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Abstract

Large language models (LLMs) have show-
cased their capability with few-shot inference
known as in-context learning. However, in-
domain demonstrations are not always readily
available in real scenarios, leading to cross-
domain in-context learning. Besides, LLMs
are still facing challenges in long-tail knowl-
edge in unseen and unfamiliar domains. The
above limitations demonstrate the necessity of
Unsupervised Domain Adaptation (UDA). In
this paper, we study the UDA problem under
an in-context learning setting to adapt language
models from the source domain to the target
domain without any target labels. The core
idea is to retrieve a subset of cross-domain ele-
ments that are the most similar to the query, and
elicit language model to adapt in an in-context
manner by learning both target domain distri-
bution and the discriminative task signal simul-
taneously with the augmented cross-domain in-
context examples. We devise different prompt-
ing and training strategies, accounting for dif-
ferent LM architectures to learn the target dis-
tribution via language modeling. With exten-
sive experiments on Sentiment Analysis (SA)
and Named Entity Recognition (NER) tasks,
we thoroughly study the effectiveness of ICL
for domain transfer and demonstrate significant
improvements over baseline models.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable success in various tasks via in-
context learning (ICL) with task instructions and
few-shot demonstrations (input-label pairs) (Zhao
et al., 2021; Liu et al., 2022; Min et al., 2022), elim-
inating the need for fine-tuning from task-specific
labels. Nevertheless, in-domain demonstrations
are usually absent in real scenarios since the target
domain labels are unavailable. Sourcing labeled ex-
amples from other domains may suffer from huge
syntactic and semantic domain shifts. Moreover,
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Source input:
In the study at the University's Institute for 
Human Gene Therapy, researchers altered 
a common-cold virus to carry a version of 
the working dystrophin gene.

Target contexts：
Our oganization finds structural and 
developmental expression pattern of the 
mouse WD - repeat gene DMR - N9 
immediately upstream of the myotonic 
Dystrophy Locus.

The XPR2 gene from Yarrowia lipolytica 
encodes an inducible alkaline extracellular 
protease.
…… Biomedical Literature

News article

+

Language 
Modeling

Entity 
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Figure 1: A motivating example of retrieval-augmented
in-context adaptation for NER: biomedical texts re-
trieved from the target unlabeled domain will serve
as demonstrative contexts to help LMs correctly pre-
dict entities "Institute for Human Gene Therapy" and
"dystrophin gene" (solid arrow). The language model
transfers the knowledge to the target domain to identify
unknown entities with a similar structure like "XPR2
gene" or "dystrophy locus" by learning target distribu-
tion with language modeling (dotted arrow).

LLMs are prone to generating unpredictable out-
puts in undesired formats, and they are struggling
with long-tail knowledge for unseen and unfamil-
iar domains where topics and genres are less fre-
quently encountered in the training corpus (Asai
et al., 2023). Therefore, the limitations above call
for effective adaptation strategies to transfer knowl-
edge of LMs from a labeled source domain to the
unlabeled target domain, known as Unsupervised
Domain Adaptation (UDA).

To bridge the domain gap, UDA aims to adapt
models that learn domain-agnostic features from
labeled source samples and unlabeled target sam-
ples. Some studies have proposed discrepancy mea-
sures to align source and target distributions in the
representation space (Ganin et al., 2016; Ye et al.,
2020; Long et al., 2022). However, these methods
mainly focus on feature alignment and only ap-
ply to encoder-based LMs. Other studies focus on
adaptive pre-training including an additional post



pre-training phase of masked language modeling
(MLM) on target unlabeled data to learn the tar-
get domain distribution (Han and Eisenstein, 2019;
Karouzos et al., 2021). However, different training
phases make the learned diverse knowledge hard to
remember, and such methods are also only applica-
ble to encoder-only LMs which are usually smaller
in scale. Therefore, few studies have investigated
how to update knowledge of unfamiliar domains
for larger LMs (e.g., decoder-only LMs). And few
studies try to relate source-labeled samples to tar-
get unlabeled examples in a single training stage,
while vast amounts of target unlabeled data can
serve as a knowledge-rich datastore.

In this paper, we propose to retrieve similar ex-
amples from the target unlabeled corpus to serve
as the context of a source query and perform adap-
tive in-context learning by concatenating the source
query and target contexts as the input prompt. The
core idea is to elicit LMs to learn target distribu-
tion and discriminative task signals simultaneously
with the retrieved cross-domain examples. Fig. 1
shows an illustrative example. For each input from
the source domain, we compose its context with
semantically similar texts retrieved from the target
unlabeled domain to enrich semantics and reduce
the domain difference in the surface form. Then
the model will learn the task discrimination taking
both the source input and the target context. To
further mitigate domain shift, we propose to learn
the target distribution using the language modeling
mechanism (causal or masked language modeling)
simultaneously by predicting tokens from the target
context, which acts as a proxy to the target distri-
bution. Combining the two goals encourages the
model to learn domain-agnostic and task-aware in-
formation which is beneficial for knowledge trans-
fer.

We propose a domain-adaptive in-context learn-
ing (DAICL) framework for different LM archi-
tectures, including encoder-only and decoder-only
models, and observe consistent advantages. To ac-
count for the architectural difference, we devise
distinct prompting and fine-tuning strategies. For
the encoder-only model, we append contexts re-
trieved from the target domain to each source input.
The model is trained to predict source input labels
and masked tokens in the appended contexts. For
the decoder-only model, we instead prepend exam-
ples before the source input. The model is trained
to predict each token autoregressively in the prompt

as well as the response output.
Overall, we make the following contributions:

• We propose domain-adaptive in-context learn-
ing with retrieval augmentation in which we
mix the source input and semantically rich tar-
get contexts to learn two in-context objectives
simultaneously;

• We proposed a unified framework with effi-
cient prompting and fine-tuning strategies ac-
counting for different architectures (encoder-
only LMs and decoder-only LMs);

• We thoroughly study the effectiveness of
in-context learning for UDA. Our experi-
ments surprisingly reveal that retrieving out-
of-distribution demonstrations fails for LLMs’
few-shot inference and fine-tuning is still ben-
eficial for domain adaptation.

2 Problem Definition

Consider a scenario where we have access to two
distinct domains: a source domain and a target
domain. The source domain dataset, denoted
as DS , consists of n labeled data sampled i.i.d.
from the source distribution, DS = {xSi , yi}1,...,n,
where xSi represents sequences of tokens, yi repre-
sents the corresponding label. On the other hand,
the unlabeled target domain dataset, denoted as
DT = {xTj }1,...,m, comprises m unlabeled data
points, which are also sampled i.i.d. from the target
domain. The primary objective of Unsupervised
Domain Adaptation (UDA) is to adapt the knowl-
edge learned from the source domain in such a way
that allows it to generalize on the target domain
effectively. This adaptation process involves lever-
aging the unlabeled data from the target domain to
learn the target distribution and mitigate the domain
shift.

This paper focuses on the UDA problem over
two application scenarios: Named Entity Recog-
nition (NER)1 and Sentiment Analysis (SA). We
describe our method and pivot discussions around
these two tasks in the following sections.

3 Method

We propose a novel framework, Domain Adaptive
In-Context Learning (DAICL), capable of training

1In our work, we only need to predict the entity spans,
ignoring the entity type, because the label spaces for different
domains are different when considering entity type. However,
we still refer to this task as NER for short.
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Figure 2: An overview of training encoder-only NER models with retrieved context via in-context learning.

LMs to adapt with the help of retrieved contexts.
We begin by introducing the overall framework
in Section 3.1. Next, we present specific designs
for Encoder-only language models in Section 3.2;
and Decoder-only language models in Section 3.3.
For decoder-only models, we present two settings:
inference-only (Section 3.3.1) and fine-tuning (Sec-
tion) 3.3.2.

3.1 In-Context Adaptation

The term In-Context Learning has been commonly
referred to as few-shot prompting in LLMs. To be
clear, in this work, we instead use In-Context Learn-
ing to emphasize the idea of learning a model with
semantically rich contexts. Here context should
be differentiated with demonstration, the latter one
represents input-label pairs in few-shot prompting.
Under the setting of UDA where target labels are
not accessible, context is composed of input-only
examples from the unlabeled target domain. Next,
we present an overall framework to construct suit-
able contexts and adapt LMs with suitable contexts.

3.1.1 Context Construction with Retrieval

Given an input sentence from the source domain,
we first search for semantically similar examples
from the unlabeled target domain. This is analo-
gous to retrieval and re-rank given a search query.
Retrieval-augmented LM approaches (Guu et al.,
2020; Lewis et al., 2020; Asai et al., 2023) ap-
ply a parametrized dense retriever to train with
the task model. In this paper, we fix the retriever
part and use the off-the-shelf scoring language
models. For the SA task, we use SimCSE (Gao
et al., 2021) which produces semantically meaning-
ful sentence embeddings after being trained with
contrastive learning (Chen et al., 2020; He et al.,
2020). Here cosine similarity is used to retrieve

top-ranked (most similar) examples from the tar-
get domain. For NER, we use BERTScore (Zhang
et al., 2020; Wang et al., 2021), because it gives a
metric for each sentence based on the similarity of
token representation, which is more crucial for the
task of NER.

Specifically, given a source sentence xS paired
with label y, we retrieve top-k relevant chunks
of texts from the target unlabeled dataset DT .
The retrieved examples are denoted as xT =
{xT1 , · · · , xTk } which will serve as the contexts to
enrich the semantics for the source input.

3.1.2 Domain-Adaptive In-Context Learning
With the retrieved context consisting of k most se-
mantically similar examples to the source input,
we seek a strategy to integrate this context into
the source input and design a training objective
that could learn target distribution and at the same
time be able to discriminate the task label. To
this end, we propose to combine the following two
objectives given the concatenated text sequences
[xS ;xT ]. Objective 1: In-context Task Learning –
a supervised task to predict the task label y. Objec-
tive 2: In-context Language Modeling – a token
prediction task to predict tokens from the target
context xT :

LSup(θ) = − log Prθ
(
y
∣∣xS , xT ); (1)

LLM (θ) = − log Prθ
(
tTi
∣∣xS , xT ), tTi ∈ xT , (2)

where θ represents the parameters for a language
model. Ideally, the first objective (1) aims to learn
task discrimination with the help of context. Note
that unlike single-domain task prediction which
only takes xS as input, here we augment the source
input with target contexts to learn task-aware infor-
mation across domains. The second objective (2)



encourages the model to learn the target distribu-
tion by predicting tokens in the target context xT .
By mixing with a source input, the model learns to
fuse the distributions from two different domains
in order to bridge the domain gap. When combin-
ing these two objectives, we expect that the model
learns task-aware knowledge that is indistinguish-
able from the two domains.

3.2 Encoder-only LMs with ICL

This section describes domain-adaptive in-context
learning with encoder-only LMs, e.g., BERT (De-
vlin et al., 2019). As discussed in Section 3.1, for
each input xS , we first retrieve top-k sentences xT

from the target domain as the context for xS . For
encoder-only models, the retrieved sentences are
then concatenated at the end of the source input.

[xS ;xT ] =
[
xS ; ⟨SEP⟩ ;xT1 ; · · · ;xTk

]
, (3)

where ⟨SEP⟩ is a separation token.
To perform in-context learning, recall from Sec-

tion 3.1, two objectives (language modeling and
task learning) are involved. An overview of the
training process for encoder-only models on the
NER task is shown in Fig. 2. For the language mod-
eling objective, we perform unsupervised Masked
Language Modeling (MLM) on the target domain.
We randomly sample 15% tokens from the target
context [xT1 ; · · · ;xTk ] and replace them with the
[MASK] token. We denote the set of indices for the
masked tokens as M and the original ground-truth
tokens for these masked positions are referred to
as tTM = {ti|i ∈ M}. The masked input becomes
[x;xTM ], where xTM denotes the collection of tar-
get contexts after masking. With the bidirectional
structure of the encoder-only LMs, the represen-
tation for each masked token in the target domain
encodes both the target context and the source in-
put. As such, the MLM objective encourages the
encoder to learn the target distribution that is indis-
tinguishable from the source domain.

For the task objective, we use different predic-
tion mechanisms for different tasks. For SA, we
use average pooling on top of each token in the
source input xS before being fed into the classifier.
For NER, we apply an additional CRF layer (Ma
and Hovy, 2016; Lample et al., 2016) on top of
the LM feature which is a common practice for
token-level classifications.

Formally, the joint objective is to minimize the
negative log-likelihood of the ground truth task

label y and masked tokens tTM :

min
θ

∑
(xS ,y)∼DS

−
[
log Prθ(y|xS , xTM )

+ λ log Prθ(t
T
M |xS , xTM )

]
,

(4)

where λ represents a scaling factor.

3.3 Decoder-only LMs with ICL

Recently, decoder-only LMs have received exces-
sive attention and have motivated continuous devel-
opments to scale up in order to solve various NLP
tasks under zero-shot or few-shot settings, such
as GPT-3 (Brown et al., 2020), LLaMA (Touvron
et al., 2023), and ChatGPT. Despite the increasing
scalability, they are still prone to producing unpre-
dictable outputs in undesired formats. For example,
ChatGPT gives subpar performance for NER (see
Table 1). This reflects the necessity of decoder-only
LMs for learning to adapt to the target domain.

3.3.1 Cross-Domain Few-Shot Inference
Recent works show that providing few-shot ICL
demonstrations (input-label pairs) contributes to
performance gains (Zhao et al., 2021; Liu et al.,
2022; Min et al., 2022). However, there are no
in-distribution demonstrations available when per-
forming inference on the unlabeled target domain.
Therefore, in many real scenarios, we often select
out-of-distribution (OOD) input-label pairs from
another domain irrespective of the possible huge
domain shift from the target query. In UDA, we
have access to the entire labeled source dataset,
thus we could retrieve similar demonstrations from
the source domain given a target query. We pro-
vide prompts and examples in Fig. 3 showing how
to use retrieved input-label pairs from the source
domain as demonstrations.

In our experiments with ChatGPT (see Table.
1 and Table. 2), surprisingly we find that re-
trieving OOD demonstrations fails in most adap-
tation scenarios; even randomly sampling cross-
domain demonstrations can bring non-trivial per-
formance gains comparing with the retrieval ap-
proaches. However, fine-tuning much smaller LMs
with in-context domain adaptation gives the best
performances in most cases in our experiments.
This phenomenon suggests we still need to fine-
tune decoder-only LMs to update specific domain
knowledge which will be discussed in the next sec-
tion.



Named Entity Span Prediction Sentiment Analysis
Please identify all entities from the input sentence. If there is no 
entity, please output None.

Given the input sentence, assign a sentiment label from ['positive', 
'neutral', 'negative']. Return label only without any other text.

Sentence: In the study at the University's Institute for Human Gene Therapy, 
researchers altered a common-cold virus to carry a version of the working 
dystrophin gene.
Entity: Institute for Human Gene Therapy, dystrophin gene
Sentence: The virus, which also was altered to minimise its susceptibility to the 
immune system, was then injected into the muscle cells of mice bred to lack 
dystrophin genes.
Entity: dystrophin genes
Sentence: Both drugs are types of interferon.
Entity: None
……

Sentence: This cable works well with my best thing is that it is long so you don't 
have to be right next to your TV to review your photos and video.
Label: positive
Sentence: Very good and normal quality, you can use it instead of originals 
cheap suitable for Canon. I haven't more words but the site required more words 
so i wrote that.
Label: positive
Sentence: I don't use the headset every day but it seems not bad.
Label: neutral
……

Sentence: Physical mapping 220 kb centromeric of the human MHC and 
DNA sequence analysis of the 43 - kb segment including the RING1, HKE6, 
and HKE4 genes.
Entity:

Sentence: Spiritually and mentally inspiring! A book that allows you to 
question your morals and will help you discover who you really are!
Label: 

Source Source

Target Target

Figure 3: Examples with prompts for inference. Different from fine-tuning setting that uses target unlabeled dataset
as the retrieval corpus, for inference setting, we search input-label pairs from the source labeled dataset given a
target test query. Dotted boxes contain demonstrations retrieved from the source.

Sentiment Analysis
Below is an instruction that describes a task. Write a response that appropriately 
completes the request.

###Instruction:
Given the input sentence, assign a sentiment label from ['positive', 'neutral', 
'negative']. Return label only without any other text.

Sentence: The lyrics of this song are so powerful and heartening.
Sentence: Love this album! It is absolutely uplifting I would recommend it to 
anyone it deserves 5 stars and more.
Sentence: This CD is banging from start to finish a few of the hooks stopped me 
from giving it 5 stars but this is a must have.

Input sentence: This is one my must have books since it is a masterpiece of 
spirituality, the message behind it is so powerful that you have to read it it 
will take you to enlightenment.

###Response: positive

Figure 4: Illustration of crafted training example
[prompt;xT ;xS ; y], dotted box contains k = 3 input-
only demonstrations from target unlabeled dataset.

3.3.2 Fine-tuning
In this work, we fine-tune LLaMA (Touvron et al.,
2023) with a parameter efficient approach, i.e.,
Low-Rank Adaptation (LoRA) (Hu et al., 2021).
LoRA maintains the weights of pre-trained LMs
while introducing trainable rank decomposition ma-
trices into each transformer layer, making it feasi-
ble to fine-tune larger LMs with much fewer com-
putational resources 2.

Similar to the method proposed in Section 3.2,
we first retrieve top-k contexts from the target unla-
beled set, given a source input query. We then
insert these contexts in between the instruction
and the source input sentence3 (see an example
in Fig. 4). Next, we finetune the decoder-only LMs
given the crafted example [prompt;xT ;xS ; y] =
[t0, t1, t2, · · · ] and the source label. Specifically,
with the Casual Language Modeling (CLM) mech-

2In our experiment, trainable parameters only account for
0.24% of the entire LLaMA-7B parameters.

3We follow the template from Standford Alpaca (Taori
et al., 2023)

anism, the objective is to predict the next token
ti:

min
θ

∑
i
− log Pr

θ
(ti|t0, t1, · · · , ti−1). (5)

Different from section 3.2, for decoder-only
LMs, the retrieved target contexts xT need to be
positioned before the source input xS as the model
will learn in an autoregressive manner. Moreover,
instead of only calculating token prediction loss
on the response/output y which is adopted for the
In-context Task Learning objective as discussed
in Section 3.1, we propose to compute the loss
on every token within [prompt;xT ;xS ; y]. Objec-
tive (5) can be decomposed into two objectives:
1) When ti ∈ xT , the loss corresponds to token
predictions in the target domain, analogous to the
in-context language modeling objective; 2) When
ti ∈ y, the loss relates to in-context task learning
which aims to generate task label given both tar-
get contexts and the source input. The objective
(5) thus merges two proposed in-context objectives
into a unified function.

4 Experiments

4.1 Datasets
NER datasets We experiment on 7 NER datasets
covering four domains: News, Social media, Fi-
nancial, and Biomedical. Under the News domain,
CoNLL-03 English dataset (Sang and De Meulder,
2003) is the most popular NER dataset, and we treat
it as the source domain dataset. The other three do-
mains serve as target domains. For the Social Me-
dia domain, we use WNUT-16 (Strauss et al., 2016)
and WNUT-17 (Derczynski et al., 2017) collected
from Twitter. For the Financial domain, we use



FIN (Alvarado et al., 2015) which is a dataset of
financial agreements. For the Biomedical domain:
we use BC2GM (Smith et al., 2008), BioNLP09
(Kim et al., 2009), and BC5CDR (Li et al., 2016).
Note that for different domains, entity types are
different. For unsupervised domain adaptation, to
ensure source and target domains share the same
label space, we remove the entity types and convert
all label formats to the BIO scheme4, similar to the
problem of entity span prediction.
Sentiment Analysis datasets We use the Amazon
review dataset (He et al., 2018) which contains four
domains: Book (BK), Electronics (E), Beauty (BT),
and Music (M). The original crawled reviews con-
tain star ratings (1 to 5 stars). Following previous
work (He et al., 2018; Ye et al., 2020), we label
them with rating < 3, > 3, = 3 as negative, pos-
itive, and neutral respectively. There are in total
12 adaptation scenarios, and we select 6 of them in
our experiment.

Statistics and the data splits of all the datasets
can be found in Appendix A.

4.2 Experiment Configurations
For our retrieval system, we use SimCSE Roberta-
Large (Gao et al., 2021) trained on NLI datasets5

as the retrieval model for the SA task, and use
RoBERTa-large (Liu et al., 2019) for BERTScore
(Zhang et al., 2020) for the NER task6. We set
k = 5 for top-k retrieval from the target do-
main. For the encoder-only model, we select
XLM-RoBERTa-large (Conneau et al., 2020) as
a basis which has 561M parameters. For the
decoder-only model, we use LLaMA-7B7 (Touvron
et al., 2023) and fine-tune it with LoRA (Hu et al.,
2021). For inference-only LMs, we choose Chat-
GPT and LLaMA-Alpaca8. For ChatGPT, we use
gpt-3.5-turbo9. LLaMA-Alpaca uses LoRA to
fine-tune the LLaMA-7B model on Alpaca (Taori
et al., 2023) dataset which is generated with Self-
Instruct (Wang et al., 2022).

4.3 Implementation Details
For training the RoBERTa model, we fine-tune con-
textualized embeddings using AdamW (Kingma

4For example, entity “Los Angeles” has the label “B-LOC
I-LOC”, we convert it to “B I”.

5https://github.com/princeton-nlp/SimCSE
6https://github.com/Tiiiger/bert_score
7For computing efficiency, we adopt the 7B model, but our

method can be easily extended to larger LM families.
8https://huggingface.co/tloen/alpaca-lora-7b
9May 24 version of ChatGPT is used for experiments.

and Ba, 2015; Loshchilov and Hutter, 2018). In
the experiments on NER datasets, the learning rate
is set to 1e-5 for RoBERTa and 0.05 for CRF. For
SA datasets, we set the learning rate to 5e-5 and
use a linear scheduler with warm-up steps 10% of
the total training steps. The weight factor λ in (4)
equals to 0.2.

For LLaMA-LoRA, we set the rank r to be 16,
dropout rate to be 0.05. Trainable parameters only
account for 0.24% of the entire LLaMA-7B param-
eters. We fine-tune LLaMA-LoRA with batch size
256, learning rate 3e-4, and train 5 epochs with
early stopping. With the help of LoRA, each adap-
tation scenario only requires less than 1 hour of
training time on a single A100 GPU.

4.4 Results

We experiment with the following settings and base-
lines. For Inference-only experiments:
No demo performs zero-shot inference on each
target test input without demonstrations.
Rand demo samples demonstrations randomly
from the source domain.
Retr demo retrieves top-5 demonstrations from
the source domain, corresponding to the approach
mentioned in Section 3.3.1.
For fine-tuning experiments:
No-ICL does not retrieve any target context for
each source input. The model is only trained on
source inputs.
ICL-rand investigates the effectiveness of the task
objective (1). Instead of retrieval, we randomly
sample contexts from the target domain. In this
case, the model is not exposed to semantically sim-
ilar contexts in the target domain to enhance knowl-
edge transfer via (1).
ICL-sup only trains the model via the task objec-
tive (1). This investigates the effectiveness of the
language modeling objective (2). For the encoder-
only model, we do not mask any token. For the
decoder-only model, we calculate the loss corre-
sponding to the response/output positions.
ICL-source further investigates the effectiveness
of the target contexts. Here we retrieve contexts
solely from the source domain instead of the tar-
get domain. Hence, the model learns to perform
the task and language modeling within the source
distribution.
DAICL is our proposed method domain-adaptive
in-context learning as shown in Section 3.2 and
Section 3.3.2. As described in Section 3.1, this



Financial Social Media Biomedical
FIN WNUT-16 WNUT-17 BC2GM BioNLP09 BC5CDR

Inference only

LLaMA-Alpaca
No demo 16.69 14.71 16.20 13.74 16.44 21.64
Rand demo 13.59 23.20 22.10 20.69 24.46 25.83
Retr demo 20.18 29.5 26.73 22.56 22.98 27.26

ChatGPT
No demo 19.60 32.10 33.45 19.90 15.44 37.16
Rand demo 20.82 39.73 39.45 26.92 21.71 37.85
Retr demo 19.88 38.28 38.10 24.17 18.98 35.71

Fine-tuning

RoBERTa

Vu et al. (2020) 23.38 47.11 – 30.81 29.24 –
No-ICL 24.171.3 68.490.2 63.180.3 27.691.6 33.671.1 21.842.2

ICL-rand 24.912.9 69.26†
0.6 64.66†

0.3 30.68†
1.6 35.19†

0.9 26.93†
1.9

ICL-sup 26.24†
2.1 70.89†

0.4 65.40†
0.4 28.071.4 34.110.9 23.20†

2.2

ICL-source 24.911.2 68.840.3 63.380.2 26.961.8 32.071.2 22.062.0

DAICL 27.22†
2.1 71.79†

0.4 65.79†
0.2 32.51†

1.1 36.81†
0.6 25.92†

1.8

LLaMA-LoRA

No-ICL 15.20 45.22 53.92 24.24 26.29 25.35
ICL-rand 12.68 42.09 51.08 23.06 21.66 21.28
ICL-sup 15.81 45.70 54.32 24.83 25.00 26.91
ICL-source 14.73 45.30 53.29 24.54 23.92 24.96
DAICL 14.82 46.51 55.08 26.02 24.21 28.96

Table 1: F1 results of Named Entity Span prediction tasks. The source domain is the CoNLL-03 dataset, and the
target domains are financial, social media, and biomedical. For RoBERTa, results are reported with average and
standard deviation in 5 runs, † represents the model is significantly stronger than the baseline model No-ICL with
p < 0.05. For LLaMA, due to the cost of inference computation, we only perform a single run.

method retrieves related contexts from the target
domain and combines two objectives to perform
domain-adaptive ICL.

The experiment results for NER and SA are illus-
trated in Table 1 and Table 2, respectively. Below
we conclude with some interesting findings.

Adaptive ICL benefits UDA by learning two ob-
jectives simultaneously. Given the results in Table
1 and Table 2, we can observe that our proposed
method DAICL which learns two objectives simul-
taneously surpasses baselines with a large margin
in most adaptation scenarios. From the result of
ICL-sup, we find that training with the task objec-
tive alone could slightly help UDA. As discussed in
Section 3, the benefit originates from incorporating
the target contexts for task discrimination. By com-
paring DAICL with ICL-sup and ICL-source, we
can conclude that the proposed in-context adapta-
tion strategy enhances domain adaptation by jointly
learning the task signal and language modeling si-
multaneously.

Retrieving OOD examples could be disappoint-
ing for LLMs. From the RoBERTa results of ICL-
rand, we find that random target contexts can im-
prove NER (compared with No-ICL) by a small
margin. One possible reason is that random con-
texts from the target domain could still encourage
the model to learn the target distribution via (2).

However, ICL-rand significantly impedes the per-
formance of Sentiment Analysis. We conjecture
that ICL-rand might select target contexts with op-
posite sentiment labels from the source input, neg-
atively affecting the learning process.

Surprisingly, ChatGPT with random out-of-
distribution (OOD) demonstrations achieves higher
scores than retrieval in all NER and SA experi-
ments (Rand demo vs. Retr demo). Previous work
reveals that choosing demonstration examples that
are close to the test input significantly enhances
the effectiveness of ICL (Liu et al., 2022; Rubin
et al., 2022). However, they retrieve from a labeled
training set in which the distributions of the text
and label space are identical with the test input. In
contrast, in transfer setting which is close to the
real-world scenario, we only have OOD input-label
pairs from another labeled dataset. We make a
hypothesis regarding this observation, for cross-
domain ICL, providing diverse and distinct OOD
demonstrations is more beneficial for LLMs to un-
derstand the task and generalize.

Fine-tuning is still beneficial for UDA. Under the
UDA setting where labels only exist in the source
domain, we can prompt LLMs with input-label
pairs from the source domain to infer the target la-
bel (inference-only). Another option is to fine-tune
smaller LMs to adapt task-aware knowledge from
the source to the target domains. A natural ques-



E→BK BT→BK BK→BT BK→M BK→E M→BT Ave.
Inference only

LLaMA-Alpaca
No demo 61.53 61.53 63.72 58.86 59.41 63.72 61.46
Rand demo 54.33 55.45 60.48 49.09 51.98 63.78 55.85
Retr demo 60.9 63.58 69.35 60.33 61.36 67.82 64.06

ChatGPT
No demo 72.68 72.68 72.27 70.06 69.83 72.27 71.63
Rand demo 73.10 73.27 74.37 71.18 71.44 74.3 72.94
Retr demo 73.07 71.92 73.82 69.69 71.00 73.57 72.18

Fine-tuning

RoBERTa

Long et al. (2022) 70.330.3 70.920.6 64.131.4 64.671.7 62.360.7 65,400.8 66.30
Ye et al. (2020) 70.900.4 71.380.8 67.480.4 67.160.6 64.001.2 70.710.3 68.61
No-ICL 68.330.5 69.850.6 65.921.1 61.471.7 61.360.7 67.430.8 65.73
ICL-rand 67.610.8 68.740.6 64.801.3 61.591.9 61.440.9 66.721.7 65.15
ICL-sup 69.68†

0.6 71.15†
0.5 68.79†

1.4 64.88†
1.1 63.16†

1.0 69.15†
1.1 67.80

ICL-source 68.700.8 70.64†
0.8 65.291.4 61.812.2 61.751.4 66.891.9 65.84

DAICL 71.21†
0.5 72.81†

0.9 68.64†
1.7 66.93†

0.8 66.08†
0.7 71.44†

0.9 69.52

LLaMA-LoRA

No-ICL 74.15 74.30 72.97 70.42 70.08 70.15 72.01
ICL-rand 65.22 64.17 60.48 61.95 59.36 63.44 62.43
ICL-sup 76.10 75.20 72.25 71.63 71.78 70.54 72.75
ICL-source 70.18 68.45 68.46 63.27 67.23 67.94 67.59
DAICL 77.30 76.30 74.02 73.40 70.38 72.37 74.13

Table 2: Accuracy(%) results of Amazon Review Sentiment Analysis. For example, E→BK represents training on
Electronics (E) and adapting to Book (BK). There are 4 domains available, we choose 6 out of 12 adaptation tasks.

tion to ask is can the few-shot prompting paradigm
substitute the fine-tuning paradigm? In NER exper-
iments, ChatGPT achieves very low performances,
but fine-tuning a much smaller RoBERTa model
achieves state-of-the-art scores in most adaptation
scenarios. In SA experiments, fine-tuning LLaMA
with even fewer trainable parameters (1.7M) out-
performs all the other methods. Hence, we hypothe-
size that although LLMs have strong generalization
ability, they cannot tackle problems in all domains.
When it comes to UDA, designing an effective
adaptation strategy is still beneficial.

4.5 Analysis

Adaptive ICL or Adaptive Pre-training? In Sec-
tion 3.1, we propose to learn the two objectives
simultaneously with the help of the target contexts.
What if we separate the two objectives into dif-
ferent training stages? In the first stage, we con-
tinue pre-training LMs on the unlabeled target do-
main dataset with the language modeling objec-
tive. In the second stage, supervised fine-tuning
is performed on the labeled source domain dataset
with the task objective. This two-step UDA pro-
cedure is called adaptive pre-training or post pre-
training (Han and Eisenstein, 2019; Vu et al., 2020;
Karouzos et al., 2021). There are two differences
between adaptive pre-training and adaptive ICL
which we propose: 1) adaptive ICL mixes a source
input with target contexts when performing task
predictions while adaptive pre-training only takes

the source input; 2) adaptive ICL learns two losses
simultaneously, and for decoder-only model, we
only have one type of task which merges these two
losses intrinsically.

WNUT17 BC2GM E→BK M→BT
pre-train 54.62 25.78 74.20 70.45
No-ICL 53.92 24.24 74.15 70.15
DAICL 55.08 26.02 77.30 72.37

Table 3: A comparison of adaptive ICL and adaptive
pre-training for LLaMA. On NER, we use CoNLL-
03→WNUT17 and CoNLL-03→BC2GM. For SA, we
use E→BK and M→BT.

To compare the two approaches, we conduct
experiments on LLaMA-LoRA to perform adaptive
pre-training. In the first stage, we pre-train LoRA
weights using target unlabeled texts. In the second
stage, we start from the LoRA checkpoint obtained
in the previous stage and continue fine-tuning it
with task supervision. We use the same Alpaca
template but do not provide demonstrative context.
Results can be found in Table 3. No ICL is identical
to the second stage in adaptive pre-training.

We could observe that pre-training only gains
marginal benefits for SA tasks compared with No-
ICL. We conjecture that the domain gap is smaller
in SA datasets than in NER datasets. The pro-
posed adaptive ICL strategy outperforms adaptive
pre-training, which could be attributed to the fact
that the decoder-only model under adaptive ICL
can learn the two objectives with demonstrative
contexts.



5 Related Work

Unsupervised Domain Adaptation
Traditional methods include Pseudo-labeling (Ye
et al., 2020), Pivot-based approach (Pan et al.,
2010), and adversarial neural network (Ganin et al.,
2016). Recently, Adaptive pre-training on domain-
specific corpora has proven to be an effective pro-
cess for adaptation, such as BioBERT (Lee et al.,
2019) which is a specialized variant of BERT.
Han and Eisenstein (2019) proposes AdaptaBERT,
which includes a second phase of unsupervised pre-
training for BERT in unsupervised domain adap-
tation. Karouzos et al. (2021) proposes a mixed
multi-task loss to learn classification and MLM.
Chronopoulou et al. (2019) utilizes an auxiliary
LM loss to prevent catastrophic forgetting in trans-
fer learning.
Retrieval-Augmented Language Models
Retrieval-based LMs have shown to be effective in
improving LM performance (Asai et al., 2023). The
retriever with various knowledge datastores can
provide up-to-date information since LMs cannot
memorize all long-tail knowledge in the parame-
ters. REALM (Guu et al., 2020) pre-trains and fine-
tunes an encoder-only model jointly with a knowl-
edge retriever by modeling documents as latent
variables and marginalizing over all possible docu-
ments. While RAG (Lewis et al., 2020) fine-tunes
an encoder-decoder model with a non-parametric
retriever by fixing the search index. Atlas (Izacard
et al., 2022) combines RAG with pre-training on
open-domain QA and knowledge-intensive tasks.
Replug (Shi et al., 2023) proposes adapting the
dense retriever to the black-box large language
models to reduce the generating perplexity.
In-Context Learning
In the context of ICL, previous studies indicate
that it primarily exposes the model’s infrastructure
learned during pre-training. Xie et al. (2022) pro-
vides evidence that ICL can be interpreted as a type
of Bayesian inference, where demonstrations act
as noisy evidence. (Min et al., 2022) shows that
the advantages of ICL mainly stem from having
the appropriate distribution of inputs and labels,
rather than solely focusing on the correctness of
individual labels. Previous research has revealed
that in scenarios where abundant training data is ac-
cessible, retrieving examples that are similar to the
test input as demonstrations significantly enhances
ICL performance. Liu et al. (2022) introduces a
retrieval module for GPT-3 (Brown et al., 2020)

and they also fine-tune the retrieval model, leading
to stronger ICL performance. Rubin et al. (2022)
trains a dense retriever to select demonstrations that
have a positive impact on the learning process.

6 Conclusion

In this work, we propose domain-adaptive in-
context learning to acquire knowledge of both the
target domain distribution and the discriminative
task signal simultaneously. We develop different
prompting and fine-tuning strategies that take into
account various LM architectures and different lan-
guage modeling mechanisms. Overall, our frame-
work demonstrates significant performance gains
over an extensive spectrum of cross-domain ex-
periments, and we perceive that fine-tuning is still
effective and promising in the era of large language
models when it involves domain shift.

7 Limitations

Our retrieval system is based on SimCSE and
BERTScore to choose semantically similar con-
texts following previous work. However, we do
not explore other scoring and re-ranking metrics,
or explore methods to train a dense retriever. On
the other hand, it is hard to tell what makes a good
demonstration simply based on a retrieval system,
considering that the retrieval system does not have
access to the inference task. We leave this for fu-
ture work to explore what is a good demonstrative
example when encountering domain shift.

8 Ethics Statement

To ensure the ethical use of Artificial Intelligence
in the legal field, we have taken measures such as
anonymizing sensitive information in real-world
datasets. In addition, our model’s predictions
should be served as supportive references for
judges, assisting them in making judgments more
efficiently, rather than solely determining the judg-
ments.

Acknowledgements

This work is partially supported by the 2020 Mi-
crosoft Research Asia collaborative research grant.
Sinno J. Pan thanks for the support from HK Global
STEM Professorship and the JC STEM Lab of Ma-
chine Learning and Symbolic Reasoning.



References
Julio Cesar Salinas Alvarado, Karin Verspoor, and Timo-

thy Baldwin. 2015. Domain adaption of named entity
recognition to support credit risk assessment. In Pro-
ceedings of the Australasian Language Technology
Association Workshop 2015, pages 84–90.

Akari Asai, Sewon Min, Zexuan Zhong, and Danqi
Chen. 2023. Acl 2023 tutorial: Retrieval-based lan-
guage models and applications. ACL 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational Conference on Machine Learning, pages
1597–1607. PMLR.

Alexandra Chronopoulou, Christos Baziotis, and
Alexandros Potamianos. 2019. An embarrassingly
simple approach for transfer learning from pretrained
language models. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 2089–2095.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Édouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451.

Leon Derczynski, Eric Nichols, Marieke Van Erp, and
Nut Limsopatham. 2017. Results of the wnut2017
shared task on novel and emerging entity recognition.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, pages 140–147.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The
journal of machine learning research, 17(1):2096–
2030.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929–3938. PMLR.

Xiaochuang Han and Jacob Eisenstein. 2019. Unsu-
pervised domain adaptation of contextualized em-
beddings for sequence labeling. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 4238–4248.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for un-
supervised visual representation learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9729–9738.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018. Adaptive semi-supervised learning
for cross-domain sentiment classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3467–
3476.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Gautier Izacard, Patrick Lewis, Maria Lomeli, Lu-
cas Hosseini, Fabio Petroni, Timo Schick, Jane
Dwivedi-Yu, Armand Joulin, Sebastian Riedel, and
Edouard Grave. 2022. Few-shot learning with re-
trieval augmented language models. arXiv preprint
arXiv:2208.03299.

Constantinos Karouzos, Georgios Paraskevopoulos, and
Alexandros Potamianos. 2021. Udalm: Unsuper-
vised domain adaptation through language modeling.
In Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2579–2590.

Jin-Dong Kim, Tomoko Ohta, Sampo Pyysalo, Yoshi-
nobu Kano, and Jun’ichi Tsujii. 2009. Overview of
bionlp’09 shared task on event extraction. In Pro-
ceedings of the BioNLP 2009 workshop companion
volume for shared task, pages 1–9.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.



In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2019. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36:1234 – 1240.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Jiao Li, Yueping Sun, Robin J. Johnson, Daniela Sci-
aky, Chih-Hsuan Wei, Robert Leaman, Allan Peter
Davis, Carolyn J. Mattingly, Thomas C. Wiegers,
and Zhiyong Lu. 2016. Biocreative v cdr task corpus:
a resource for chemical disease relation extraction.
Database: The Journal of Biological Databases and
Curation, 2016.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B
Dolan, Lawrence Carin, and Weizhu Chen. 2022.
What makes good in-context examples for gpt-3?
In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Quanyu Long, Tianze Luo, Wenya Wang, and Sinno
Pan. 2022. Domain confused contrastive learning for
unsupervised domain adaptation. In Proceedings of
the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2982–2995.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074.

Julian McAuley, Christopher Targett, Qinfeng Shi, and
Anton Van Den Hengel. 2015. Image-based recom-
mendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on
research and development in information retrieval,
pages 43–52.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe,
Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. 2022. Rethinking the role of demonstrations:
What makes in-context learning work? In Confer-
ence on Empirical Methods in Natural Language
Processing.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qiang
Yang, and Zheng Chen. 2010. Cross-domain senti-
ment classification via spectral feature alignment. In
Proceedings of the 19th international conference on
World wide web, pages 751–760.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2655–2671.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142–147.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Min-
joon Seo, Rich James, Mike Lewis, Luke Zettle-
moyer, and Wen-tau Yih. 2023. Replug: Retrieval-
augmented black-box language models. arXiv
preprint arXiv:2301.12652.

Larry L. Smith, Lorraine K. Tanabe, Rie Ando,
Cheng-Ju Kuo, I-Fang Chung, Chun-Nan Hsu, Yu-
Shi Lin, Roman Klinger, C. Friedrich, Kuzman
Ganchev, Manabu Torii, Hongfang Liu, Barry Had-
dow, Craig A. Struble, Richard J. Povinelli, An-
dreas Vlachos, William A. Baumgartner, Lawrence E.
Hunter, Bob Carpenter, Richard Tzong-Han Tsai,
Hong-Jie Dai, Feng Liu, Yifei Chen, Chengjie Sun,
Sophia Katrenko, Pieter W. Adriaans, Christian
Blaschke, Rafael Torres, Mariana L. Neves, Preslav
Nakov, Anna Divoli, Manuel Maña-López, Jacinto
Mata, and W. John Wilbur. 2008. Overview of biocre-
ative ii gene mention recognition. Genome Biology,
9:S2 – S2.

Benjamin Strauss, Bethany Toma, Alan Ritter, Marie-
Catherine De Marneffe, and Wei Xu. 2016. Results
of the wnut16 named entity recognition shared task.
In Proceedings of the 2nd Workshop on Noisy User-
generated Text (WNUT), pages 138–144.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca


Thuy Vu, Dinh Phung, and Gholamreza Haffari. 2020.
Effective unsupervised domain adaptation with ad-
versarially trained language models. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 6163–
6173.

Xinyu Wang, Yong Jiang, Nguyen Bach, Tao Wang,
Zhongqiang Huang, Fei Huang, and Kewei Tu. 2021.
Improving named entity recognition by external con-
text retrieving and cooperative learning. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1800–1812.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Sang Michael Xie, Aditi Raghunathan, Percy Liang,
and Tengyu Ma. 2022. An explanation of in-context
learning as implicit bayesian inference. In Interna-
tional Conference on Learning Representations.

Hai Ye, Qingyu Tan, Ruidan He, Juntao Li, Hwee Tou
Ng, and Lidong Bing. 2020. Feature adaptation of
pre-trained language models across languages and
domains with robust self-training. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 7386–
7399.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. 2020. Bertscore: Evaluating
text generation with bert. In International Confer-
ence on Learning Representations.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages
12697–12706. PMLR.



A Datasets

# Train # Dev # Test
CONLL-03 14,987 3,466 3,684
FIN 1169 – 306
WNUT-16 2,394 1,000 3,849
WNUT-17 3,394 1,009 1,287
BC2GM 12574 2519 5038
BIONLP09 7462 1448 2446
BC5CDR 4,560 4,581 4,797

Table 4: Statistics of the dataset split of NER dataset.

For NER datasets, we select CoNLL-03 training
as the source labeled dataset and a CoNLL-03 dev
set as the validation set for adaptation. When adapt-
ing to a target domain, for example, WNUT16,
we use WNUT16 training set as the unlabeled
target dataset by discarding all labels from this
training set. That is, in our approach, for the fine-
tuning setting, we retrieve text-only examples from
WNUT16 training dataset as the contexts of source
input CoNLL03. Statistics can be found in Table 4

DOMAIN # Neg # Neu # Pos Total

BOOK
Set 1 2000 2000 2000 6000
Set 2 513 663 4824 6000

ELEC
Set 1 2000 2000 2000 6000
Set 2 694 489 4817 6000

BEAUTY
Set 1 2000 2000 2000 6000
Set 2 616 675 4709 6000

MUSIC
Set 1 2000 2000 2000 6000
Set 2 785 774 4441 6000

Table 5: Statistics of the dateset split of NER dataset.

For the Amazon review dataset, it does not re-
move neutral labels, which is advantageous in un-
supervised domain adaptation (UDA) scenarios
where label information from the target domain
is unavailable. A summary of this dataset can be
found in Table 5. For SA, each dataset consists of
two sets. Set 1 contains 6,000 instances with bal-
anced class labels, while Set 2 comprises instances
randomly sampled from a larger dataset (McAuley
et al., 2015), preserving the authentic label distribu-
tion. It is important to note that there is no overlap
between the examples in these two sets. Following
the approach outlined in (He et al., 2018), Set 1
is used as the training set for the source domain.
While the label distribution in the target domain is
unpredictable and beyond our control in real-life
scenarios, it is more reasonable to use Set 2 as the
unlabeled set for the target domain. Finally, the
model is evaluated on Set 1 from the target domain.
Regarding the data split, a validation set is created

by randomly sampling 1000 instances from the
source labeled Set 1. For example, when perform-
ing E→BK adaptation task, we use Electronics Set
1 as the training set and validation set, we use Book
Set 2 as the target unlabeled set, and we retrieve
similar examples from this set as contexts. The
evaluation will be performed in Book Set 1.

B Example Input and Output Pairs of
ChatGPT and LLaMA



Table 6: Example input and output pairs for ChatGPT on NER dataset BC2GM. No demonstration.

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: Physical mapping 220 kb centromeric of the human MHC and DNA sequence analysis of
the 43 - kb segment including the RING1 , HKE6 , and HKE4 genes .
Entity: - Physical mapping
- human MHC
- DNA sequence analysis
- RING1 gene
- HKE6 gene
- HKE4 gene

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: DNA elements recognizing NF - Y and Sp1 regulate the human multidrug - resistance
gene promoter .
Entity:
1. DNA elements
2. NF-Y
3. Sp1
4. human multidrug-resistance gene promoter

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: Like other IAPs , ch - IAP1 contains the N - terminal baculovirus IAP repeats and C -
terminal RING finger motifs .
Entity:
IAPs, ch-IAP1, baculovirus IAP repeats, RING finger motifs.

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: To clarify the difference , both the Crk II and Crk II - 23 , proteins were expressed in E .
coli and examined their binding capacity in vitro .
Entity:
- Crk II
- Crk II - 23
- E. coli

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: A GT - rich sequence binding the transcription factor Sp1 is crucial for high expression of
the human type VII collagen gene ( COL7A1 ) in fibroblasts and keratinocytes .
Entity:
1. GT-rich sequence
2. Transcription factor Sp1
3. Human type VII collagen gene (COL7A1)

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: Manual sample clean - up procedures as well as the addition of an internal standard are not
needed .
Entity:
None.



Table 7: Example input and output pairs for ChatGPT on NER dataset BC2GM. Retrieved demonstrations are from
CoNLL03.

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: In the study at the University ’s Institute for Human Gene Therapy , researchers altered a
common-cold virus to carry a version of the working dystrophin gene .
Entity: Institute for Human Gene Therapy
Sentence: The virus , which also was altered to minimise its susceptibility to the immune system ,
was then injected into the muscle cells of mice bred to lack dystrophin genes .
Entity: None
Sentence: " We agreed that following detailed scientific analysis using a methodology which would
take out the maximum number of BSE cases possible .
Entity: BSE
Sentence: In the experiment , between 30 to 40 percent of the muscle fibers in one group of mice
produced dystrophin for two weeks before diminishing .
Entity: None
Sentence: Stork H1 results breakdown per sector .
Entity: None

Sentence: Physical mapping 220 kb centromeric of the human MHC and DNA sequence analysis of
the 43 - kb segment including the RING1 , HKE6 , and HKE4 genes .
Entity:
human MHC, RING1, HKE6, HKE4 genes.

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: In the study at the University ’s Institute for Human Gene Therapy , researchers altered a
common-cold virus to carry a version of the working dystrophin gene .
Entity: Institute for Human Gene Therapy
Sentence: Individuals with the disease have a non-working version of a gene responsible for producing
a crucial muscle protein called dystrophin .
Entity: None
Sentence: The virus , which also was altered to minimise its susceptibility to the immune system ,
was then injected into the muscle cells of mice bred to lack dystrophin genes .
Entity: BSE
Sentence: Both drugs are types of interferon .
Entity: None
Sentence: When it approved Avonex in May , the FDA said both Biogen ’s product and Betaseron
were developed under the incentives of the Ophran Drug Act which provides seven years of marketing
exclusivity for products that treat rare diseases .
Entity: Avonex, FDA, Biogen, Betaseron, Ophran Drug Act

Sentence: DNA elements recognizing NF - Y and Sp1 regulate the human multidrug - resistance
gene promoter .
Entity:
NF-Y, Sp1, human multidrug-resistance gene promoter.



Table 8: Example input and output pairs for ChatGPT on NER dataset BC2GM. Demonstrations are randomly
sampled from CoNLL03.

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: The 32-year-old defender played seven seasons with Nantes and was with Paris St Germain
for five seasons .
Entity: Nantes, Paris St Germain
Sentence: 29,582
Entity: None
Sentence: The Palestinian Authority was set up under the 1993 PLO-Israel interim peace deal .
Entity: Palestinian Authority, PLO-Israel
Sentence: In Home Health said it previously recorded a reserve equal to 16 percent of all revenue
related to the community liaison costs .
Entity: In Home Health
Sentence: " I realised this year , that without putting 99.9 percent of your mind into tennis , I do n’t
think you can successful , " said the 22-year-old Medvedev .
Entity: Medvedev

Sentence: Physical mapping 220 kb centromeric of the human MHC and DNA sequence analysis of
the 43 - kb segment including the RING1 , HKE6 , and HKE4 genes .
Entity:
human MHC, RING1, HKE6, HKE4.

Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: The blue-chip CAC-40 index ended 2.43 points or 0.12 percent lower at 2,017.99 points
after a brief foray into positive territory when the New York stock market opened higher .
Entity: CAC-40, New York
Sentence: American League
Entity: American League
Sentence: 1886 - At Skeleton Canyon in Arizona , Geronimo , Apache chief and leader of the last
great Red Indian rebellion finally surrendered to General Nelson Miles .
Entity: Skeleton Canyon, Arizona, Geronimo, Red Indian, Nelson Miles
Sentence: ( Formula Shell leads best-of-seven series 1-0 )
Entity: Formula Shell
Sentence: PRESS DIGEST - Jordan - Aug 25 . Entity: Jordan Sentence: DNA elements recognizing
NF - Y and Sp1 regulate the human multidrug - resistance gene promoter .
Entity:
NF-Y, Sp1, DNA elements.



Table 9: Example input and output pairs for LLaMA-Alpaca on NER dataset BC2GM. No demonstration. Note that
Alpaca-lora is not fine-tuned on NER datasets.

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Please identify all entities from the input sentence. If there is no entity, please output None.

Input sentence: Physical mapping 220 kb centromeric of the human MHC and DNA sequence analysis
of the 43 - kb segment including the RING1 , HKE6 , and HKE4 genes .
### Response:
None

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Please identify all entities from the input sentence. If there is no entity, please output None.

Input sentence: DNA elements recognizing NF - Y and Sp1 regulate the human multidrug - resistance
gene promoter .
### Response:
DNA elements, NF - Y, Sp1

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Please identify all entities from the input sentence. If there is no entity, please output None.

Input sentence: Like other IAPs , ch - IAP1 contains the N - terminal baculovirus IAP repeats and C -
terminal RING finger motifs .
### Response:
None

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Please identify all entities from the input sentence. If there is no entity, please output None.

Input sentence: A GT - rich sequence binding the transcription factor Sp1 is crucial for high expression
of the human type VII collagen gene ( COL7A1 ) in fibroblasts and keratinocytes .
### Response:
human type VII collagen gene



Table 10: Example input and output pairs for our fine-tuned LLaMA-7B on NER dataset BC2GM. Inference with
retrieved demonstration.

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: In the study at the University ’s Institute for Human Gene Therapy , researchers altered a
common-cold virus to carry a version of the working dystrophin gene .
Entity: Institute for Human Gene Therapy
Sentence: The virus , which also was altered to minimise its susceptibility to the immune system ,
was then injected into the muscle cells of mice bred to lack dystrophin genes .
Entity: None
Sentence: " We agreed that following detailed scientific analysis using a methodology which would
take out the maximum number of BSE cases possible .
Entity: BSE
Sentence: In the experiment , between 30 to 40 percent of the muscle fibers in one group of mice
produced dystrophin for two weeks before diminishing .
Entity: None
Sentence: Stork H1 results breakdown per sector .
Entity: None

Input sentence: Physical mapping 220 kb centromeric of the human MHC and DNA sequence analysis
of the 43 - kb segment including the RING1 , HKE6 , and HKE4 genes .
### Response:
Human MHC, RING1, HKE6, HKE4 genes

Below is an instruction that describes a task, paired with an input that provides further context. Write
a response that appropriately completes the request.

### Instruction:
Please identify all entities from the input sentence. If there is no entity, please output None.

Sentence: In the study at the University ’s Institute for Human Gene Therapy , researchers altered a
common-cold virus to carry a version of the working dystrophin gene .
Entity: Institute for Human Gene Therapy
Sentence: Individuals with the disease have a non-working version of a gene responsible for producing
a crucial muscle protein called dystrophin .
Entity: None
Sentence: The virus , which also was altered to minimise its susceptibility to the immune system ,
was then injected into the muscle cells of mice bred to lack dystrophin genes .
Entity: BSE
Sentence: Both drugs are types of interferon .
Entity: None
Sentence: When it approved Avonex in May , the FDA said both Biogen ’s product and Betaseron
were developed under the incentives of the Ophran Drug Act which provides seven years of marketing
exclusivity for products that treat rare diseases .
Entity: Avonex, FDA, Biogen, Betaseron, Ophran Drug Act

Input sentence: DNA elements recognizing NF - Y and Sp1 regulate the human multidrug - resistance
gene promoter .
### Response:
NF - Y, Sp1


