yw,yl)∼D
[
Ez∼q(·|x,yw≻yl) log p(yw ≻ yl|x, z)− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
,

= −E(x,yw,yl)∼D
[
Ez∼q(·|x,yw≻yl) log σ(rϕz (x, yw)− rϕz (x, yl))− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
,

= −E(x,yw,yl)∼D

[
Ez∼q(·|x,yw≻yl) log σ

(
β log

πθ(yw|x, z)
πref(yw|x)

− β log
πθ(yl|x, z)
πref(yl|x)

)
− DKL[q(·|x, yw ≻ yl)||p(·|x)]

]
,

(21)

In practice, we insert a hyper-parameter λ before the KL term to enhance flexibility of learning.
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