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Original Image Generated video from original image.

Guarded Image Generated video from guarded image.

Original Image Generated video from original image.

Guarded Image Generated video from guarded image.

Figure 1. Results of our I2VGuard. We present original images, guarded images, and their corresponding SVD-generated videos. All
results are generated with the same seed. Our method effectively safeguards images from animation in image-to-video generation.

Abstract

Recent advances in image-to-video generation have en-001
abled animation of still images and offered pixel-level con-002
trollability. While these models hold great potential to trans-003
form single images into vivid and dynamic videos, they also004
carry risks of misuse that could impact privacy, security, and005
copyright protection. This paper proposes a novel approach006
that applies imperceptible perturbations on images to de-007
grade the quality of the generated videos, thereby protecting008
images from misuse in white-box image-to-video diffusion009
models. Specifically, we function our approach as an adver-010
sarial attack, incorporating spatial, temporal, and diffusion011
attack modules. The spatial attack shifts image features from012
their original distribution to a lower-quality target distribu-013
tion, reducing visual fidelity. The temporal attack disrupts014

coherent motion by interfering with temporal attention maps 015
that guide motion generation. To enhance the robustness 016
of our approach across different models, we further pro- 017
pose a diffusion attack module leveraging contrastive loss. 018
Our approach can be easily integrated with mainstream 019
diffusion-based I2V models. Extensive experiments on SVD, 020
CogVideoX, and ControlNeXt demonstrate that our method 021
significantly impairs generation quality in terms of visual 022
clarity and motion consistency, while introducing only mini- 023
mal artifacts to the images. To the best of our knowledge, we 024
are the first to explore adversarial attacks on image-to-video 025
generation for security purposes. 026

1. Introduction 027

Diffusion models [14, 18, 33] have gained significant atten- 028
tion recently, particularly in video generation. Advances in 029
models like Sora [5] and its DiT [31] framework have accel- 030
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erated the development of video diffusion models, leading to031
numerous academic [4, 21, 25, 51, 53] and commercial [41–032
43] applications. The primary types of video generation are033
text-to-video(T2V) and image-to-video(I2V), with the for-034
mer supporting greater diversity and the latter offering pixel-035
level control. Leveraging powerful generative models and036
techniques from text-to-image generation [33], image-to-037
video models can now produce visually impressive videos.038
Other conditional I2V models include CogVideoX [51],039
which generates videos using both text and image inputs, en-040
abling more versatile content creation, and ControlNeXt [32],041
which focuses on generating videos conditioned on pose in-042
formation, offering precise control over motion and structure.043

However, the rapid advancement of generative models has044
also heightened risks related to privacy, security, and copy-045
right [2]. For instance, an adversary with access to a person’s046
image could use image-to-video models to generate mis-047
leading or harmful videos, depicting actions the individual048
never performed, thus compromising individual’s privacy049
and security. Additionally, the unauthorized use of copy-050
righted images to create animations poses significant risks to051
intellectual property rights. To address these risks, this work052
introduces an adversarial attack method designed to prevent053
the misuse of images in diffusion-based I2V models. Prior054
research has primarily focused on protecting images from055
malicious edits [35, 52], which are often viewed as adver-056
sarial attacks on image-editing models. To our knowledge,057
this is the first adversarial attack method aimed at securing058
images against misuse in I2V generation.059

The main challenges in attacking I2V models come from060
two aspects: first, disrupting temporal consistency with per-061
turbations applied only to individual images; and second,062
achieving robustness across diverse diffusion models, includ-063
ing UNet and DiT architectures, even under strong condi-064
tioning such as poses and text prompts. To address these065
challenges, our method targets different modules within I2V066
models and affects various attributes of the generated video.067
Specifically, we divide our approach into spatial, temporal,068
and diffusion attacks. The spatial attack focuses on altering069
the spatial features of the I2V models by targeting the VAE070
encoder in latent diffusion models. Here, we manipulate071
image latents, shifting them toward suboptimal values. The072
temporal attack aims to perturb the temporal features, which073
are crucial for video motion and consistency. By extracting074
the temporal attention map, we intentionally disrupt it by075
pushing it away from its original attention map. This creates076
a chaotic attention map, leading to temporal inconsistencies077
in the generated video. The diffusion attack focuses on the078
diffusion process and targets the output of the denoising079
module, which includes the UNet in SVD and the trans-080
former in CogVideoX. Unlike a standard denoising process,081
our approach aims to push the predicted outputs away from082
the original frames, guiding them closer to target frames.083

To achieve this, we design a contrastive loss that degrades 084
the quality of the predicted frames by treating the target 085
frames as positive samples and the original predicted frames 086
as negative samples. 087

We conduct a comprehensive qualitative and quantitative 088
analysis of the attack results. Qualitative analysis demon- 089
strates that our method effectively disrupts the original im- 090
age, leading to low temporal consistency and reduced aes- 091
thetic quality in both simple and conditioned I2V models. 092
Quantitative analysis confirms a significant degradation in 093
both spatial quality and temporal consistency of the gener- 094
ated videos. 095

2. Related Work 096

Image-to-Video Generation With the great advancements 097
in image generation [14, 18, 29, 33, 38, 39], video genera- 098
tion [3, 5, 19, 21, 37, 41–43, 50, 51] has gathered significant 099
attention and is developing rapidly [17, 46, 47, 49]. Recently, 100
following the success of diffusion models [14, 18, 33, 38] 101
in image generation, diffusion models integrated with 102
UNet [3, 13, 20, 34] or transformers (DiT) [5, 31, 45, 53] 103
have been adopted for video generation. In the field of image- 104
to-video generation, AnimateDiff [17] animates personal- 105
ized text-to-image diffusion models by inserting a temporal 106
motion module, Stable Video Diffusion(SVD) [4] demon- 107
strates strong performance, benefiting from intensive train- 108
ing on large amounts of high-quality data, CogVideoX [51] 109
supports text-image jointly conditional video generation, 110
Animate-Anyone [22] and ControlNeXt [32] leverage pose 111
information for controllable image-to-video generation. In 112
this work, we focus on I2V models, which are susceptible to 113
misuse and therefore require robust protection. 114

Adversarial Attacks on Diffusion Models Current at- 115
tacks on diffusion models, which can be broadly catego- 116
rized [44] into backdoor [8, 11] and adversarial attacks, pri- 117
marily target image-based diffusion models [12, 15, 16, 48]. 118
In adversarial attacks, the input image or text prompt is 119
perturbed to generate adversarial examples. For instance, 120
AdvDM [28] and Mist [27] utilize adversarial examples to 121
protect human-created artworks, PhotoGuard [35] alters the 122
image by modifying either the encoder or the diffusion out- 123
puts against malicious editing, while Glaze [36] perturbs 124
the image to prevent style mimicry, [52] shifts the image 125
away from its original distribution, [54] embeds personal 126
watermarks in the generation of adversarial examples, and 127
DiffusionGuard [10] generates adversarial noise targeting 128
the early stage of the diffusion process. For video-based 129
attacks, PRIME [26] modifies videos frame-by-frame to 130
prevent malicious video editing, while [30] disrupts style 131
mimicry attacks from video imagery. There are also works 132
protect the image against other generation, such as text-to- 133
3D generation [40]. In this work, we focus on perturbing the 134
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Figure 2. Overview of our proposed method. The training process begins with a trainable copy Iadv of the original image Isrc. First, we
perform inference to obtain the original video V0 and get the latent frames X0. Noisy latent frames Xt and the latent image xadv, xsrc

are then processed by the denoising model to predict the original frames. The encoded latent image xadv is utilized for the spatial encoder
attack, while the predicted original frames X̂0 serve in the diffusion attack to compute contrastive loss. Within the denoising module, we
hook into the temporal attention module to extract the temporal attention map. By altering the attacked attention map Aadv to diverge from
the original Asrc, we implement the temporal attack.

input image in image-to-video diffusion models to perform135
adversarial attacks.136

3. Method137

In this section, we first provide preliminaries on latent dif-138
fusion models and problem settings in Sec. 3.1. We then139
present our attack method, detailing the spatial attack in140
Sec. 3.2, the temporal attack in Sec. 3.3, and the diffusion141
attack in Sec. 3.4. An overview of our method is presented142
in in Fig. 2.143

3.1. Preliminary144

Latent Diffusion Models In diffusion models, realistic145
image or video sampling from a target distribution q(·) is146
achieved via a sequence of denoising steps in a diffusion pro-147
cess. This approach involves iteratively adding and removing148
noise to transform an initial sample x0 ∼ q(·). Noise is in-149
crementally introduced across steps, creating intermediate150
states defined by xt+1 =

√
αtx0 +

√
1− αtϵt, where ϵt is151

Gaussian noise. The parameters αt control the noise transi-152
tion, leading to a final noisy state with a standard Gaussian153
distribution. By reversing this process and iteratively denois-154
ing each state, the model learns to predict the noise added at155
each step, ultimately enabling thr recovery of samples from156

q(·) starting from xT . Latent diffusion models (LDMs), a 157
subclass of diffusion models, operate in a compressed latent 158
space rather than directly in the image space. In LDMs, each 159
input image or video x0 is first mapped to a latent represen- 160
tation E(x0) via an encoder E . The diffusion process then 161
applies in this latent space, producing a series of noisy rep- 162
resentations. Training in this latent space enables LDMs to 163
achieve efficient training and faster inference while retaining 164
high-quality outputs. 165

Problem Settings Adversarial attacks involve adding sub- 166
tle, nearly undetectable perturbations δadv to the input data 167
to influence a model’s output. In computer vision, adver- 168
sarial attacks have been widely explored in classifications 169
and image synthesis. However, in image-to-video genera- 170
tion tasks, adversarial attack remains a relatively unexplored 171
area. In this work, we aim to develop adversarial attacks to 172
safeguard images from misused by image-to-video latent 173
diffusion models. To distinguish between the latent and pixel 174
spaces, we represent images and videos in pixel space as I 175
and V , and in latent space as x and X, respectively. 176

Specifically, an adversary can generate a modified image 177
Iadv = Isrc + δ from source image Isrc, crafted to disrupt 178
the generative model G, resulting in poor-quality or distorted 179
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Figure 3. Temporal self-attention map visualizations. Difference
between generated frames from the original image (left) and the
guarded image (right) in Fig. 1.

outputs. This adversarial image is optimized by maximizing180
the loss between the videos generated from the original and181
modified images, represented as follows:182

δadv = arg max
∥δ∥p≤ϵ

L(G(Isrc + δ,Xt, c),G(Isrc,Xt, c))183

where δadv represents the computed perturbation, con-184
strained by ∥δ∥p ≤ ϵ to ensure minimal visibility, and c185
represents other conditions such as text or pose in the image-186
to-video generation process. The constraint on δadv is main-187
tained by a regularization term ||Iadv − Isrc||2.188

3.2. Spatial Attack189

The generated video has two main attributes: spatial features190
and temporal features. In this section, we focus on attack-191
ing the spatial features within individual frames. Previous192
work [35, 52] has applied adversarial attacks to image editing193
tasks, focusing solely on spatial features. Our work extends194
these methods to image-to-video generation task.195

In Latent Diffusion Models (LDMs), an encoder, denoted196
as E , compresses the original image or frames into a latent197
space representation. An encoder attack aims to compromise198
this encoder, reducing the effectiveness of generative models.199

Lenc = ∥E(Iadv)− E(Itg)∥2 (1)200

Specifically, as shown in Eq. (1), the attack transforms201
the latent representation E(Iadv) into a poor one E(Itg),202
resulting in poor-quality final videos.203

3.3. Temporal Attack204
Unlike attacks on image editing tasks, where no temporal205
features are involved, attacks on video generation rely heav-206
ily on temporal information. In this task, disrupting temporal207
consistency through adversarial attacks is both essential and208
challenging. To reduce temporal consistency and induce209
chaotic behavior in the outputs, we target the temporal atten-210
tion maps within the temporal transformer blocks in video211
diffusion generator, G. Specifically, during training, we insert212
a hook, denoted as G|

Aadv

, within the attention block to extract213

the self-attention map Aadv. We then apply a targeted at-214
tack to this attention map, pushing it away from the original215

Algorithm 1 Adversarial Attack on Image-to-Video Generation

Input: Source Image Isrc and Trainable Copy Iadv , Target
Image Itg , Target Video Vtg , Image-to-Video Pipeline P ,
Generator G, Encoder E , Diffusion Scheduler S
(Optional:Condition c)
Hyperparameters τ1, τ2, α, β, γ, λ
Encode image xsrc, xtg = E(Isrc), E(Itg)
Generate original video V0 = P(Isrc)
Encode frames X0,Xtg = E(V0), E(Vtg)
for each iteration do

Encode attacked image xadv = E(Iadv)
Compute encoder loss: Lenc = ||xadv − xtg||2
Generate noisy frames Xt = S(X0)

Predict X0


X̂0,adv = G|

Aadv

(Xt, xadv, c)

X̂0,src = G|
Asrc

(Xt, xsrc, c)

Compute spatial contrastive loss

Lcon = ||X̂0,adv −Xtg||2 +max
(
0, τ1 − ||X̂0,adv −X0||2

)
Compute temporal attention loss

Latt = τ2 − ||Aadv −Asrc||2
Compute the final loss
L = ||Iadv − Isrc||2 + α · Lenc + β · Lcon + γ · Latt

Update parameters Iadv ← Iadv − λ · ∇IL
end for

map, Asrc, thereby reducing temporal consistency in the 216
generated outputs. To achieve this, we introduce a temporal 217
attention loss, denoted as Latt, as shown in Eq. (2), which 218
induces motion-related perturbations and promotes temporal 219
chaos. 220

Latt = τ2 − ||Aadv −Asrc||2 (2) 221

As shown in Fig. 3, the visualization of the temporal 222
self-attention map on both the original and modified frames 223
highlights this impact: the manipulated attention map mis- 224
aligns with the original, directly leading to inconsistencies 225
in motion across frames. This visual evidence underscores 226
the effectiveness of our method in disrupting temporal coher- 227
ence in video generation by distorting the temporal attention 228
mechanism within the model. 229

3.4. Diffusion Attack 230

Although spatial and temporal attacks can disrupt struc- 231
tural and motion information in generated videos, their 232
effectiveness may vary significantly across different mod- 233
els [4, 32, 51], especially when other conditions, e.g., text 234
prompts, are involved. To enhance the robustness and gen- 235
eralization of the perturbation across diffusion models, we 236
introduce a latent space perturbation that uses contrastive 237
loss to shift the predicted noise closer to the target frames 238
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while pushing it away from the original frames. Specifically,239
given the latent representation of the original frames, X0,240
and the target latent frames, Xtg , we construct a contrastive241
objective [7, 9], as shown in Eq. (3).242

Lcon = ||X̂0,adv −Xtg||2 +max
(
0, τ1 − ||X̂0,adv −X0||2

)
(3)243

The positive pair consists of the predicted frames X̂0,adv and244
the target frames Xtg , which we aim to bring closer together,245
while the negative pair is composed of the predicted frames246
X̂0,adv and the original frames X0, which we aim to push247
apart.248

With the hyperparameters α, β, γ, we define the final249
training objective as:250

L = ||Iadv − Isrc||2 + α · Lenc + β · Lcon + γ · Latt (4)251

The complete algorithm is presented in Algorithm 1.252
It is noteworthy that our method supports both global and253

local attacks, allowing perturbations to be applied across the254
entire image or to specific objects within the image. This255
feature can be implemented by applying a mask to the noise256
during the attack process.257

4. Experiments258

4.1. Experimental Settings259

Models In the field of video generation, there are few open-260
source video diffusion models available for experimentation.261
Stable Video Diffusion [4] (SVD) is a widely used and ef-262
fective image-to-video diffusion model, which we adopt as263
the baseline model for our attack and experimental analy-264
sis. For other-conditioned image-to-video models, we utilize265
CogVideoX-5B-I2V [51] for text-image joint conditional266
video generation. The open-sourced CogVideoX, leverages267
DiT rather than the UNet architecture used in SVD, provid-268
ing enhanced capabilities. We also select ControlNeXt-SVD-269
v2 [32] for pose-guided image-to-video generation, which270
is built upon SVD and allows for more control in character271
animation.272

Data To our knowledge, there are currently no established273
benchmarks or datasets for image-based adversarial attacks274
in video generation. In previous research, PhotoGuard [35]275
reported attack results on over 60 images, while PRIME [26]276
used an internal dataset containing 35 video clips. For our277
experiments, we collect a dataset of 300 images and their278
corresponding generated frames. The selected images and279
frames depict people and animals with dynamic actions,280
which could potentially be misused. We exclude images of281
scenery without main subjects or images that do not yield282
noticeable temporal movement, as these typically do not pro-283
duce meaningful motion, rely mainly on camera movements,284
and may even remain static.285

Metrics We validate our experiments from two perspec- 286
tives: image perturbation and generation effects. Our goal is 287
to introduce minimal perturbations to the images that signifi- 288
cantly degrade the generated results. We use peak signal-to- 289
noise ratio (PSNR), structural similarity (SSIM) metrics, and 290
Fréchet Inception Distance (FID) to evaluate the similarity 291
between the attacked and original images. For evaluating 292
video generation results, we use the metrics Subject Con- 293
sistency, Motion Smoothness, Aesthetic Quality, and Image 294
Quality from VBench [23]. Subject Consistency measures 295
the average cosine similarity of Dino [6] features between 296
each frame and the first frame, assessing temporal coherence. 297
Motion Smoothness calculates the mean absolute error be- 298
tween interpolated and dropped frames. Aesthetic Quality is 299
assessed using the LAION aesthetic predictor [1], and Image 300
Quality evaluates the presence of low-level distortions in 301
generated video frames with MUSIQ [24]. 302

Setup We control the added noise strength by adjusting 303
the number of training steps and the perturbation threshold 304
at each step. For the loss function, we scale the hyperparam- 305
eters α, β, γ to ensure that each loss component remains on 306
a similar scale. During training, we use a black image as the 307
target image Itg and black frames as the target video Vtg. 308
For the attention hooks, we focus on the temporal attention 309
block of the last downsampling blocks in the UNet and the 310
middle blocks in the transformer, separately. 311

4.2. Qualitative Analysis 312

Attack on Image-to-Video Generation We analyze the 313
generation results using two image-to-video generation mod- 314
els: Stable Video Diffusion (SVD) and CogVideoX, as shown 315
in Fig. 4. We observe that the noise added to the guarded 316
image is nearly invisible, yet it causes significant variations 317
in the generated results. In the example shown in Fig. 4a, we 318
additionally illustrate the generated results for both a random 319
noisy image and an image protected by PhotoGuard [35]. 320
The random noise does not affect generation quality, preserv- 321
ing both temporal consistency and normal spatial appear- 322
ance, likely because the VAE filters out such random noise. 323
The PhotoGuard-protected image, however, introduces noise 324
specifically on the person, which slightly affects appearance 325
without compromising temporal consistency. In contrast, our 326
protected image disrupts both spatial content and temporal 327
consistency. Specifically, the woman’s head and hair move- 328
ment appear unnatural, chaotic frames are generated, and 329
unusual textures emerge in the background across all frames. 330
Fig. 4b shows results from CogVideoX under an image-only 331
setting, where no prompt is applied during training and in- 332
ference. CogVideoX, which is relatively more powerful than 333
SVD, requires relatively stronger noise to affect generation. 334
It can be observed that motion distortions still occur, particu- 335
larly in areas where motion takes place, such as the blurred 336
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Original Image Generated video from original image.

Random Noisy Image Generated video from random noisy image.

PhotoGuard Image Generated video from PhotoGuard protected image.

Our Guarded Image Generated video from guarded image.

(a) SVD generation results on original image, random noisy image, PhotoGuard image and our I2VGuard image.

Original Image Generated video from original image.

Guarded Image Generated video from guarded image.

(b) CogVideoX generation results, where we do not set the prompt in the process of video generation.

Figure 4. Qualitative results of adversarial attacks on I2V models SVD and CogVideoX. We also include generation results of SVD with
random noise and PhotoGuard [35] perturbations for comparison. All generation results are using the same seed.

head movement of the man, with the noise causing the sur-337
rounding regions to fail in generation, resulting in a blur.338
In summary, our method effectively disrupts both spatial339
content and temporal consistency in generated videos.340

Attack on Conditional Image-to-Video Generation We341
present an attack on conditional image-to-video mod-342
els in Fig. 5, specifically examining pose-conditioned343
ControlNeXt-SVD and text-guided video generation with344
CogVideoX. In the first row of Fig. 5a, the ControlNeXt345
model effectively controls the character’s motion while main-346
taining consistent character appearance and background fea-347
tures. However, in the second row, where we guard the orig-348
inal image, the model fails to preserve character’s appear-349

ance and fidelity in the background. Noticeable differences 350
emerge: for instance, the fruits in the background exhibit 351
blurring, and the character appears deformed. These spatial 352
distortions illustrate the effectiveness of our attack method. 353
Despite this, the pose control remains robust, likely due to the 354
intensive training of the original SVD UNET, which results 355
in strong overfitting to the specific style and hands shape. In 356
the example of CogVideoX shown in Fig. 5b, we observe 357
that adding special texture noise leads to the generation of 358
temporal inconsistency and blurred content compared with 359
the original ones. Specifically, in this case, texture noise is 360
applied around the animals, causing distortions in the gener- 361
ated output, such as headless and transparent ostriches. In our 362
experiments, CogVideoX exhibits strong prompt-following 363
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Original Image Generated video from original image.

Guarded Image Generated video from guarded image.

(a) ControlNeXT-SVD-v2 generation results.

Original Image Generated video from original image.

Guarded Image Generated video from guarded image.

(b) CogVideoX generation results. The prompt is “Many ostriches are running”.

Figure 5. Qualitative results of adversarial attacks on conditional I2V models ControlNeXt and CogVideoX. It can be observed that
visual features are not controlled effectively, leading to unreasonable generation results. All generation results are using the same seed.

Figure 6. Detailed visualization. Comparison between generated
results from the original and attacked images from Fig. 1 shows that
some unreasonable textures are generated in the attacked frames.

ability, and by slightly increasing the noise strength, we are364
able to successfully execute the attack.365

Details of Generation Results In Fig. 6, we provide a366
detailed examination of the distortions in generated frames367
compared to the frames generated from the original image.368

As shown in the right image, abnormal fragmented textures 369
appear, which noticeably degrade the quality of the generated 370
content. This result demonstrates that our method effectively 371
disrupts the low-level visual quality in the generated frames. 372

4.3. Quantitative Analysis 373

Image Perturbation Analysis We present the modified 374
image quality results in Tab. 2. Random noise was added to 375
the original images to establish a baseline for comparison. 376
The mean and variance of the added noise in this baseline are 377
generally comparable to the modifications introduced in our 378
attacked images. The results demonstrate that, despite simi- 379
lar perturbation strength, our method achieves significantly 380
higher image quality, as indicated by higher score in both 381
peak signal-to-noise ratio (PSNR) and structural similarity 382
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Generated Video Source Subject Consistency(%, ↑) Motion Smoothness(%, ↑) Aesthetic Quality (%, ↑) Image Quality(↑)
Original Image 95.86±2.62 97.90±1.43 56.76±4.75 67.28±6.18

Random Noise Image 94.93±3.58 97.69±1.32 56.48±5.02 67.31±6.52

Our Guarded Image 91.57±3.95 97.18±1.21 53.42±4.93 64.38±8.23

w.o. Spatial Attack 94.72±3.67 97.62±1.35 56.28±5.31 66.68±6.90

w.o. Temporal Attack 93.74±3.87 97.56±1.37 54.80±5.35 65.98±7.70

w.o. Diffusion Attack 93.43±4.30 97.53±1.39 55.44±5.65 67.05±7.33

Table 1. Analysis of video generation effects of SVD from original images, images with random noise, and images guarded by our method.
An ablation study on the different attack methods is also presented. Mean and variance of evaluations are reported. We exclude results with
extremely high subject consistency and motion smoothness, as these indicate static frames, which are outside the scope of this evaluation.

Image Type PSNR(↑) SSIM(↑) FID(↓)
Random Noise 26.22±0.04 0.774±0.003 14.31
Guarded Image 31.83±0.19 0.868±0.016 16.78

Table 2. Analysis of perturbations between original and modified
images. Random noise is introduced to the original images to es-
tablish a baseline, and the mean and variance of the perturbations
are reported.

index measure (SSIM). A qualitative comparison reveals383
that the noise added to the image possesses its own texture,384
which is less visible than the random noise added. In terms385
of image quality and diversity, our approach yields a higher386
Fréchet Inception Distance (FID). This is expected because387
the specific texture noise we add aligns with the original im-388
age texture, resulting in lower diversity compared to images389
with added random noise.390

Video Generation Analysis Evaluation results for gener-391
ated videos are shown in Tab. 1. First, we assess the perfor-392
mance of the SVD model on original images, finding that393
it demonstrates strong subject consistency, smooth motion394
transitions, high aesthetic quality, and well-preserved low-395
level image quality. This suggests that the SVD model is396
capable of generating visually coherent and temporally sta-397
ble content. Next, we evaluate the baseline, which introduces398
random noise to the generation process. With the addition of399
random noise, the generated results display a minor decrease400
in all evaluation metrics. This modest drop indicates that401
the SVD model has robust generalization abilities, manag-402
ing to preserve video quality despite slight perturbations. In403
contrast, our method, which uses a similar noise strength,404
significantly impacts all evaluated metrics. To be precise,405
temporal assessments reveal declines of 4.7% in subject con-406
sistency and 0.7% in motion smoothness, showing that our407
method effectively disrupts the model’s temporal coherence.408
Specifically, the decline in subject consistency is reflected409
in irregular movement of the main object’s location or the410
sporadic appearance and disappearance of the object. The411
decline in motion smoothness is reflected in abrupt, dis-412
continuous frame-to-frame movements. Spatial evaluations413

also show that our method considerably diminishes aesthetic 414
quality and low-level image quality by 6.2% and 4.5%, re- 415
spectively. The decrease in aesthetic quality is evident in the 416
appearance of unusual textures or object deformations that 417
detract from the visual appeal. These reductions reflect a 418
successful attack on the image-to-video model. 419

4.4. Ablation Study 420

We conduct an ablation study, as illustrated in Tab. 1, to 421
examine the impact of omitting each of the three attack 422
methods. The results indicate that without the spatial attack, 423
the protection effect is relatively weak, as spatial-temporal 424
performance remains high. In that case, fewer distinct tex- 425
tures are generated, and the added noise tends to be more 426
uniform. This suggests that, without the spatial attack, added 427
noise is partially filtered out by the encoder. Additionally, 428
we observe that when both spatial and temporal attacks are 429
applied, the protected results exhibit improved temporal con- 430
sistency but reduced spatial quality compared to results with 431
only spatial and diffusion attacks. This occurs because the 432
temporal attack focuses exclusively on temporal features, 433
while the diffusion attack affects both spatial and temporal 434
aspects simultaneously. The exclusion of any one of the three 435
attacks leads to reduced protection effectiveness, underscor- 436
ing the importance of all three attacks in achieving optimal 437
protection. 438

5. Conclusion 439

In this paper, we presented I2VGuard, a novel adversar- 440
ial approach designed to apply imperceptible perturbations 441
on images to degrade the quality of videos generated by 442
diffusion-based image-to-video models, thereby protecting 443
images from misuse. Concretely, we designed three attack 444
modules, i.e. spatial attack, temporal attack and diffusion 445
attack to disrupt visual fidelity, temporal consistency, and 446
cross-model robustness, respectively. Extensive experiments 447
on state-of-the-art generative models demonstrated the effec- 448
tiveness of our approach. 449
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