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Abstract

While significant advances have been made in predicting static protein structures,1

the inherent dynamics of proteins, modulated by ligands, are crucial for understand-2

ing protein function and facilitating drug discovery. Traditional docking methods,3

frequently used in studying protein-ligand interactions, typically treat proteins4

as rigid. While molecular dynamics simulations can propose appropriate protein5

conformations, they’re computationally demanding due to rare transitions between6

biologically relevant equilibrium states. In this study, we present DynamicBind, a7

novel method that employs equivariant geometric diffusion networks to construct a8

smooth energy landscape, promoting efficient transitions between different equi-9

librium states. DynamicBind accurately recovers ligand-specific conformations10

from unbound protein structures without the need for holo-structures or extensive11

sampling. Our experiments reveal that DynamicBind can accommodate a wide12

range of large protein conformational changes and identify novel cryptic pockets13

in unseen protein targets. As a result, DynamicBind shows potential in accelerat-14

ing the development of small molecules for previously undruggable targets and15

expanding the horizons of computational drug discovery.16

1 Introduction17

Remarkable progress has been achieved in the realm of protein structure prediction from sequence18

data, with AlphaFold leading the way in the prediction of nearly all structures in the human pro-19

teome [1–4]. However, these models generate a single static conformation for each protein sequence,20

despite the fact that proteins are inherently dynamic and generally adopt multiple conformations to21

perform their functions [5, 6]. The ability of proteins to interconvert between different conformations22

is central to their biological activities in all domains of life. The therapeutic effect of drug molecules23

arises from their specific binding to only some conformations of the target proteins and thereby24

modulating essential biological activities by altering the conformational landscape of these proteins25

[7–10]. In practice, nowadays the interactions between proteins and ligands are studied through26

molecular docking methods computationally. Docking is a key component of structure-based drug27

discovery [11]. Nevertheless, despite the widespread recognition of the importance of protein dynam-28

ics, traditional docking methods often treat proteins as rigid, or in some cases, as being only partially29

flexible, permitting only selected side-chains to move, to manage computational costs [12, 13]. This30

simplification leads to inferior performance in realistic scenarios where the input protein structures31

are in conformations distinct from the typically unavailable ligand-bounded holo-state conformations32

[14, 15].33

Here, we present DynamicBind, an E(3)-equivariant diffusion-based deep generative model designed34

for ’dynamic docking’. Different from traditional docking methods, DynamicBind can efficiently35
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Figure 1: Overview of DynamicBind Model. (a) Diffusion and reverse generative processes are
conducted between apo (without ligand bounded) and holo (with ligand bounded) structures. The
holo state is represented in pink, the initial apo and the model-predicted conformation in green. The
output readouts include the predicted updates: global translation and rotation for both the ligand and
each protein residue, the rotation of torsional angles for the ligands and chi angles for the protein
residues. Binding affinity and confidence score are also predicted. (b) When the protein binds with
two different ligands, DynamicBind could predict the two different holo conformations within 20
generative steps, while millions of steps are needed for all-atom Molecular Dynamics simulations.

adjust the protein conformation from its initial AlphaFold prediction to a holo-like state. It is36

capable of handling a wide range of large conformational changes during prediction, such as the37

well-known DFG-in to DFG-out transition in kinase proteins, which is a formidable challenge for38

other methods [16, 17].39

2 Method40

DynamicBind is a diffusion-based generative model equipped with E(3)-equivariant interaction41

modules and coarse-grained protein features. As shown in Fig. 1(a), DynamicBind model learns to42

execute ’dynamic docking’, a process that performs prediction of protein-ligand complex structures43

while accommodating substantial protein conformational changes.44

During inference, DynamicBind receives apo-like protein structures (in the present study, conforma-45

tions predicted by AlphaFold) and small molecule ligands as inputs, and randomly places the ligand46

around the protein initially. At each step, the features and the coordinates of the protein and the ligand47

are embedded by an E(3)-equivariant interaction module Over the course of T = 20 steps of reverse48

denoising generative process, the model gradually translates and rotates the ligand by adjusting its49

internal torsional angles, and simultaneously translates and rotates the protein residues and modifying50

the side-chain chi angles [18].51

Canonical diffusion-based models is trained by perturbing the ground-truth data distribution with52

Gaussian noise of varying magnitudes in diffusion process and denoising in reverse generative53
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Figure 2: DynamicBind outperforms other methods in predicting ligand poses. (a) Dark and light
shades represent success rates under stringent (ligand RMSD < 2Å, clash score < 0.35) and relaxed
(ligand RMSD < 5Å, clash score < 0.5) criteria, respectively. (b) With the cLDDT score exploited
as ranking measurement, the success rate of DynamicBind is enhanced.

process [19–22]. However, structures of proteins are highly constrained in many ways, e.g. residues54

are linked by peptide bonds and bond lengths are governed by chemical principles. Studies have55

demonstrated that, when decoys (i.e. structure P t at step t) are generated using Gaussian noise, the56

model primarily learns only to revert to a chemically stable conformation [23], i.e. apo conformations57

predicted by AlphaFold in our task. It is challenge for the model to accurately predict long timescale58

transformations of biological relevance, which are our primary concern.59

To cope with these challenges, our method employs a morph-like transformation to produce protein60

decoys, where the native conformation is gradually transitioned towards the AlphaFold-predicted61

conformation (see Sec. A in supplementary materials for detail). The decoys generated by our morph-62

like transformation generally satisfy the basic chemical constraints, allowing our model to concentrate63

on learning biophysically relevant state-changing events. Compared with the slow transitions between64

meta-stable states by unbiased molecular dynamics simulations, our method features a significantly65

more funneled energy landscape, effectively lowering the free energy barrier between biologically66

meaningful states, Fig. 1(b).67

3 Experiments and Results68

3.1 DynamicBind achieves higher success rate in ligand pose prediction69

Our method is evaluated on PDBbind dataset [24] and a curated Major Drug Target (MDT) dataset.70

The MDT dataset consists of 599 structures that were deposited in or after 2020, with both drug-like71

ligands and proteins from four major protein families: kinases, GPCRs, nuclear receptors and io72

channels, which represent the targets of about 70% of FDA-approved small-molecule drugs [25]. In73

line with previous works [26, 27, 15], we trained the model with a chronological, time-based split on74

the PDBbind dataset (More in. A.3 and A.4).75

Traditionally, models are evaluated by using the holo protein structures as input for ligand pose76

prediction. However, holo conformations exhibit strong shape and charge complementarity to co-77

crystallized ligands, which may simplify ligand pose prediction [7], but hard to obtain in practice. In78

this experiment, a more challenging and realistic scenario is adopted. We assume that the holo protein79

conformation is not available and only use the protein conformations predicted by AlphaFold as input80

for ligand pose prediction. Experimental results on both PDBbind and MDT test set are combined in81

Fig. 2 due to the space limit. Individual results are provided in the Supplementary Materials.82

As a generative model, DynamicBind could sample multiple protein-ligand conformations, and the83

contact-LDDT (cLDDT, Sec. A.2) scoring module is designed to rank those sampled structures.84

With cLDDT exploited as ranking measurement, the success rate of DynamicBind is enhanced85

from 0.33 to 0.5, considerably outperforms DiffDock and the best force-field-based method, GLIDE86

(Fig. 2(b)). Given that GLIDE may generate different amount of samples for each case, we draw its87

best performance as a reference line.88
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Figure 3: DynamicBind predicts protein conformational changes upon ligand binding, across a range
of time scales, from picosecond to millisecond. Negative ∆pocket RMSD and ∆clash scores indicate
that the predicted structures align better with the target crystal structures than the initial structures.

3.2 DynamicBind covers multi-scale protein conformation changes89

To illustrate the capability of DynamicBind in predicting unique protein conformational changes90

upon ligand binding, Fig. 3 depicts six types of predicted protein conformational changes. All cases91

were identified from the PDBbind test set. The crystal structures, AlphaFold structures and our92

predicted structures are shown in pink, white and green. The native ligand poses and our predicted93

poses are shown in cyan and orange, respectively. In Fig. 3(a), a side-chain motion is executed by94

DynamicBind to avoid a clash which the initial AlphaFold structure may encounter. In Fig. 3(b), a95

gate opening is performed to make the pocket accessible, while the pocket is blocked by a Tyrosine96

in AlphaFold structure. In Fig. 3(c), a flexible loop is moved away to avoid of intersection with the97

ligand. In Fig. 3(d), alpha helices transform into loops near the ligand binding site. In Fig. 3(e), a98

substantial secondary structure motion is observed in the Heat shock protein, Hsp90α, transitioning99

from the closed state to the open state. In Fig. 3(f), two domains of AKT1 kinase coalesce, forming a100

pocket that did not previously exist.101

Taken together, the present model can predict diverse types of conformational changes associated102

with ligand binding when the ligand-binding pocket is either insufficiently spacious or unformed in103

the AlphaFold-predicted conformations.104

4 Discussion105

DynamicBind presents an innovative solution to the challenge of ’dynamic docking’ by integrating106

two traditionally distinct steps—protein conformation generation and ligand pose prediction—into a107

unified framework. Capable of carrying out substantial conformational changes in protein structures,108

DynamicBind eliminates the necessity for holo-structures and pre-defined ligand binding sites. These109

advantages make DynamicBind a powerful tool for a widely range of structure-based drug discovery110

applications, including virtual screening, discovering cryptic pockets, minimizing side effects of111

drug candidates, and identifying the pivotal protein targets underlies a disease. Additionally, the112

ligand-specific protein conformations generated by DynamicBind may offer valuable insights into the113

influence of ligands on proteins, potentially clarifying structure-function relationships and augmenting114

our mechanistic understanding.115
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