
What We Miss Matters: Learning from the
Overlooked in Point Cloud Transformers

Yi Wang1∗, Jiaze Wang2,3∗, Ziyu Guo2, Renrui Zhang2, Donghao Zhou2,

Guangyong Chen4, Anfeng Liu1†, Pheng-Ann Heng2

1 Central South University 2 The Chinese University of Hong Kong
3 FitX Technology (Hong Kong) Limited 4 Zhejiang Lab

Abstract

Point Cloud Transformers have become a cornerstone in 3D representation for
their ability to model long-range dependencies via self-attention. However, these
models tend to overemphasize salient regions while neglecting other informa-
tive regions, which limits feature diversity and compromises robustness. To ad-
dress this challenge, we introduce BlindFormer, a novel contrastive attention
learning framework that redefines saliency by explicitly incorporating features
typically neglected by the model. The proposed Attentional Blindspot Mining
(ABM) suppresses highly attended regions during training, thereby guiding the
model to explore its own blind spots. This redirection of attention expands the
model’s perceptual field and uncovers richer geometric cues. To consolidate these
overlooked features, BlindFormer employs Blindspot-Aware Joint Optimization
(BJO), a joint learning objective that integrates blindspot feature alignment with
the original pretext task. BJO enhances feature discrimination while preserving
performance on the primary task, leading to more robust and generalizable rep-
resentations. We validate BlindFormer on several challenging benchmarks and
demonstrate consistent performance gains across multiple Transformer backbones.
Notably, it improves Point-MAE by +13.4% and PointGPT-S by +6.3% on OBJ-
BG under Gaussian noise. These results highlight the importance of mitigating
attentional biases in 3D representation learning, revealing BlindFormer’s superior
ability to handle perturbations and improve feature discrimination. Project page:
https://winfred2027.github.io/projects/BlindFormer/intro.html.

1 Introduction

Point clouds serve as a fundamental 3D representation with broad applications in robotics [6, 47],
autonomous driving [7], augmented reality [3], and virtual reality [13]. While their versatility
highlights the need for robust space understanding, the irregular and sparse nature of point clouds
complicates efficient processing.

The recent success of Transformer architectures [34, 5, 65] in point cloud analysis has demonstrated
remarkable capabilities in capturing long-range dependencies through self-attention mechanisms.
These models follow a paradigm where the attention weights automatically emphasize salient regions
for understanding the point cloud while downplaying less significant areas. Originally designed
for natural language, attention mechanism has been successfully adapted for 2D vision. However,
unlike natural language [9] or images [17], which often contain redundant information such as
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Figure 1: Illustration of BlindFormer’s Advantages. Point-MAE is employed as the backbone of
our proposed BlindFormer. Left: BlindFormer emphasizes extracting information from a greater
number of patches. Right: BlindFormer demonstrates greater robustness than previous methods.

contextual structures and backgrounds, point cloud data are inherently sparse, meaning that each
point or region is critical to the overall representation. This scarcity of redundant information implies
that Transformer-based models, when neglecting less prominent point patches, may inadvertently
overlook essential latent information. This observation leads to a pivotal question: Can we design
a framework that actively mitigates attentional blind spots to improve both robustness and feature
discrimination in 3D representation learning?

To answer this question, we re-examine the attention weights in Transformer-based point cloud
models. As illustrated in Figure 1, we find that models like Point-MAE [65] and PointGPT [5]
primarily rely on a limited set of high-attention patches for analysis. This reliance presents two
significant issues: (1) Increased sensitivity to perturbations. Over-focusing on high-attention patches
makes the models more susceptible to noise and incomplete data, as disturbances in these areas
disproportionately affect performance. (2) Inadequate feature discrimination. Ignoring potential
information in low-attention regions limits the model’s ability to distinguish objects with similar local
structures, reducing their ability to generalize across distribution shifts.

To address the limitations of attentional bias, we introduce BlindFormer, a contrastive attention
learning framework that can be seamlessly integrated into existing point cloud Transformers. Our
approach comprises two key components: First, we introduce an Attentional Blindspot Mining
(ABM) module, which reshapes the attention distribution by explicitly suppressing salient regions
during training. By constructing a masking distribution derived from self-attention scores, ABM
selectively occludes patches that contribute most to the global representation. This encourages the
model to redirect its focus toward previously overlooked blind spots, thereby learning to capture
spatial structures from more subtle cues and expanding its perceptual field. To reinforce these under-
attended features, BlindFormer further incorporates Blindspot-Aware Joint Optimization (BJO), a
united learning objective that integrates blindspot feature alignment with the original pre-training
task. This joint supervision not only retains the model’s task-specific capabilities but also enhances
its ability to capture invariant and discriminative features across diverse point clouds.

Extensive experiments demonstrate that our BlindFormer significantly enhances the robustness of
Transformer-based models across various noisy environments, including Gaussian noise, rotation,
scaling, and point dropout. Specifically, under Gaussian noise perturbation, BlindFormer improves the
classification accuracy of Point-MAE by 17.2% in the OBJ-ONLY setting. Similarly, under rotation
perturbation, it boosts the segmentation performance of PointGPT-S by 3.3% on ShapeNetPart.
Furthermore, BlindFormer achieves state-of-the-art performance across various downstream tasks for
3D understanding. Even when competing models are given additional training time, BlindFormer
maintains a consistent performance advantage. These results highlight BlindFormer’s potential
to effectively address the limitations of existing Transformer-based models by comprehensively
activating regions and improving feature discrimination capabilities.

Our main contributions can be summarized as follows:

(I) We propose BlindFormer, a novel contrastive attention learning framework for point cloud
understanding that explicitly addresses attentional blindspots which enhances the model’s ability to
capture global structures and significantly improves its robustness and generalization capabilities.
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(II) We introduce an attentional blindspot mining strategy that dynamically suppresses dominant
regions and encourages the model to focus on previously neglected parts, promoting the learning of
spatial features from a broader set of patches rather than over-relying on a salient subset.

(III) Extensive experimental results demonstrate that BlindFormer can be seamlessly integrated into
mainstream transformer architectures and achieve significant improvements across a variety of 3D
understanding tasks.

2 Related Works

Self-Supervised Learning for NLP and Image. Self-supervised learning (SSL) has emerged as a
powerful paradigm in natural language processing (NLP) [11, 75] and computer vision [41, 14, 64,
32, 40, 1, 25], enabling models to learn rich representations from unlabeled data. In NLP, BERT [9]
exemplifies this by randomly masking input tokens and training the model to predict them, fostering
deep contextual understanding. ELMo [45] utilizes bidirectional LSTMs to generate contextual-
ized word embeddings, while GPT [41] adopts an autoregressive approach with a unidirectional
Transformer to predict the next word, fine-tuning all parameters for specific tasks. Recently, gener-
ative SSL methods have begun to outperform contrastive approaches in computer vision. Masked
Autoencoders [17] randomly mask image patches and train the model to reconstruct the missing
pixels, leading to effective visual representations. BEiT [4] extends this by tokenizing image patches
and predicting masked tokens, integrating NLP techniques into vision tasks. Additionally, Image
GPT [28] treats images as sequences of pixels and trains a Transformer to autoregressively predict
pixels without explicit spatial structure, demonstrating strong representation learning. This shift
towards generative self-supervised learning methods not only demonstrates their ability to capture
comprehensive data representations and improve performance in NLP and computer vision but also
highlights their significant potential in advancing point cloud processing and analysis.

Self-Supervised Learning for Point Cloud. Various methods have been investigated for self-
supervised learning on point clouds [54, 27, 57, 69, 70, 16, 52, 66, 12, 58, 56]. Many works focused
on generative modeling with generative adversarial networks and autoencoders, aiming to reconstruct
inputs using different architectural designs [31, 65, 46, 22, 2, 55, 21, 51, 43]. PointMAE [34]
proposes an effective scheme of masked autoencoders for point cloud self-supervised learning. Point-
M2AE [67] further employs a hierarchical transformer architecture and implements a specific masking
strategy. PointGPT [5] proposes a point cloud auto-regressive generation task to pre-train transformer
models. Moreover, contrastive methods also have been extensively explored [39, 61, 62, 33, 72, 60,
19]. DepthContrast [72] generates augmented depth maps and conducts instance discrimination on the
extracted global features. MVIF [20] employs cross-modal and cross-view invariance constraints to
enable self-supervised learning of modal- and view-invariant features. OcCo [49] aims to reconstruct
the original point cloud from an occluded version observed in camera views. Some studies focus
on integrating cross-modal information, utilizing knowledge from language or image models to
enhance 3D learning [37, 10, 50, 44, 38]. PointCLIP [68] facilitates the alignment between point
clouds encoded by CLIP and corresponding text descriptions, enhancing cross-modal understanding.
PointCLIP V2 [74] uses a shape projection module to guide CLIP in generating more realistic depth
maps and prompts a GPT model to create 3D-specific text for textual encoder input.

3 Methods

The overall framework of BlindFormer is illustrated in Figure 2. First, the Attentional Blindspot
Mining module generates a masked point cloud by dynamically suppressing regions with high
attention scores. Both masked point cloud and the original input point cloud are then fed into the
shared backbone model to obtain the global features of each input. By explicitly aligning the features
from these two branches, BlindFormer guides the model to better capture and understand information
from the overlooked regions, enhancing feature discrimination and generalization. During the pre-
training stage, the model is optimized using a combination of blindspot feature alignment and the
original pre-training loss—such as the reconstruction loss from Point-MAE [34] or the generation
loss from PointGPT [5]. After pre-training, we employ the backbone model without the masking
strategy, leveraging the learned latent representations for downstream tasks.
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Figure 2: Overview of the BlindFormer Framework. BlindFormer consists of two branches that
share the same weights: a standard mode branch and a blindspot mode branch. An attentional
blindspot mining module generates a masked point cloud by selecting less activated patches from the
output of the standard mode branch. Both branches process their respective inputs through the shared
Transformer blocks to obtain latent representations. Finally, a blindspot-aware joint optimization is
used to align the representations of these two branches.

3.1 Attentional Blindspot Mining

To fully leverage the self-attention mechanism and mitigate the model’s reliance on a small subset of
key patches, we propose an Attentional Blindspot Mining (ABM) strategy, which guides the model to
focus on blindspot regions and enforces a more comprehensive understanding of the whole structure
in challenging scenarios by dynamically masking salient areas.

Point patch attention. Given a point cloud X ∈ Rp×3, we utilize Farthest Point Sampling (FPS)
and K-Nearest Neighbors (KNN) algorithms to identify n center points C and their corresponding
k nearest neighbors, forming n point patches P . We employ the self-attention mechanism in the
transformer architecture to compute the attention weights of point patches relative to the global
feature. A new set of input tokens T ∈ R(n+1)×d, consisting of point tokens T p ∈ Rn×d and a
learnable global feature token T f ∈ R1×d, is utilized to compute the queries Q ∈ R(n+1)×d , keys
K ∈ R(n+1)×d , and values V ∈ R(n+1)×d. The attention matrix A is subsequently derived from
the dot product of queries and keys. Since the first element of the input tokens T1 corresponds to
the global feature token, the first row of the attention matrix can be interpreted as the contribution of
each token to the global feature. Considering the output tokens depend on both the attention matrix
and the values, we incorporate the norm of Vj when determining the significance score of token j.
Consequently, the attention matrix and significance score for point patch j are computed as follows:

A = Softmax(QKT /
√
d), (1)

Sj =
A1,j × ∥Vj∥∑
i=2 A1,i × ∥Vi∥

, (2)

where i, j ∈ 2, ..., n + 1. For a multi-head attention layer, we compute the significance scores for
each head separately and aggregate them by taking the sum over all heads.

Dynamic blindspot generation. A straightforward idea is to mask the top k patches with the highest
significance scores, as they are key to the model’s understanding of the point cloud. However, a
fixed masking probability merely shifts the model’s attention without engaging a broader set of
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patches. As the model becomes reliant on new areas of focus, it similarly falls into the trap of
limited comprehension of the point cloud. Our primary objective is to ensure that high-attention
regions have a higher likelihood of being suppressed. Therefore, we propose a dynamic blindspot
generation strategy. Specifically, we construct an updatable base masking probability using the
latest self-attention significance scores, prioritizing the masking of patches that currently contribute
significantly to the global features. Additionally, Gumbel noise[30] is introduced as a perturbation
probability, derived from a uniform distribution U [0, 1], to enhance the variability of the masking
probability. Based on this concept, the final dynamic masking probability pdy is expressed as:

pdy = log (Softmax(S/τpro))− log (− log ε) , (3)

where τpro is a temperature hyperparameter which controls the sharpness of the base masking
probability. A lower temperature (less than 1) results in a sharper distribution, meaning that regions
with the highest attention are more likely to be masked. Based on the dynamic masking probability,
we apply simple Top-K strategy to select the k point patches Pmask ∈ Rk×3 to be masked:

Pmask = Top-K(pdy, k), (4)

P blind = P − Pmask. (5)
The blindspot region P blind contains the previously under-attended patches, which are preserved as
input for the model. In this manner, regions that previously attract high attention are more likely to
be suppressed, promoting a deeper understanding of the whole spatial information for the model.

3.2 Blindspot-Aware Joint Optimization

To effectively consolidate the spatial cues learned from under-attended regions, we introduce
Blindspot-Aware Joint Optimization (BJO), a bidirectional learning strategy that integrates blindspot
feature alignment into the pre-training objective. This optimization encourages the model to learn
more discriminative feature representations from blindspot regions while preserving its task-specific
learning capabilities and improving its generalization.

Blindspot feature alignment. The dynamically selected blindspot token T b and the standard
token T s are both input into a shared-weight model, producing two distinct levels of point cloud
latent representations F b and F s. Unlike the blindspot input, the complete point cloud retains all
original information. Although the masking strategy results in the loss of some regional details,
both representations still correspond to the same underlying point cloud entity. To encourage this
consistency, we introduce a blindspot feature alignment objective that explicitly aligns global features
from the masked and standard inputs. This promotes invariance to specific localized patterns and
pushes the model to rely more on global context rather than overfitting to salient regions. The
blindspot-aware contrastive loss is defined as:

Lcontra = − 1

2a

∑
i

(log
exp(Hb

i ·Hs
i /τsim)∑

j exp(H
b
i ·Hs

j /τsim)
+ log

exp(Hs
i ·Hb

i /τsim)∑
j exp(H

s
i ·Hb

j /τsim)
), (6)

where a is the number of point clouds in a batch; τsim is a temperature hyperparameter; Hb
i and Hs

i

are the normalized projection features of F b
i and F s

i . By omitting the high-attention regions in the
masked point clouds, the contrastive objective incentivizes the model to focus on and extract valuable
information from less emphasized areas. This process facilitates the learning of a more holistic latent
representation, thereby improving the model’s capacity to effectively differentiate between various
point cloud objects.

Contrastive learning enhancement. While contrastive learning is effective at distinguishing features,
directly integrating it into existing models can lead to multi-task conflicts. To address this, we propose
a phased weighted combination strategy. In the early stage of training, the model focus solely on the
original loss to achieve strong performance on the primary task. In the subsequent phase, blindspot
feature alignment is gradually introduced through a weighted loss combination, enhancing its ability
to recognize global invariant features, while the original task continues to guide the learning process.
The proposed total loss is formulated as follows:

Ltotal = Lorigin + λLcontra, (7)

where Lorigin represents the original loss in the existing framework; λ is a weight hyperparameter
that controls the contribution of blindspot-aware contrastive learning loss. During the pre-training
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Table 1: Robustness on object classification. We report the classification accuracy (%) with four
noisy environments: Gaussian noise, rotation, scaling, and droppoint on ScanObjectNN.

Dataset Methods Gaussian Noise Rotation Scaling DropPoint

σ=0.01 σ=0.03 X[-30 30] Y[-30 30] Z[-30 30] (0.5, 1.5) 0.2 0.6

OBJ-BG

Point-MAE 77.5 47.2 72.1 87.6 72.5 86.2 87.4 84.9
+BlindFormer 81.8 60.6 77.3 90.5 77.3 89.3 90.7 89.7

↑ Improve +4.3 +13.4 +5.2 +2.9 +4.8 +3.1 +3.3 +4.8

PointGPT-S 78.6 51.5 72.3 89.3 74.0 88.3 90.7 85.0
+BlindFormer 81.8 57.8 76.8 91.9 79.2 90.4 91.4 86.1

↑ Improve +3.2 +6.3 +4.5 +2.6 +5.2 +2.1 +0.7 +1.1

OBJ-ONLY

Point-MAE 70.9 37.0 75.4 86.7 74.9 84.0 86.6 84.5
+BlindFormer 76.2 54.2 78.5 88.6 79.7 86.7 88.5 87.6

↑ Improve +5.3 +17.2 +3.1 +1.9 +4.8 +2.7 +1.9 +3.1

PointGPT-S 71.2 39.4 72.3 89.3 74.5 86.6 89.7 85.9
+BlindFormer 73.3 41.3 79.9 92.3 81.8 90.0 91.2 87.4

↑ Improve +2.1 +1.9 +7.6 +3.0 +7.3 +3.4 +1.5 +1.5

PB-T50-RS

Point-MAE 66.3 40.6 65.9 83.9 68.8 82.6 83.2 80.0
+BlindFormer 69.4 43.9 68.4 85.4 70.0 84.5 84.9 82.0

↑ Improve +3.1 +3.3 +2.5 +1.5 +1.2 +1.9 +1.7 +2.0

PointGPT-S 63.2 34.9 63.1 85.6 67.0 84.1 86.1 82.0
+BlindFormer 66.5 38.8 63.8 87.0 68.2 85.6 86.7 83.5

↑ Improve +3.3 +3.9 +0.7 +1.4 +1.2 +1.5 +0.6 +1.5

phase, Point-MAE’s original pre-training loss Lorigin is equivalent to the reconstruction loss Lre.
For PointGPT, Lorigin refers to the generation loss Lge. Therefore, we optimize the joint learning
objective with the phased weighted combination strategy, ensuring that the model not only achieves
high-quality reconstructions (or generations) but also learns globally consistent feature representations.
Through this strategy, BlindFormer exhibits strong potential for adaptability and scalability across a
wide range of multi-task learning scenarios, ultimately improving the model’s overall performance.

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate BlindFormer on three benchmarks in point cloud analysis. ScanObjectNN [48]
comprises approximately 15,000 real-world 3D objects from 15 categories derived from indoor RGB-
D scans, presenting challenges like background clutter, occlusions, and sensor noise. ModelNet40 [59]
is a synthetic dataset with 12,311 CAD models across 40 categories, split into 9,843 for training and
2,468 for testing. ShapeNetPart [63] contains 16,881 models across 16 categories, each annotated
with part labels totaling 50 classes, enabling evaluation of fine-grained part segmentation.

Backbone models. To evaluate the seamless integration of the proposed method into existing
Transformer-based models for point cloud processing, we apply it to different backbone architectures,
specifically Point-BERT, Point-MAE and PointGPT-S. Experimental results across various tasks
indicate that the method is adaptable and enhances the performance of these Transformer architectures,
thereby demonstrating its versatility and practical applicability.

Experimental details. Our input point clouds are obtained by sampling 1,024 points from each raw
point cloud. Each point cloud is then divided into 64 patches with 32 points each. The BlindFormer
model is pre-trained for a total of 600 epochs: the first 300 epochs focus on the original task alone,
and the next 300 epochs incorporate both original pre-training and contrastive learning objectives. We
use the Adam optimizer with an initial learning rate of 0.001, a weight decay of 0.05, and a batch size
of 128. The learning rate is adjusted using a cosine decay schedule. All experiments are implemented
using the PyTorch framework and conducted on four NVIDIA V100 GPUs. More training strategy
details and training cost analysis are provided in the Appendix 6.2.

4.2 Robustness against point cloud perturbations

To assess the robustness of our BlindFormer framework, we conducted experiments on object
classification and part segmentation tasks under different noisy environments, including Gaussian
noise, rotation, scaling, and point dropout.
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Table 2: Robustness on part segmentation. We report the mean Intersection over Union (mIoU) for
all classes on ShapeNetPart.

Methods Gaussian Noise Rotation Scaling DropPoint

σ=0.03 σ=0.05 X[-30 30] Y[-30 30] Z[-30 30] (0.5, 1.5) 0.2 0.6

Point-MAE 74.1 71.1 77.9 80.1 74.0 82.4 77.1 64.8
+BlindFormer 75.4 72.9 80.0 81.6 76.4 83.7 78.3 67.5

↑ Improve +1.3 +1.8 +2.1 +1.5 +2.4 +1.3 +1.2 +2.7

PointGPT-S 71.5 68.2 75.9 79.1 74.5 80.6 76.5 65.0
+BlindFormer 72.3 69.9 79.2 81.0 77.2 82.2 77.5 66.9

↑ Improve +0.8 +1.7 +3.3 +1.9 +2.7 +1.6 +1.0 +1.9

Table 3: Object classification on ScanObjectNN and ModelNet40. We report the Top-1 classifi-
cation accuracy (%) of BlindFormer with Point-MAE and PointGPT-S as backbones respectively.
On ScanObjectNN, * denotes using simple rotational augmentation for training. On ModelNet40, *
denotes the results obtained by voting.

Methods Reference ScanObjectNN ModelNet40
OBJ-BG OBJ-ONLY PB-T50-RS

Supervised Learning Only

PointNet [35] CVPR 17 73.3 79.2 68.0 89.0
PointNet++ [36] NeurIPS 17 82.3 84.3 77.9 90.2
PointCNN [23] NeurIPS 18 86.1 85.5 78.5 91.7
DGCNN [53] TOG 19 82.8 86.2 78.1 92.0
PRANet [8] TIP 21 - - 81.0 92.9
MVTN [15] ICCV 21 - - 82.8 93.8
PointNeXt [39] NeurIPS 22 - - 87.7 92.9
PointMLP [29] ICLR 22 - - 85.4 94.1
RepSurf-U [42] CVPR 22 - - 84.3 93.8
ADS [18] ICCV 23 - - 87.5 94.0

with Self-Supervised Representation Learning

MaskPoint [26] CVPR 22 89.3 88.1 84.3 92.6
Point-M2AE [67] NeurIPS 22 91.2 88.8 86.4 93.4
PointDif [73] CVPR 24 93.3 91.9 87.6 -
GPM [24] CVPR 24 90.2 90.0 84.8 93.3
PointMamba [25] NeurIPS 24 90.7 88.5 84.9 93.6
PCM [71] AAAI 25 - - 88.1 93.4

Point-BERT [65] CVPR 22 87.4 88.1 83.1 92.7
+BlindFormer - 89.5 (+2.1) 88.6 (+0.5) 84.5 (+1.4) 93.1 (+0.4)

Point-MAE [34] ECCV 22 90.0 88.3 85.2 93.2
+BlindFormer - 90.9 (+0.9) 88.8 (+0.5) 85.4 (+0.2) 93.7 (+0.5)

PointGPT-S [5] NeurIPS 23 91.6 90.0 86.9 93.3
+BlindFormer - 92.3 (+0.7) 91.6 (+1.6) 87.1 (+0.2) 93.5 (+0.2)

Point-MAE* [34] ECCV 22 92.8 91.2 89.0 93.8
+BlindFormer* - 93.1 (+0.3) 91.7 (+0.5) 89.2 (+0.2) 94.1 (+0.3)

PointGPT-S* [5] NeurIPS 23 93.4 92.4 89.2 94.0
+BlindFormer* - 94.5 (+1.1) 93.5 (+1.1) 89.9 (+0.7) 94.1 (+0.1)

Robustness to object classification. We conduct extensive experiments on the ScanObjectNN
dataset across various noise settings in Table 1. Compared to state-of-the-art models, including
PointMAE and PointGPT-S, our method consistently achieves superior classification accuracy in
the OBJ-BG, OBJ-ONLY and PB-T50-RS settings. For instance, under Gaussian noise perturbation
with σ = 0.03 on OBJ-ONLY, BlindFormer surpasses PointMAE by 17.2%. Additionally, under
rotation perturbation around the x-axis, BlindFormer outperforms PointGPT-S by 7.6%. These results
suggest that the enhanced robustness of BlindFormer originates from its attentional blindspot mining
strategy with a joint learning objective. By encouraging attention to under-attended regions, this
strategy fosters a more comprehensive structural understanding, while blindspot-aware contrastive
learning further improves feature discrimination. Consequently, BlindFormer significantly enhances
the model’s resilience to noise and transformations.
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Table 4: Few-shot classification on ModelNet40. We
report the mean accuracy (%) with standard deviation over
10 independent experiments.

Methods 5-way 10-way

10-shot 20-shot 10-shot 20-shot

Supervised Learning Only

PointNet 52.0±3.8 57.8±4.9 46.6±4.3 35.2±4.8
PointNet-CrossPoint 90.9±1.9 93.5±4.4 84.6±4.7 90.2±2.2
DGCNN 31.6±2.8 40.8±4.6 19.9±2.1 16.9±1.5
DGCNN-CrossPoint 92.5±3.0 94.9±2.1 83.6±5.3 87.9±4.2

with Self-Supervised Representation Learning

MaskPoint 95.0±3.7 97.2±1.7 91.4±4.0 93.4±3.5
Point-M2AE 96.8±1.8 98.3±1.4 92.3±4.5 95.0±3.0

Point-BERT 94.6±3.1 96.3±2.7 91.0±5.4 92.7±5.1
+BlindFormer 95.1±2.6 97.4±2.0 91.5±4.7 93.0±3.1

Point-MAE 96.3±2.5 97.8±1.8 92.6±4.1 95.0±3.0
+BlindFormer 96.7±2.7 98.2±1.6 92.8±4.0 95.3±3.2

PointGPT-S 96.8±2.0 98.6±1.1 92.6±4.6 95.2±3.4
+BlindFormer 97.1±2.3 98.8±1.3 93.0±4.0 95.6±3.0

Table 5: Part segmentation perfor-
mance on the ShapeNetPart dataset.
We report the mean Intersection over
Union (mIoU) across instances (Ins.)
and classes (Cls.).

Methods Ins. mIoU Cls.mIoU
Supervised Learning Only

PointNet 83.7 80.4
PointNet++ 85.1 81.9
DGCNN 85.2 82.3
with Self-Supervised Representation Learning
Point-BERT 85.6 84.1
GPM 85.8 84.2
PointMamba 86.0 84.4
Point-BERT 85.6 84.1
+BlindFormer 86.0 84.6
↑ Improve +0.4 +0.5
Point-MAE 86.1 84.2
+BlindFormer 86.4 85.2
↑ Improve +0.3 +1.0
PointGPT-S 86.2 84.1
+BlindFormer 86.7 84.8
↑ Improve +0.5 +0.7

Robustness to part segmentation. We assess the robustness of the BlindFormer framework for
part segmentation under various noise conditions using the ShapeNetPart dataset, The integration
of BlindFormer into the backbone network significantly enhances segmentation performance across
different perturbation scenarios. Notably, under rotation perturbation, our approach improves the
class mIoU of Point-GPT by 3.3%. These findings demonstrate that our contrastive attention learning
strategy effectively preserves the model’s reliable segmentation capability in noisy environments.

4.3 Downstream tasks for 3D understanding

Standard object classification. Table 3 compares our proposed BlindFormer method with existing
approaches on the ScanObjectNN and ModelNet40 datasets. Our BlindFormer consistently outper-
forms these state-of-the-art methods. Compared to Point-MAE [34], BlindFormer achieves higher
accuracies by +0.9%, +0.5%, and +0.2% on OBJ-BG, OBJ-ONLY, and PB-T50-RS, respectively.
Against PointGPT-S [5], BlindFormer attains improvements of +0.7%, +1.6%, and +0.2% on the
same splits. Following recent work setting [25], BlindFormer sets new state-of-the-art results, achiev-
ing up to 94.5% on OBJ-BG, 93.5% on OBJ-ONLY and 89.9% on PB-T50-RS. On ModelNet40,
BlindFormer achieves 93.7% accuracy without voting and 94.1% with voting, surpassing previous
methods without adding additional parameters. These results demonstrate that BlindFormer promotes
a comprehensive understanding and feature discrimination for point cloud, leading to improved model
performance in standard object classification.

Few-shot object classification. Compared to previous approaches, BlindFormer consistently achieves
higher accuracy on the ModelNet40 dataset under few-shot learning settings, and the results are
presented in Table 4. In the 5-way 10-shot task, our method attains an accuracy of 97.1% with a
standard deviation of 2.3%, demonstrating superior generalization with limited labeled data.

Part segmentation. We evaluate the effectiveness of our BlindFormer on the part segmentation
task, as shown in Table 5. BlindFormer achieves superior performance compared to both traditional
supervised models and self-supervised methods. Specifically, our method attains an instance mIoU of
86.4% and a class mIoU of 85.2% with Point-MAE. These results confirm the efficacy of BlindFormer
in advancing the state-of-the-art in point cloud segmentation.

4.4 Ablation Studies

We conduct extensive experiments with Point-MAE on ScanObjectNN under Gaussian noise to
validate the effectiveness of each component. Table 6 summarizes the ablation study on different
combinations for the OBJ-BG and OBJ-ONLY settings.
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Table 6: Ablation studies of components in BlindFormer. We report the overall accuracy (%) on
ScanObjectNN with Point-MAE. The settings adopted by BlindFormer are marked .

(a) Blindspot Mining Strategy and Loss Optimization Function.
Blindspot Mining Strategy Lorigin Lcontra OBJ-BG OBJ-ONLY

NO Mining ✓ - 47.2 37.0
Random Blindspot Mining ✓ - 50.5 41.3
Attentional Blindspot Mining ✓ - 56.9 50.4

Random Blindspot Mining - ✓ 47.7 38.3
Attentional Blindspot Mining - ✓ 53.8 47.5

Random Blindspot Mining ✓ ✓ 52.7 43.4
Attentional Blindspot Mining ✓ ✓ 60.6 54.2

(b) Mask Ratio.
R OBJ-BG OBJ-ONLY

0.2 53.1 45.6
0.4 57.8 52.1
0.6 60.6 54.2
0.8 45.9 36.8

(c) Probability Temperature.
τpro OBJ-BG OBJ-ONLY

0.3 59.2 53.1
0.5 60.6 54.2
0.7 60.1 53.8
0.9 58.7 52.9

(d) Contrastive Loss Weight.
λ OBJ-BG OBJ-ONLY

0.4 59.8 53.5
0.6 60.6 54.2
0.8 58.2 52.1
1.0 57.5 51.8

Blindspot mining strategy. As shown in Table 6(a), we explore how different blindspot mining
strategies affect performance. Without Mining, the baseline model achieves 47.2% (OBJ-BG) and
37.0% (OBJ-ONLY) accuracy. The Random Blindspot Mining provides a moderate improvement,
indicating that even coarse region perturbations help the model discover underutilized cues. However,
the Attentional Blindspot Mining yields the best results, achieving 56.9% (OBJ-BG) and 50.4%
(OBJ-ONLY) accuracy with the original loss Lorigin. Similar trends can also be observed when
maintaining the same loss optimization function. By masking out high-attention regions, this strategy
explicitly forces the model to improve comprehensive understanding and robustness by learning from
less salient areas and enhancing its generalization capabilities.

Loss optimization function. We also analyze the effect of blindspot-aware joint learning in Table 6(a).
Compared to the baseline, applying contrastive learning alone with attentional blindspot mining
already yields notable improvements (+6.6% on OBJ-BG and +10.5% on OBJ-ONLY). However,
contrastive loss alone underperforms relative to the original task loss with attentional mining strategy.
This is because Lcontra only focuses on aligning blindspot features across masked views, but lacks the
fine-grained semantic supervision that Lorigin provides for accurate reconstruction or generation. It
highlights the role of contrastive loss as a regularizer rather than a substitute. When both objectives
are jointly optimized, we observe the best performance (60.6% on OBJ-BG and 54.2% on OBJ-
ONLY). The original loss ensures task-oriented fidelity, while the contrastive objective regularizes
the learning process, further encouraging the model to extract robust and invariant features across
diverse blindspot regions. This synergy confirms that Blindspot-Aware Joint Optimization effectively
leverages both local precision and global consistency, resulting in superior representation learning.

Effect of hyperparameters. We further explore the effects of varying hyperparameter in BlindFormer.
Regarding the masking ratio in Table 6(b), the model achieves optimal performance at R = 0.6,
yielding classification accuracies of 60.6% on OBJ-BG and 54.2% on OBJ-ONLY. However, a
higher mask ratio (R = 0.8) negatively impacts performance due to excessive information loss,
highlighting the need for a balance between data complexity and sufficient feature retention. As
shown in Table 6(c) shows the effect of the temperature τpro in dynamic masking. Setting τpro = 0.5
achieves the best accuracy, as it enables selective masking of high-attention regions while preserving
dynamic adaptability. Similarly, the contrastive loss weight in Table 6(d) is crucial, with λ = 0.6
providing the best trade-off between the original and contrastive loss components. This optimal
weighting enhances feature discrimination and generalization while preserving task-specific accuracy.

5 Conclusion

In this work, we present BlindFormer, a robust self-supervised framework for point cloud understand-
ing. By introducing an attentional blindspot mining strategy, BlindFormer identifies and dynamically
masks high-attention regions, encouraging the model to explore under-attended and informative
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areas. Building upon this, the blindspot-aware joint optimization scheme effectively combines the
strengths of task-specific and contrastive objectives to further enhance blindspot representation learn-
ing. Extensive experiments on challenging benchmarks validate the effectiveness of our approach,
including object classification, few-shot learning, and part segmentation. These experimental results
demonstrate that BlindFormer not only improves performance under standard conditions, but also
exhibits strong resistance to perturbations. Our findings point toward the importance of attention
regularization in 3D learning and provide a foundation for more resilient and adaptive models.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper fully explains the composition and parameter settings of the frame-
work and provides relevant code in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide relevant code in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Relevant information can be found in the experimental section of the paper
and the configuration file of the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We conduct experiments only once and report the accuracy of the best model
following previous work, and it would be too computationally expensive to conduct the
pre-training multiple times.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provide sufficient information on the computer resources in the
experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
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Justification: Our research complies with the NeurIPS ethical guidelines in all respects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the potential impacts in the conclusion section of paper and the
Futuer Work in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original paper that produced the datasets used in our paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new assets introduced in the paper are well documented and the documen-
tation is provided alongside the assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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6 Appendix

6.1 Preliminary

Transformer-based self-supervised learning. Given a point cloud X ∈ Rp×3, we utilize Farthest
Point Sampling (FPS) and K-Nearest Neighbors (KNN) algorithms to identify n center points C
and their corresponding k nearest neighbors, forming n point patches P . Following the previous
methods [34, 5], each point patch is normalized to integrate local information. A lightweight token
embedding module, implemented via PointNet, subsequently transforms these normalized local
patches into trainable point tokens T . These point tokens, together with positional embeddings,
are input into the transformer blocks to produce latent representations F . For different tasks, these
latent representations are input into task-specific heads, where they are transformed into specific
representations adapted to the task. The learning pipeline based on the Transformer architecture is as
follows:

F = Transformer(T ), (8)
R = HeadTask−Spec.(F ). (9)

For Point-MAE, HeadTask−Spec. denotes the reconstruction head. For PointGPT, HeadTask−Spec.

denotes the prediction head.

6.2 Training Strategy with Cost Analysis

Given that BlindFormer determines mask patches based on the attention weights of the backbone
network, we suggest two strategies for obtaining these attention weights. The first strategy initializes
the network with random attention and applies the attentional blindspot mining for adaptive attention
refinement during subsequent training. Following standard protocol, the model undergoes pre-
training for 300 epochs. This approach does not incur any additional training overhead. The second
strategy, by contrast, employs attention learned from the standard branch for initialization, aiming to
dynamically adjust the model’s dependencies in a targeted manner. This method necessitates 300
epochs of pre-training in the standard branch, followed by another 300 epochs in the dual branch,
resulting in a total of 600 epochs.

Furthermore, we introduce BlindFormer during the fine-tuning phase of downstream tasks to further
evaluate the scalability and effectiveness of our approach. Two strategies are employed here as well:
one leverages the pre-trained attention for initialization, while the other requires an additional 300
epochs of training to obtain attention learned from the standard branch for initialization. It should be
noted that the dual-branch training framework results in a twofold increase in the data processed per
batch. Consequently, we introduce a comparative baseline with a doubled batch size to ensure a fair
evaluation.

Table 7: Training cost analysis. We report the classification accuracy (%) on ScanObjectNN.

DataSet Methods Pre-Training Epoch Finetune Epoch

300 600 300 600

OBJ-BG

Point-MAE 90.0 90.2 90.0 90.2
+BlindFormer 90.5 90.5 90.5 90.9

↑ Improve +0.5 +0.3 +0.5 +0.7

PointGPT-S 91.6 91.7 91.6 91.9
+BlindFormer 91.9 91.9 92.1 92.3

↑ Improve +0.3 +0.2 +0.5 +0.4

OBJ-ONLY

Point-MAE 88.3 88.5 88.3 88.5
+BlindFormer 88.8 89.8 89.2 88.8

↑ Improve +0.5 +1.3 +0.9 +0.3

PointGPT-S 90.0 90.2 90.2 90.2
+BlindFormer 90.5 91.4 90.9 91.6

↑ Improve +0.5 +1.2 +0.7 +1.4
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Figure 3: Gaussian noise analysis on ScanObjectNN. While the performance of existing methods
decmidrules sharply with increasing Gaussian noise, this issue is mitigated by incorporating Blind-
Former. Notably, when Point-MAE is used as the backbone network, our BlindFormer significantly
enhances its robustness, resulting in minimal accuracy degradation.

Our experimental results, presented in Table 7, demonstrate the inherent advantages of our Blind-
Former over existing approaches (such as Point-MAE and PointGPT-S) under the same training
time, training batch size and training phase. For Point-MAE, with 300 pre-training epochs or 300
fine-tuning epochs, BlindFormer achieves an accuracy of 90.5% on the OBJ-BG dataset, surpassing
Point-MAE’s 90.0% by a margin of 0.5%. This improvement persists when both methods are trained
for 600 epochs during the fine-tuning phase, with BlindFormer reaching 90.9% accuracy compared
to Point-MAE’s 90.2%. Similarly, when evaluating against PointGPT-S, BlindFormer continues to
exhibit superior performance. With both models trained for 300 fine-tuning epochs on OBJ-ONLY,
BlindFormer attains an accuracy of 90.9% compared to PointGPT-S’s 90.2%. Even when the train-
ing epochs are extended to 600, BlindFormer maintains its advantage, achieving 91.6% accuracy,
outperforming PointGPT-S by 1.4%. On the OBJ-BG dataset, a similar pattern is observed, where
BlindFormer consistently outperforms PointGPT-S regardless of training duration.

The superior performance of BlindFormer across various datasets, training epochs, and application
phases validates the efficacy of our framework. It demonstrates the performance gains of BlindFormer
are not a consequence of longer training times but are a direct result of designed framework contribu-
tions—namely, the attentional blindspot mining strategy with blindspot-aware joint optimization. By
focusing on under-attended regions and enhancing feature discrimination, BlindFormer effectively
captures both global and local features, leading to enhanced robustness and generalization.

6.3 Robutness Analysis

Robustness to noise corruptions. We further evaluate the robustness of our method against existing
approaches under Gaussian noise conditions using the OBJ-BG and OBJ-ONLY subsets of the
ScanObjectNN dataset. To simulate noisy point clouds, we add Gaussian noise X ∼ N (0, σ2) to all
points, incrementally increasing the noise level by varying σ from 0 to 0.05 with step size = 0.005. As
illustrated in Figure 3, while the accuracy of all methods decmidrules as the noise standard deviation
σ increases, BlindFormer exhibits a slower performance degradation, demonstrating its superior
ability to handle noisy point clouds. Notably, BlindFormer significantly improves the robustness
of the Point-MAE backbone and outperforms baseline methods such as Point-MAE and PointGPT,
particularly under extreme noise conditions (σ = 0.05). This improvement can be attributed to
our attentional blindspot mining strategy, which encourages the model to focus on under-attended
regions, thereby enhancing its capacity to capture comprehensive global structural information from
point clouds. By not solely relying on salient local features, BlindFormer mitigates sensitivity to
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Figure 4: Feature distribution visualization on ModelNet40. Top: An overview of the evolution of
feature distributions across all 40 classes. Bottom: Detailed depiction of the evolution of feature
distributions for selected typical classes.

noise-induced perturbations. Additionally, the integration of contrastive learning with the original
task further refines feature discrimination, enabling the model to distinguish subtle variations in data
even under noisy conditions. The consistently strong performance across both the OBJ-BG and
OBJ-ONLY datasets underscores the versatility and reliability of BlindFormer in diverse settings.

Robustness to local corruptions. Following the standard setting[21, 43, 51], we conduct additional
experiments to evaluate the robustness of BlindFormer against local corruptions, as shown in Table 8.
We consider two types of local corruptions: (1) LocalDrop, which drops C local clusters, and (2)
LocalAdd, which adds C local clusters. Each cluster consists of K nearest points from a randomly
selected cluster center point. We used K = 100 in both cases.

Table 8: Robustness to local corruptions on ScanOb-
jectNN.

Methods LocalDrop LocalAdd

C=3 C=6 C=9 C=3 C=6 C=9

Point-MAE 87.9 83.6 82.1 83.5 81.4 77.3
+BlindFormer 90.4 88.7 87.3 88.8 86.4 82.6
↑ Improve +2.5 +5.1 +5.2 +5.3 +5.0 +5.3

PointGPT-S 88.5 86.6 84.0 87.7 84.5 79.9
+BlindFormer 91.7 89.8 88.1 90.7 89.0 86.2
↑ Improve +3.2 +3.2 +4.1 +3.0 +4.5 +6.3

By integrating BlindFormer, both Point-
MAE and PointGPT-S demonstrate sig-
nificant performance improvements under
local corruptions. Specifically, under se-
vere interference (C=9), BlindFormer en-
hances Point-MAE by 5.2% for LocalDrop
and 5.3% for LocalAdd, while improving
PointGPT-S by 4.1% for LocalDrop and
6.3% for LocalAdd. We attribute this im-
provement to BlindFormer’s ability to ac-
tivate global structural attention, which not
only enhances feature discrimination but
also enables the model to learn more robust representations against local perturbations.

In real-world applications, 3D data is often affected by noise from sensor inaccuracies and environ-
mental factors, making BlindFormer’s robustness to various corruptions especially valuable. The
performance under such conditions demonstrates its practicality for tasks where data quality is uncer-
tain, underscoring the effectiveness of BlindFormer and its advantage over existing Transformer-based
methods.

6.4 Feature Distribution Evaluation

Figure 4 illustrates the evolution of the feature distribution using t-SNE during the fine-tuning of
BlindFormer, with Point-MAE as the backbone, on the ModelNet40 dataset. In the early stage
feature distribution, the feature space is highly scattered with overlapping clusters, indicating that the
backbone has not yet learned to effectively discriminate between different classes. As the backbone
starts to align global representations from standard branch and blindspot branch based on attention-
driven blindspot mining, the transitional feature distribution shows a notable improvement, with
clusters becoming more distinct. However, there still remains some inter-class overlap.
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Point-MAEInput PointGPT BlindFormer Point-MAEInput PointGPT BlindFormer

Figure 5: Attention visualization of BlindFormer with Point-MAE and PointGPT. Patches with
high attention are closer to red, while patches with low attention are closer to blue. Point-MAE is
employed as the backbone of our proposed BlindFormer.

In the final feature distribution, the clusters are well-separated and compact, reflecting a highly
discriminative feature space. The backbone has successfully learned to distinguish between different
classes with a high degree of accuracy. The representative clusters at the bottom of each visualization
further emphasize this progression, showing a clear transition from mixed and overlapping clusters in
the early stages to well-defined and isolated clusters in the final stage. These visualizations highlight
the effectiveness of the BlindFormer, demonstrating a clear trajectory of improvement in feature
discrimination, culminating in a robust and well-defined feature space.

6.5 Qualitative Analysis

As shown in Figure 5, we visualize the classification heatmaps generated by Point-MAE, PointGPT,
and our proposed BlindFormer, revealing significant distinctions in how these model attend to various
regions of the point clouds. BlindFormer exhibits a more balanced and comprehensive activation
across both prominent and under-represented areas of the input data. Notably, on 2,468 ModelNet
samples, Point-MAE exhibits a highly concentrated attention distribution, with top 10% of patches
capturing 61.2% of total attention weights. This excessive reliance on a small subset of high-attention
regions limits the model’s ability to generalize and adapt to perturbations. In contrast, BlindFormer
demonstrates a more balanced attention distribution, requiring 36% of patches to reach the same
cumulative attention weight. This redistribution indicates that BlindFormer effectively engages
under-attended regions, reinforcing its ability to capture global structural information.

The observation aligns with our motivation in the introduction—existing Transformer-based models
tend to prioritize a limited set of salient regions, potentially neglecting latent information crucial
for robust feature learning. By integrating our attentional blindspot mining strategy, BlindFormer
compels the model to explore less prominent areas, leading to more comprehensive feature extraction.
Furthermore, blindspot-aware contrastive learning refines feature discrimination, ensuring a more
stable and generalized understanding of the point cloud. The richer and more evenly distributed
activations in BlindFormer’s heatmaps further substantiate its ability to mitigate the limitations of
prior methods, improving both robustness and generalization in 3D understanding.

6.6 Domain Adaptation Discussion

Although our work does not explicitly target domain adaptation, we find that BlindFormer improves
generalization under input perturbations, which is conceptually aligned with the goals of domain
generalization. For example, under Gaussian noise, categories with weaker original attention show
significant accuracy gains (e.g., “display” from 38.10% to 76.19%, “sofa” from 54.76% to 80.95%).
Additionally, BlindFormer better distinguishes between morphologically similar categories (e.g.,
average accuracy of “desk” and “table” improves from 50.19% to 74.26%), demonstrating its
robustness against subtle inter-class ambiguities.
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These preliminary observations suggest that BlindFormer enables the model to handle challenging
or less typical samples more effectively. This behavior naturally enhances resistance to distribution
shifts, as it reduces dependence on domain-specific or spurious correlations. We believe such
robustness makes BlindFormer a promising candidate for future exploration in out-of-distribution
and domain-adaptive settings.

6.7 Limatation Analysis

Despite the significant improvements achieved by BlindFormer, there are still areas that offer op-
portunities for further enhancement. For example, while our method has been validated on specific
datasets, applying it to a broader range of datasets could further demonstrate its generalizability
and robustness. Additionally, although we have shown that BlindFormer integrates seamlessly with
certain Transformer-based architectures, exploring its compatibility with an even wider variety of
models could highlight its versatility even more. These considerations open avenues for future
research to build upon our work and continue advancing the field of point cloud analysis.

6.8 Future Works

While the proposed BlindFormer framework has shown significant improvements in point cloud
analysis tasks, there are several promising directions for future research to further enhance its
capabilities and applications.

One potential avenue is the integration of multi-modal data sources to enrich point cloud repre-
sentations. By incorporating complementary information from modalities such as images, textual
descriptions, or LiDAR intensity values, the model can leverage cross-modal correlations to learn
more comprehensive and robust feature embeddings. This multi-modal fusion could enhance the
model’s ability to understand complex scenes and improve performance in several tasks. Another
direction is the exploration of hierarchical or multi-scale feature learning within the BlindFormer
framework. By capturing features at various spatial resolutions, the model can better represent
both local geometric details and global structural contexts. This enhancement could be particularly
beneficial for handling large-scale point clouds or scenes with significant variations in point den-
sities. Additionally, optimizing the computational efficiency of the attentional blindspot mining
and blindspot-aware joint optimization is an important consideration for real-world applications.
Investigating lightweight architectures or efficient training strategies could make the model more
suitable for deployment in resource-constrained environments, such as mobile robots or embedded
systems used in autonomous driving. Lastly, applying the BlindFormer approach to other types
of data representations, such as meshes or voxels, could broaden its applicability across different
domains in 3D data processing. Exploring transfer learning techniques between these representations
may also provide insights into shared structures and features among various 3D data forms.

By pursuing these future research directions, we aim to further advance the capabilities of Blind-
Former, contributing to the development of more robust, efficient, and versatile models for point cloud
analysis. These enhancements have the potential to impact a wide range of applications, including
robotics, augmented reality, virtual reality, and autonomous navigation, by enabling more accurate
and comprehensive understanding of complex 3D environments.
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