L)

Check for
updates

A Comprehensive Study of Systems Challenges in Visual
Simultaneous Localization and Mapping Systems

SOFIYA SEMENOVA, Computer Science and Engineering, University at Buffalo, Buffalo, United States
STEVEN KO, Computing Science, Simon Fraser University, Burnaby, Canada

YU DAVID LIU, Computer Science, SUNY Binghamton, Binghamton, United States

LUKASZ ZIAREK, Computer Science and Engineering, University at Buffalo, Buffalo, United States
KARTHIK DANTU, Computer Science and Engineering, University at Buffalo, Buffalo, United States

Visual SLAM systems are concurrent, performance-critical systems that respond to real-time environmental
conditions and are frequently deployed on resource-constrained hardware. Previous work has identified three
interconnected systems challenges to building consistent, accurate, and robust SLAM systems—timeliness,
concurrency, and context awareness. In this article, we analyze three popular, state-of-the-art frameworks
with varying system designs and optimization techniques, and we quantify the extent to which they are
affected by the aforementioned system challenges. We find that all SLAM systems must balance the intercon-
nected nature of timeliness and accuracy, and different system designs and optimization techniques uniquely
address this tension. Global-map-based SLAM systems typically achieve the best performance but suffer in
resource-constrained scenarios with increased concurrency. Across all SLAM systems, incorporating context
awareness into decision-making would mitigate the impact of timeliness and concurrency on accuracy in
resource-constrained scenarios.

CCS Concepts: « Computer systems organization — Embedded and cyber-physical systems; Real-
time systems; - Computing methodologies — Computer vision;

Additional Key Words and Phrases: Visual simultaneous localization and mapping, mobile systems

ACM Reference Format:

Sofiya Semenova, Steven Ko, Yu David Liu, Lukasz Ziarek, and Karthik Dantu. 2024. A Comprehensive Study
of Systems Challenges in Visual Simultaneous Localization and Mapping Systems. ACM Trans. Embedd. Com-
put. Syst. 24, 1, Article 2 (September 2024), 31 pages. https://doi.org/10.1145/3677317

1 Introduction

Several classes of applications such as mobile augmented reality and autonomous driving require
a 3D map of the environment for accurate functioning. Simultaneous Localization and

This project is sponsored by NSF Awards CNS-1823260, CNS-1823230, CNS-1846320, and SHF-1749539.

Authors’ Contact Information: Sofiya Semenova (Corresponding author), Computer Science and Engineering, University at
Buffalo, Buffalo, New York, United States; e-mail: sofiyase@buffalo.edu; Steven Ko, Computing Science, Simon Fraser Uni-
versity, Burnaby, British Columbia, Canada; e-mail: steveyko@sfu.ca; Yu David Liu, Computer Science, SUNY Binghamton,
Binghamton, New York, United States; e-mail: davidl@binghamton.edu; Lukasz Ziarek, Computer Science and Engineer-
ing, University at Buffalo, Buffalo, New York, United States; e-mail: 1ziarek@buffalo.edu; Karthik Dantu, Computer Science
and Engineering, University at Buffalo, Buffalo, New York, United States; e-mail: kdantu@buffalo.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1539-9087/2024/09-ART2

https://doi.org/10.1145/3677317

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

HTTPS://ORCID.ORG/0000-0001-8048-1489
HTTPS://ORCID.ORG/0000-0003-3771-0156
HTTPS://ORCID.ORG/0000-0002-2768-3898
HTTPS://ORCID.ORG/0000-0003-4353-1998
HTTPS://ORCID.ORG/0000-0002-7497-6722
https://doi.org/10.1145/3677317
mailto:permissions@acm.org
https://doi.org/10.1145/3677317
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677317&domain=pdf&date_stamp=2024-09-27

2:2 S. Semenova et al.

Mapping (SLAM) is a software framework that builds a map of an environment from sensor data
while traversing through the environment and simultaneously localizing the mobile device within
the map. Modern SLAM systems are visual and use monocular, RGB-D, or stereo camera frames,
potentially with inertial information. Over the past decade, several Visual SLAM systems have
been proposed to improve map and localization accuracy, such as KinectFusion [36], ORB-SLAM2
[34], ORB-SLAMS3 [10], OpenVINS [18], and Kimera [39]. There has been significant interest and
rapid progress in the robotics and computer vision communities on algorithmic innovations for
accurate localization and mapping. New systems such as ORB-SLAM3, OpenVINS, and Kimera
have a similar pipeline for map construction—a demonstration of the algorithmic maturity in
state-of-the-art SLAM frameworks.

Recently, there has been work on offloading SLAM [2, 3, 11, 12, 44] tasks to edge servers for per-
formance. However, the view of SLAM frameworks as performance-critical software systems has not
been systematically explored. This is unfortunate, because SLAM algorithms are most commonly
deployed on software/hardware ecosystems with constrained resources and stringent performance
requirements. In our previous work [41], we identified three systems challenges that cause sub-
optimal operation in SLAM frameworks—timeliness, concurrency, and context awareness. In this
article, we extend our analysis to three popular, state-of-the-art SLAM systems (ORB-SLAM3 [10],
Kimera [39], and OpenVINS [18]) with varying system designs and algorithmic implementations.
We believe these challenges deserve exposure in the mobile systems community, whose shared
knowledge may systematically address these challenges and strengthen next-generation SLAM-
based software stacks.

1.1 Systems Challenges in SLAM

Timeliness. The mapping and localization information generated in SLAM systems is used to aid
real-time applications such as rendering virtual objects in AR or avoiding obstacles during robot
navigation; these applications therefore require SLAM to adhere to tight timeliness constraints.
Typical SLAM pipelines process incoming images, track the device’s location using the processed
image data, insert new location information into a global map, and optimize the map structure.
Within this pipeline, each task has timeliness requirements that affect the ability of the entire sys-
tem to meet its timeliness constraints and generate accurate mapping and localization information.
To keep up with real-time camera streams, SLAM systems must process incoming images as fast
as they arrive. At a frame rate of 20 fps, this means that SLAM systems must process each im-
age within 50 ms. To avoid localization error (and failure) and keep up with real-time mapping,
SLAM systems must avoid dropping camera frames and must keep the global map up-to-date with
new location information. To perform as quickly and accurately as possible, SLAM systems must
perform map optimization, which refines the map by removing redundant data and rectifies error
accumulation, frequently.

Concurrency. The SLAM pipeline is sequential, but many popular SLAM systems split the
pipeline into concurrent modules for better performance. Depending on the system design and
specific algorithms used for each module, SLAM systems may have a global map (a shared data
structure containing the generated mapping data) that is frequently and primarily accessed and
modified by all modules in the system. Systems with a global map manage concurrent shared
memory accesses through course-grained locks and by implementing a drop mechanism wherein
modules drop or minimally process tasks if other modules are accessing the map or if the module
has too much queued work. These drops curtail the total load on the system but lead to missing
map and localization data, which in turn result in lowered accuracy and unpredictable results.
We observe that systems with a global map generally outperform those without, but suffer from

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:3

adverse performance in highly concurrent environments (e.g., faster frame rates, lower resources)
due to poorly designed concurrent access to the global map.

Context Awareness. Further, the execution of SLAM systems as a whole is dependent on the
conditions of the real world, which are highly variable and unknown in advance. These conditions
include device velocity, whether movement is rotational or translational [9, 38], and the density
of visual features in the current environment. Variations in real-time conditions drastically af-
fect the operation of the system and the importance of each module/task. Despite this, current
SLAM systems indiscriminately drop data that may affect performance and accuracy to maximize
throughput of all modules. Instead, SLAM systems would benefit from a more “intelligent” way to
incorporate real-world, real-time conditions into their decision-making, so the right task is being
performed at the right time.

1.2 Contributions

Previous SLAM frameworks have focused on algorithmic advancements in the SLAM pipeline but
have largely kept the structure of their systems unchanged. Through years of experimentation,
we find that SLAM systems suffer from performance problems whose solutions may come from
systems design.

Our previous work [41] quantitatively analyzed systems challenges faced by ORB-SLAM2 [34]
but was limited in its scope. First, we performed the analysis entirely on one sequence (the 00
sequence of the KITTI [17] dataset). In this work, we expand our analysis using the 11 sequences
in the EuROC dataset. Second, in our previous work, we performed our analysis on only one
system (ORB-SLAM2). While Visual SLAM systems share many commonalities in their system
design and pipeline construction, the optimization techniques they use can vary drastically, and
no two system designs are exactly alike. In this article, we compare three state-of-the-art SLAM
systems with varying system designs and algorithmic implementations. The first, ORB-SLAM3,
is the evolution of ORB-SLAM2 that introduces multi-map reasoning, the ability to use inertial
sensors, and a recovery mechanism in case of relocalization. Like ORB-SLAM2, it is a KeyFrame-
based SLAM system with a global map that performs full smoothing, which causes high levels
of concurrency but also very good accuracy. The second, Kimera, is a modular system that has a
very similar pipeline to ORB-SLAM3 but does not use a global map, leading to no concurrent shared
memory accesses (and therefore no adverse effects due to high concurrency) but lower accuracy in
the “normal” (non-resource-constrained) case. The third, OpenVINS, is a single-threaded, minimal
visual-inertial navigation system that is very fast but less accurate when the device re-visits old
locations.

As a key theme, this article attempts to elucidate the interconnected relationship among the
three challenges we identified earlier and the degree to which these challenges affect SLAM frame-
works with different system designs. In a nutshell, all SLAM systems must meet timeliness goals.
One way to achieve this is by implementing faster, less accurate optimization techniques or forego-
ing some optimizations entirely, which increases throughput at the expense of accuracy. Another
approach is to parallelize the system, which is the technique taken by most SLAM systems. How-
ever, increased parallelization causes increased concurrency, which in turn causes lower accuracy,
for systems with a global map. This is unfortunate, as systems with a global map typically outper-
form those without. However, these drawbacks can be mitigated through context awareness.

2 Experimental Setup

We ran our experiments on two devices—an Nvidia Jetson TX2 (Dual-Core NVIDIA Denver and
Quad-Core ARM Cortex-A57 CPUs, 8 GB Memory), which we use as the resource-constrained

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:4 S. Semenova et al.

Table 1. Datasets

Dataset Environment FPS Device Type EuRoC TUM KITTI Hilti-
EuRoC [8] Indoor 20 MAV VI Oxford
TUM VI [40] Indoor/Outdoor 20 Handheld Camera ORB-SLAM3 v v
KITTI [17] Outdoor 10 Car Kimera v
Hilti-Oxford [47] Indoor/Outdoor 40 5 Fisheye Cameras OpenVINS v v v

(a) Dataset information. (b) System support for each dataset.

mobile device, and a System76 Galago Pro laptop (Dual-Core Intel Core i7-7500U CPU, 32 GB
Memory), which is representative of a service robot navigating inside a building. Both devices run
Ubuntu 18.04 LTS.

In our prior work [41], we ran all experiments with the default CPU frequency settings, which
dynamically adjust the CPU clock frequency based on past performance and balance power ef-
ficiency and speed. For the Jetson, the default is the schedutil governor and MAXP* mode [13].
For the laptop, the default is the intel_pstate driver with hardware P-state (HWP) disabled
and the powersave governor, which performs similarly to schedutil when combined with the
intel_pstate driver [14]. However, we found that these settings significantly increase SLAM
modules’ durations at very low frame rates, because the CPU experiences a lot of idle time be-
tween processing frames and thereby lowers the CPU frequency. This masks each module’s true
duration and makes it difficult to compare performance across frame rates. For the experiments
in this article, we modified the device settings to run their CPU at max performance regardless of
prior workload or future workload estimates. To do this, we use the MAXN mode on the Jetson and
the performance governor [7] on both devices.

We used the EuRoC MAV dataset [8], which contains 11 indoor sequences, runs at 20 fps, and
is officially supported by all three systems. While several other suitable datasets exist, we unfortu-
nately could not get any others to work on all systems at once. Table 1 contains a summary of the
available datasets and each SLAM system’s support for them.

3 Visual SLAM Overview

While different systems can modify the algorithms used for each task in the Visual SLAM pipeline
and/or add additional tasks, most modern systems follow a similar architecture and design for
basic mapping and localization. In this section, we describe the essential functions of a basic Visual
SLAM system, identify the corresponding modules in the three test systems, and briefly compare
the algorithmic implementations of each of the test systems.

A Visual SLAM pipeline consists of three modules— Tracking, Local Mapping, and Loop Closure.
The system diagrams for OpenVINS, Kimera (VIO and RPGO), and ORB-SLAM3 are shown in
Figure 1. All described modules run in a continuous loop on input from their respective queues.

3.1 Tracking

The Tracking module runs on every image received from the camera and is responsible for reading
images and IMU information (if available) from input video and inertial sensor streams, extracting
features in the image, preintegrating IMU measurements, and using the combined sensor data to
determine the odometry with regard to the map. Additionally, if the number of feature matches
are low or enough time has passed, then the module inserts the frame into the map as a KeyFrame.
If this decision is made, then it sends the KeyFrame and its extracted features to Local Mapping for
further processing. This module corresponds to Tracking in ORB-SLAM3, VIO Front-End in Kimera,
and Feature Detection and Matching in OpenVINS (Figure 1, blue).

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:5

ORB-SLAM3’s specific implementation of the Tracking module differs significantly from that
of Kimera and OpenVINS. ORB-SLAMS3 first gets an initial pose estimate by matching the current
frame’s features with the previous frame’s and performing motion-only bundle adjustment, then
refines the pose by searching for similar KeyFrames in the map and minimizing the reprojection
error of their MapPoints. As such, their implementation heavily relies on global map access. Con-
versely, Kimera and OpenVINS track the current frame entirely through frame-to-frame feature
matching with the previous frame, which does not use the global map. Kimera and OpenVINS
both perform feature detection at every KeyFrame—however, Kimera inserts a subset of frames as
KeyFrames, and OpenVINS inserts every frame as a KeyFrame.

3.2 Local Mapping

The Local Mapping module inserts the KeyFrame into the map along with any MapPoints
(prominent features in the KeyFrame with their own camera poses, also sometimes referred to
as Landmarks) and performs a local optimization. This module corresponds to Local Mapping in
ORB-SLAMS3, VIO Back-End in Kimera, and Propagation, EKF Update, Re-tri & Marg in OpenVINS
(Figure 1, purple).

SLAM optimization methods can be roughly split into three camps: filtering, fixed-lag smooth-
ing (also referred to as sliding-window bundle adjustment and local bundle adjustment), and full
smoothing (also referred to as full bundle adjustment or just bundle adjustment). Broadly, filters
estimate only the latest pose and marginalize out earlier states, fixed-lag smoothers estimate a
window of previous poses and marginalize states outside the window, and full smoothers estimate
the complete trajectory. SLAM systems use these algorithms to optimize a factor graph that can
be viewed as equivalent to the map, but some systems (such as ORB-SLAM3) keep a separate map
data structure with which to construct the optimizable factor graph. OpenVINS uses the filtering
algorithm from Mourikis et al. [33] with a modification to include SLAM landmarks (features that
have been tracked for a long time) in the state vector to improve accuracy [27]. Kimera uses the
fixed-lag smoothing algorithm from Forster et al. [16]. ORB-SLAM3 uses a fixed-lag smoothing
algorithm, but notably never marginalizes information from the map. Instead, it constructs a factor
graph of local KeyFrames and associated MapPoints using the global map.

Despite the difference in optimization algorithms and map construction, the process for Local
Mapping is roughly the same across all systems. First, they construct or update a factor graph con-
taining KeyFrames and MapPoints. OpenVINS inserts every frame as a KeyFrame, while Kimera
and ORB-SLAMS3 insert a subset of frames as KeyFrames (this is sometimes called KeyFrame-
based SLAM). Then, they optimize the factor graph to minimize error. ORB-SLAM3 optimizes
both KeyFrame and MapPoint poses, while Kimera and OpenVINS optimize only KeyFrame poses.
Finally, they cull or marginalize old information from the map. ORB-SLAM3 culls redundant
KeyFrames and MapPoints that are only seen by a few KeyFrames. OpenVINS and Kimera cull
map information that is outside the time horizon.

3.3 Loop Closing

The final module, Loop Closing, searches for loops using the place recognition database (typically
a bag-of-words representation of all KeyFrames) for every inserted KeyFrame after it has been
processed by Local Mapping. When a loop is detected, the KeyFrames on either side of the loop
are aligned and further optimized. This module corresponds to Loop Closing in ORB-SLAM3, RPGO
in Kimera, and is not implemented for OpenVINS (Figure 1, green).

For loop detection, both Kimera and ORB-SLAM3 use a bag-of-words representation to store
and query the place recognition database. However, Kimera performs the bag-of-words for each

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:6 S. Semenova et al.

VIO Front End VIO Back End
IMU Frame to frame tracking with Add
Preintegration optical flow Feature measlurements to m
MU Tracks + WECEHER
_____ smoother m
Feature . Preintegrated
Biames KeyFrame DG, \?e?i(;ir;itigf] ¥ Solve facto
y Matohing Feature
Detection,
Matching
RPGO === KeyFrame with features : ‘
& 7 Detect 3D Poses |
Pose-Graph Optimization | ¢ —————— ! Propagate
BoW Loop State
(a) Kimera EKF
Update with
KeyFrame KeyFrame MSCKF
e == N and SLAM
v ¥ Place Recognition FesluiEs
Local Mapping Loop Closing Recognition
Visual Vocabulary
MU Feature Database ‘
g, Integration Detection - Re-
£ CERDUED Nonn;.Adwe Triangulate
o Pose Prediction, Recept M_apPoints Correct i &
S Relocalization, or Map . Feature
Creation - MapPoints Tracks,
New MapPoints M Marginalize
Creation OI% Info

Local Bundle

Adjustment, Further Covisibility
Optimization Full Bundle Graph
Adjustment o

Create KeyFrame

Decision

i

Covisibility
Graph)
%

/) (b) OpenVINS

(c) ORB-SLAM3

Fig. 1. System architectures for OpenVINS, Kimera, and ORB-SLAM3. Each module is implemented as a
separate thread. Solid arrows indicate the next task, dotted arrows indicate enqueue and dequeue operations,
and bold tasks indicate terminal states.

KeyFrame during the Loop Closing module, whereas ORB-SLAM3 performs it during Local Map-
ping. For map optimization, both systems perform an optimization over the global pose graph,
which contains the entire set of KeyFrames for the camera trajectory. ORB-SLAM3 spawns this
optimization step as a separate thread (Full Bundle Adjustment in Figure 1). Last, ORB-SLAM3
additionally includes a map merging step in the Loop Closing module as part of multi-map reason-
ing, which allows the system to create and maintain localization and map building across multiple,
disjoint maps.

4 The Timeliness Challenge

The nature of the SLAM workload is sequential—control flows from Tracking to Local Mapping
to Loop Closure. To improve overall timeliness, a typical pipeline executes these modules concur-
rently. This allows Tracking to work on the next image while Local Mapping is processing the
previous KeyFrame. Systems without a loop closure module (such as OpenVINS) have a much
faster processing time and can therefore run their pipeline sequentially without much impact on
overall timeliness. While such pipelining provides overall efficiency, without proper scheduling the
modules interfere with each other during shared access of the global map, resulting in inefficient
operation.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:7

Table 2. Execution Times of Each Module in ORB-SLAM3 on the Vicon Room 2 02 (V202) Sequence, for Two
Frame Rates and Two Devices

ORB-SLAM3

Jetson, 20 fps Laptop, 20 fps
Module Input Freq. Throughput Duration Input Freq. Throughput Duration
Tracking 20.00 £ 0.00 9.64 £ 0.54 92.95 £15.23 20.00 £0.00 17.92 +£4.01 46.07 £ 17.32
Local Mapping 2.16 +£ 0.09 2.11 +£0.08 393.21 +183.12 3.31 £0.49 3.31+0.50 226.51 + 90.57
Loop Closing 2.16 £0.09 2.10 £ 0.08 18.76 £ 2897 331 +£049 3.30+0.51 8.79 + 10.42
GBA 0.00 £0.01 0.00 £0.01 2,421.77 £ 249.01 0.01 £0.00 0.01 £0.00 746.68 + 84.35

Jetson, 0.5 fps Laptop, 0.5 fps
Module Input Freq. Throughput Duration Input Freq. Throughput Duration
Tracking 0.50 0.50 91.51 + 10.08 0.50 0.50 34.17 £ 3.54
Local Mapping 0.17 0.17 611.88 + 147.61 0.16 0.17 188.14 + 50.52
Loop Closing 0.17 0.17 15.67 + 16.45 0.16 0.16 6.30 + 6.98
GBA 0.00 0.00 1,318.60 0.00 0.00 348.30

(a) Input frequency is the frequency of incoming data into each module’s queue. Since modules can drop
data, throughput is the frequency of data that has been processed.

Tracking, Jetson Local Mapping, Jetson Loop Closing, Jetson
0.15 f—,

N [20 fps N 0.005 A [20 fps o 1 20 fps
20069 — ¢ 5ps 2 1 0.5 fps 2 1 0.5 fps
2 2 0.004 4 2
Q Q @ 0.104
=l ° °
2 0.04+ 20.0031 >
3 3 0.002 1 3 |
£ 0.02 2 go00s
I a 0.001 - T E —

T T T T 0.000 T T T T T T T T
40 60 80 100 120 0 200 400 600 800 0 5 10 15 20 25 30

Duration (ms) Duration (ms) Duration (ms)
Tracking, Laptop Local Mapping, Laptop Loop Closing, Laptop

0.015 o
0.25 4 [20 fps [20 fps 0.4 [20 fps

>
»““g 1 0.5fps 1 0.5fps 1 0.5fps

Probability density
o o
o 1=}
IS) =
w o
| L
Probability density
o
N
s

aclpoaled 2 - 0.000 v T v T T T . " —
20 30 40 50 60 0 50 100 150 200 250 300 0 5 10 15 20 25 30

Duration (ms) Duration (ms) Duration (ms)

(b) Duration variability of the Tracking, Local Mapping, and Loop Closing loops.

4.1 Timely Tracking

The Tracking module is responsible for reading incoming visual and IMU measurements, tracking
the current frame, and optionally choosing to incorporate the frame into the map as a KeyFrame.
Tracking runs in a loop, processing incoming camera images as quickly as possible. If incoming
image frames arrive faster than Tracking can process them, then it will fall behind and start drop-
ping images due to queue overflow. Dropping images can have varying impact on the localization
and map accuracy. In feature-rich regions, loss of a few images does not largely affect the overall
accuracy. In regions with fewer features or fast device movement, dropping even a single image
could result in lower accuracy. In the worst case, the device can fail to localize the incoming image,
resulting in tracking loss.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:8 S. Semenova et al.

Table 3. Execution Times of Each Module in Kimera on the Vicon Room 2 02 (V202) Sequence, for Two Frame
Rates and Two Devices

Kimera

Jetson, 20 fps Laptop, 20 fps

Module Input Freq. Throughput Duration Input Freq. Throughput Duration

VIO Frontend 20.00 + 0.00 15.16 + 0.11 65.12 £75.48 20.00 £ 0.00 20.00 + 0.00 20.05 + 27.45
VIO Backend 3.79+0.03 3.78+0.03 138.60 +38.67 5.00+0.00 5.00+0.01 2599773

RPGO 3.26 £ 0.13 3.25+0.12 307.52 £110.70 5.00 + 0.00 5.00 £ 0.00 72.11 + 26.70
Jetson, 0.5 fps Laptop, 0.5 fps

Module Input Freq. Throughput Duration Input Freq. Throughput Duration

VIO Frontend 0.50 0.50 55.19 + 64.88 0.50 0.50 12.02 + 15.87

VIO Backend 0.12 0.12 74.11 + 18.43 0.12 0.12 20.78 = 5.09

RPGO 0.12 0.12 264.84 + 78.68 0.12 0.12 62.62 + 23.02

(a) Input frequency is the frequency of incoming data into each module’s queue. Since modules can drop
data, throughput is the frequency of data that has been processed.

VIO Front-End, Jetson VIO Back-End, Jetson RPGO, Jetson
1 1 20f 0.04 4 1 20f [20f
5010 ps > ps 2 0.01251 iy
T [0.5fps G [0.5 fps = [0.5 fps
£ 0.08 S 0.03 § 0.0100
=l ° =l
g 0.06 1 :; 0.024 :; 0.0075 -
Q Qo Q
§ 0.04 § 001 '§ 0.0050
& 0.02 & & 0.0025 4
0.00 v T i 7 0.00 v T v T 7 0.0000 T T i T
0 50 100 150 200 250 0 25 50 75 100 125 150 0 100 200 300 400 500
Duration (ms) Duration (ms) Duration (ms)
VIO Front-End, Laptop VIO Back-End, Laptop RPGO, Laptop
0.05
0.31
> [20 fps 50125 1 20 fps > 1 20 fps
Z’ 1 0.5fps g 1 0.5fps 5 0.044 1 0.5fps
5 S 0.100 1 5
© 0.24 ° T 0.034
Fo 20.075 2
a a 8 0.021
% 0.14 _rgu 0.050 4 _§
& & 0.025 1 & 0.014
0.0 . y - . T 0.000 — m, : - - 0.00 : " " ; r
0 10 20 30 40 50 60 0 5 10 15 20 25 30 0 25 50 75 100 125 150
Duration (ms) Duration (ms) Duration (ms)

(b) Duration variability of the VIO Front-End (Tracking), VIO Back-End (Local Mapping), and RPGO (Loop
Closing) loops.

The EuRoC dataset runs at 20 fps, generating an image every 50 ms. Therefore, it is imperative
for Tracking to process frames within 50 ms to keep up with real-time operation. Tables 2(a),
3(a), and 4 show the execution times, input frequency, and throughput of each module in ORB-
SLAMS3, Kimera, and OpenVINS. At the real-time rate of 20 fps, Tracking takes an average of 93
ms (Jetson) and 46 ms (laptop) in ORB-SLAM3, 65 ms and 20 ms in Kimera, and 14 ms and 6 ms
in OpenVINS. While the Tracking portion of OpenVINS is very short compared to that of Kimera
and ORB-SLAMS, it takes OpenVINS 53 ms (Jetson) and 16 ms (laptop) to process a frame because
it runs the entire pipeline in a single thread. At the real-time rate, all three systems on the Jetson
cannot meet timeliness goals and thus experience frame drops. We also run each system at 0.5 fps,
to simulate an environment where the device has plenty of resources to meet all deadlines. At
this frame rate, Tracking takes an average of 92 ms and 34 ms in ORB-SLAM3, 55 ms and 12 ms
in Kimera, and 21 ms and 5 ms in OpenVINS. All systems are able to meet timeliness goals at this

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems

2:9

Table 4. OpenVINS Execution Times on the Vicon Room 2 02 (V202) Sequence, for Two Frame Rates, Two
Devices, and Single-threaded or Multi-threaded OpenCV

OpenVINS

Jetson, 20 fps

4 OpenCV threads 1 OpenCV thread
Module Input Frequency Throughput Duration Input Frequency Throughput Duration
Tracking 20 — 1451 +337 20 - 1438+3.74
Propagation - - 0.75 £ 0.23 - - 0.74 £ 0.20
MSCKEF Update - - 4.08 +4.98 - - 4.01 +4.29
SLAM Update - — 18.00 + 14.42 - — 18.07 £ 13.95
Re-tri & Marg — 16.12+0.17 15.51 £ 0.56 — 16.30 £ 0.06 15.22 + 0.58
TOTAL 20 16.12 +£0.17 52.85 + 16.04 20 16.30 £ 0.06 52.42 + 15.58
Laptop, 20 fps
4 OpenCV threads 1 OpenCV thread
Module Input Frequency Throughput Duration Input Frequency Throughput Duration
Tracking 20 - 612+1.13 20 - 855+131
Propagation - - 0.21 £ 0.04 - - 0.24 £ 0.03
MSCKF Update — — 1.31 £ 1.69 - - 1.66 + 2.11
SLAM Update - - 6.56 + 3.84 - - 8.28 +4.79
Re-tri & Marg — 20.00 = 0.00 2.24 +£0.20 — 20.00 = 0.01 2.52 +0.21
TOTAL 20 20.00 +0.00 16.43 +4.53 20 20.00 +£0.01 21.25 +5.57
Jetson, 0.5 fps
4 OpenCV threads 1 OpenCV thread
Module Input Frequency Throughput Duration Input Frequency Throughput Duration
Tracking 0.50 — 20.59 £ 2.56 0.50 - 2122+ 250
Propagation - - 0.72 £ 0.09 - - 0.71 £ 0.09
MSCKEF Update - - 4.56 + 5.36 - - 441 +5.14
SLAM Update - — 22.70 £ 13.06 - — 2254 +12.87
Re-tri & Marg - 0.50 15.33 +£0.39 - 0.50 15.01 +£0.34
TOTAL 0.50 0.50 63.91 + 15.24 0.50 0.50 63.89 + 14.99
Laptop, 0.5 fps
4 OpenCV threads 1 OpenCV thread
Module Input Frequency Throughput Duration Input Frequency Throughput Duration
Tracking 0.50 - 5.22 £ 1.19 0.50 - 7.83 + 1.22
Propagation - - 0.21 £ 0.04 - - 0.24 £ 0.04
MSCKEF Update - - 1.33 £ 1.69 - - 1.72 £ 2.22
SLAM Update - - 6.52 + 3.84 - - 8.52 + 5.02
Re-tri & Marg - 0.50 2.24 £ 0.19 - 0.50 2.55+0.18
TOTAL 0.50 0.50 15.52 + 4.60 0.50 0.50 20.87 +5.84

Because OpenVINS is single-threaded, each module has the same input frequency and throughput, and we report the

information for the entire thread as “TOTAL.”

frame rate. For Kimera, the Tracking module duration has a fairly large standard deviation because
the duration has a bimodal distribution (Table 3(b)). The first peak corresponds to frames that are
only tracked using optical flow, while the second peak corresponds to frames that are inserted as
KeyFrames and thus need feature extraction.

Recovering from Tracking Loss. In the short-term, a system can ignore the tracking loss and
continue trajectory estimation using IMU measurements. This step is skipped if a system does not

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:10 S. Semenova et al.

process IMU (ORB-SLAM?2) or IMU is not available. While IMU-only odometry provides a short-
term buffer to allow the system to get back on track without more serious repercussions, it is not
very accurate and drifts quickly [25]. Therefore, it is imperative to re-integrate current visual infor-
mation as soon as possible. All systems can begin feature detection immediately after tracking loss,
but this poses another problem: how to connect the newly detected features to the existing map.

Kimera and OpenVINS adopt a simple solution that continually attempts to match the current
frame’s features to recently seen features in the existing map. If a match is successfully made, then
the new KeyFrames can be added directly to the map and the only difference in the map would be
missing visual measurements and potentially worse pose estimates during the period of tracking
loss. However, this method fails when the device cannot track prior features—entering a previously,
but not recently, seen area (e.g., turning a corner into a hallway that was seen before) or entering
a completely new area. In both circumstances, this solution would indefinitely fail to relocalize the
device and lead to a complete loss of localization and map building.

ORB-SLAM2 and non-IMU modes of ORB-SLAMS3 instead perform relocalization, a technique
to re-acquire the device’s location by matching the features in the current frame to a database of
all KeyFrames. Relocalization addresses the scenario where a device enters a previously but not
recently seen area by creating mid- to long-term data associations (i.e., feature matches that span
a longer range than just the most recently seen features). While relocalization can successfully
re-acquire the device location when it enters a previously seen area, it still fails indefinitely when
the device enters a completely new area, because there are no prior KeyFrames that the current
frame can be compared to. Additionally, it is a separate, computationally intensive process that puts
mapping on hold and leads to a further loss in map building. Such a cascading effect completely
derails the SLAM process on a resource-constrained device, so it is very important for the device
to manage its resources to avoid relocalization at all costs.

After 3 seconds of IMU-only odometry or relocalization attempts, all modes of ORB-SLAM3
employ a different technique—after a sufficient period of tracking loss, create a new map and merge
maps in the future if they have overlapping regions. For cases where a device enters a previous but
not recently seen area, the maps should be merged immediately, because the new map shares visual
features with the old map. For cases where a device enters a completely new location, the maps
can be merged in the future if the device enters an area that was seen in the old map. In addition
to addressing both problematic cases, this solution also requires little to no immediate latency
overheads. However, it requires additional overlapping region detection and map merge steps.

Effect of CPU Frequency and Scaling Governors. In our previous experiments [41], ORB-
SLAM3’s Tracking module had a longer duration at 0.5 fps than 20 fps, which we attributed to
fewer frame and KeyFrame drops leading to a larger map size and larger search space for the
localization step. However, in our current experiments, ORB-SLAM3’s Tracking module is shorter
for 0.5 fps on the laptop and around the same length on the Jetson (Table 2(b)), and Kimera’s
Tracking module is shorter at 0.5 fps for both Jetson and laptop (Table 3(b)). While part of the
discrepancy between our results can be due to a difference in sequence/dataset (KITTI 00 vs. EuRoC
Vicon Room 202) and a difference in system mode (Monocular vs. Stereo Inertial), they are more
significantly affected by a change in max CPU frequency and scaling governors. As discussed in
Section 2, the default settings adjust CPU clock frequency based on past performance and aim to
balance power utilization and speed. While this is a good choice for most applications, we found
that these settings artificially inflate each module’s duration on the 0.5 fps experiments, making it
difficult to compare the “real” performance across frame rates. To address this for our analysis, we
run the CPU at max performance regardless of workload, which speeds up processing time at the
cost of energy consumption. However, in real-world scenarios, choosing to always prioritize speed

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:11

above energy may not be desirable. Fine-tuning the max/min CPU frequencies and governor/policies
for the desired performance is a potential future optimization.

4.2 Timely Local Map Optimization

The Local Mapping module optimizes the map after each KeyFrame created in Tracking, primarily
by culling redundant camera poses (KeyFrames) and visual information (MapPoints/Landmarks)
and modifying the relative pose of map items to minimize overall error. Ideally, Local Mapping
executes on every KeyFrame added to the map, making the map as efficient and accurate as possible.
Ramifications for falling behind on or skipping Local Mapping processing depend on the system
implementation and map design. For systems with a single global map (ORB-SLAM3), the Tracking
and Loop Closure modules would interact with an un-optimized map, which is larger, less accurate,
and more prone to tracking loss. For systems without a global map (Kimera and OpenVINS), map
modifications essentially flow sequentially from Tracking to Local Mapping to Loop Closure, and
maps later in the pipeline do not affect the operation of earlier modules. In these systems, Tracking
would be unaffected (since it does not use the map at all) and Loop Closure would be skipped
or delayed (since it needs Local Mapping results to function). However, frame-to-frame feature
tracking is not very robust on its own, so these systems only report pose estimates after map
optimization. Therefore, despite Tracking being unaffected by stalled or missing Local Mapping
loops, it would still cause worse trajectory estimations.

Our experiments show that at 20 fps, Local Mapping takes an average of 393 ms (Jetson) and
226 ms (laptop) for ORB-SLAMS3 (Table 2(a)), and 139 ms and 26 ms for Kimera (Table 3(a)), and 38
ms and 10 ms for OpenVINS in multi-threaded mode (Table 4, the sum of “Propagation,” “MSCKF
Update,” “SLAM Update,” “SLAM Delayed,” and “Re-tri & Marg”). For either frame rate, the duration
of Local Mapping is not significantly affected when running OpenCV in single-threaded mode—it
takes 38 ms and 12 ms at 20 fps, and 42.67 ms and 13.03 ms at 0.5 fps. As is the case for the Tracking
module, the difference in performance for Local Mapping in the 0.5 fps experiments is affected by
a difference in CPU frequency settings. Interestingly, after changing the CPU settings to prioritize
performance, Kimera has a lower Local Mapping duration for 0.5 fps for both devices (Table 3(b)).
Intuitively, we would expect the duration to be the same or higher for lower frame rates, because
the system would experience fewer drops at lower frame rates, thus creating a larger map and
requiring larger and longer map optimizations.

Accuracy/Latency Optimizations. OpenVINS introduces two modifications to the filtering ap-
proach in Mourikis et al. [33] that affect its performance with regard to accuracy and latency. First,
they improve accuracy at the cost of increasing latency by introducing SLAM landmarks into the
state vector, based on findings from Li et al. [27]. Then, they mitigate the increase in latency by
performing a sequential update [1] of SLAM features to the state vector. This process involves up-
dating the state vector multiple times with batches of SLAM landmarks, rather than updating the
state with all landmarks at once.

With the above modifications, the exact performance of the system depends on the number of
SLAM and MSCKEF (default) features in the state vector and the batch size for the sequential up-
dates. OpenVINS allows the user to modify these variables, which we experiment with in Figure 2.
We found that available resources on the device and its subsequent ability (or inability) to meet
timeliness constraints strongly affected the actual outcome. Notably, increasing SLAM features
only improves accuracy if the device has enough resources to handle the additional latency. This
is because increasing SLAM features increases latency to such a degree that the system cannot
meet timeliness goals and starts dropping more and more frames, undoing the accuracy benefit of
increasing SLAM features in the first place. Because resource constraints and timeliness so strongly af-
fect the actual performance of the system, it is important to tailor optimizations for specific hardware.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2 batches
ATE (m

) VIO Duration (ms)
100 L7l 0,049 0.049 0049 0.049 0.0575
(i +0.003 + 0.008 + 0.003 % 0.007
0.0550
0L | 0.049 [0k 0,049 0,047 5
(0! +0.007 -0/ 011 % 0.005 % 0.002 0.0525 18.60)
7.. 158 1

~
o

0.0500

0.0475

50 0.051 0. 50 0.049 0.045 0.049
00 # 0.007 + 0.003 £ 0.007

25 (UUEEY 0.044 0.042 0.043 0.040
ESUNOLL: + 0.003 + 0.005 + 0.002 + 0.005

0.056 | 0.056 059

+ 0.007+ 0.003+ 0.00°

|
100

0 |
0 25 50 75
Max MSCKF Features

47.11 46.99 47.05 47.09

5. 4115
+5.57 +11.69 * 11.87 + 11.79 * 12.03

Max SLAM Features
Max SLAM Features

0.0450

42.66 42.62 42,57 42.53

0.0425 0~ © +1078+11.07+11.30%1115

| ' ' | |
0.0400 0 25 50 75 100
Max MSCKF Features

(a) Jetson, sequential updates with 2

VIO Duration (ms)

0.0575

3.28 | 54.59 | 54.3!

1007 .

0.0550
. e .
0.0500 .

6 I 7
0.0475

ATE (m)

100 - 0.047 0.046 | ‘-0 0.047 0.048
+ 0.006 + 0.006 - +0.004 £ 0.003

75 (UEEY 0.041 ' 0.048 51 053

(i + 0.004 % 0.006 =01l

50 0.053 § 0. 50 0.049 0.043
00 +0.007 +0.003

25 ([Pl 0.041 0.044 0.049 0.047
{if: + 0.005 + 0.005 % 0.004 + 0.006

0 25 50 75 100
Max MSCKF Features

Max SLAM Features
Max SLAM Features

25- LIl 48.42 | 48.23 | 48.30 440
+5.46 =8 12, 12.

42.57

0.0450

42.66
+10.78 +11.07 £ 11.30 £ 11.15

42.62 42.53

0.0425 0-

0.0400 0 25 50 75 100
Max MSCKF Features

(b) Jetson, no batching.

VIO Duration (ms)

ATE (m)
0.065
100 - 042 0.041 0.046 0.043 0.045
0,001 + 0,004 + 0,005 + 0005 = 0,002
0.060
g 5. 0.044 0036 0043 0.043 0.044 ”
¢ 0,008 + 0.004 + 0.003 # 0.003 0.002 ¢
§ 0.055 §
L 5. 0.042 0041 0044 |0.050 0.045 =
z +0.005 + 0.003 + 0.007 + 0.011 + 0.009 z
3 0050 %
@ @
3 25— 0.047 0.040 0.042 0.042 0.039 3 25 - 11.78 13.72 13.76 13.70 13.74
= 0,004 + 0.004 + 0,001 #0003 + 0.003 0045 = +£176 +337 +344 +339 *3.36
0. - 0. . 1257 1263 1259 1252
0.040 +317 £323 +£3.22 314
, . \ . . .
0 25 50 75 100 0 25 50 75 100

Max MSCKF Features

Max MSCKF Features

S. Semenova et al.

Processed Frames

54
100 - 1887 1839 1833 1840 1852
£11 +13 =8 %5 %6

52

8 75— 1897 1855 1861 1872 1850
50 g +7 + 14 +11 *12 +10

F;

< 1957 1903 1909 1914 1914
48 % 50- 48 7 x17 7 %6

@

3
a6 =
a4
42 0 g]

0 25 50 75 100
Max MSCKF Features
batches.
Processed Frames
54
loo. 1887 1843 1859 1850 1842
*5 *9 +11 +=10 +8

52

g 75 1892 1855 1853 1845 1844
50 g +11 *10 *13 8 +12

i

L . 1905 1853 1865 1861 1848
48 % +13 +11 *11 =*10 %6

@
26 g 5. 2309 JERd 2051 2047 2050

= +5 +12 +4

44 2244 | 2243
+9 +8

25 50 7 100
Max MSCKF Features

Processed Frames

Max SLAM Features

Max MSCKF Features

(c) Laptop, sequential updates with 2 batches.

ATE (m) VIO Duration (ms)
0.065
100 0:040 0.041 | 0.046 0039 0.041
+ 0.005 % 0.004 £ 0.003 + 0.003 + 0.003
0.060
g 75,0050 0038 0040 0.044 0.036 "
g = 0,009 =+ 0.002 + 0.004 + 0.006 + 0.002 g
£ 0.055 H
v 50- 0.043 0.044 0.042 0.042 0.042 v
z +0.005 * 0.004 + 0.003 + 0.004 + 0.004 z
35 0050 5
@ @
3 5 ,0.050 0.040 0.042 0.040 0.041 3 5. 1236 1426 1439 1434 1445
= 2574 0.003 + 0.005 + 0.005 0.005 0.000 0045 = +£1.67 £3.42 +£3.49 +3.47 +3.44
0. . 1257 1263 1259 1252
0.040 +3.17 +£3.23 +322 314

0.067 & 0.056 | 0.057
+ 0.011+ 0.009 % 0.005+ 0.002] .
'

. \ . .
0 25 50 75 100 0 25 50 75 100
Max MSCKF Features Max MSCKF Features

(d) Laptop, no batching.

Processed Frames

19 2343 2344 2343 [PEL
100- 5o i3 x2

18
R 47 | 2346 | 2345 | 2346
17 2 2 2 1

2343
+3

"
g
5
3
6 £ 2348
z 0
15 <
é 347
14
13
12

Max MSCKF Features

2300

2200

2100

2000

1900

2300

2200

2100

2000

1900

2348

2347

2346

2345

2344

2343

2348

2347

2346

2345

2344

2343

Fig. 2. The ATE, average duration, and total processed frames for OpenVINS when varying the maximum
MSCKF features allowed (default 40), the maximum SLAM features allowed (default 50), and the batch size
of SLAM features (default sequential updates with 2 batches). The sequence is V202.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:13

4.3 Timely Loop Detection and Closure

The Loop Closing module detects and closes loops in the trajectory to correct accumulated trajec-
tory drift. In ORB-SLAMS3, the Loop Closing module also merges duplicate, disjoint maps. Execut-
ing Loop Closing as soon as possible results in a globally optimized, minimized, efficient map with
minimal error. This is important for accurate tracking and mapping, especially when the tracking
results need to be used in real-time. However, Loop Closing is also the largest module in the entire
system. The loop detection step involves a fairly large read operation on the map during which
no new map data can be added. For systems with a global map, this requires a halt on execution
of other modules, which has ramifications for overall performance, as described earlier. After a
loop is detected, the loop closing step involves an optimization of the entire map (a very lengthy
process) and modifies a fairly large portion of poses, the latter of which also halts the execution
of other modules. Therefore, while the Loop Closing module greatly increases accuracy, it may
not be advantageous to perform it as soon as possible. Identifying how long Loop Closing can be
delayed, or identifying an idle time in map access when the execution of Loop Closing does not
affect other modules, could greatly improve overall SLAM performance.

For all systems, Loop Closing has by far the longest duration of any of the other modules. In
Kimera, Loop Closing takes 308 ms (Jetson) and 72 ms (laptop) at 20 fps. Because Kimera does
not use a global map, the only downside of Loop Closing’s long duration is that it uses computa-
tional resources. In ORB-SLAM3, we report both the Loop Closing and global bundle adjustment
(GBA) duration in Table 2(a), because they run in separate threads. The Loop Closing thread per-
forms loop detection and map merging, then spawns the GBA thread to perform the optimization
step. To control access to shared memory and mitigate the queue of KeyFrames for Local Mapping
to process, ORB-SLAM3 halts the execution of other threads during the Loop Closing thread. How-
ever, this is not the case for the GBA thread, so Tracking and Local Mapping can continue during
global bundle adjustment. Because new KeyFrames may have been inserted by Tracking and Local
Mapping during GBA, the GBA thread must merge new map data into the optimized map after the
optimization is complete. Allowing Tracking and Local Mapping to continue during GBA is benefi-
cial, because at 20 fps, Loop Closing takes 19 ms (Jetson) and 9 ms (laptop), while GBA takes 2,422
ms and 745 ms! This is much larger than Kimera’s Loop Closing module, because ORB-SLAM3
optimizes both MapPoint and KeyFrame poses (Kimera only optimizes KeyFrame poses), which
is a much larger optimization task but leads to much more accurate results. Last, both systems
have slightly shorter durations at 0.5 fps compared to 20 fps, but the difference is well within a
standard deviation and likely not due to any difference in system operation at slower frame rates
(Tables 2(b) and 3(b)).

5 The Concurrency Challenge

Each module in a SLAM system operates on a loop, processing data that arrives in its input queue.
The first module, Tracking, accepts images as input from the camera. To avoid falling behind real-
time, the Tracking queue is only allowed to hold 1 frame in its queue and drops any additional
frames that arrive while it is busy processing a previous frame. In our experiments, we found
that all three systems experience extreme frame drops on the Jetson, moderate frame drops on
the laptop, and very few frame drops on either device when running at a very slow frame rate
(Tables 6-8). Increased frame drops on resource-constrained devices can occur for several reasons,
such as increased Tracking durations or longer lock wait times, which ultimately cause the system
to be unable to meet Tracking timeliness goals. Because frame drops lead to weaker tracking (fewer
feature matches between the current and previous frames) and missing map information (frames
that are not processed cannot be inserted into the map), frame drops negatively affect the ATE

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:14 S. Semenova et al.

Table 5. For ORB-SLAM3, the Amount of Created KeyFrames in
the Jetson and Laptop at 20 fps as a Percentage of the “Ideal”
Amount of KeyFrames for the Sequence

Sequence Jetson LaptopHSequence Jetson Laptop

MHO01 60% 81% || V102 33% 51%
MHO02 56% 78% || V103 23% 40%
MHO03 36% 58% || V201 54% 77%
MHO04 26% 47% || V202 32% 53%
MHO05 28% 52% || V203 27% 57%
V101 50% 70%

The ideal occurs in either the Jetson or laptop 0.5 experiments
(whichever is higher).

(average trajectory error). Tables 6—8 show the relationship between device resources, frame
drops, and ATE for ORB-SLAM3, Kimera, and OpenVINS, respectively.

However, despite all three systems dropping more frames on the Jetson at 20 fps, ORB-SLAM3
experiences the greatest impact on its trajectory error. This is because frame drops (due to Tracking
failing timeliness goals) accounts for only a portion of the increased ATE on resource-constrained
devices. SLAM systems that use a global map for localization and map building (such as ORB-
SLAM3) are additionally affected by increased concurrency, while systems without a global map
(Kimera, OpenVINS) are not, even if they are multi-threaded. In this section, we will discuss the
map design of each system and the subsequent relationship between decreased performance, data
drops, and resource contention.

5.1 Concurrency in ORB-SLAM3

All modules in ORB-SLAM3 are implemented in multiple concurrently executing threads that
jointly perform work on a shared global map, with a high frequency of reads and writes and a wide
variety of short to long-range queries. ORB-SLAM3 manages shared memory access using locks,
allowing modules sequential access. Table 2(a) shows the effective execution time of each mod-
ule, including the time spent waiting on lock acquisitions. However, we found that blocks due to
lock acquisitions accounted for very little of the total execution time. This is because ORB-SLAM3
was designed to drop or minimally process KeyFrames rather than wait on lock acquisitions to
aid each module in meeting its timeliness goals. Unfortunately, KeyFrame drops result in miss-
ing map and localization data, which in turn may result in additional workload (relocalization), a
dramatic reduction in performance, and even a complete halt in KeyFrame creation. In our experi-
ments (Table 6), we observe that more resource-constrained environments suffer from higher ATE
(average trajectory error), which we attribute to an increased amount of KeyFrame drops due to
concurrency.

KeyFrame Drops. Local Mapping operates on a loop, processing KeyFrames inserted into its
queue by Tracking. To avoid processing stale data and falling behind real-time, ORB-SLAM3
bounds the queue to 3 KeyFrames for non-monocular modes and 1 for all other modes. To prevent
drops in the queue, Local Mapping skips additional optimizations (“New MapPoints Creation” and
“Local Bundle Adjustment, Further Optimization” in Figure 1(c)) if there are any items in its queue.
This has ramifications for the accuracy (due to a sub-optimal map) and timeliness (due to a larger
map) of localization and mapping results. Further, because map optimization modifies a large part
of the map, ORB-SLAMS3 does not allow Tracking and Local Mapping to occur at the same time.
When a new KeyFrame is created, the system chooses either to interrupt Local Mapping or to
discard the new KeyFrame and allow Local Mapping to complete. The latter is a KeyFrame drop,

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems

2:15

Table 6. The Total Tracked Images, Created and Dropped KeyFrames, and ATE for Both Devices at the
Target Frame Rate (20 fps) and a Very Slow Frame Rate (0.5 fps) for the EuRoC Dataset

ORB SLAM3

Sequence Experiment ‘ Tracked Images Created KeyFrames Dropped KeyFrames ATE (m)
Laptop, 20 fps 3,540 + 63 500 + 2 2,036 + 69 0.02 + 0.00

MHO1 Jetson, 20 fps 1,688 + 74 374 + 24 812 + 23 2.78 +4.12
Laptop, 0.5 fps 3,682 619 0 0.02

Jetson, 0.5 fps 3,682 612 0 0.02

Laptop, 20 fps 2,994 + 12 440 + 2 1,636 + 52 0.04 + 0.00

MHO2 Jetson, 20 fps 1,409 + 26 313 +£ 18 707 £ 19 2.03 + 3.00
Laptop, 0.5 fps 3,040 537 1 0.02

Jetson, 0.5 fps 3,040 561 0 0.02

Laptop, 20 fps 2,651 £ 5 440 + 5 1,704 + 14 0.03 + 0.00

MHO03 Jetson, 20 fps 1,283 + 12 273 +£3 735 £ 59 1.23 £ 0.79
Laptop, 0.5 fps 2,700 757 0 0.03

Jetson, 0.5 fps 2,700 753 1 0.03

Laptop, 20 fps 1,992 + 9 380 + 2 1,474 + 5 0.05 + 0.00

MHO04 Jetson, 20 fps 1,008 + 8 211 £ 1 685 + 10 0.23 £ 0.19
Laptop, 0.5 fps 2,031 801 0 0.04

Jetson, 0.5 fps 2,032 792 2 0.04

Laptop, 20 fps 2,242 + 4 411 £ 8 1,438 + 23 0.05 + 0.00

MHO5 Jetson, 20 fps 1,152 + 10 225 +5 684 + 60 0.55 + 0.59
Laptop, 0.5 fps 2,272 757 1 0.06

Jetson, 0.5 fps 2,272 798 0 0.04

Laptop, 20 fps 2,824 + 32 391 +1 1,871 + 45 0.03 + 0.00

V101 Jetson, 20 fps 1,160 + 13 280 + 1 500 + 34 0.07 + 0.06
Laptop, 0.5 fps 2,911 560 0 0.03

Jetson, 0.5 fps 2,911 544 0 0.03

Laptop, 20 fps 1,678 £ 6 290 £ 7 1,016 + 16 0.01 £ 0.00

V102 Jetson, 20 fps 824 + 39 186 + 11 295 + 40 3.55 + 4.31
Laptop, 0.5 fps 1,708 551 0 0.01

Jetson, 0.5 fps 1,708 566 0 0.01

Laptop, 20 fps 2,145 + 2 408 £ 1 1,335+£14 0.02 +0.00

V103 Jetson, 20 fps 1,121 + 43 236 £ 11 494 + 112 0.75 + 1.33
Laptop, 0.5 fps 2,149 1,014 0 0.02

Jetson, 0.5 fps 2,149 1,009 2 0.02

Laptop, 20 fps 2,275 +3 324 +2 1,242 + 28 0.03 + 0.00

V201 Jetson, 20 fps 1,018 + 28 226 + 8 455 + 27 1.42 + 241
Laptop, 0.5 fps 2,279 420 0 0.03

Jetson, 0.5 fps 2,280 412 1 0.01

Laptop, 20 fps 2,333+ 7 415+ 7 1,578 + 27 0.02 + 0.02

V202 Jetson, 20 fps 1,131 + 63 253 £ 10 559 + 57 3.24 + 3.46
Laptop, 0.5 fps 2,348 774 0 0.01

Jetson, 0.5 fps 2,348 787 6 0.01

Laptop, 20 fps 1,916 + 2 613 +9 1,035 + 18 0.07 + 0.08

V203 Jetson, 20 fps 1,235 + 23 297 £ 9 472 + 123 0.06 + 0.04
Laptop, 0.5 fps 1,921 1,061 0 0.03

Jetson, 0.5 fps 1,921 1,081 0 0.03

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:16 S. Semenova et al.

Diff Frames Processed (%)

0.4 15
20 - -15 -5 -4
10
2

ATE (m)

[
% 15--0.022 0.008 -0.004 -0.041 0.071 0.084 0.087 0.096 0.160 -0.243 pR:{i:] % 15 ’.... -6 -4 .. 5
g 8
P 0.0 p o
E 10 - 0.006 -0.002 -0.003 -0.010 -0.003 0.004 -0.019 0.035 0.040 -0.041 -0.035 g 10 - -3 2 2 -2 -0 1 -4 -2 2 1 —5
02 10
5-0.005 -0.006 -0.000 -0.008 0.006 0.003 -0.019 0.017 0.003 0.020 [s-0 o0 o o o o0 o 1 1 o 1
=15
' ' i ' ' ' ' ' ' i v —0.4 ' ' ' ' ' i ' ' ' ' '
MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 MHO1 MHO02 V101 V201 MHO03 V102 V202 MHO04 MHO5 V103 V203 —-20
Sequence Sequence
Diff KeyFrames Dropped (%) 20 Diff KeyFrames Created (%) 60
15
20- -3 3 -7 -7 2 -2 -1 5 2 -2 -5 20- -12 -9 -29 -27 -6 -21 -6 17 16 -27 -15 40
10
M o 20
E 15- -6 4 -3 -8 4 7 5 5 4 5 5 15- -19 -17 -37 -39 -5 -8 -4 10 12 -23 -6
E 0 E 0
©10- -2 1 1 0 -2 2 3 5 5 -1 2 -5 © 10- -27 -21 -47 -45 -12 -13 -12 10 10 -7 8
= = -20
-10
5- 1 -0 -1 0 2 0 3 2 2 1 4 5- 27 -21 -49 -46 -14 -11 -14 11 11 -5 4 _a0
-15
MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 -20 MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 —-60
Sequence Sequence
(a) Stereo,

ATE (m) Diff Frames Processed (%)
0.4 15
20- 0.001 . 0.064 34 0.087 -0.125 20- 6 4 - 9 3 7 6 4 5 6 3
10
02
% 15 - Xy 0.002 0.005 0.003 0.039 0.053 0.012 -0.001 -0.226 % - - - - - -! - B -
e e
g 0.0 g
“Ei 10--0.001 0.003 0.000 0.007 0.001 0.002 -0.000 0.001 0.002 0.033 0.017 E 10- -7 -8 1 5 9 2 -6 1 4 1 _5
02 10
5--0.002 0.047 0.000 -0.000 -0.003 -0.008 -0.002 0.004 -0.003 -0.001 0.003 s-0 o0 0 ©0 -1 0 0 1 0 0 o0
-15
. . , , . ,] . . , , -0.4 \
MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 MHOl MHOZ V101 V201 MH03 V102 VZOZ MH04 MH05 V103 V203 ~20
Sequence Sequence
Diff KeyFrames Dropped (%) 20 Diff KeyFrames Created (%) 60

15
i ! . ? ’ N ? . > 7 . * = E H = n H "
10

%157 ¢ s . 2 ? ! ! . ° ! ° ° %157n“ - 2

& &

o 0 o 0

€ €

£10- 4 4 _s 510- 37 | 49 | 36 -50 -a5 | -aa BEL

= = -20

-10
..... .. s Y H v H = . = ’ 40
-15 :

. 0 .
MHOl MH02 V101 V201 MH03 VlOZ V202 MH04 MHOS V103 V203 -20 MHOl MHOZ VlOl V201 MH03 V102 V202 MH04 MHOS V103 V203 —~60
Sequence Sequence

(b) Stereo Inertial.

Fig. 3. The difference between Jetson and laptop performance for Stereo and Stereo Inertial modes and 4
frame rates on every EuRoC sequence. Each reported value is the Jetson value minus the laptop value. %
KeyFrames Dropped and % KeyFrames Created are relative to total frames processed by each device.

and we identify it as the primary effect of concurrency on performance in resource-constrained
devices. This behavior is similar for Loop Closing—Tracking and Local Mapping will check that
Loop Closing is not running before they attempt to process incoming data. However, KeyFrame
drops due to concurrency with the Loop Closing thread are rare, because its duration is extremely
short (< 5 ms) when a loop is not found and moderately short (<20 ms) when a loop is found, which
occurs infrequently.

The extent to which resource contention affects KeyFrame creation can be seen in Table 5, which
shows the amount of created KeyFrames for both devices at 20 fps as a percentage of the “ideal”
amount of KeyFrames for the sequence. The ideal scenario occurs in either the Jetson or laptop 0.5
fps experiments, where there are no dropped KeyFrames at all. Across all sequences, both devices
create fewer KeyFrames at 20 fps than at 0.5 fps, and the Jetson creates much fewer KeyFrames
than the laptop.

Figures 3 and 4 show the difference in performance between the Jetson and laptop for Stereo
and Monocular modes, respectively, for four frame rates and every sequence in the EuRoC dataset.
The reported values refer to the Jetson value minus the laptop value—thus, a positive value (purple)

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:17

ATE (m) Diff Frames Processed (%)
0.4
15
20-0.015 0.007 0.001 0.146 0.000 0.040 . -0.050 [Wcras 20- -7 -5 -8 -2 -0 -5 -1 -0 8 -1 -1
10
0.2
% 15-0.006 0.001 0.000 -0.002 0.003 0.177 0.003 0.167 0.138 % 15- -0 -0 1 5 1 -2 1 3 1 1 -1 5
& &
g 0.0 g 0
£ 10-0.004 0,002 0.003 0.000 0.020 0.047 0.166 . .024 0.129 go--0 1 a1 1 0 a1 1 0o 1 a1 1 s
-0.2 10
5--0.002 0.002 -0.000 0.153 0.001 0.028 0.007 0.015 -0.225 pMEE] 0.117 5- 0 0 0 0 0 0 0 1 1 0 1
. : " . -04 -1
MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 -20
Sequence Sequence
Diff KeyFrames Dropped (%) 20 Diff KeyFrames Created (%) 60
15
20- -2 2 5 7 1 3 2 4 1 2 6 40
10
20
£15-3 3 a1 6 1 0 a4 3 3 2 |7 5 £
& e
@ 0 [0
£ £
§10- 2 -1 -1 0 -1 1 -3 a1 pai] = 7 5 &
2 £
-20
5- 4 3 |5 . 3 2 7 |9 |9 e
. i O O . " O 0 O " O -15 0 0 O O 0 O O 0 0 O O -
MHO1 MH02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 —20 MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 —60
Sequence Sequence
(a) Mono
ATE (m) Diff Frames Processed (%) 20
0.4
15
20-0.012 0.002 . 0.004 -0.007 [WPLi] -0.118 0.012 0.007 0.077 20- -10 o PEREREEE ST
10
0.2
% 15--0.038 -0.002 -0.003 -0.004 0.003 -0.026 -0.064 -0.005 0.006 0.000 -0.020 % 15- -7 6 2 3 -5 2 2 6 3 1 0 5
g &
GEJ 0.0 GE' 0
g 10-0.003 -0.013 0.001 -0.004 -0.013 0.000 0.001 0.014 0.007 0.005 0.042 g 10- -4 -6 -0 1 -2 -1 1 0 -1 1 2 _5
02 10
5-0.001 -0.003 0.000 0.003 -0.025 0.011 -0.004 0.036 0.016 -0.003 -0.003 5- 0 0 0 o 0 -0 0 0 1 0 0
=15
' ' i | ' i i ' ' i | —0.4 ' ' | i ' i ' ' ' i i
MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 MHO1 MHO02 V101 V201 MHO3 V102 V202 MHO04 MHO5 V103 V203 20
Sequence Sequence

Diff KeyFrames Dropped (%) Diff KeyFrames Created (%)

15
-8
10

N
e
&
~
w

g15- 2 5 4 a7 5 2
& &
o 0 o 0
£ £
S10- 2 -5 s
« = -20
-10
I 16 18 5- 30 24 [E 5 E g a0
-5 T I O 0 T 0 0 1 I 0 I
MHOL MHO2 V101 V201 MHO3 V102 V202 MHO4 MHOS V103 V203 20 MHO1 MHO2 V101 V201 MHO3 V102 V202 MHO4 MHO5 V103 V203 60

Sequence Sequence

(b) Mono Inertial.

Fig. 4. The difference between Jetson and laptop performance for Monocular and Monocular Inertial modes
and 4 frame rates on every EuRoC sequence.

indicates that the Jetson has a higher ATE, processes more frames, or creates/drops more
KeyFrames, and vice versa for negative values (brown). The Jetson drops a significant amount
of frames for frame rates faster then 10 fps for both stereo modes, some frames for frame rates
faster than 10 fps for Monocular Inertial mode, and almost no frames in Monocular mode. This is
intuitive, because Stereo modes require the system to process twice the amount of images.

% KeyFrames Dropped and % KeyFrames Created are relative to the total frames processed by
each device—this means that the Jetson can process far fewer frames than the Laptop (e.g., Stereo
mode at 20 fps) and have fewer KeyFrames than the laptop (because it has fewer opportunities
to create them) but still create more KeyFrames relative to the amount of frames processed. We
count a KeyFrame drop when it occurs because of concurrency—that is, the KeyFrame would have
been inserted had Local Mapping not been busy. On average, the Jetson creates fewer and drops
more KeyFrames compared to the laptop, but not always. While the Jetson experiences more con-
currency due to its lowered resources, concurrency can also be induced through increased work.
Finding the sweet spot between enough KeyFrames to reach the target accuracy and few enough
to avoid increasing KeyFrame drops due to concurrency is a potential optimization.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:18 S. Semenova et al.

Viewing CPU usage as a measure of the degree of concurrency experienced by a system, we
found that the laptop uses slightly less CPU than the Jetson, on average, but both are within a
standard deviation of each other (Figures 5(a) and 5(b), middle). Additionally, both devices expe-
rience similar spikes of CPU usage over time (Figures 5(a) and 5(b), top). However, these small
differences in CPU usage translate to vastly different outcomes, as can be seen in Figures 5(a)
and 5(b) (bottom). When a frame arrives from the camera, it can either be processed or dropped
(“Dropped F,” hashed blue). For every processed frame, the system can either create a KeyFrame
(“Created KF,” solid orange), drop a KeyFrame due to concurrency (“Dropped KF,” hashed orange),
or choose not to make a KeyFrame because the frame is not a good addition to the map (“Tracked
F) solid blue). Across both datasets and modes, the Jetson drops more frames than the laptop for
the same frame rate. While the laptop usually drops more KeyFrames, this is because it processes
more frames overall. When the Jetson does not drop frames (5 fps, all modes and datasets), it drops
more KeyFrames..

The Jetson has a worse ATE than the laptop, on average, but not always and not always to the
same degree. This is caused by two reasons: (1) The laptop occasionally experiences more concur-
rency than the Jetson, because it can process more frames and therefore create more KeyFrames,
and (2) Not all frame and KeyFrame drops equally affect mapping and localization accuracy, which
we will discuss in the next section. Additionally, the performance of the Jetson relative to the lap-
top is far worse for non-inertial modes, which is intuitive, because inertial measurements can help
stabilize the trajectory estimation in cases with no visual measurements.

5.2 Concurrency in Kimera and OpenVINS

Unlike ORB-SLAM3, Kimera and ORB-SLAM3 have no shared, global map. Below, we discuss how
the map data structures and pipeline are designed to avoid shared global map access and the ram-
ifications of this design on performance.

Kimera Design. In Kimera, each module iteratively builds its own relevant data structures using
information from modules earlier in the pipeline. This information flows from Tracking (VIO Front-
End) to Local Mapping (VIO Back-End) to Loop Closing (RPGO), and the data structures from
modules later in the pipeline are never used by modules earlier in the pipeline.

Kimera’s Tracking module (VIO Front-End) performs frame-to-frame tracking instead of local-
izing the current robot position in the generated SLAM map. It stores frames (which can become
KeyFrames) and their associated features. Modules later in the pipeline can modify KeyFrames by
optimizing their pose, but updated poses are not necessary for frame-to-frame tracking and are
thus not propagated back to Tracking. In our experiments, we observed that the majority of shared
memory contentions in ORB-SLAM3 are between Tracking and Local Mapping. These memory
contentions are eliminated with Kimera’s method of tracking.

Kimera’s Local Mapping module (VIO Back-End) optimizes a factor graph containing feature
tracks, preintegrated IMU measurements, and KeyFrames. The factor graph contains only infor-
mation within a time horizon of 30 KeyFrames, and older information is marginalized out. The
factor graph is updated and optimized for every KeyFrame inserted by the Tracking module and
then sends the optimized 3D poses to Loop Closing. In Table 7, we report the ATE of these poses
as “ATE (VIO)?

Kimera’s Loop Closing module contains two main map data structures—a pose graph and place
recognition database. The pose graph (a factor graph) contains all poses generated by the Local
Mapping module, is globally optimized by Loop Closing to generate more accurate pose estima-
tions, and is most similar to ORB-SLAM3’s global map (but does not include landmarks/MapPoints).
Every pose graph optimization generates another estimated pose for the KeyFrame, but this infor-
mation does not need to propagate upstream, because it is not required for the local optimizations

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems

CPU Usage Over Time (V101)

2:19

CPU Usage Over Time (V103)

__ 601

*
& 40
i3
2 T
Z 20 \
] \

1

1

0 100 200 300 400 500] 50 100 150 200 250 300 350
Time (s) Time (s)
Average CPU Usage (V101) Average CPU Usage (V103)
]

50 4 501 3 Laptop

= < 404 EZA)etson
£ 40) B 20 fps
[[
g 30 %30‘ = 15 fps
2 3 10 fps
2 204 2 B 5 fps
o o

104

o4
20 15 10 5 15 10
Frame Rate (fps) Frame Rate (fps)
Frame/KeyFrame Outcomes (V101) Frame/KeyFrame Outcomes (V103)
3000 A 1
2000 1 B Tracked F
B Dropped F
2000 - 1500 A 3 Created KF
[ZZ Dropped KF
1000 -
1000
500
o4
L20 J20 L15 J15 L10 J10 L5 5 L20 20 L15 J15 L10 10
Frame Rate (fps) Frame Rate (fps)
(a) Mono.
8 CPU Usage Over Time (V101) CPU Usage Over Time (V103)
704
—_ 701 —_
R X 604
% g
850 8507
=} =)
Z 40 2 41
o) S 50l
304
T T T T T T 20
0 100 200 300 400 500 0 50 100 150 200 250 300 350
Time (s) Time (s)
Average CPU Usage (V101) Average CPU Usage (V103)

Laptop
< 601 = 601 Jetson
s s 20 fps
L L
2 40 2 40 1 15 fps
2 @2 10 fps
Fl > 5 fps
& 20 & P

o4

20 15 10 5 15 10
Frame Rate (fps) Frame Rate (fps)
Frame/KeyFrame Outcomes (V101) Frame/KeyFrame Outcomes (V103)
3000 1
2000 4 I Tracked F
Dropped F
2000 - 1500 A [Created KF
EZZ Dropped KF
1000 -
1000
500
o0

L20 J20 L15 J15 L10

Frame Rate (fps)

J10 L5 J5

L20 J20 L15 J15 L10

Frame Rate (fps)

J10

(b) Stereo Inertial.

Fig. 5. ORB-SLAM3 CPU usage and corresponding KeyFrame/frame outcomes (Tracked or dropped frames,
created or dropped KeyFrames) for two datasets and two system types.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:20 S. Semenova et al.

Table 7. The Total Tracked Images, Created and Dropped KeyFrames, and ATE for Both Devices at the
Target Frame Rate (20 fps) and a Very Slow Frame Rate (0.5 fps) for the EuRoC Dataset

Kimera

Sequence Experiment ‘ Tracked Images Created KeyFrames ATE VIO (m) ATE Final (m)

Laptop, 20 fps 3,676 £ 5 920 £ 0 0.52 + 0.05 0.52 = 0.05
MHO1 Jetson, 20 fps 3,104 + 286 776 £ 71 0.63 + 0.03 0.71 £ 0.03
Laptop, 0.5 fps 3,680 920 0.49 0.49
Jetson, 0.5 fps 3,680 920 0.59 0.58
Laptop, 20 fps 3,038 + 0 759 £ 0 0.14 + 0.00 0.10 £+ 0.00
MHO02 Jetson, 20 fps 2,655 + 14 664 +3 0.13 + 0.01 0.09 + 0.02
Laptop, 0.5 fps 3,038 759 0.14 0.09
Jetson, 0.5 fps 3,038 759 0.14 0.09
Laptop, 20 fps 2,697 £ 0 674 £ 0 0.17 + 0.02 0.13 = 0.04
MHO03 Jetson, 20 fps 2,217 £ 124 554 + 31 0.21 +£0.03 0.17 £ 0.02
Laptop, 0.5 fps 2,697 674 0.16 0.12
Jetson, 0.5 fps 2,622 656 3.34 3.34
Laptop, 20 fps 2,028 £ 0 507 £ 0 0.17 + 0.00 0.12 + 0.03
MHO04 Jetson, 20 fps 1,903 + 10 476 + 2 0.17 + 0.02 0.08 + 0.01
Laptop, 0.5 fps 2,029 507 0.16 0.14
Jetson, 0.5 fps 2,029 507 0.21 0.21
Laptop, 20 fps 2,268 £ 1 567 £0 0.23 + 0.02 0.22 +0.02
MHO5 Jetson, 20 fps 2,104 £ 13 526 £3 0.17 = 0.00 0.12 = 0.00
Laptop, 0.5 fps 2,269 567 0.19 0.13
Jetson, 0.5 fps 2,270 567 0.17 0.15
Laptop, 20 fps 2910 £ 1 727 £ 0 0.07 + 0.01 0.06 £ 0.03
V101 Jetson, 20 fps 2,460 + 210 615 + 52 0.05 + 0.01 0.06 + 0.02
Laptop, 0.5 fps 2,910 727 0.07 0.04
Jetson, 0.5 fps 2,910 727 0.08 0.06
Laptop, 20 fps 1,708 £ 0 427+ 0 0.09 + 0.00 0.08 = 0.01
V102 Jetson, 20 fps 1,288 +£3 3221 0.09 + 0.00 0.09 = 0.02
Laptop, 0.5 fps 1,708 427 0.09 0.09
Jetson, 0.5 fps 1,708 427 0.08 0.04
Laptop, 20 fps 2,146 £ 0 536 £ 0 0.16 + 0.00 0.12 + 0.03
V103 Jetson, 20 fps 1,678 £ 6 419 £+ 2 0.19 + 0.01 0.18 = 0.01
Laptop, 0.5 fps 2,143 536 0.16 0.09
Jetson, 0.5 fps 2,147 536 0.20 0.11
Laptop, 20 fps 2,277+ 0 569 £ 0 0.04 + 0.00 0.04 = 0.01
V201 Jetson, 20 fps 1,988 £ 13 497 £ 3 0.05 + 0.01 0.03 = 0.00
Laptop, 0.5 fps 2,278 569 0.04 0.04
Jetson, 0.5 fps 2,278 569 0.06 0.04
Laptop, 20 fps 2,131 + 429 532 + 107 0.12 + 0.02 0.09 +0.01
V202 Jetson, 20 fps 1,662 + 399 415 £ 100 0.08 + 0.02 0.08 + 0.02
Laptop, 0.5 fps 2,346 586 0.09 0.07
Jetson, 0.5 fps 2,346 586 0.10 0.09
Laptop, 20 fps 1,918 £ 0 580 £0 0.18 + 0.00 0.19 = 0.02
V203 Jetson, 20 fps 1,643 £7 484 + 2 0.17 = 0.00 0.18 = 0.01
Laptop, 0.5 fps 1,919 581 0.19 0.20
Jetson, 0.5 fps 1919 581 0.20 0.18

“ATE VIO” is the ATE from poses in VIO Back-End, “ATE Final” is the ATE from poses in RPGO.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems

2:21

Table 8. The Total Tracked Images, MSCKF and SLAM Features, and ATE for Both Devices at the Target
Frame Rate (20 fps) and a Very Slow Frame Rate (0.5 fps) for the EuRoC Dataset

OpenVINS

Sequence Experiment ‘ Tracked Images MSCKF Features SLAM Features ATE (m)
Laptop, 20 fps 3,679 + 4 22.03 + 32.30 39.04 + 8.78 0.10 = 0.01

MHoO1 Jetson, 20 fps 2,943 + 20 35.53 + 56.62 37.60 + 9.72 0.09 = 0.01
Laptop, 0.5 fps 3,682 29.28 + 43.28 40.21 £ 8.52 0.08

Jetson, 0.5 fps 3,681 32.36 + 46.80 39.42 + 8.30 0.11

Laptop, 20 fps 3,038 +3 19.12 + 30.12 39.33 £9.21 0.11 = 0.01

MH02 Jetson, 20 fps 2,419 £ 22 24.23 + 27.48 37.49 + 10.04 0.10 £ 0.01
Laptop, 0.5 fps 3,040 26.87 + 40.43 39.75 + 8.95 0.09

Jetson, 0.5 fps 3,039 19.60 + 31.87 39.46 + 8.82 0.12

Laptop, 20 fps 2,699 =3 17.69 = 22.87 38.65 + 10.43 0.15 = 0.02

MHO03 Jetson, 20 fps 2,114 + 12 28.61 + 36.90 33.28 + 11.74 0.14 = 0.01
Laptop, 0.5 fps 2,700 20.20 + 25.18 38.92 + 10.23 0.10

Jetson, 0.5 fps 2,700 31.53 £ 52.45 38.71 £ 9.86 0.14

Laptop, 20 fps 1,679 + 702 32.45 + 65.42 0.15 + 1.40 96.38 + 48.16

MHO04 Jetson, 20 fps 2,026 + 2 38.12 + 61.09 0.29 + 2.43 134.28 + 8.39
Laptop, 0.5 fps 2,032 21.73 + 18.63 0.03 + 0.36 73.68

Jetson, 0.5 fps 2,032 32.80 + 48.10 0.44 + 2.82 145.90

Laptop, 20 fps 2,271 =1 32.67 + 50.20 21.22 + 20.53 34.70 + 42.30

MHO5 Jetson, 20 fps 2,176 £ 191 32.72 + 49.00 4.84 + 12.74 59.31 + 31.22
Laptop, 0.5 fps 2,273 22.94 + 26.47 38.46 + 10.74 0.17

Jetson, 0.5 fps 2,273 32.61 + 44.16 0.00 = 0.00 77.78

Laptop, 20 fps 2912 +1 21.42 + 31.37 44.00 + 6.48 0.05 £ 0.00

V101 Jetson, 20 fps 2,080 = 12 23.95 + 26.43 39.05 +9.13 0.06 = 0.01
Laptop, 0.5 fps 2,912 18.24 + 17.89 44.29 + 5.96 0.05

Jetson, 0.5 fps 2,912 18.00 = 18.03 44.16 + 6.59 0.05

Laptop, 20 fps 1,710 £ 0 23.58 + 20.92 34.20 = 10.75 0.05 = 0.00

V102 Jetson, 20 fps 1,387 £ 5 23.88 + 19.56 25.62 = 11.79 0.06 = 0.01
Laptop, 0.5 fps 1,709 21.82 = 19.31 34.31 + 10.83 0.05

Jetson, 0.5 fps 1,709 22.45 + 20.16 34.40 + 10.91 0.06

Laptop, 20 fps 2,149+ 1 40.35 £ 71.17 25.91 + 13.86 0.07 = 0.01

V103 Jetson, 20 fps 1,792 + 10 35.34 + 49.38 18.95 + 13.00 0.06 + 0.01
Laptop, 0.5 fps 2,149 26.31 + 20.20 26.06 + 13.81 0.06

Jetson, 0.5 fps 2,149 29.85 + 30.16 25.90 + 13.84 0.06

Laptop, 20 fps 2,278 £ 1 24.65 = 36.21 42.23 £10.51 0.05 = 0.00

V201 Jetson, 20 fps 1,661 + 13 30.46 + 51.83 37.26 = 12.15 0.05 = 0.00
Laptop, 0.5 fps 2,279 27.42 + 40.77 42.39 + 10.54 0.05

Jetson, 0.5 fps 2,279 23.44 = 28.15 41.92 £ 11.25 0.06

Laptop, 20 fps 2,347 £ 1 25.54 + 25.15 32.48 + 11.99 0.05 = 0.01

V202 Jetson, 20 fps 1,892 + 20 30.48 + 42.62 25.05 + 11.42 0.05 = 0.01
Laptop, 0.5 fps 2,348 29.66 + 46.47 32.53 = 12.07 0.04

Jetson, 0.5 fps 2,348 24.29 + 17.54 32.58 + 11.93 0.04

Laptop, 20 fps 1,920 £ 1 32.32 + 38.28 18.64 + 14.13 0.11 = 0.00

V203 Jetson, 20 fps 1,737 £ 6 32.92 + 40.07 14.10 = 11.82 0.11 = 0.02
Laptop, 0.5 fps 1,921 32.69 + 37.11 18.05 = 13.79 0.09

Jetson, 0.5 fps 1,921 32.52 + 38.86 18.27 = 13.86 0.12

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:22 S. Semenova et al.

of Local Mapping. In Table 7, we report the ATE of these poses as “ATE (Final).” Additionally, Loop
Closing uses KeyFrame features from the Tracking module to compute a bag-of-words represen-
tation of the KeyFrame, which is entered into the visual place recognition database and used for
loop detection. If a loop is detected, then the full pose graph mentioned earlier is connected at the
loop and optimized again. Information inside the place recognition database does not need to be
propagated earlier into the pipeline, because it is not used anywhere else.

OpenVINS Design. OpenVINS runs in a single-thread and thus also has no concurrency. If it is
necessary to parallelize OpenVINS to meet timeliness goals, then the pipeline could be split after
the “Tracking” stage in Figure 1. This split could be done without introducing concurrency, because
OpenVINS, like Kimera, does not use the map for tracking. The OpenVINS map is most similar to
Kimera’s VIO Back-End map. It is a factor graph containing KeyFrames and SLAM landmarks as
optimizable variables and IMU measurements and MSCKF features as constraining factors for a
sliding window of 11 frames. SLAM landmarks and MSCKF features are tracked in the current
window and marginalized out when lost.

Downsides. The aforementioned system designs avoid concurrency challenges but come with
several downsides. First, neither Kimera nor OpenVINS can build on an existing, previous map, or
use it for localization-only mode, because Tracking does not use a map for localization. Second,
while neither system suffers from additional concurrency-related errors, we found that Kimera and
OpenVINS do not perform as well as ORB-SLAM3 in the non-resource-constrained case (Tables 6
and 7). This is in line with prior research [43] that finds BA-based SLAM systems tend to be more
accurate than filtering-based approaches. Last, neither system generates an optimized map that
can be used later by other SLAM systems or applications.

5.3 Viability of Fine-grained Concurrency

With fine-grained concurrency, we can reduce the number of drops and skipped optimizations by
allowing modules to run concurrently if they do not modify the same subsection of the map. In
this section, we discuss the possibility for fine-grained concurrency given the current structure of
the shared global map in ORB-SLAM3.

The ORB-SLAM3 map is composed of five data structures: KeyFrames, MapPoints, the place
recognition database, the spanning tree, and the covisibility graph (Figure 1(c)). The latter two
are generated from KeyFrames and MapPoints to speed up several computations. The covisibility
graph describes the KeyFrame connections—each KeyFrame is a node and an edge exists between
two KeyFrames if they observe the same MapPoints. When Tracking inserts a new KeyFrame, the
covisibility graph is updated to include the new KeyFrame and connect it to the appropriate, older
KeyFrames.

Figure 6(a) shows the ORB-SLAM3 covisibility graphs for two EuRoC sequences—V101 “easy,’
with slower movement and easier tracking, and V103 “difficult,” with faster movement and fewer
features to track. The graph is denser when the device sees many features in the environment
and travels at a reasonable speed without little/slow rotational movement, and sparser in circum-
stances with more difficult tracking. This density can likewise be seen in Kimera’s maps, even
though it does not have a global map. Figure 6(b) shows the covisibility graphs for Kimera’s Lo-
cal Mapping module in the middle of the sequences. Because Kimera marginalizes out Landmarks
and KeyFrames outside the time horizon, the size of this graph remains constant throughout execu-
tion. However, the density of the graph does not change throughout execution. This can be seen in
Figure 6(c), which shows the covisibility graphs at the end of two sequences if the system did not
marginalize out any KeyFrames. This graph contains no loops, because the Local Mapping module
in Kimera is not aware of loop closures.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:23

ORB SLAMS3 Final Covisibility Graph (V101) ORB SLAMS3 Final Covisibility Graph (V103)

(a) ORB-SLAM3. The full global map that is generated by the end of the sequence.

Kimera VIO-Backend Covisibility Graph at KeyFrame 100 (V101) Kimera VIO-Backend Covisibility Graph at KeyFrame 100 (V103)
e ° P °
o °
° s e »
o - = ° A 4 o °
N o o o °
o ° o 2 °
* o
L ° ° °
. ° h— g
°
o ° & °© ° Jy
o ° 2 z o
@ ° ° °
° ° ° = .
o L

(b) Kimera. The covisibility graphs in Local Mapping in the middle of the sequences.

Kimera Vio-Backend Full Covisibility Graph (V101) Kimera Vio-Backend Full Covisibility Graph (V103)

* s

(c) Kimera. The covisibility graph at the end of the sequence had no information been marginalized out.

Fig. 6. The final covisibility graphs for the EuRoc V101 (easy) and V103 (hard) sequences for Kimera and
ORB-SLAMS3. Graph nodes (KeyFrames) are connected if they share visible MapPoints/Landmarks.

Thus, graph density is a function of KeyFrame selection criteria more so than the underlying
pipeline or map design in the SLAM system. For systems with a global map such as ORB-SLAM3,
this opens an opportunity to increase concurrency through fine-grained locking or other granular
synchronization mechanisms.

6 The Context Challenge

SLAM systems must perform computationally intensive operations on high-frequency sensor data
streams to achieve acceptable accuracy at a target frame rate. As the mobile device traverses a
physical environment, these operations are not done in a vacuum—SLAM systems must react to
real-world conditions, which can be highly variable and unpredictable. For example, throughout
the course of execution, the mobile device may start and stop (change velocities), take turns or go
straight (rotational vs. translational movement), and enter environments with a high or low density

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:24 S. Semenova et al.

of features. These changing conditions are the application context—external (i.e., in the real world)
and internal (i.e., prior and current system state) conditions that underlie the operation of the
SLAM system.

Variations in application context lead to changing workloads for the SLAM system and there-
fore drastically affect the operation of the system and the importance of each module/task. For
example, regions with feature sparsity and/or fast device movement necessitate timely tracking
(regardless of whether KeyFrames are made) more than feature-rich and slow regions do. Like-
wise, missing many frames in a row heightens the urgency of processing the next frame, so relo-
calization does not occur and the map is sufficiently dense. Additionally, prior literature [9, 38], as
well as our empirical evidence, shows that some KeyFrames are more important to accuracy and
overall execution than others. For example, KeyFrames made during feature-sparse regions, fast
device movement, and rotational movement (corresponding to a greater change in scene) all have
fewer tracked MapPoints and therefore lower connectivity with the rest of the map. If the system
chooses to drop a KeyFrame whose connectivity is low, then it might lead to a loss of tracking
and trigger relocalization, whereas dropping a KeyFrame from a dense region might not affect the
overall function or localization accuracy.

The key takeaway from these observations is that application context is very influential on the
overall function of the system. Therefore, we cannot treat every concurrent access equally. Depend-
ing on context, the system needs to variably prioritize KeyFrame addition, map optimization, or
loop closure. Despite this, current SLAM systems use the standard OS scheduler to allocate process-
ing time and indiscriminately drop data that may affect performance and accuracy to maximize
throughput of all modules. Instead, SLAM systems would benefit from a more “intelligent” way to
incorporate real-world, real-time conditions into their decision-making, so the right task is being
performed at the right time.

Being able to make intelligent, context-aware resource allocation decisions benefits SLAM sys-
tems in two scenarios. First, depending on the amount of available resources (CPU, memory, etc.),
some devices will encounter an inevitable degree of overload when running a SLAM system. For
example, in our experiments, all three SLAM systems are overloaded on the Jetson at 20 fps—ORB-
SLAM3’s Tracking module is very overloaded, and ORB-SLAM3’s Local Mapping Module, Kimera’s
Tracking module, and OpenVINS are all slightly overloaded (Tables 2(a), 3(a), and 4). Second, due to
the concurrency challenges described earlier, resource-constrained devices will necessarily need
to drop more data compared to resource-rich devices, even if they are not overloaded. In both cir-
cumstances, the SLAM system must drop some data and tasks, so it would be better to drop those
that are less crucial for performance.

The impact of not taking context into account can be seen in Table 9. All three SLAM systems
display inconsistent average trajectory errors when evaluated on the same dataset multiple times,
because indiscriminate data drops lead to a higher variability in performance. This variability is
seen in both devices but is especially pronounced in the Jetson, because higher resource constraints
lead to more data drops, increasing the likelihood of “bad” data drops. This variability makes it
difficult to rely on SLAM systems, because they do not perform consistently on the same hardware
and do not predictably and consistently degrade with lowered resources.

Including knowledge about the external, physical environment and the generated map into
scheduling decisions will have three effects. First, for all devices, context-aware scheduling will
lower the performance variability and lead to more predictable results. More predictable results,
in turn, will mitigate the effects of overloading on resource-constrained devices by allowing them
to gracefully and reliably degrade their performance. Last, resource-rich devices will be able to
avoid unnecessary tasks that do not affect accuracy so they can run at a faster frame rate, have

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:25

Table 9. Consistency of ATE across Multiple Runs of Each Sequence on the Jetson (J) and Laptop (L) at the
Target Frame Rate (20 fps)

l OpenVINS | Kimera | ORB-SLAMS || | OpenVINS | Kimera | ORB-SLAMS3
Seq | J L |J LJ|J L |ISeq | J L | J L | J L
0.08 0.08 [070 048] 025 0.02 0.07 0.05 |0.13 007|013 0.1
0.08 0.10 |0.70 0.62| 0.02 0.03 0.06 0.05 |0.08 0.09| 6.25 0.01
MHO01 | 0.11 0.10 |0.78 0.49| 045 0.03 (| V102 |0.06 0.05 |0.09 0.08 | 10.79 0.01
0.08 010 |0.69 0.49|10.85 0.02 0.07 0.05 | 0.09 0.09| 0.01 0.01
0.12 0.10 |0.69 049 | 233 0.02 0.06 0.05 | 0.09 0.05| 0.56 0.01
0.10 0.11]0.10 0.10| 0.25 0.04 0.06 0.07 |0.19 0.14| 3.41 0.02
0.12 0.11]0.10 0.09| 7.93 0.04 0.06 0.07 |0.18 0.11| 0.03 0.02
0.09 0.11 | 0.05 0.09| 1.60 0.04 0.05 0.06 |0.19 0.16 | 0.03 0.02
Moz 0.12 0.09 10.10 0.09| 0.05 0.04 V103 0.07 0.07 |0.19 0.09| 0.17 0.02
0.09 0.11 }0.10 0.10| 0.35 0.03 0.07 0.07 |0.18 0.09| 0.13 0.02
015 012 |0.19 0.08| 276 0.03 0.06 0.05 | 0.03 0.04| 0.02 0.03
0.13 0.16 |0.18 0.20| 0.76 0.03 0.06 0.05 |0.04 0.03| 0.62 0.03
MHO03 | 0.12 0.16 |0.19 0.11| 0.82 0.03 || V201 |0.06 0.05 |0.04 0.03| 0.08 0.02
0.14 0.16 |0.13 0.12 | 0.61 0.03 0.05 0.05 | 0.04 0.06 | 0.15 0.02
0.15 0.16 |0.19 0.11| 1.20 0.03 0.05 0.05 |0.03 0.03 | 6.22 0.03
142.93 122.06 | 0.09 0.17 | 0.20 0.04 0.06 0.04 |0.09 0.09| 0.17 0.01
121.93 122.06 | 0.08 0.11 | 0.06 0.04 0.05 0.04 |0.08 0.09| 1.00 0.01
14440 019 |0.08 0.11| 058 0.05 0.05 0.06 |0.10 0.08| 840 0.05
MEO04 130.22 122.06 | 0.08 0.10 | 0.06 0.05 V202 0.05 0.06 |0.04 0.09| 6.37 0.01
131.92 115.52 | 0.08 0.10 | 0.23 0.04 0.05 0.06 |0.07 0.10| 0.24 0.01
81.72 0.13 | 0.12 0.25| 030 0.05 0.12 0.11 | 0.17 0.19| 0.06 0.02
7882 018 |0.12 021 044 0.04 0.08 0.1 017 021| 0.03 0.03
MHO05 | 0.29 0.18 |0.12 0.24| 1.71 0.04 | V203|011 0.11 |0.19 0.19| 0.03 0.23
54.43 86.52 | 0.12 0.24| 0.07 0.05 0.13 0.11 | 0.18 0.15| 0.07 0.05
81.29 86.52 [0.13 0.18 025 0.04 010 011 1018 019|013 0.04
0.05 0.06 |0.05 0.12| 0.03 0.03
0.06 0.05 |0.04 0.04| 0.19 0.03
V1ol 0.05 0.05 |0.04 0.05| 0.03 0.03
0.07 0.05 |0.10 0.05| 0.04 0.03
0.05 0.05 |0.05 0.04| 0.04 0.03

less expensive physical hardware, and/or free up computational time for additional on-device
applications.

7 Conclusion and Future Directions
7.1 A Summary of Findings

We have highlighted three systems challenges that affect real-world deployment of Visual SLAM
systems based on an analysis of the performance of ORB-SLAM3, Kimera, and OpenVINS—three
SLAM systems with similar pipelines but very different map designs, concurrency challenges, opti-
mization techniques, and performance. The challenges faced by SLAM systems can be summarized
as follows: All SLAM systems have strict timeliness requirements with significant ramifications to
accuracy if missed. Implementing more accurate and robust algorithms increases the accuracy of
the system, but usually at the cost of increasing latency and complicating concurrency design. This

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:26 S. Semenova et al.

Table 10. Summary of Performance of All Systems

System Latency Robustnessto Accuracy Accuracy Accuracy
tracking loss (best case) (difficult (resource-
sequences) constrained)

ORs-SLAMS [RGB e e
Kimera Medium _— Average Average
OpenVINS Low _ Average _ Best

impacts timeliness and causes indiscriminate data drops in resource-constrained devices, which
lowers accuracy. To some extent, resource contentions are unavoidable, but the worst of their ef-
fects can be mitigated by context awareness.

Table 10 illustrates this relationship for all three systems. We found that ORB-SLAM3 performs
the most work of the three systems, followed by Kimera, followed by OpenVINS. In general, per-
forming less work results in lower accuracy in typical non-resource-constrained cases (“Accuracy
(best case)”) and difficult non-resource-constrained cases like those with fast movement, loop clo-
sures, and few features (“Accuracy (difficult sequences)”). However, systems with less work per-
form relatively better than high-work systems in resource-constrained cases (“Accuracy (resource-
constrained)”), because less work results in fewer resource contentions, so the system experiences
fewer drops.

Three design decisions in ORB-SLAM3 greatly improve its accuracy in non-resource-
constrained scenarios but negatively impact latency. First, ORB-SLAM3 is the only system to use a
global map for tracking and mapping, which achieves greater accuracy but introduces concurrency.
Second, ORB-SLAM3 implements a robust tracking recovery mechanism that is less prone to in-
definite tracking loss but takes much longer to run. Last, ORB-SLAM3 optimizes KeyFrames and
MapPoints in Local Mapping and Loop Closing, which increases accuracy but takes much longer
than the KeyFrame-only optimization in Kimera and OpenVINS. For all these reasons, ORB-SLAM3
has best performance with ample resources, but the worst performance under resource constraints.

Kimera and OpenVINS do not use a global map, implement less robust tracking recovery mech-
anisms, and implement smaller map optimizations. All these design decisions negatively impact
accuracy but also greatly lower latency, so they are able to meet timeliness goals even under re-
source constraints. Kimera has moderate results on all sequences and all hardware, making its design
a good choice for unknown or varied use-cases and hardware. Additionally, OpenVINS does not im-
plement Loop Closing, which frees up a lot of computational resources for the other modules.
OpenVINS’ minimal implementation has the best performance in resource-constrained cases, but the
worst performance in “normal” cases, especially when loop closure is needed.

Based on these observations, we propose three design modifications that we believe will help
SLAM systems achieve state-of-the-art performance in resource-rich scenarios and better, con-
sistent performance in resource-constrained scenarios. First, decreasing module processing time
will allow the system to meet timeliness goals even under resource constraints. Second, improv-
ing shared access to the global map will allow the system to achieve better accuracy without in-
troducing unfeasible amounts of concurrency. Third, incorporating context-aware priorities into
scheduling tasks will allow the system to drop nonessential information in circumstances where
drops are unavoidable. When implementing these or any other large changes to the SLAM system
design, it is important to be mindful that increasing work (e.g., adding frames, KeyFrames, and/or
MapPoints, performing larger optimizations, using a global map) increases accuracy only when

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:27

there are enough computational resources to meet timeliness goals. Below, we detail each of these
suggestions for future research.

7.2 Decreasing Processing Time

In our experiments, we found that all three systems fail to meet timeliness goals for their Tracking
modules at 20 fps on resource-constrained devices, causing frame drops. Additionally, increased
rates of concurrency on resource-constrained devices cause module execution to be skipped (via
KeyFrame drops) for systems with global maps. Failure to meet timeliness goals has multiple
ramifications—a decrease in accuracy due to IMU-only tracking, a temporary loss of map building,
a delay in optimization, and possibly a complete and irrecoverable loss of tracking. Some of these
ramifications are much more impactful to ATE than others, and their impact additionally depends
on their context. While all three systems challenges are interconnected, addressing the problem of
timeliness is a good first approach to tackling subpar and inconsistent performance on resource-
constrained devices. Below, we detail a few options for addressing timeliness by increasing module
throughput. Whichever techniques one uses, it is imperative to consider the overall system design,
because increasing the throughput of one module can likewise increase concurrency.

Task Parallelization. ORB-SLAM3 and Kimera already parallelize the SLAM pipeline, which
helps the system as a whole meet timeliness goals. An additional parallelization that would help
lower frame drops is splitting the Tracking module into two threads—one that performs feature ex-
traction on a frame, and another that performs feature matching and localization. We have tested
this previously with ORB-SLAM2 and found that we could nearly double the number of tracked
frames, because feature extraction takes around half the entire duration of Tracking. For single-
threaded system designs like OpenVINS, splitting the system into two threads (Tracking and Local
Mapping) could similarly dramatically increase throughput, since its tracking portion alone can
easily keep up with 20 fps. Another simple option could be to use the parallelization techniques
built into external libraries, such as OpenCV, GTSAM, and g2o.

Hardware Acceleration. Another way to decrease processing time is to offload tasks to dedicated
hardware. The OpenCV library offers CUDA GPU acceleration for some vision tasks, which is com-
patible with the Jetson TX2 but only affects a small amount of tasks in the entire SLAM system.
Some recent work [20, 29, 48] focuses on delegating other parts of the SLAM pipeline to the GPU.
Incorporating multiple of these techniques into one system could drastically increase throughput.
Last, the performance on the Jetson TX2 in particular might suffer from using an ARM-based pro-
cessor. OpenCV offers Tengine-based acceleration for ARM but this is for deep learning tasks only,
and g20 and GTSAM do not have similar modules. Customizing the SLAM system for performance
on ARM is another potential solution to the timeliness problem.

7.3 Improving Shared Access to the Global Map

The joint challenges of concurrency and timeliness can be improved by providing better shared
access to the global map. There are several approaches to this problem. The first solution is provid-
ing finer resolution locking on the global map to allow for concurrent access to non-overlapping
regions of the global map. A second approach is the incorporation of concepts from concurrent
data structures [32] that could provide an alternative to locking as a mechanism for shared access.
A third solution is to create multiple thread-local versions [30] of the map and incorporate an
on-demand mechanism to synchronize between these versions.

Concurrent Data Structures. Lock-based shared memory control falls prey to three problems.
First, numerous and course-grained locks introduce sequential bottlenecks if only one part of the

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

2:28 S. Semenova et al.

system can make meaningful work at one time. Second, locks introduce overheads to accessing
memory by increasing memory contention on the underlying hardware. Third, delayed threads
that hold a lock block other threads from making progress. Work on concurrent data structures
addresses some or all of the above problems [32]. Fine-grained locking can reduce memory con-
tention and sequential bottlenecks but fails for programs with many concurrent accesses to the
same part of the underlying data structure. Data structures like the combining tree are a viable solu-
tion to this problem but easily lead to deadlocks if designed incorrectly. An alternative technique,
software transactional memory (STM), converts a thread’s multiple memory modifications into
one atomic operation, allowing the system to forego locks entirely and simplify program develop-
ment [22-24, 42].

Multi-version Concurrency Control. Another solution to the problem of concurrent long-
running queries over quickly changing data structures is to allow threads to modify local versions
of the shared memory, then “commit” those versions to a global version when all edits have been
completed. Within this paradigm, threads also “update” their local versions when the global version
has been updated, typically either at programmer-specified synchronization points or by default
at synchronization primitives. This memory model allows for concurrent accesses to “shared mem-
ory” segments without the additional timing overheads inherent with traditional synchronization
techniques like mutual exclusion, as threads can perform concurrent work on their local copies
without needing to synchronize with other threads.

Multi-version concurrency control (MVCC) implements this architectural pattern but pri-
marily with databases as a use case [6, 37]. However, some recent work has focused on in-memory
MVCC for main memory segments [26, 30, 35]. Two considerations need to be taken when apply-
ing MVCC to SLAM systems. First, the implementation of the versioning system should prevent
needless copying, since the map is a large data structure. Second, the conflict resolution strategy
for multiple threads trying to commit to the global data structure needs to be domain-specific and
responsive to real-world conditions. Typical conflict resolution strategies define an atomic “unit”
as a minimum amount of bytes that need to be committed together, take all non-conflicting units
between the two versions, and default to the thread with priority for resolving conflicts. However,
for SLAM applications, the correct unit size and the prioritized thread may change, depending on
program and real-world conditions.

7.4 Context-aware Priorities

A third problem to be solved is the dynamic changes in priority based on application context. While
we observe this problem in Visual SLAM, we conjecture that it can be observed more broadly
in sensing and control applications where the sensing affects the overall performance indirectly
through inaccurate plans for control (e.g., autonomous driving, where inaccurate maps could lead
to inefficient or dangerous paths). In all these contexts, the priority of processing sensor data (in
our case, the Tracking module and its creation of KeyFrames) is context-dependent. Therefore,
there needs to be a mechanism for applications to provide feedback about runtime priority to the
scheduling to achieve efficient execution.

Real-time Sensing. Some recent work in real-time sensing incorporates real-time conditions to
make scheduling decisions that improve accuracy, as defined on the application-level. Reference
[31] considers the problem of sensor inferences in redundant multi-device environments such as
a person using a phone and wearing a smartwatch and earbud simultaneously. Each device has
unique characteristics that affect inference accuracy and vary due to environmental conditions.
Given this, their system uses runtime information to select the device with the best inference ac-
curacy. LEO [19] minimizes energy use of multiple concurrent sensor apps by monitoring runtime

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:29

information and varying the placement of the underlying algorithms across different hardware
(CPU, co-processor, GPU, the cloud). ApproxDet [45], NestDNN [15], and MCDNN [21] work with
multiple vision CNN/DNNs with various resource-accuracy tradeoffs and use real-time informa-
tion about resource contention to make informed decisions about which model to use.

Deterministic and Stable Multithreading. A cause of program nondeterminism in traditional,
synchronization-based multithreaded programs is the lack of enforcement over possible schedules
(thread interleavings). Work on deterministic multithreading (DMT) approaches nondetermin-
ism by effectively enforcing a subset of allowable schedules [4, 5, 28]. However, these approaches
tend to either incur high latency overheads or fail in the case of data races. More recently, work
on Stable Multithreading (StableMT) foregoes the focus on determinism in lieu of stability,
which they define as robustness against input and program variations [46]. In StableMT, each
allowable schedule is reused on a wide variety of inputs, thus drastically reducing the set of sched-
ules and decreasing overhead. However, as discussed previously, even the overhead associated
with StableMT is not necessary if the goal is to achieve responsiveness to real-time, real-world
conditions.

References

[1] Brian D. O. Anderson and John B. Moore. 2012. Optimal Filtering. Courier Corporation.

[2] AliJ. Ben Ali, Zakieh Sadat Hashemifar, and Karthik Dantu. 2020. Edge-SLAM: Edge-assisted visual simultaneous
localization and mapping. In Proceedings of the 18th International Conference on Mobile Systems, Applications, and
Services (MobiSys’20). Association for Computing Machinery, New York, NY, USA, 325-337. DOI : https://doi.org/10.
1145/3386901.3389033

[3] Ali]. Ben Ali, Marziye Kouroshli, Sofiya Semenova, Zakieh Sadat Hashemifar, Steven Y. Ko, and Karthik Dantu. 2022.
Edge-SLAM: Edge-assisted visual simultaneous localization and mapping. ACM Trans. Embed. Comput. Syst. 22, 1,
Article 18 (Oct. 2022), 31 pages. DOI : https://doi.org/10.1145/3561972

[4] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. 2010. Deterministic process groups in DOS. In Proceed-
ings of the 9th USENIX Conference on Operating Systems Design and Implementation (OSDI’10). USENIX Association,
USA, 177-191.

[5] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. 2009. Grace: Safe multithreaded programming for
C/C++. SIGPLAN Not. 44, 10 (Oct. 2009), 81-96. DOI : https://doi.org/10.1145/1639949.1640096

[6] Philip A. Bernstein and Nathan Goodman. 1983. Multiversion concurrency control-theory and algorithms. ACM Trans.
Datab. Syst. 8, 4 (1983), 465-483.

[7] Dominik Brodowski, Nico Golde, Rafael J. Wysocki, and Viresh Kumar. 2023. CPU Frequency and Voltage Scaling
Code in the Linux Kernel. Retrieved from: https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt#:~:
text=The"schedutil"governoraimsat, therecentload[1]

[8] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas Schneider, Joern Rehder, Sammy Omari, Markus W. Achtelik,
and Roland Siegwart. 2016. The EuRoC micro aerial vehicle datasets. The International Journal of Robotics Research 35,
10 (2016), 1157-1163.

[9] Alvaro Parra Bustos, Tat-Jun Chin, Anders Eriksson, and Ian Reid. 2019. Visual SLAM: Why bundle adjust? In Pro-
ceedings of the International Conference on Robotics and Automation (ICRA’19). IEEE, 2385-2391.

[10] Carlos Campos, Richard Elvira, Juan J. Gomez Rodriguez, José M. M. Montiel, and Juan D. Tard6s. 2021. Orb-slam3:
An accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Transactions on Robotics 37, 6
(2021), 1874-1890.

[11] Timothy Chase, Ali J. Ben Ali, Steven Y. Ko, and Karthik Dantu. 2022. PRE-SLAM: Persistence reasoning in edge-

assisted visual SLAM. In Proceedings of the IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems

(MASS’22). 458-466. DOI : https://doi.org/10.1109/MASS56207.2022.00071

Rodrigo Chaves, Paulo Rezeck, and Luiz Chaimowicz. 2019. SwarMap: Occupancy grid mapping with a robotic swarm.

In Proceedings of the 19th International Conference on Advanced Robotics (ICAR’19). IEEE, 727-732.

[13] NVIDIA Corporation. 2019. Power Management for Jetson TX2 Series Devices. Retrieved from https://docs.nvidia.
com/jetson/archives/l4t-archived/14t-3231/index. html#page/TegraLinuxDriverPackageDevelopmentGuide/power
management_tx2_32.html

[14] Linux Kernel Documentation. 2017. Intel Pstate CPU Performance Scaling Driver. Retrieved from https://www.kernel.
org/doc/html/v4.19/admin-guide/pm/intel_pstate.html

[12

—

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

https://doi.org/10.1145/3386901.3389033
https://doi.org/10.1145/3561972
https://doi.org/10.1145/1639949.1640096
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt#:~:text=The "schedutil" governor aims at,the recent load [1]
https://doi.org/10.1109/MASS56207.2022.00071
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra Linux Driver Package Development Guide/power_management_tx2_32.html
https://www.kernel.org/doc/html/v4.19/admin-guide/pm/intel_pstate.html

2:30 S. Semenova et al.

[15] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: Resource-aware multi-tenant on-device deep learning for con-
tinuous mobile vision. In Proceedings of the 24th Annual International Conference on Mobile Computing and Networking.
115-127.

[16] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. 2016. On-manifold preintegration for real-
time visual-inertial odometry. IEEE Trans. Robot. 33, 1 (2016), 1-21.

[17] Andreas Geiger, Philip Lenz, and Raquel Urtasun. 2012. Are we ready for autonomous driving? The KITTI vision
benchmark suite. In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR’12).

[18] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang. 2020. OpenVINS: A research platform
for visual-inertial estimation. In Proceedings of the IEEE International Conference on Robotics and Automation.

[19] Petko Georgiev, Nicholas D. Lane, Kiran K. Rachuri, and Cecilia Mascolo. 2016. LEO: Scheduling sensor inference algo-
rithms across heterogeneous mobile processors and network resources. In Proceedings of the 22nd Annual International
Conference on Mobile Computing and Networking. 320-333.

[20] Shishir Gopinath. 2023. Improving the performance of bundle adjustment for on-device SLAM using GPU resources.
(2023). https://ieeexplore.ieee.org/document/10160499

[21] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, Alec Wolman, and Arvind Krishnamurthy. 2016.
McDNN: An approximation-based execution framework for deep stream processing under resource constraints. In
Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. 123-136.

[22] Tim Harris and Keir Fraser. 2014. Language support for lightweight transactions. ACM SIGPLAN Not. 49, 4S (2014),
64-78.

[23] Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A practical multi-word compare-and-swap operation. In Pro-
ceedings of the International Symposium on Distributed Computing. Springer, 265-279.

[24] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer III. 2003. Software transactional memory for
dynamic-sized data structures. In Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing.
92-101.

[25] Manon Kok, Jeroen D. Hol, and Thomas B. Schén. 2017. Using inertial sensors for position and orientation estimation.
Found. Trends® Signal Process. 11, 1-2 (2017), 1-153.

[26] Per-Ake Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel, and Mike Zwilling. 2011. High-
performance concurrency control mechanisms for main-memory databases. arXiv preprint arXiv:1201.0228 (2011).

[27] Mingyang Li and Anastasios I. Mourikis. 2013. High-precision, consistent EKF-based visual-inertial odometry. Int. J.
Robot. Res. 32, 6 (2013), 690-711. DOI : https://doi.org/10.1177/0278364913481251 .

[28] Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads: Efficient deterministic multithreading. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). Association for Computing Machinery,
New York, NY, USA, 327-336. DOI : https://doi.org/10.1145/2043556.2043587

[29] Tianji Ma, Nanyang Bai, Wentao Shi, Xi Wu, Lutao Wang, Tao Wu, and Changming Zhao. 2021. Research on the
application of visual SLAM in embedded GPU. Wirel. Commun. Mob. Comput. 2021 (2021), 1-17.

[30] Timothy Merrifield and Jakob Eriksson. 2013. Conversion: Multi-version concurrency control for main memory seg-
ments. In Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys’13). Association for Com-
puting Machinery, New York, NY, USA, 127-139. DOI: https://doi.org/10.1145/2465351.2465365

[31] Chulhong Min, Alessandro Montanari, Akhil Mathur, and Fahim Kawsar. 2019. A closer look at quality-aware run-
time assessment of sensing models in multi-device environments. In Proceedings of the 17th Conference on Embedded
Networked Sensor Systems. 271-284.

[32] Mark Moir and Nir Shavit. 2018. Concurrent data structures. In Handbook of Data Structures and Applications. Chap-
man and Hall/CRC, 741-762.

[33] Anastasios I. Mourikis and Stergios I. Roumeliotis. 2007. A multi-state constraint Kalman filter for vision-aided inertial
navigation. In Proceedings of the IEEE International Conference on Robotics and Automation. 3565-3572. DOI : https:
//doi.org/10.1109/ROBOT.2007.364024

[34] Raul Mur-Artal and Juan D. Tardés. 2017. ORB-SLAM2: An open-source SLAM system for monocular, stereo and
RGB-D cameras. IEEE Trans. Robot. 33, 5 (2017), 1255-1262. DOI : https://doi.org/10.1109/TRO.2017.2705103

[35] Thomas Neumann, Tobias Mithlbauer, and Alfons Kemper. 2015. Fast serializable multi-version concurrency control
for main-memory database systems. In Proceedings of the ACM SIGMOD International Conference on Management of
Data. 677-689.

[36] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim, Andrew J. Davison, Pushmeet
Kohi, Jamie Shotton, Steve Hodges, and Andrew Fitzgibbon. 2011. KinectFusion: Real-time dense surface mapping
and tracking. In Proceedings of the 10th IEEE International Symposium on Mixed and Augmented Reality. 127-136.
DOI: https://doi.org/10.1109/ISMAR.2011.6092378

[37] Christos H. Papadimitriou and Paris C. Kanellakis. 1984. On concurrency control by multiple versions. ACM Trans.
Datab. Syst. 9, 1 (1984), 89-99.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

https://ieeexplore.ieee.org/document/10160499
https://doi.org/10.1177/0278364913481251
https://doi.org/10.1145/2043556.2043587
https://doi.org/10.1145/2465351.2465365
https://doi.org/10.1109/ROBOT.2007.364024
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/ISMAR.2011.6092378

A Comprehensive Study of Systems Challenges in Visual SLAM Systems 2:31

(38]

(39]

(40]

[41]

Christian Pirchheim, Dieter Schmalstieg, and Gerhard Reitmayr. 2013. Handling pure camera rotation in keyframe-
based SLAM. In Proceedings of the IEEE International Symposium on Mixed and Augmented Reality (ISMAR’13). 229-238.
DOI:https://doi.org/10.1109/ISMAR.2013.6671783

Antoni Rosinol, Marcus Abate, Yun Chang, and Luca Carlone. 2020. Kimera: An open-source library for real-time
metric-semantic localization and mapping. In Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA’20). IEEE, 1689-1696.

D. Schubert, T. Goll, N. Demmel, V. Usenko, J. Stueckler, and D. Cremers. 2018. The TUM VI benchmark for evaluating
visual-inertial odometry. In Proceedings of the International Conference on Intelligent Robots and Systems (IROS’18).
Sofiya Semenova, Steven Y. Ko, Yu David Liu, Lukasz Ziarek, and Karthik Dantu. 2022. A quantitative analysis of
system bottlenecks in visual SLAM. In Proceedings of the 23rd Annual International Workshop on Mobile Computing
Systems and Applications. 74-80.

Nir Shavit and Dan Touitou. 1997. Software transactional memory. Distrib. Comput. 10, 2 (1997), 99-116.

Hauke Strasdat, José M. M. Montiel, and Andrew J. Davison. 2012. Visual SLAM: Why filter? Image. Vis. Comput. 30,
2 (2012), 65-77.

[44] Jingao Xu, Hao Cao, Danyang Li, Kehong Huang, Chen Qian, Longfei Shangguan, and Zheng Yang. 2020. Edge assisted

(45]

mobile semantic visual SLAM. In Proceedings of the IEEE Conference on Computer Communications (INFOCOM’20).
1828-1837. DOI: https://doi.org/10.1109/INFOCOM41043.2020.9155438

Ran Xu, Chen-lin Zhang, Pengcheng Wang, Jayoung Lee, Subrata Mitra, Somali Chaterji, Yin Li, and Saurabh Bagchi.
2020. ApproxDet: Content and contention-aware approximate object detection for mobiles. In Proceedings of the 18th
Conference on Embedded Networked Sensor Systems. 449-462.

[46] Junfeng Yang, Heming Culi, Jingyue Wu, Yang Tang, and Gang Hu. 2014. Making parallel programs reliable with stable

(47]

(48]

multithreading. Commun. ACM 57, 3 (2014), 58—69.

Lintong Zhang, Michael Helmberger, Lanke Frank Tarimo Fu, David Wisth, Marco Camurri, Davide Scaramuzza,
and Maurice Fallon. 2023. Hilti-Oxford dataset: A millimeter-accurate benchmark for simultaneous localization and
mapping. [EEE Robot. Autom. Lett. 8, 1 (2023), 408-415. DOI : https://doi.org/10.1109/LRA.2022.3226077

Dhruv Kumar, Shishir Gopinath, Karthik Dantu, and Steven Y. Ko. 2024. JacobiGPU: GPU-Accelerated numerical
differentiation for loop closure in visual SLAM. In 2024 IEEE International Conference on Robotics and Automation
(ICRA). 1687-1693. DOI : https://doi.org/10.1109/ICRA57147.2024.10611512

Received 4 September 2023; revised 4 September 2023; accepted 7 May 2024

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 1, Article 2. Publication date: September 2024.

https://doi.org/10.1109/ISMAR.2013.6671783
https://doi.org/10.1109/INFOCOM41043.2020.9155438
https://doi.org/10.1109/LRA.2022.3226077
https://doi.org/10.1109/ICRA57147.2024.10611512

