
Under review as a conference paper at ICLR 2024

DEEP PDE SOLVERS FOR SUBGRID MODELLING AND
OUT-OF-DISTRIBUTION GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Climate and weather modelling (CWM) is an important area where ML models are
used for subgrid modelling: making predictions of processes occurring at scales
too small to be resolved by standard solution methods. These models are expected
to make accurate predictions, even on out-of-distribution data, and are additionally
constrained to respect important physical constraints of the ground truth model.
While many specialized ML PDE solvers have been developed, the particular re-
quirements of CWM models have not been addressed so far. The goal of this work
is to address them. We propose and develop a novel architecture, which matches
or exceeds the performance of standard ML models, and which demonstrably suc-
ceeds in OOD generalization. The architecture is based on expert knowledge of
the structure of PDE solution operators, which permits the model to also obey
important physical constraints.

1 INTRODUCTION

Climate and weather modelling (CWM) is an important area which puts particular demands on
machine learning (Kashinath et al., 2021). Traditional climate and weather models break the ocean,
atmosphere, and land up into many grid points in order to predict future climate conditions (Brasseur
& Jacob, 2017). CWM processes are represented by time-dependent partial differential equations
of fluid mechanics (Mcsweeney & Hausfather, 2018). Features that are too small or complex to be
explicitly calculated in the model are approximated using coarser grids (Balaji et al., 2022).

Recently, ML approaches have been used to make better approximations of these subgrid processes
(Weyn et al., 2019) (Bretherton et al., 2022), (Watt-Meyer et al., 2021). For example, Bolton &
Zanna (2019) applied deep learning to ocean modelling, and found that they could decrease the
data resolution by a factor of 5-10 while maintaining accuracy and conservation of momentum.
However, these models fail to generalize to out-of-distribution (OOD) data and they can violate
physical constraints (Kashinath et al., 2021), two requirements of the CWM models.

In this work, we propose a tractable model problem which captures key aspects of the CWM prob-
lem: learning subgrid PDE solvers from sampled data, which generalize to new data distributions
and satisfy physical constraints. We deliberately limit our scope to allow us to focus on these chal-
lenges from both a practical and a theoretical point of view. We are able to make definite progress
in all these areas, which is a starting point for further study. Physical constraints are maintained by
incorporating them directly into our model’s architecture and the model is also flexible to allow for
varying subgrid resolutions, ensuring accuracy even as the resolution is decreased. Moreover, we
demonstrate that the PDE-inspired architecture generalizes to OOD data (while off-the-shelf neural
networks do not). As the scientific community continues to grapple with complex physical phenom-
ena, the methodologies and insights presented in this paper could serve as foundational pillars for
the next generation of modelling tools in diverse physical sciences domains.

Our key contributions are:

1. OOD Generalization for PDE Solution Operators: By restricting to a principled archi-
tecture grounded in theory, we show that we can accurately approximate the true solution
operator, even on ODD data.

1



Under review as a conference paper at ICLR 2024

2. Accurate subgrid models: Addressing the needs of scientific computing, we develop and
integrate subgrid solvers into our model which maintain accuracy even at reduced grid
resolutions (data dimensionality).

3. Physical Constraints satisfied: Our model hypothesis class has the benefits of traditional
PDE solvers, which satisfy physical constraints, in the framework of a neural network
training pipeline.

The main results are presented in the following figures, which are discussed in more detail later.

Figure 1 shows the results of the experiments for the fully resolved grid and for different subgrid
models in both one and two variables. Figure 2 shows an example of a two-dimensional subgrid
problem with resolution 64 (8 × 8). Figure 3 shows the same phenomenon in one dimension, in a
subgrid problem with a resolution of 32.

(a) One space variable (b) Two space variables

Figure 1: In-distribution and out-of-distribution relative errors for subgrid models in one and two
dimensions

(a) In-distribution ground
truth

(b) In-distribution our
model solution

(c) In-distribution ConvN
solution

(d) In-distribution FCN
solution

(e) Out-of-distribution
ground truth

(f) Out-of-distribution our
model solution

(g) Out-of-distribution
ConvN solution

(h) Out-of-distribution
FCN solution

Figure 2: Two dimensional modelled solutions for an in-distribution and out-of-distribution example
in a subgrid with a resolution of 8× 8.

2



Under review as a conference paper at ICLR 2024

(a) In-distribution solutions (b) Out-of-distribution solutions

Figure 3: One dimensional modelled solutions for an in-distribution and out-of-distribution example
in a subgrid with a resolution of 32.

2 RELATED WORK

Liu et al. (2022) build neural network models which integrate PDE operators directly in the model’s
architecture, while retaining the large capacity neural network architecture. They solve a different
problem: learning the solution operator of a number of different PDEs but with constant coefficients.
Long et al. (2018) explored the learning of coefficients for the solution operator, though they did
not delve into the subgrid aspects. On the other hand, the potential issues of out-of-distribution
(OOD) generalization with neural networks, especially for data with varied spectra, were highlighted
by Rahaman et al. (2019). Early attempts at using physics-informed neural networks (PINNs) as
PDE solvers were presented by Karniadakis et al. (2021) and Shin et al. (2020). While innovative,
these PINNs occasionally struggled with accurately representing the solution operator and ensuring
physical constraints.

Li et al. (2020) introduced the Fourier neural operator, which supports varying grids. However, their
focus diverged towards a different PDE challenge: learning the map from the coefficients to the
solution, which is different from our case, where we want to allow for different initial data to evolve
in time. Recent contributions from Pfaff et al. (2021) and Han et al. (2022) present a PDE solver on
irregular meshes.

The inverse problem in PDEs is to learn the coefficients of an operator, given input-output pairs (Stu-
art, 2010)(Kaipio & Somersalo, 2006), but does not address the subgrid aspects of a solver. Homog-
enization of PDEs takes the extreme approach of replacing an operator with a spatially homogeneous
one (Marchenko & Khruslov, 2008), an approach which is valid in fields like material science, but
not in weather and climate modelling, where the emphasis is on the heterogeneous nature of opera-
tors.

Several works connect neural network architectures and solution operators for differential equa-
tions. Chen et al. (2018) proposed neural network architecture based on ODE solvers and Haber
& Ruthotto (2017) focused on the stability aspects of the architecture. Ruthotto & Haber (2020)
advanced in this domain and proposed architectures based on discretized PDE solvers.

3 PROBLEM SETUP

3.1 THE PDE PROBLEM

Our PDE problem involves the function u(x, t) that satisfies:

∂tu(x, t) = L(u(x, t); a(x, t)), u(x, 0) = u0(x)

where L is the differential operator defined by the PDE, u(x, t) is the solution we seek, a(x, t) are
the coefficients of the PDE (as well as the boundary conditions), and u0(x) represents the initial
condition at time t = 0.

3



Under review as a conference paper at ICLR 2024

In this paper, we focus on the model problem of the heat equation with non-constant coefficients:
∂tu(x, t) = a(x)∆u(x, t). This equation is chosen because it is much simpler to analyze than a sys-
tem of advection-diffusion PDEs, or the Navier-Stokes equations, yet complex enough to highlight
the results.

3.2 ML PROBLEM DEFINITION

Given samples of solutions of a time-dependent PDE on a fine grid in space, at several time slices,
our goal is to learn a family of approximate solution operators. Each solution operator is to be
defined for data on successively coarser grids.

We assume that the functions are all solutions of some time-dependent advection-diffusion partial
differential equation, with unknown coefficients, a(x, t),

∂tu(x, t) = L(a(x, t),∇xu(x, t),∇2
xxu(x, t)), u(x, 0) = u0(x)

along with some known boundary conditions.

We start with a dataset consisting of sample values of m functions of the form ui(x, t) for x in a
physical domain, and t ∈ [0, T ]. The functions are sampled at points xj in a uniform grid in space
of resolution Nx, and at time intervals T fine, consisting of NT , uniformly spaced time intervals.
Each function is represented by a vector of the form Ui,j,k = ui(xj , tk) and our training dataset, on
the fine grid, is of the form,

Dfine = {Ui,j,k = ui(xj , tk) x, t ∈ Gfine × T fine, i = 1, . . . ,m}

We are given a list of target subgrid resolutions (for example, from fully resolved to an 8 times
smaller grid resolution) and coarsened data of the form,

Dcoarse = {Ui,j,k = ui(xj , tk) x, t ∈ Gcoarse × T coarse, i = 1, . . . ,m}

The goal is to learn, from the fine grid data, a solution map for each of the target grids

FS(u(x, 0); θ) = (u(x, tk)), x, t ∈ Gcoarse × T coarse (1)

where θ are the parameters of the model and T coarse is the set of times at which we have observations
on the coarse grid. By construction, we can also output the solution at other times as needed. In
practice, we will use only one of the coarse grids.

The function values on the fine (well-resolved) grid would be sufficient to solve the PDE with ac-
ceptable accuracy using standard numerical PDE methods if the coefficients were known. In fact,
this is how we generate the data for our dataset. However, building a solution operator on the coarse
grid requires machine learning tools, since there are no analytical formulas for the operator of a
coarse grid. For example, in current climate models, simplified operators are approximated, but this
leads to a known loss of accuracy.

Thus, our goal is to learn a subgrid solution operator as defined in equation 1 that accurately approx-
imates the ground truth solution, as represented by the fine grid PDE solver, in our example, or by
assimilated data in a full-scale weather or climate model.

3.3 DATASET GENERATION

The functions u(x, 0) are generated samples with a prescribed Fourier Spectrum. We then obtain
the functions u(x, t) by solving the PDE numerically on the fine grid. To obtain the coarse data for
the subgrid problems, we average our data in space and sample it in time according to the stability
constraints which are described in the next sections.

In our experiments, we measure the normalized L2 error of the model on the training data, test data
sampled from the same distribution, and on OOD data. The OOD data is obtained by generating
initial conditions using a different Fourier spectrum (see figure 4), and then applying the same PDE
solver to the data.

4



Under review as a conference paper at ICLR 2024

Thus, here we consider OOD to be initial data with a different shape (Fourier spectrum) from data
previously seen by the models. This corresponds to the problem of having the same physical dynam-
ics, but a different distribution of the density of particles (e.g. a more oscillatory density profile).
However, we assume that the solution operator (coefficients) are the same. A different OOD problem
which we do not address, would be where the underlying dynamics changed, resulting in different
coefficients, which corresponds to learning a different solution operator.

4 OUR MODEL

Our strategy is grounded in four theoretically desirable properties for our solution operator: locality,
stability, linearity, and memory-less recurrence. We implement each of those four properties into
our model’s architecture as follows:

Locality: PDEs are local operators since they depend on the derivatives of the function. Based on
this, we aim to integrate the same locality property into our model architecture. To achieve this,
we structure each layer as a convolutional layer which will ensure that output values are only af-
fected by nearby input values. For all grid resolutions, we require that the solution operator is the
discretization of some coarser heat equation. For this reason, it is more restrictive than a standard
convolutional neural network. The convolution kernel is a diagonal multiple (corresponding to the
unknown coarsened coefficients) of the fixed Laplacian operator. The convolution kernel corre-
sponds to

WLap,1 =
dt

dx2
[1,−2, 1], WLap,2 =

dt

dx2

[
0 1 0
1 −4 1
0 1 0

]
.

in one and two dimensions, respectively.

Stability: When solving any PDE numerically, we are bound by some stability constraints that
are necessary for obtaining a convergent solution. For the heat equation, assuming we take space
intervals of dx (and equal in all dimensions) and time intervals of dt, we are bound by the stability
constraint 0 ≤ a(x) · dt

dx2 ≤ 1
2·D where D is the dimension of the data, (Courant et al., 1967). Thus

when one knows the coefficients a(x) then one can simply pick dt and dx to satisfy the stability
constraint.

In this case, we take the opposite approach. Given fixed values of dx and dt, we can bound the
coefficients themselves by

0 ≤ a(x) ≤ Ca =
dx2

2D · dt
(2)

This is a crucial constraint since the parameters of our model will take the place of the coefficients
of the equation in our model. In this way, we design our model precisely with the aim of learning
the physical process that is trying to approximate.

In order to satisfy the stability constraint, we bound the raw parameters learned by the model with
a scaled sigmoid function. This is, if the model’s parameters are θ, then the values that we multiply
with the output of the convolution layer are given by Ca · σ(θ). This ensures that the parameters
are bounded by the stability region of the PDE and thus forces the model to find a solution in the
parameter space in which the PDE itself is stable.

It is important to note that when coarsening our data to subgrids, the same stability constraint must
be satisfied. Thus we will always coarsen our data according to the same dt

dx2 factor. More precisely,
if we coarsen our data in space by a factor of λx, we will sample our time steps at intervals of
λt = λ2

x.

Linearity: Since the differential operator ∂t(x, t) − ∆u(x, t) is linear, we want our model to be
linear in the data as well. This is achieved by requiring that our model be linear in U , which is not
typically the case for neural networks. However, the model is nonlinear in the parameters θ.

Memory-less: Our differential operator is time-independent, meaning that no matter what the start-
ing time t0 is, the physical process is the same. Naturally, we implement this property into our

5



Under review as a conference paper at ICLR 2024

model by making each layer identical, ensuring the same physical process between each predicted
time step.

Putting all of it together, our model is then a composition fθ(U0) = l0 ◦ l0 ◦ · · · ◦ l0(U0) of re-
peated layers. The layer is defined as (i) the convolution of the data with the fixed (non-learnable)
dimension-dependent Laplacian WLap, dim defined above, followed by (ii) component-wise multipli-
cation by weights bounded between zero and a fixed, given upper bound (determined by the PDE
operator as explained in equation 2), and finally (iii) this update is added back to the input vector x.
We note that since the bound on the weights is achieved using a sigmoid nonlinearity, the model is
linear in x, and nonlinear in the model parameters θ.

l0(U) : U −→ (diag(Ca · σ(θ))conv(WLap,dim, U)) + U (3)

Thus, the number of weights in the model is on the order of the number of grid points (spatial
data points) as shown in tables 1 and 2. The architecture is motivated by domain expertise: the
coarsened solution of a time-independent PDE should be captured approximately by an operator
which also looks like a coarse solution operator (Pavliotis & Stuart, 2008). In the case where the
PDE coefficients depend on time, we would have a similar structure, but with different weights for
each layer.

Subgrid resolution 256 128 64 32

Parameters in our model 256 128 64 32
Parameters in FCN 166, 720 83, 520 41, 920 21, 120

Parameters in ConvN 1, 130 1, 130 1, 130 1, 130

Table 1: Model parameters for our model and the standard neural networks in one dimension

Subgrid resolution 4, 096 1, 024 256 64

Parameters in our model 4, 096 1, 024 256 64
Parameters in FCN 2, 662, 720 665, 920 166, 720 41, 920

Parameters in ConvN 3, 050 3, 050 3, 050 3, 050

Table 2: Model parameters for our model and the standard neural networks in two dimensions

5 EXPERIMENTS

5.1 BASELINE NEURAL NETWORK MODEL

We conduct the experiments for both our proposed model architecture and for two baseline models
which are: (1) a standard fully connected 2-layer ReLU neural network (FCN), and (2) a standard
convolutional 2-layer ReLU neural network (ConvN). We chose these models given their simplic-
ity and as a proxy for off-the-shelf ML models. The fully connected network is a simple 2-layer
multilayer perceptron with a hidden layer of size 32 and ReLU activation, while the convolutional
network is a simple 2-layer convolutional neural network with 3 × 3 kernel, ReLU activation, and
hidden layer with 16 channels.

5.2 SUBGRID PROBLEMS

We sample initial conditions u(x, 0) from a distribution ρtrain based on a given Fourier spectrum
and then solve for the solution u(x, t) numerically for t ≤ T with appropriate choices of dx and
dt that guarantee stability. For the fully resolved grid, we simply train our model with the data
generated. This is, the initial conditions are our inputs, and the solutions at the first k time steps are
our outputs. For the one-dimensional results presented, the fully resolved grid has size Nx = 256,
and for the two-dimensional case we have Nx = 642. For both cases, we sample k = 10 time
steps and chose T large enough so that we can sample the same k = 10 time steps at the larger time
intervals required for the subgrid models (T = 0.002 and T = 0.0156 are sufficient for the one and
two-dimensional experiments carried out respectively).

6



Under review as a conference paper at ICLR 2024

For the subgrid problems, we take our data and average it down in space by a factor of λx (in each
dimension) and sample it down in time by a factor of λt = λ2

x (according to the stability conditions
from the previous section). This is, the subgrid data has a dimension of Nx

λD
x

where D is the number
of space variables and every time step is λt · dt apart where dt is the original, fine grid time interval.

To test out-of-distribution generalization we generate a different set of data based on a different
Fourier spectrum and we sample our out-of-distribution initial conditions ũ(x, 0) from this new
distribution ρood. We apply the same subgrid coarsening described above and test both our model
and the standard neural networks on the OOD dataset. Figure 4 shows the Fourier spectra for in-
distribution and out-of-distribution data.

(a) Distribution spectrums for
one-dimensional data

(b) In-distribution spectrum for
two-dimensional data

(c) Out-of-distribution spectrum
for two-dimensional data

Figure 4: Fourier Spectra for in-distribution and out-of-distribution data in one and two dimensions

We measure the error as the relative L2 error with respect to the solutions, using a normalization
which sets the variance of the initial data (as a function of x) to be one. From figure 1 we can
see that the FCN achieves 10% training and test error, nearly constant across grid resolutions. The
error decreases slightly as the number of parameters in the model decreases, which suggests some
overfitting. However, the model fails on OOD data, with a relative error close to 100%.

On the other hand, our model maintains high accuracy, with less than 1% training error, and less
than 1% test error, except on the coarsest grid in two dimensions. On out-of-distribution data, the
model is also quite accurate, below 10% error on all subgrid problems except the coarsest grid in
two dimensions which is just slightly higher. Thus we have a 10 times improvement in distribution
versus the FCN and success versus failure on out-of-distribution data. As for the ConvN, we observe
that it performs significantly better than the FCN in both in-distribution and out-of-distribution data,
but it still underperforms significantly compared to our model.

5.3 DATA COMPLEXITY

We performed an ablation study on the data complexity used in the model. We found that the
fully connected neural network lost significant accuracy when exposed to data with a more complex
distribution. The convolutional network lost some accuracy while our model was the most resilient
to the change in complexity of the data.

Figure 6 shows the Fourier spectrum for the in-distribution and out-of-distribution data used in the
study, which shows a jump in data complexity compared to the spectra used for the main results in
figure 4. Figure 5 shows that the fully connected neural network was unable to learn an accurate
solution operator when trained with data from the complex Fourier spectrum, with errors around
50%. On the other hand, our model exhibited a stable pattern across both sets of data, demonstrating
that it is resilient to changes in the data complexity. The convolutional network stood in the middle,
losing some accuracy but performing significantly better than the fully connected network. We note
that at this level of data complexity, it was not possible to resolve the data at the coarsest resolution,
so we stopped at 256.

5.4 MODELLED SOLUTIONS

Figures 2 and 3 show an instance of the predicted solutions for both our model and the standard
neural networks for both in-distribution and out-of-distribution examples. Figure 2 shows an exam-

7



Under review as a conference paper at ICLR 2024

(a) Simple data spectrum (b) Complex data spectrum

Figure 5: Subgrid errors for both simple Fourier spectra and complex Fourier spectra

(a) In-distribution spectrum (b) Out-of-distribution spectrum

Figure 6: Fourier spectra for in-distribution and out-of-distribution data in the ablation study

ple of a two-dimensional subgrid problem with resolution 64 (8 × 8). We can see that even though
figure 1 shows that our model is around 10 times more accurate on average, both neural networks’
relative error is still good enough to produce a visually similar solution for in-distribution data. On
OOD data, however, it is visually clear that the fully connected neural network does not learn an
accurate solution operator, while our model is able to adapt to the new distribution with high ac-
curacy. The convolutional network fares in between, producing a similar solution but less accurate
than our model. Figure 3 shows the same phenomenon in one dimension, in a subgrid problem with
a resolution of 32 (we note that all solutions are linearly interpolated back to the original grid size
for comparison).

8



Under review as a conference paper at ICLR 2024

REFERENCES

V Balaji, Fleur Couvreux, Julie Deshayes, Jacques Gautrais, Frédéric Hourdin, and Catherine Rio.
Are general circulation models obsolete? Proceedings of the National Academy of Sciences, 119
(47):e2202075119, 2022.

Thomas Bolton and Laure Zanna. Applications of deep learning to ocean data inference and subgrid
parameterization. Journal of Advances in Modeling Earth Systems, 11(1):376–399, 2019.

Guy P. Brasseur and Daniel J. Jacob. Parameterization of Subgrid-Scale Processes, pp. 342–398.
Cambridge University Press, 2017. doi: 10.1017/9781316544754.009.

Christopher S. Bretherton, Brian Henn, Anna Kwa, Noah D. Brenowitz, Oliver Watt-Meyer,
Jeremy McGibbon, W. Andre Perkins, Spencer K. Clark, and Lucas Harris. Correcting coarse-
grid weather and climate models by machine learning from global storm-resolving simulations.
Journal of Advances in Modeling Earth Systems, 14(2):e2021MS002794, 2022. doi: https:
//doi.org/10.1029/2021MS002794. URL https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2021MS002794. e2021MS002794 2021MS002794.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018.

Richard Courant, Kurt Friedrichs, and Hans Lewy. On the partial difference equations of mathemat-
ical physics. IBM journal of Research and Development, 11(2):215–234, 1967.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse Problems,
34(1):014004, dec 2017.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Liping Liu. Predicting physics in mesh-
reduced space with temporal attention. In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=XctLdNfCmP.

Jari Kaipio and Erkki Somersalo. Statistical and computational inverse problems, volume 160.
Springer Science & Business Media, 2006.

George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, may 2021.

Karthik Kashinath, M Mustafa, Adrian Albert, JL Wu, C Jiang, Soheil Esmaeilzadeh, Kamyar Az-
izzadenesheli, R Wang, A Chattopadhyay, A Singh, et al. Physics-informed machine learning:
case studies for weather and climate modelling. Philosophical Transactions of the Royal Society
A, 379(2194):20200093, 2021.

Stig Larsson and Vidar Thomée. Partial Differential Equations With Numerical Methods, volume 45.
Springer, Chalmers University of Technology and University of Gothenburg 412 96 Göteborg
Sweden, 2009.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 10 2020.

Xin-Yang Liu, Hao Sun, Min Zhu, Lu Lu, and Jian-Xun Wang. Predicting parametric spa-
tiotemporal dynamics by multi-resolution pde structure-preserved deep learning. arXiv preprint
arXiv:2205.03990, 2022.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-net: Learning PDEs from data. In
Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 3208–3216.
PMLR, 10–15 Jul 2018.

Vladimir A Marchenko and Evgueni Ya Khruslov. Homogenization of partial differential equations,
volume 46. Springer Science & Business Media, 2008.

9

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002794
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021MS002794
https://openreview.net/forum?id=XctLdNfCmP


Under review as a conference paper at ICLR 2024

Robert Mcsweeney and Zeke Hausfather. Q&a: How do climate models work. Carbon Brief, 2018.
URL https://www.carbonbrief.org/qa-how-do-climate-models-work/.

Grigoris Pavliotis and Andrew Stuart. Multiscale methods: averaging and homogenization. Springer
Science & Business Media, 2008.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W. Battaglia. Learning mesh-
based simulation with graph networks. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=roNqYL0_XP.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua
Bengio, and Aaron Courville. On the spectral bias of neural networks. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5301–5310. PMLR,
09–15 Jun 2019.

Lars Ruthotto and Eldad Haber. Deep neural networks motivated by partial differential equations.
Journal of Mathematical Imaging and Vision, 62(3):352–364, Apr 2020.

Yeonjong Shin, Jerome Darbon, and George Em Karniadakis. On the convergence and generaliza-
tion of physics informed neural networks. arXiv e-prints, pp. arXiv–2004, 2020.

Andrew M Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451–559, 2010.

Oliver Watt-Meyer, Noah D. Brenowitz, Spencer K. Clark, Brian Henn, Anna Kwa,
Jeremy McGibbon, W. Andre Perkins, and Christopher S. Bretherton. Correcting
weather and climate models by machine learning nudged historical simulations. Geo-
physical Research Letters, 48(15):e2021GL092555, 2021. doi: https://doi.org/10.1029/
2021GL092555. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1029/2021GL092555. e2021GL092555 2021GL092555.

Jonathan A. Weyn, Dale R. Durran, and Rich Caruana. Can machines learn to predict weather?
using deep learning to predict gridded 500-hpa geopotential height from historical weather
data. Journal of Advances in Modeling Earth Systems, 11(8):2680–2693, 2019. doi: https:
//doi.org/10.1029/2019MS001705. URL https://agupubs.onlinelibrary.wiley.
com/doi/abs/10.1029/2019MS001705.

10

https://www.carbonbrief.org/qa-how-do-climate-models-work/
https://openreview.net/forum?id=roNqYL0_XP
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL092555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021GL092555
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001705
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001705


Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 ERROR MEASURES

The relative errors plotted in figure 1 are calculated as the average normalized error of the predicted
solutions. More precisely we calculate

ϵ =

(
1

N

N∑
i=1

∥fθ(ui(x, 0))− ui(x, t)∥2

σ2
ρ

) 1
2

where σ2
ρ = E

[∫ T

0

∫
x
(u(x, t)− ū(x, t))

2
dxdt

]
is a normalization factor that sets the variance

of the initial data (as a function of x) to be one, and allows us to do a fair comparison across
distributions.

A.2 TRAINING DYNAMICS

We can see in figure 7 that the training dynamics of our model are a lot smoother than those of
the standard neural networks, leading to less volatility in the training and a more stable model.
Furthermore, tables 1 and 2 show the number of parameters of our model and the standard neural
networks as a function of the subgrid size. We can see that our model has fewer parameters in
general, which is desirable for computational efficiency.

(a) Training dynamics for our
model

(b) Training dynamics for the
FCN model

(c) Training dynamics for the
ConvN model

Figure 7: Training dynamics of our model and the standard neural networks in a two-dimensional
subgrid of resolution 16× 16

A.3 MODEL ARCHITECTURE

Our model architecture is motivated by the forward Euler method for solving PDEs numerically.
The core algorithm of the Euler method for solving the heat equation in one dimension is given by
(Larsson & Thomée, 2009)

Un+1
j = a(x)λ

(
Un
j+1 − 2Un

j + Un
j−1

)
+ Un

j (4)

where Un
j = u(xj , tn) represents the solution at space point j and time step n, a(x) represents the

non-constant coefficients of the equation, and λ = dt
dx2 .

We can then see that each layer in our model’s architecture in equation 3 is built to resemble equation
4:

• λ(Un
j+1 − 2Un

j + Un
j−1) is replaced by our fixed convolution operator conv(WLap,dim, U).

• a(x) is replaced by the bounded model parameters diag(Ca · σ(θ)).
• Adding this update back to Un

j in equation 4 is analogous to adding the update to x in
equation 3.

At its core, our model is designed to learn a solution operator that resembles the Euler method but
at coarser grids, with coarser (fewer) coefficients as the resolution decreases.

11


	Introduction
	Related work
	Problem Setup
	The PDE problem
	ML problem definition
	Dataset generation

	Our Model
	Experiments
	Baseline neural network model
	Subgrid problems
	Data complexity
	Modelled solutions

	Appendix
	Error Measures
	Training dynamics
	Model Architecture


