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In Latin American e-commerce, customer in-001

quiries often exhibit unique linguistic patterns that002

require specialized handling for accurate responses.003

Traditional sentence encoders may struggle with004

these regional nuances, leading to less effective an-005

swers. This study examines the use of fine-tuned006

transformer models to generate domain-specific007

sentence embeddings, specifically for Portuguese008

and Spanish retrieval tasks. Our findings show that009

these specialized embeddings significantly outper-010

form general-purpose pretrained models and tra-011

ditional techniques like BM-25, eliminating the012

need for additional re-ranking steps in retrieval pro-013

cesses. Our results explore the effects of multi-014

objective training within Matryoshka Represen-015

tation Learning, highlighting its effectiveness in016

maintaining retrieval effectiveness across various017

embedding dimensions. Our approach offers a scal-018

able and efficient solution for multilingual retrieval019

in e-commerce, reducing computational costs while020

ensuring high accuracy.021

1 Introduction022

In the rapidly growing e-commerce landscape, ef-023

fective customer service through accurate question-024

answering systems is crucial to user satisfaction025

and conversions. Sentence encoders (Reimers and026

Gurevych, 2019) play a central role in these sys-027

tems, capturing semantic meaning, context, and028

relationships in numerical embeddings. Such em-029

beddings can be used to select the most appropriate030

answer to the customer inquiry.031

General-purpose sentence encoders often prove032

less effective in specialized domains due to their033

difficulty capturing unique vocabulary, phrasing,034

and contextual nuances (Tang and Yang, 2025).035

This entails that generic models frequently re-036

quire high-dimensional embeddings and separate037

re-ranking models to achieve acceptable domain-038

specific effectiveness, especially when resource039

minimization is a key objective. 040

LatinAmericanAI company addresses a high vol- 041

ume of customer inquiries from e-commerce plat- 042

forms in Spanish and Portuguese. We have imple- 043

mented an end-to-end question-answering solution 044

based on embeddings to manage customer queries. 045

Existing pretrained solutions assist in retrieving 046

suitable text (questions) to provide answers. This 047

context requires performing a re-ranking process to 048

ensure the quality of the retrieved text (Chico et al., 049

2023). 050

However, this multi-component approach inher- 051

ently increases complexity and can compromise 052

the overall quality and efficiency of the retrieval 053

pipeline. Employing a distinct retriever and a sub- 054

sequent re-ranker directly escalates computational 055

resource demands, which is prohibitive for small 056

business scenarios. Such an architecture typically 057

requires significantly more memory and CPU pro- 058

cessing per query, leading to higher operational 059

costs and potentially impacting end-user response 060

latency. In contrast, fine-tuning domain-specific 061

sentence encoders may offer a more direct path to 062

optimize cost, processing, and storage. 063

This study investigates resource optimization 064

strategies for e-commerce question paraphrase re- 065

trieval pipelines that integrate vector-based re- 066

trieval (potentially utilizing dense or sparse vectors) 067

with a subsequent re-ranking phase. This research 068

aims to attain two specific goals: 069

1. Assess the feasibility and effectiveness 070

of utilizing a single, unified embedding 071

model to generate representations for re- 072

trieval pipelines, comparing their performance 073

against conventional two-model architectures 074

(i.e., separate models for retrieval and re- 075

ranking). 076

2. Analyze the trade-off between the reduction in 077

embedding dimensionality from such a unified 078
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model and the consequent impact on retrieval079

effectiveness and computational efficiency.080

Our findings demonstrate that a single, domain-081

fine-tuned embedding model, trained efficiently on082

a single, commonly available GPU, outperforms083

the multi-model encoder-re-ranker pipeline and084

BM-25 retrieval in a real-world e-commerce set-085

ting. This study, conducted in collaboration with086

a company, highlights the practical benefits of this087

streamlined approach.088

As key contributions, we are releasing our test089

and calibration datasets. Notably, these datasets090

are in Portuguese and Spanish, often underrep-091

resented in natural language processing research,092

offering valuable resources for extending exist-093

ing embedding model benchmarks such as MTEB094

(Enevoldsen et al., 2025). Furthermore, we are095

open-sourcing our training and validation code, en-096

abling other researchers and practitioners to adapt097

and apply these methods to their domains1.098

The remainder of this article is organized as fol-099

lows: Section 2 presents a synthesis and analysis100

of key related studies. Section 3 summarizes the E-101

FAQ, a dataset generated in our research. Section 4102

describes the training details and approaches used103

in this research. Section 5 outlines our experimen-104

tal evaluation, which includes the dataset, baselines,105

and evaluation metrics. Section 6 reports on our106

results obtained. Section 7 discusses our findings.107

Finally, Section 8 summarizes the conclusions and108

suggests directions for future research.109

2 Related Work110

Related work, in the context of our research,111

concerns training domain-specific and language-112

specific embedding models, particularly for infor-113

mation retrieval tasks.114

On domain-specific embedding models, Feng115

et al. (2020) introduced CodeBERT, a transformer-116

based model trained on open GitHub repositories,117

which restricts it to six programming languages.118

It follows multilingual BERT approaches, using119

mask language techniques during fine-tuning. The120

models focus on bimodal data, aligning text (code121

documentation) with their respective code during122

pre-training. After this initial training, they use123

the base model to fine-tune the process to improve124

the alignment between text and code representa-125

tions. They test the performance of code retrieval126

1Available at https://anonymous.4open.science/r/
Embeddings-Might-Be-All-You-Need-B734/README.md.

based on natural language queries, and CodeBERT 127

outperforms results from other pre-trained models, 128

such as RoBERTa, achieving a higher Mean Recip- 129

rocal Rank in the CodeSearchNet benchmark. 130

Clinical BERT (Alsentzer et al., 2019) mod- 131

els were developed to meet the need for domain- 132

specific embeddings in clinical contexts. The au- 133

thors initialized Clinical BERT using two primary 134

models: Base BERT and BioBERT. They followed 135

the same training procedures used for BERT, utiliz- 136

ing a corpus of clinical texts. Their findings showed 137

that specialized domain models performed better in 138

domain classification tasks for clinical benchmarks. 139

However, a limitation of these models is their lack 140

of generalization for datasets that differ from the 141

training data. 142

Regarding language-specific embedding models, 143

Huang et al. (2024) introduced Piccolo 2, a state-of- 144

the-art model on Chinese embedding benchmarks. 145

It leverages an efficient multi-task hybrid loss train- 146

ing approach, effectively leveraging textual data 147

and labels for various downstream tasks, combined 148

with Matrioshka Representation Learning (MRL) 149

to support more flexible vector dimensions. It was 150

evaluated over 6 tasks on CMTEB benchmark, in- 151

cluding text retrieval, pair classification, and se- 152

mantic similarity. 153

Industrial Applications models (Bednář et al., 154

2024) focused on creating embedding with lower 155

size to improve computational efficiency. They 156

applied the study to Seznam, a Czech search en- 157

gine, and explored techniques suitable for non- 158

English languages, utilizing datasets from non- 159

public sources. The study examines three methods: 160

auto-encoder training, unsupervised contrastive 161

fine-tuning, and multilingual distillation, which do 162

not require large datasets, making them practical 163

for real-world use. The models were evaluated on 164

semantic textual similarity (STS) and COSTRA, 165

a benchmark for assessing the embedding quality, 166

in addition to measuring search engine ranking ef- 167

fectiveness using precision at 10. Their findings 168

showed that pretrained versions and multilingual 169

distillation provide the best encoder models, high- 170

lighting their effectiveness in enhancing search re- 171

sult quality. 172

DeepFAQ (Chico et al., 2023) is a Portuguese 173

automatic question-answering system that uses se- 174

mantic search to find similar questions from a 175

database of FAQs. Its solution applies a general 176

domain embedding to represent the data (question 177

and answers). It retrieves candidate questions and 178
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applies a domain-specific re-ranking model to iden-179

tify the most relevant one, ultimately providing the180

corresponding answer.181

Our approach offers a novel and original con-182

tribution by utilizing domain-specific embeddings183

for the e-commerce sector, tailored explicitly for184

Brazilian Portuguese and Spanish —two low-185

resource languages in NLP. We take advantage of186

the approach of language-specific embedding pre-187

sented by Huang et al. (2024) to fine-tune sentence188

encoding models. These embeddings effectively189

capture the nuances of informal language used at190

online platforms, enhancing results in e-commerce-191

related NLP tasks and addressing gaps identified192

in previous methods, in particular, the encoder-re-193

ranker pipeline as presented by Chico et al. (2023).194

3 E-FAQ: Grouped Frequently Asked195

Questions from E-Commerce196

Real-world data are fundamental for generating197

domain-specific sentence embeddings. This section198

presents the E-FAQ, a weakly-supervised dataset199

of e-commerce frequently asked questions (FAQs),200

with sentences uttered in Brazilian Portuguese or201

Spanish. Each entry i of the dataset is the tuple202

(qi,Si,Ai,Di), in which:203

• qi is an anchor question sentence.204

• Si is a set of sentences that are similar to qi;205

the sentences convey the same meaning and206

are interchangeable with qi.207

• Ai is a set of sentences that are almost similar208

to qi; the sentences are closely related to qi,209

but differ in meaningful detail.210

• Di is a set of sentences that are dissimilar to211

qi; the sentences discuss different topics or212

contain unrelated information with qi.213

We created this dataset to address a resource gap214

for Portuguese and Spanish, particularly within the215

e-commerce domain. We gathered questions from216

Latin American e-commerce websites sourced217

from the LatinAmericanAI database, as illustrated218

in Figure 1. Initially, we collected a larger set of219

questions; after removing duplicates and questions220

containing fewer than four words, we were left221

with one million questions, evenly split between222

Brazilian Portuguese and Spanish.223

Subsequently, we employed natural language un-224

derstanding (NLU) models to extract intents and225

named entities from the questions. This extrac- 226

tion leveraged a machine learning model trained 227

in various entities and intents from existing sen- 228

tences within the LatinAmericanAI data environ- 229

ment. In the NLU context, an intent represents the 230

user’s purpose, while an entity represents a term or 231

expression with a known meaning relevant to the 232

sentence’s comprehension. 233

At this point, we had 870,000 sentences in 64 234

distinct intent categories. Within each category, 235

we employed the HDBSCAN clustering algorithm 236

to group similar questions. This clustering relied 237

on vector representations of the sentences, derived 238

from TF-IDF and singular value decomposition 239

(SVD) applied to the extracted entities. HDBSCAN 240

effectively formed disjoint groups of similar sen- 241

tences while also identifying and removing noise. 242

This process yielded more than 142,000 clusters, 243

encompassing over 445,000 examples, with the 244

cluster medoid serving as the anchor sentence. 245

To ensure high-quality semantic similarity data 246

within our clusters, we employed the Gemma 3 247

language model (Team et al., 2025) to classify each 248

question in the 142,000 clusters as “similar”, “al- 249

most similar”, or “dissimilar” to its anchor sentence. 250

To optimize the classification process, we first cu- 251

rated a separated calibration dataset of 144 real 252

question pairs from e-commerce platforms. Each 253

pair in this dataset was evaluated for similarity by 254

three annotators. The final label for each pair was 255

determined by the majority vote among the an- 256

notators. We then identified the specific prompt 257

instructions that yielded the highest accuracy in 258

classifying this calibration dataset according to the 259

majority labels. This best-performing prompt was 260

subsequently used to classify all question pairs 261

within our 142,000 clusters, ensuring a more re- 262

liable assessment of semantic similarity. We called 263

the calibration dataset GoSim3, and it is available 264

at HuggingFace’s Hub2. 265

The dataset was further divided into training, 266

validation, and test sets. The training set comprised 267

most of the data, with 121,248 entries, followed by 268

the validation set, with 13,472 entries. The test sets 269

were divided by language (Portuguese and Spanish) 270

and stratified by intent class, resulting in two sets 271

with 4,000 entries each. We also made the test sets 272

available at HuggingFace’s Hub3. 273

2Available at https://huggingface.co/. The complete
URL is omitted for blind review.

3Available at https://huggingface.co/. The complete
URL is omitted for blind review.
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Figure 1: Overview of data collection process.

4 Training Methods274

Our proposed models’ main application is retriev-275

ing similar questions given an input query. Recent276

research has increasingly focused on bi-encoder277

architectures for generating sentence embeddings.278

These models independently encode the query and279

the questions, allowing for efficient similarity scor-280

ing (Izacard et al., 2022). More formally, given two281

sentences x and y, their embeddings are generated282

independently by the fθ and fγ models, respec-283

tively. The embedding space similarity of the two284

sentences ϕ can be defined as:285

ϕ(x, y) = cos(fθ(x), fγ(y))/τ (1)286

In which τ is a temperature parameter. Two287

transformer models can be used to embed sentences288

in fθ and fγ , as in DPR (Karpukhin et al., 2020),289

which employs two BERT encoders to map ques-290

tions and passages into a shared semantic space.291

Recent studies used a single transformer model292

fθ in a siamese bi-encoder architecture to embed293

the sentences. Figure 2 illustrates the architec-294

ture. Models that use this architecture, like SBERT295

(Reimers and Gurevych, 2019), LaBSE (Feng et al.,296

2022), and E5 (Wang et al., 2024a,b), proved to be297

effective in many zero-shot natural language tasks.298

As questions and queries share the same domain,299

we employ the siamese architecture. For pooling300

strategy, we use the mean of the token representa-301

tions.302

We assume that E-FAQ contains disjoint groups303

of similar sentences, so each dataset entry contains304

a unique group of questions. Leveraging the “simi-305

lar”, “almost similar”, and “dissimilar” labels, we306

designed a training regimen incorporating two dis-307

tinct objectives: a retrieval objective and a semantic308

similarity objective. This multi-task learning strat-309

egy allowed the model to simultaneously learn ef-310

fective representations for retrieving relevant ques-311

tions and accurately assessing the degree of seman-312

tic relatedness between question pairs within our313

refined dataset. This method follows Huang et al.314

(2024) approach.315

Figure 2: Siamese Dual Encoder model for sentence
embeddings generation.

For the retrieval objective, we used the InfoNCE 316

loss (van den Oord et al., 2019), in which an anchor 317

question qi, associated with a similar question si, 318

is compared against N − 1 dissimilar questions in 319

a cross-entropy function. The loss is defined by: 320

Lce = − 1

N

N∑
i=1

log
eϕ(qi,si)

eϕ(qi,si) +
∑N

j=1,j ̸=i e
ϕ(qi,sj)

(2) 321

This loss encourages similar question pairs to 322

have higher similarity scores, and dissimilar ques- 323

tions to have lower scores (Izacard et al., 2022). 324

We define sij ∈ Si a question extracted from 325

the set of questions similar to qi. The training 326

data consisted in entries in the form (qi, sij), with 327

0 ≤ j ≤ |Si|, augmented from each cluster from 328

E-FAQ. Additionally, we incorporated challenging 329

negative examples by selecting K “hard-negatives” 330

through a combination process from the union of 331

Ai and Di. These K hard negatives were then com- 332

bined with the in-batch negative samples, such that 333

the total number of negative examples considered 334

for each positive sample was N − 1, where N is 335

the batch size. 336

The final contrastive loss is a combination of 337

both the original loss function Lce, considering the 338
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cross-entropy on anchor sentences, and its symmet-339

ric version L′
ce, considering the cross-entropy on340

similar sentences:341

Lr = Lce + L′
ce (3)342

For the semantic similarity objective, we con-343

verted the “similar”, “almost similar”, and “dissim-344

ilar” labels into score values. The training data con-345

sisted in triples in the form (qi, pij , zij), in which qi346

is the anchor question, pij is a sentence in qi’s clus-347

ter, and zij is their labeled similarity score, with348

values:349

zij =


1, if pij ∈ Si

0, if pij ∈ Ai

−1, if pij ∈ Di

(4)350

We used the Cosine Sentence Loss (CoSENT)351

(Su, 2022) in this task, a ranking loss function352

specifically designed for the score-labeled text353

pairs (Huang et al., 2024). The loss is defined354

by:355

Ls = log

1 +
∑

zij>zkl

eϕ(qk,pkl)−ϕ(qi,pij)

 (5)356

The final multi-task loss is defined by:357

L =

{
Lr, if task is retrieval

Ls, if task is semantic similarity
(6)358

To achieve our objective of reducing embedding359

dimensionality, we employed Matryoshka Repre-360

sentation Learning (MLR) (Kusupati et al., 2024)361

during model training. This technique compels362

the model to produce hierarchical, coarse-to-fine363

embeddings, ensuring that these lower-dimensional364

representations at least as accurate as independently365

trained low-dimensional representations.366

For our experiments, we fine-tuned two mod-367

els: XLM RoBERTa (Conneau et al., 2020), a mul-368

tilingual transformer model trained with masked369

language modeling; and the Multilingual E5 Base370

(Wang et al., 2024b), a model trained for textual371

representations from RoBERTa. These models gen-372

erate embeddings with 768 dimensions. We chose373

the E5 for its favorable ranking on multilingual374

tasks of the MTEB leaderboard4.375

4Available online at https://huggingface.co/spaces/
mteb/leaderboard.

We trained all models in a single GPU, an 376

NVIDIA RTX4090. We trained for at most 5000 377

training steps with a batch size of 256 pairs of ques- 378

tions. We evaluated the models in every 200 steps, 379

saving the best model checkpoint after validation. 380

We used 2×10−5 for learning rate. For the temper- 381

ature parameter τ we fixed it at 0.05. We trained 382

all models with MLR using 64, 128, 256, 384, 512, 383

and 768 dimensions. 384

5 Retrieval Evaluation 385

This section describes the retrieval evaluation task 386

to assess the quality of our domain-specific embed- 387

dings. We outline the evaluation metrics, datasets, 388

and baselines used in this evaluation. 389

5.1 Evaluation Metric 390

Accuracy@1 is a metric used in information re- 391

trieval to evaluate a system’s ability to retrieve a rel- 392

evant item at the top of the ranking. It measures the 393

proportion of queries for which the most pertinent 394

item appears in the first position. The score ranges 395

from 0 to 1, where 1 indicates perfect retrieval (i.e., 396

the relevant item is consistently ranked first), and 397

zero means the system never places the appropriate 398

item at the top. This metric is handy when only the 399

top result matters, such as in FAQ matching, ques- 400

tion answering, or single-result search scenarios. 401

5.2 Evaluation Datasets 402

We selected two datasets for a specific domain 403

but with different purposes: E-FAQ and GoSim3, 404

which validate information retrieval and Semantic 405

Textual Similarity (STS), respectively. 406

We utilized the test partition from E-FAQ (see 407

Section 3) for a domain-specific dataset, testing 408

both Spanish and Portuguese with 4,000 queries 409

per language. 410

GoSim3 extends the datasets applied for STS 411

and is oriented to the e-commerce domain. This 412

dataset comprises 144 question pairs labeled as 413

similar, almost similar, and dissimilar. This dataset 414

measures the correlation between human annota- 415

tions and results obtained by computing the sim- 416

ilarity between the vector representations of both 417

questions. In contrast, E-FAQ, this dataset was not 418

used during the model training phase. 419

5.3 Baselines 420

To evaluate the effectiveness of our domain-specific 421

embeddings, we selected pretrained models from 422

5

https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard


the existing literature that have demonstrated supe-423

rior performance in retrieval tasks and sentence rep-424

resentation as baselines. This includes various pre-425

trained models trained using different techniques,426

encompassing open-source encoders. Additionally,427

we incorporated a traditional BM-25 model for428

comparison against the pretrained models. In the429

following, we summarize these models.430

Embeddings from Bidirectional Encoder Repre-431

sentations (E5-models): E5 is a family of advanced432

text embeddings trained using weakly supervised433

contrastive Pre-training and a large dataset of text434

pairs. This study used the E5-base, which is initial-435

ized from BERT weights. The model utilizes an436

encoder architecture with average pooling to create437

fixed-size embeddings, employing cosine similarity438

for comparison.439

BGE M3 is an encoder model designed for mul-440

tilingual processing and multifunctional tasks. It441

supports over 100 languages, aiming to streamline442

text embedding and retrieval for greater efficiency.443

The model employs self-knowledge distillation, ef-444

ficient batching, and high-quality data generation445

to enhance embedding quality. It leverages unsu-446

pervised, supervised, and synthesized data through447

a structured pre-training and fine-tuning approach448

focused on retrieval tasks.449

GTE (Zhang et al., 2024): is a state-of-the-art450

multilingual encoder specifically designed for re-451

trieval tasks. It was trained using large-scale con-452

trastive learning on a combination of unsupervised,453

supervised, and synthesized data. This encoder pro-454

duces dense text embeddings for over 70 languages,455

ensuring high-quality representations even in long-456

context scenarios, which is advantageous for in-457

dustrial applications. Our decision to utilize GTE458

is based on concepts proposed by an e-commerce459

company (Alibaba), and it outperforms other mod-460

els with a similar number of parameters.461

Best Matching 25 (BM-25): is a probabilistic462

model for information retrieval. It builds on term463

frequency (TF) and inverse document frequency464

(IDF) concepts like TF-IDF but refines term weight-465

ing with a non-linear function. This allows BM-25466

to rank documents more effectively by considering467

term frequency and distribution across the corpus,468

making it better suited for longer documents than469

TF-IDF.470

5.4 Re-ranking471

Furthermore, in addition to the baseline evalua-472

tions, we designed an experimental setup where473

each baseline model is first used to perform seman- 474

tic search and retrieve the top k candidates most 475

similar to the query. These k candidates, along with 476

the query, are then passed to a re-ranking stage, 477

where a separate model, trained to score semantic 478

similarity, re-evaluates and ranks the candidates to 479

identify the most relevant one. For all experiments, 480

we set k = 20. This setup aims to assess the im- 481

pact of re-ranking within an information retrieval 482

pipeline and determine whether strong encoders 483

alone can eliminate the need for re-ranking. 484

6 Results 485

Table 1 presents the effectiveness of various mod- 486

els on retrieval datasets evaluated using Accuracy 487

at one. The results include both original and fine- 488

tuned multilingual models assessed on two datasets: 489

E-FAQ (Portuguese and Spanish) and GoSim3. 490

Among the domain fine-tuned models, the Mul- 491

tilingual E5 base achieves the highest accuracy at 1 492

score on the E-FAQ dataset, scoring 90.48% in Por- 493

tuguese and 90.12% in Spanish. This model also 494

performs well on the GoSim3 dataset, achieving 495

a Pearson Correlation of 0,4345. The fine-tuned 496

XLM model shows competitive results, with scores 497

of 88.60% in Portuguese and 87.58% in Spanish, 498

getting the highest Pearson correlation of 0.4845 499

over all the models. 500

BGE M3 achieves the highest scores over pre- 501

trained models in the E-FAQ evaluation for Por- 502

tuguese, obtaining 73.97% in Portuguese and 503

69.92% in Spanish. It also performs best on the 504

STS dataset, obtaining 0.4105. In contrast, the 505

Multilingual e5 base model and GTE show lower 506

retrieval and STS effectiveness on E-FAQ for Por- 507

tuguese and GoSim3, with accuracy scores of 508

68.98% and 70.14%, and Pearson coefficients of 509

0.3545 and 0.3593, respectively. 510

However, the GTE model surpassed the pre- 511

trained model over E-FAQ in the Spanish partition, 512

having 73.90%, followed by the multilingual e5- 513

based model, which registered 70.14%. 514

The BM-25 baseline outperforms all original 515

pretrained models on E-FAQ, achieving scores of 516

76.16% in Portuguese and 70.86% in Spanish. 517

Figure 3 presents the retrieval effectiveness mea- 518

sured by the Accuracy@1 result for Portuguese 519

across various retrieval models, comparing their 520

performance with and without the reranker. For the 521

baseline models (mE5, bge-m3, and gte), the ap- 522

plication of the reranker generally results in slight 523
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Table 1: Finetuned and baseline models’ performances on retrieval datasets (E-FAQ) and STS (GoSim3). The
E-FAQ scores denote acuraccy@1 (%), and the E-FAQ column corresponds to the test partitions in each considered
language. Meanwhile, GoSim3 columns presented the Pearson correlations for Portuguese only.

Model Embedding
Dimension

Parameters
(Millions)

E-FAQ GoSim-3
ptpt es

Finetuned Multilingual E5 Base 768 278.0 90.48 90.12 0.4345
XLM RoBERTa 768 279.0 88.60 87.58 0.4845

Base
Multilingual E5 Base 768 278.0 68.98 70.14 0.3545

GTE Multilingual 768 305.0 71.56 73.90 0.3593
BGE M3 1024 567.8 73.97 69.92 0.4105

Other BM-25 - - 76.14 70.86 -

improvements or maintains similar accuracy lev-524

els. However, a minor decrease in performance is525

noted for BM25 when reranking is applied. The526

fine-tuned models (F-mE5 and F-XLM) achieve the527

highest overall accuracy, with both models perform-528

ing better without reranking—F-mE5 exceeds 90%,529

while F-XLM reaches nearly 89% Accuracy@1 in530

the no-reranker setting.

Figure 3: Accuracy at one comparison for Portuguese
without reranker application for BM25, baseline models,
and our best fine-tuned models (F-mE5 and F-xlm).

531
Figure 4 presents the Accuracy@1 results for532

Spanish across various retrieval models, compar-533

ing configurations with and without reranking. For534

most baseline models (BM25, mE5, and BGE-M3),535

applying the reranker yields slight improvements.536

We observe a performance drop for GTE when537

reranking is implemented. The fine-tuned models538

(F-mE5 and F-XLM) achieved the highest over-539

all accuracy, performing better without reranking.540

Specifically, F-mE5 reaches approximately 90%,541

while F-XLM achieves nearly 88% Accuracy@1542

without the reranker.543

Figure 5 presents the results of the models544

Figure 4: Accuracy at one comparison for Spanish
without reranker application for BM25, baseline models,
and our best fine-tuned models (F-mE5 and F-xlm).

trained with MLR per the crops embedding di- 545

mension from 64 to 768, which affects retrieval 546

effectiveness (Acurracy@1) for the Portuguese test 547

partition of the E-FAQ dataset. All the fine-tuned 548

models (F-mE5 and F-xlm) configurations outper- 549

formed the best baseline, BM25, which achieved 550

76.14%. F-mE5 consistently outperformed F-xlm, 551

with accuracy increasing from 88.07% at dimen- 552

sion 64 to 90.48% at dimension 768. In con- 553

trast, F-xlm maintained stable performance, start- 554

ing at 88.60% and fluctuating to 87.72%. These 555

results indicate that higher dimensions benefit F- 556

mE5 more significantly, while F-xlm is less sensi- 557

tive to dimensional changes. We observed similar 558

trends for the Spanish results, which are not shown 559

in Figure 5. 560

7 Discussion 561

Table 1 revealed that our fine-tuned, domain- 562

specific models outperformed general sentence en- 563

7



Figure 5: Cropped embedding dimension Accuracy at
one value of the trained models on Portuguese test par-
tition of E-FAQ; black dashed line represents the best
results achieved for BM25 as the best baseline retriever

coders on the E-FAQ test set for both Portuguese564

and Spanish. Even with a domain-specific re-565

ranking baseline (cf. Figure 3 and 4), our results566

confirmed the feasibility and effectiveness of us-567

ing a single, unified embedding model in retrieval568

pipelines. This key finding corroborates the sig-569

nificant resource optimization potential—reducing570

memory, CPU processing, and latency—by em-571

ploying one model instead of two.572

Notably, the BM-25 baseline performed better573

than all original pre-trained models on the E-FAQ574

dataset. We attribute this to the inherent charac-575

teristics of the e-commerce domain, where related576

questions frequently contain a significant overlap of577

specific keywords such as product names, brands,578

or units of measurement. The effectiveness of our579

trained sentence encoders suggests that while they580

grasp the semantic nuances between questions, they581

also successfully capture this crucial “term-wise”582

similarity.583

Figure 5 illustrates a favorable trade-off between584

embedding dimensionality and retrieval effective-585

ness, underscoring the benefits of MLR training.586

Our trained models exhibit remarkable effective-587

ness and stability across various cropped embed-588

ding dimensions. Specifically, our top-performing589

model, F-mE5, achieves a 91.6% reduction in sen-590

tence representation size (from 768 to 64 dimen-591

sions) while preserving 97.3% of its original re-592

trieval effectiveness.593

This dimensionality reduction yields significant594

practical advantages. Given that most retrieval al-595

gorithms scale in memory and time complexity596

with both the indexed corpus size and the embed- 597

ding dimension, a 91.6% decrease in embedding 598

size directly correlates to substantial reductions in 599

memory footprint and processing time. Ultimately, 600

this translates to considerably lower demands on 601

computational resources and a more cost-efficient 602

implementation for large-scale retrieval pipelines. 603

While our current investigation focused explic- 604

itly on retrieving relevant information within the 605

Portuguese e-commerce question paraphrases do- 606

main, we are confident that the strengths of the 607

designed multi-objective training methodology of- 608

fer significant potential for broader generalization. 609

Furthermore, while our study addresses symmetric 610

retrieval for question paraphrases, the adaptabil- 611

ity of our models suggests their applicability to a 612

broader range of retrieval tasks, including asym- 613

metric retrieval scenarios, simply by adjusting the 614

training data accordingly to a structure similar to, 615

but not restricted to, the E-FAQ. 616

8 Conclusion 617

Real-world customer inquiries often feature lin- 618

guistic patterns that challenge traditional sentence 619

encoders and hinder response accuracy. Our study 620

highlighted the effectiveness of domain-specific 621

fine-tuned models for retrieval tasks in Portuguese 622

and Spanish, outperforming the general-purpose 623

pretrained embeddings commonly found in the ex- 624

isting literature. The results demonstrated that our 625

models eliminate the need for additional re-ranking, 626

a process often required when using general embed- 627

dings. This makes retrieval more efficient for real- 628

world applications, particularly in E-commerce. 629

Our findings revealed multi-task objective train- 630

ing success in Matryoshka Representation Learn- 631

ing by underscoring its relevance in maintaining 632

strong retrieval effectiveness across various embed- 633

ding dimensions. This is especially advantageous 634

for Portuguese and Spanish, where high-quality re- 635

trieval models remain underexplored. Future work 636

will emphasize implementing these models in real- 637

world E-commerce environments, specifically for 638

the Portuguese and Spanish markets. We will as- 639

sess their impact on practical real-world applica- 640

tions and refine them for even greater quality in 641

multilingual retrieval. Future studies can also ex- 642

plore data from other domains or retrieval tasks in 643

a format similar to that proposed for the E-FAQ. 644
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Limitations645

This section highlights potential threats to the qual-646

ity of our research study, focusing on three cate-647

gories (Petersen and Gencel, 2013): internal valid-648

ity, external validity, and conclusion validity.649

Internal Validity: Our experimental reliability650

is directly tied to dataset quality. Despite efforts651

to improve it with AI-generated pseudo-labels, po-652

tential biases or imbalances in the data could still653

impact our results and might not entirely reflect654

real-world conditions.655

External Validity: Our study is limited to the656

e-commerce domain and symmetric retrieval set-657

tings. While this allows for controlled experimenta-658

tion, we should be cautious about generalizing our659

findings to other domains. Future research should660

explore their applicability in contexts like customer661

support systems.662

Conclusion Validity: We must use more robust663

hypothesis testing methods to ensure our findings664

are statistically significant. Current methods may665

not adequately account for data variability, so more666

statistical tests will help distinguish meaningful667

patterns from random noise.668
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thi Kiran GV, Shawon Ashraf, Daniel Auras, Björn 705
Plüster, Jan Philipp Harries, Loïc Magne, Isabelle 706
Mohr, Mariya Hendriksen, Dawei Zhu, Hippolyte 707
Gisserot-Boukhlef, Tom Aarsen, Jan Kostkan, Kon- 708
rad Wojtasik, Taemin Lee, Marek Šuppa, Crystina 709
Zhang, Roberta Rocca, Mohammed Hamdy, Andri- 710
anos Michail, John Yang, Manuel Faysse, Aleksei 711
Vatolin, Nandan Thakur, Manan Dey, Dipam Vasani, 712
Pranjal Chitale, Simone Tedeschi, Nguyen Tai, 713
Artem Snegirev, Michael Günther, Mengzhou Xia, 714
Weijia Shi, Xing Han Lù, Jordan Clive, Gayatri Kr- 715
ishnakumar, Anna Maksimova, Silvan Wehrli, Maria 716
Tikhonova, Henil Panchal, Aleksandr Abramov, 717
Malte Ostendorff, Zheng Liu, Simon Clematide, 718
Lester James Miranda, Alena Fenogenova, Guangyu 719
Song, Ruqiya Bin Safi, Wen-Ding Li, Alessia Borgh- 720
ini, Federico Cassano, Hongjin Su, Jimmy Lin, 721
Howard Yen, Lasse Hansen, Sara Hooker, Cheng- 722
hao Xiao, Vaibhav Adlakha, Orion Weller, Siva 723
Reddy, and Niklas Muennighoff. 2025. Mmteb: Mas- 724
sive multilingual text embedding benchmark. arXiv 725
preprint arXiv:2502.13595. 726

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari- 727
vazhagan, and Wei Wang. 2022. Language-agnostic 728
BERT sentence embedding. In Proceedings of the 729
60th Annual Meeting of the Association for Compu- 730
tational Linguistics (Volume 1: Long Papers), pages 731
878–891, Dublin, Ireland. Association for Computa- 732
tional Linguistics. 733

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 734
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 735
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 736
BERT: A pre-trained model for programming and 737
natural languages. In Findings of the Association 738
for Computational Linguistics: EMNLP 2020, pages 739
1536–1547, Online. Association for Computational 740
Linguistics. 741

Junqin Huang, Zhongjie Hu, Zihao Jing, Mengya Gao, 742
and Yichao Wu. 2024. Piccolo2: General text embed- 743
ding with multi-task hybrid loss training. Preprint, 744
arXiv:2405.06932. 745

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas- 746
tian Riedel, Piotr Bojanowski, Armand Joulin, and 747
Edouard Grave. 2022. Unsupervised dense informa- 748
tion retrieval with contrastive learning. Transactions 749
on Machine Learning Research. 750

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 751
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 752
Wen-tau Yih. 2020. Dense passage retrieval for open- 753
domain question answering. In Proceedings of the 754
2020 Conference on Empirical Methods in Natural 755

9

https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.18653/v1/W19-1909
https://doi.org/10.1609/aaai.v38i21.30307
https://doi.org/10.1609/aaai.v38i21.30307
https://doi.org/10.1609/aaai.v38i21.30307
https://doi.org/10.5753/stil.2023.233918
https://doi.org/10.5753/stil.2023.233918
https://doi.org/10.5753/stil.2023.233918
https://doi.org/10.5753/stil.2023.233918
https://doi.org/10.5753/stil.2023.233918
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://arxiv.org/abs/1911.02116
https://doi.org/10.48550/arXiv.2502.13595
https://doi.org/10.48550/arXiv.2502.13595
https://doi.org/10.48550/arXiv.2502.13595
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2022.acl-long.62
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://arxiv.org/abs/2405.06932
https://arxiv.org/abs/2405.06932
https://arxiv.org/abs/2405.06932
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550


Language Processing (EMNLP), pages 6769–6781,756
Online. Association for Computational Linguistics.757

Aditya Kusupati, Gantavya Bhatt, Aniket Rege,758
Matthew Wallingford, Aditya Sinha, Vivek Ra-759
manujan, William Howard-Snyder, Kaifeng Chen,760
Sham Kakade, Prateek Jain, and Ali Farhadi. 2024.761
Matryoshka representation learning. Preprint,762
arXiv:2205.13147.763

Kai Petersen and Cigdem Gencel. 2013. Worldviews,764
research methods, and their relationship to validity765
in empirical software engineering research. In 2013766
Joint Conference of the 23rd International Workshop767
on Software Measurement and the 8th International768
Conference on Software Process and Product Mea-769
surement, pages 81–89.770

Nils Reimers and Iryna Gurevych. 2019. Sentence-771
BERT: Sentence embeddings using Siamese BERT-772
networks. In Proceedings of the 2019 Conference on773
Empirical Methods in Natural Language Processing774
and the 9th International Joint Conference on Natu-775
ral Language Processing (EMNLP-IJCNLP), pages776
3982–3992, Hong Kong, China. Association for Com-777
putational Linguistics.778

Jianlin Su. 2022. Cosent (i): A more effective sentence779
embedding scheme than sentence-bert. https://780
kexue.fm/archives/8847. [Online; accessed 12-781
May-2025].782

Yixuan Tang and Yi Yang. 2025. Do we need domain-783
specific embedding models? an empirical investiga-784
tion. Preprint, arXiv:2409.18511.785

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya786
Pathak, Nino Vieillard, Ramona Merhej, Sarah Per-787
rin, Tatiana Matejovicova, Alexandre Ramé, Mor-788
gane Rivière, Louis Rouillard, Thomas Mesnard, Ge-789
offrey Cideron, Jean bastien Grill, Sabela Ramos,790
Edouard Yvinec, Michelle Casbon, Etienne Pot, Ivo791
Penchev, Gaël Liu, Francesco Visin, Kathleen Ke-792
nealy, Lucas Beyer, Xiaohai Zhai, Anton Tsitsulin,793
Robert Busa-Fekete, Alex Feng, Noveen Sachdeva,794
Benjamin Coleman, Yi Gao, Basil Mustafa, Iain795
Barr, Emilio Parisotto, David Tian, Matan Eyal,796
Colin Cherry, Jan-Thorsten Peter, Danila Sinopal-797
nikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran798
Kazemi, Dan Malkin, Ravin Kumar, David Vilar,799
Idan Brusilovsky, Jiaming Luo, Andreas Steiner,800
Abe Friesen, Abhanshu Sharma, Abheesht Sharma,801
Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa802
Saade, Alex Feng, Alexander Kolesnikov, Alexei803
Bendebury, Alvin Abdagic, Amit Vadi, András804
György, André Susano Pinto, Anil Das, Ankur805
Bapna, Antoine Miech, Antoine Yang, Antonia Pater-806
son, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot,807
Bo Wu, Bobak Shahriari, Bryce Petrini, Charlie808
Chen, Charline Le Lan, Christopher A. Choquette-809
Choo, CJ Carey, Cormac Brick, Daniel Deutsch,810
Danielle Eisenbud, Dee Cattle, Derek Cheng, Dim-811
itris Paparas, Divyashree Shivakumar Sreepathi-812
halli, Doug Reid, Dustin Tran, Dustin Zelle, Eric813

Noland, Erwin Huizenga, Eugene Kharitonov, Fred- 814
erick Liu, Gagik Amirkhanyan, Glenn Cameron, 815
Hadi Hashemi, Hanna Klimczak-Plucińska, Har- 816
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