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ABSTRACT

Hypergraph data structure has been widely used to store information or mean-
ing derived from group interactions, meaning that each hyperedge inherently
contains the context of their interactions. For example, a set of genes or a ge-
netic pathway can be represented as a hyperedge to express the interaction of
multiple genes that collaboratively perform a biological function (i.e., interac-
tion context). However, most existing hypergraph neural networks cannot re-
flect the interaction context of each hyperedge due to their limited capability
in capturing important or relevant factors therein. In this paper, we propose a
simple but effective hyperedge disentangling method, Natural-HNN, that cap-
tures inherent hyperedge types or the interaction context of an hyperedge. We
devised a novel guidance for hyperedge disentanglement based on the natural-
ity condition in the category theory. In our experiments, we applied our model
to hypergraphs of genetic pathways for the cancer subtype classification task,
and showed that our model outperforms baselines by capturing the functional
semantic similarity of genetic pathways. Our implementation is available at
https://anonymous.4open.science/r/Natural-HNN-E264.

1 INTRODUCTION

Recently, several Hypergraph Neural Networks (HNNs) (Feng et al., 2019; Chien et al., 2021) have
been devised to integrate the complex interactions within hypergraphs, driven by the increasing de-
mand resulting from the prevalence of multiway interactions in reality. In electric circuits (Cockett
et al., 2023; Wang et al., 2022a), for instance, many circuit components are connected in parallel,
naturally causing multiway interactions. In biology (Nguyen et al., 2022), most biological pro-
cesses are the result of complex interactions. Specifically, a genetic pathway is a set of genes that
collaborate to perform a specific function in a biological process. In other words, as pathways rep-
resent functional relations among genes participating in interactions, it is natural to express these
interactions as a hypergraph. Application domains of HNNs are progressively expanding to natural
language processing, chemistry and recommender systems.

A noteworthy characteristic of a hypergraph is that each hyperedge may contain different interaction
contexts. In opinion dynamics (Neuhäuser et al., 2021; Hickok et al., 2022), which is an area ex-
ploring how opinions of individuals develop over time in a social network, group discussions can be
represented as hyperedges. More precisely, each individual (i.e., node) can participate in different
group discussions (i.e., hyperedges) that have their own discussion topics, which we call the interac-
tion context, such as social issues or economic policy. When information about context is explicitly
available during data collection, it can be expressed as hyperedge types in a heterogeneous hyper-
graph and can be reflected in message passing by relational HNNs or heterogeneous HNNs. When
information about context is not accessible, however, the context information is lost and data is ex-
pressed as a homogeneous hypergraph. Thus, capturing interaction context (or inherent hyperedge
types) during message passing is needed.

Genetic pathway is an example of a biological network that lacks annotations (Liu & Thomas, 2019)
for interaction context (i.e., the function of a pathway or condition such as cell types or tissues).
Since genes exhibit different characteristics (i.e., gene expression levels or gene function) depending
on the context (Chen et al., 2021), it is important to reflect the context of pathways. For example,
FOXO1 in the insulin signaling pathway at hepatocytes (cell type) can activate gluconeogenesis in
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Figure 1: (a) Genes can exhibit different characteristics or gene expression levels depending on
the context (Gene 3). Also, genes interacting under the same context can exhibit different char-
acterisitics or gene expression levels (pathway B). (b) Naturality condition (commutativity) guides
interaction context disentanglement.

liver (tissue) (Puigserver et al., 2003). On the other hand, FOXO1 acts as an important regulator
in FOXO1/lysosome/MVB/GSK3β pathway which is related to the maintenance of proteostasis
and the control of effector T cell (cell type) differentiation (Jin et al., 2020). This highlights the
importance of capturing interaction context during message passing.

However, most HNNs cannot leverage interaction contexts properly. Convolution-based methods
cannot perform interaction context-dependent message passing as nodes always propagate the same
message to their neighboring hyperedges. Although attention-based methods propagate hyperedge
dependent messages by differentiating the importance of neighbors with respect to each factor
among multiple factors of the interaction, they cannot determine which factor is more relevant to
the interaction context of each hyperedge. Most recently, a sheaf-based method (Duta et al., 2024)
that learns a different restriction map (or a transformation matrix) for every (node, hyperedge) pair
has been proposed. While the design of sheaf-based methods allows the model to capture the in-
teraction context of a hyperedge by learning a different transformation for every (node, hyperedge)
pair, they will hardly do so as there is no guidance that helps the transformation to be related to
interaction context.

In this paper, we focus on the fact that establishing a criterion for disentangling the factors of an
interaction (e.g., identifying pathway function or condition) is challenging. Existing studies (Ma
et al., 2019; Hu et al., 2022) extract information regarding the factors of an interaction by simply
adopting factor-specific MLPs to the (entangled) node representation. Then, they consider a fac-
tor to be relevant to the interaction context of a hyperedge when a set of nodes have similar factor
representations, under the assumption that nodes interact with each other due to their commonality.
However, the factor similarity is not always related to the similarity in the interaction context of a
hyperedge in reality. In genetic pathway example, as can be seen in the Figure 1 (a), genes partic-
ipating under the same context can have different characteristics such as different gene expression
levels1. As a result, the similarity-based criterion might not be effective in capturing the function
or condition of pathway, and would hinder a model in effectively integrating contextual informa-
tion from participants. Hence, a new angle of approach for guiding disentanglement is required to
integrate context in hypergraph message passing framework.

To this end, we propose a novel Naturality-guided disentangled Hypergraph Neural Network
(Natural-HNN) that can inherently reflect the interaction context of an hyperedge. We approach the
task with the category theoretical perspective (Fong & Spivak, 2018), and determine the criterion
for disentangling factors as the factor representation consistency based on the naturality condition
that must be satisfied between entangled and disentangled representations. Figure 1 (b) shows the
naturality condition applied to our genetic pathway example. Let’s suppose that genes in a pathway
interacts under the context 2 and does not interact under context 1. The result of interaction under
context 2 must be consistent, regardless of whether interaction was performed only on context 2 (i.e.,
factor specific message passing, Figure 1 (b) piiq Ñ piiiq Ñ pviq) or the interaction was performed
for both contexts but only context 2 related result was selected (i.e., factor information extraction
after entangled message passing, Figure 1 (b) piiq Ñ pvq Ñ pviq). On the other hand, this commu-
tativity does not hold for context 1 (i.e., the result of piiq Ñ piq Ñ pivq and piiq Ñ pvq Ñ pivq is

1Specific examples can be found in (Harris & Levine, 2005; Mehdizadeh et al., 2023)
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different) as the pathway is not related to context 1. The adoption of consistency constraint derived
from category theory allows us to capture context related factors without relying on any assump-
tion on the data. Given that our model can potentially capture inherent heterogeneity of interactions
(i.e., various contexts of interactions, Appendix H.2) within homogeneous data, it offers a practical
solution to many real-world problems where the types of heterogeneous interactions are unknown.
Our main contributions are summarized as follows:

• To the best of our knowledge, we are the first to propose a hyperedge disentanglement-based
method that is systematically designed to capture the context related to the background or condi-
tion of multiway interaction .

• We proposed a novel way to guide the hyperedge disentanglement, by focusing on the composi-
tional structure of entities in hypergraph message passing framework. Through a new criterion
derived from the category theory, we created a simple but effective model, showing outstanding
performance even with a small hyperparameter search space.

• We applied our model to the cancer subtype classification task, and showed our model can actu-
ally capture functional semantics of pathways (i.e., interaction context of hyperedges). Also, we
showed that capturing such context of interaction is critical in real world hypergraph problems.

2 RELATED WORK

Hypergraph Neural Network. Several HNN models have been recently proposed to leverage
information contained in multiway interaction. HGNN (Feng et al., 2019) and HCHA (Bai et al.,
2021) use a normalized hypergraph Laplacian, which is mathematically equivalent to clique expan-
sion (CE) (Sun et al., 2008), and apply the traditional graph convolution mechanism. HNHN (Dong
et al., 2020) additionally adopts nonlinearity when calculating hyperedge representations to differ-
entiate a hypergraph from a clique expanded graph, while UniGNN (Huang & Yang, 2021) unifies
HNNs and GNNs into the same framework. Moreover, HyperGAT (Ding et al., 2020) adopts the
attention mechanism to HNN for text classification, and SHINE (Luo, 2022) proposes dual attention
mechanism for the disease classification task. ED-HNN (Wang et al., 2022b) proposes equivari-
ant message passing HNN, which allows hyperedges to propagate different messages to its incident
nodes. AllDeepSets and AllSetTransformer (Chien et al., 2021) consider a hyperedge as a set and
apply DeepSets (Zaheer et al., 2017) and Set Transformer (Lee et al., 2018), respectively, to increase
expressive power of HNN. All of theses methods, however, cannot give different weights to different
heads or factors, limiting their capability of capturing the interaction context of an hyperedge, which
is crucial in practice. Sheaf Hypergraph Network (Duta et al., 2024) learns a different restriction map
or transformation matrix for every (node, hyperedge) pair. Although this approach may enable the
model to capture interaction context with all these learnable transformation matrices, it lacks clear
guidance for doing so and requires significant computational resources. WHATSNET (Choe et al.,
2023) captures the interaction context shaped by the participants (i.e., the context depends on ‘who
participates the interaction’). For example, if six students and one teacher participates a discussion,
it is highly likely that the teacher takes the role of moderator. However, the context that we are trying
to capture is more related to the background or condition of interaction (i.e., the topic of discussion),
which is different from the context defined by (Choe et al., 2023). Thus, WHATSNET and our paper
aims to solve different problems. More details can be found in Appendix H.8.

Disentangled Representation Learning. Disentangled representation learning (DRL) (Roth et al.,
2022; Fumero et al., 2021; Higgins et al., 2018) aims to disentangle the factor of variation of ob-
served data. The effectiveness of DRL has garnered attention of researchers, leading to its expansion
into the field of GNN. DisenGCN (Ma et al., 2019) disentangles the factor of variations in nodes to
find the factor behind connections, while FactorGCN (Yang et al., 2020) disentangles graphs into
several factor graphs. DisGNN (Zhao et al., 2022) recently proposes to disentangle edge types with
the self-supervision from label conformity.

Since graph-based disentangling methods cannot model multiway interactions, DRL is also being
applied to hypergraphs. HSDN (Hu et al., 2022) attempts to capture structural semantics by disen-
tangling a hypergraph into several factor hypergraphs. Although this method is advantageous when
capturing the functional structure in molecules or finding communities in a social network, it is not
suitable for capturing the interaction context as this approach captures semantics derived from dif-
ferent connectivity or substructure. DisenHCN (Li et al., 2022) disentangles user embeddings for
recommender systems, but is only applicable to hypergraphs with known hyperedge types.
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3 CATEGORICAL INTERPRETATION OF MESSAGE PASSING HNN AND
DISENTANGLEMENT
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Set of node representations
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Updated node representation

Node-to-hyperedge message passing
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Figure 2: Compositional structure in hypergraph repre-
sentation learning.

Prior to the discussion of the naturality
condition for hyperedge disentanglement,
it is essential to analyze the composi-
tional structure in the hypergraph repre-
sentation learning. In Section 3.1, we
describe the compositional structure of
hypergraph message passing neural net-
works. In Section 3.2, we propose the
naturality condition as a guidance for hy-
peredge disentanglement. The basic con-
cepts in category theory we used are de-
scribed in Appendix G, and the basic ex-
planation of disentangled representation
learning is described in Appendix H.1.

Notation. Let G “ pV, Eq denote a
hypergraph, where V “ tv1, v2, ..., vNu

indicates a set of nodes and E “

te1, e2, ..., eMu indicates a set of hyper-
edges, where N “ |V| and M “ |E | are
the number of nodes and the number of hyperedges in a hypergraph G, respectively. A set of node
features given as input to each layer of the model is denoted as X “ txv1 , ..., xvN u, a set of hyperedge
representations (calculated in each layer of the model) is denoted as H “ the1 , ..., heM u, and a set
of representations obtained after message passsing is denoted as Y “ tyv1 , ..., yvN u. ‘en’ denotes
an entangled object or morphism and is written in superscript or subscript, while ‘dis’ denotes a
disentangled object or morphism. The symbol ‘o9’ is used to denote the composition of morphisms.2

3.1 COMPOSITIONALITY IN HYPERGRAPH REPRESENTATION LEARNING

Most hypergraph representation learning methods produce the representation of a node by integrat-
ing its own representation and its neighbors’ representations defined by a hypergraph topology. As
an example, in Figure 2 (a), the representation of a center node vc is updated to the representation
that can express the meaning produced by a set of nodes Nc, the set whose elements are the node
vc and its one-hop neighbors (v1, v2, v3). During the process, the hypergraph topology created by
hyperedges are considered.

In this paper, for the first time, we describe the above process of hypergraph representation learning
through the lens of the category theory. Specifically, if we consider each node as a set, since a hy-
peredge contains nodes, there are morphisms (inclusion) between nodes and hyperedges induced by
the poset structure. We defined this as PISet, the category with poset structure where morphisms are
inclusions and objects are sets. Thus, we can see nodes (v1, vc, v2, v3) and hyperedges (e1, e2) con-
stitute PISet as shown in Figure 2 (b), where gray-colored nodes and hyperedges are set objects, and
inclusions are morphisms (blue arrow) between sets. The same mechanism holds between hyper-
edges (e1, e2) and a set Nc that includes node vc and its neighbors. In Figure 2 (b), for instance, we
can see hyperedges (e1, e2) and Nc constitute PISet as they have morphisms (green arrow) induced
by the poset structure.

In order to learn and predict with computers, such objects and morphisms must be expressed in
numerical values and their transformations. Hence, we define a category of deep learning repre-
sentations, DLRep, where objects are vector representations and morphisms are transformations
between them. Figure 2 (c) shows the result of applying a functor F : PISet Ñ DLRep, which
can be simplified to a diagram in Figure 2 (d). Thus, any kind of hypergraph message passing neu-
ral networks3 can be seen as a way of learning representations and their transformations respecting
compositional structure of entities.

2Two notations f o
9 g and g ˝ f have the same meaning : “applying f first, and then applying g”. We use the

notation ‘o9’ following (Fong & Spivak, 2018).
3The message passing types are not only limited to traditional convolution-based or attention-based meth-

ods, but also can include complex methods such as general message passing (Papillon et al., 2023).
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Figure 3: Naturality condition in disentangled representation learning to capture context related
factors. X denotes a set of node representations and H denotes hyperedge representation. V and E
denote node and hyperedge in PISet, respectively.

The most expressive way for a model to accommodate various morphisms would be to assign dif-
ferent learnable parameters to every morphism, which, however, would likely fail in generalizability
and scalability perspectives. In this case, providing proper inductive bias is the key to balancing the
trade-off between expressive power and generalizability of the model. However, convolution-based
methods have a strong assumption that all neighbors can be considered equally regardless of the
interaction context of an hyperedge, limiting expressive power of the model. On the other hand, dis-
entangled representation learning can be used as an adequate trade-off by categorizing morphisms
into a small number of morphism types, which can be considered as context-dependent message
passing. Therefore, we propose a hyperedge disentangling method for context-dependent message
passing, which will be introduced in Section 4.

3.2 GUIDING DISENTANGLEMENT WITH NATURALITY CONDITION

Since entangled representations and disentangled representations are different ways of representing
the same compositional structure, we can regard them as the result of applying two different functors
F : PISet Ñ DLRep (for entangled representations) and G : PISet Ñ DLRep (for disentangled
representations) as shown in Figure 3 (a). Thus, we have the naturality condition between entangled
representations and disentangled representations. Figure 3 (b) is equivalent to Figure 3 (a), but
only the components related to the factor ‘c’ are shown. Note that αX,c “ αX

o
9 pc where pc :

Xdis Ñ Xdis
c (refer to Appendix H.3). If factor ‘c’ is relevant to the morphism between node set V

and hyperedge E, the naturality condition must hold for the perspective of factor ‘c’. Thus, factor
‘c’ representation of a hyperedge (i.e., Hdis

c ) must be the same (or similar) regardless of applying
f en o

9 αH,c (i.e., message passing on entangled representation first, and then disentangling factors) or
αX,c

o
9 f dis

c (i.e., disentangling factors first, and then message passing on disentangled representation).
In other words, the factor representation must be consistent regardless of the sequence of operations
if that factor is relevant to the interaction context of an hyperedge4. We use this property as a
guidance for disentanglement, since it must hold for any kind of hypergraph message passing neural
networks, and must work regardless of data characteristics. More precise and detailed explanations
are provided in Appendix H.3

4 PROPOSED METHOD: NATURAL-HNN

Each layer of Natural-HNN is composed of a message passing lane (left column of Figure 4 (c)),
and a non-message passing lane (right column of Figure 4 (c)) as well as their integration with layer
normalization (Section 4.3, bottom of Figure 4 (c)). The key component of our model is the message
passing lane (Figure 4 (b)) that consists of a Node-to-Hyperedge factor propagation module (Section
4.1), and a Hyperedge-to-Node factor propagation module (Section 4.2). Note that each layer of
Natural-HNN has K factors where K is a hyperparamter.

4.1 NODE-TO-HYPEREDGE FACTOR PROPAGATION

Obtaining Two Disentangled Hyperedge Representations. To validate whether the naturality
condition (Figure 4 (a)) holds, we need to get two disentangled hyperedge factor representations

4The group discussion example in Figure 1 shows this property.
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Figure 4: An overview of Natural-HNN. (a) illustrates the naturality condition shown in Figure 3
(b). (b) shows the message passing block of Natural-HNN that consists of a Node-to-Hyperedge and
Hyperedge-to-Node factor propagation modules. The Final output of the message passing block is
shown at the right bottom corner of (b). (c) shows the composition of each layer of Natural-HNN.

for every factor (i.e., Hdis
k for every factor k P r1,Ks). The two disentangled representations are

obtained through 1) Aggregation-first Branch and 2) Disentalgle-first Branch. In the following, we
describe how morphisms in Figure 4 (a) are implemented as operations in the two branches shown
in Figure 4 (b).

• Aggregation-first Branch. The first disentangled representation is obtained from the aggregation-
first branch performing f en o

9 αH,k for each factor k. This process is implemented as performing
aggregation aggn2e (i.e., f en in Figure 4 (a)) first, and then disentangling into hyperedge factor
representations using a factor encoder αH,k. The factor representations of hyperedge ei obtained
from this branch are denoted as h̃1

ei
, . . . , h̃K

ei
.

• Disentangle-first Branch. The other one is obtained from the disentangle-first branch perform-
ing αX,k

o
9 f dis

k for each factor k. This process is implemented as disentangling into node factor
representations with factor encoder αX,k first, and then performing aggregation aggn2e (i.e., f dis

c in
Figure 4 (a)). The factor representations of hyperedge ei obtained from this branch are denoted as
h1ei

, . . . , hK
ei

.

For both branches, we used mean aggregation as aggn2e and K MLPs as factor encoders for dis-
entangling factors. Factor representations are vectors with size d{K (i.e., hk

ei
, h̃k

ei
P R d

K ), when the
desired size for node representations after message passing is d. In summary, operations of the two
branches regarding factor k can be written as follows:

h̃k
ej

“ MLPkpmeanptxvi |vi P ejuqq, hk
ej

“ meanptMLPkpxvi q|vi P ejuq (1)

Deciding Factors with Consistency. The extent to which the naturality condition is satisfied can
be measured by calculating the similarity between the two disentangled hyperedge factor represen-
tations h̃k

ej
and hk

ej
. In other words, we can consider that the naturality condition holds when the

two representations are similar (i.e., consistent), and does not hold when the two representations are
largely different. We introduce a similarity scorer that calculates the similarity of two L2-normalized
vectors. Specifically, we calcualte the relevance or importance of factor k for a hyperedge ei as

αk
i “ σp

hk
ei

∥hk
ei
∥2

Wk
h̃kT

ei

∥h̃k
ei
∥2

q, where Wk P R d
K ˆ d

K is a learnable parameter matrix for factor k, and σ is the

sigmoid function. Lastly, we obtain the final hyperedge factor representations by multiplying αk
i to

the corresponding hyperedge factor representations obtained from the disentangle-first branch5, i.e.,
αk

i hk
ei

, that reflects the relevance of the factor k for the hyperedge ei.

5Although we choose the disentangle-first branch here, we can instead use the output of the aggregation-first
branch. Both choices give similar results. Please refer to Appendix E.1.
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4.2 HYPEREDGE-TO-NODE FACTOR PROPAGATION

When aggregating hyperedge representations (i.e., αk
i hk

ei
) to update node representations, the sum

of neighboring hyperedge representations with respect to factor k must be divided by the sum of αk
i

so that hyperedge relevance scores (i.e., αk
i ) are normalized during aggregation. Thus, the updated

factor k representation of node vi, i.e., yk
vi

, can be written as yk
vi

“ 1
ř

ejQvi
αk

j

ř

ejQvi
αk

j hk
ej

.

4.3 FINAL OUTPUT OF EACH LAYER OF NATURAL-HNN

We allowed our model to determine its focus between information from neighbors (i.e., yvi ) and
information of the node itself (i.e., xvi ) by introducing hyperparameter β that decides interpolation
ratio between them. To make sure that interpolation is performed on disentangled representations,
we used the factor encoder used in the message passing step (i.e., hk

vi
“ MLPkpxvi q). Specifically,

zvi “ LayerNormpβyvi ` p1 ´ βqhvi q, where yvi “ Concatpy1vi
, . . . , yK

vi
q, hvi “ Concatph1vi

, . . . , hK
vi

q.
Note that to reduce the burden of hyperparameter tuning, we fix β “ 0.5 except for the experiment
in Appendix C.4.

4.4 OPTIONAL: FACTOR DISCRIMINATION LOSS

Existing disentangled representation learning methods (Liu et al., 2020; Yang et al., 2020) have
widely adopted a factor discrimination loss aiming at promoting factors to contain different infor-
mation. Following (Zhao et al., 2022), we added a factor discrimination loss Ldis to the final loss,
i.e., L “ Ltask ` λLdis

6. Details can be found in the Appendix B.2. Using the factor discrimination
loss increases the performance of our model as can be seen in Table 9, Table 12 and Table 13. How-
ever, we consider this loss to be an optional component of our model, as excluding it simplifies
the model by reducing the hyperparameter search space, making it more comparable to that of GAT
(Appendix B.5). We expect this simplification to allow Natural-HNN to be broadly applicable to
various fields that can be modeled by hypergraphs just like popular GCN or GAT in conventional
graphs, which are broadly used as the GNN encoder regardless of the field of application. Neverthe-
less, Natural-HNN shows outstanding performance even without the factor discrimination loss by
capturing the interaction context of an hyperedge (Section 5).

5 EXPERIMENTS

Since there is no benchmark dataset verifed to contain useful interaction context that is related to
the task, we instead performed cancer subtype classification task, which is to identify a subtype
of a specific cancer for each patient (Section 5.2). Interaction context of genes (i.e., functionality
of pathway) is directly related to the label (i.e., cancer subtype) in the cancer subtype classification
task. We also perform qualitative analysis to validate whether our model captures the context-related
factors (Section 5.3). Finally, we performed training time analyses in Section 5.4.

5.1 EXPERIMENTAL SETUP

Dataset. For the cancer subtype classification task, we downloaded clinical data for 8 cancer
types (BRCA, STAD, SARC, LGG, CESC, HNSC, KIPAN and NSCLC) and preprocessed data
following Pathformer (Liu et al., 2023) (Details in Appendix A.2). Every patient (i.e., a hypergraph)
has the same genes (i.e., nodes) and pathways (i.e., hyperedges), but the clinical data (i.e., gene
representations) are different. The data statistic of each cancer data is provided in Appendix A.1.

Compared Methods. We compared Natural-HNN with HNNs introduced in Section 2. Specif-
ically, HGNN(Feng et al., 2019), HCHA (Bai et al., 2021), HNHN (Dong et al., 2020), UniGCNII
(Huang & Yang, 2021), AllDeepSets (Chien et al., 2021), AllSetTransformer (Chien et al., 2021),
HyperGAT (Ding et al., 2020), SHINE (Luo, 2022), ED-HNN (Wang et al., 2022b), ED-HNNII
(Wang et al., 2022b) and a hypergraph disentangling method HSDN (Hu et al., 2022) are used as
baselines. Implementation details of some baselines and their variants are described in App. B.1.

Evaluation. We randomly split the data into 50%/25%/25% for training/validation/test set. We
measured average and standard deviation of the performances for 10 different data splits. The hy-
perparameter search space is provided in Appendix B.5.

6Ltask denotes the task related loss calculated from cross-entropy loss with labels and predictions. Details
are available at Appendix B.3
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Table 1: Model performance on cancer subtype classification task (Macro F1). Top two models are
colored by First, Second. : : the variant of the model using multihead attention. ‹ : Ldis is not used.

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
HGNN 0.726 ± 0.053 0.563 ± 0.040 0.684 ± 0.067 0.694 ± 0.033 0.799 ± 0.053 0.835 ± 0.052 0.921 ± 0.016 0.959 ± 0.016
HCHA 0.704 ± 0.051 0.558 ± 0.044 0.675 ± 0.068 0.682 ± 0.041 0.783 ± 0.055 0.844 ± 0.054 0.920 ± 0.015 0.954 ± 0.009
HNHN 0.697 ± 0.046 0.573 ± 0.072 0.688 ± 0.075 0.674 ± 0.038 0.791 ± 0.035 0.837 ± 0.059 0.920 ± 0.021 0.958 ± 0.016

UniGCNII 0.697 ± 0.052 0.617 ± 0.059 0.728 ± 0.066 0.663 ± 0.039 0.830 ± 0.030 0.841 ± 0.046 0.935 ± 0.012 0.949 ± 0.017
AllDeepSets 0.716 ± 0.058 0.557 ± 0.044 0.599 ± 0.058 0.665 ± 0.046 0.801 ± 0.058 0.870 ± 0.044 0.912 ± 0.015 0.953 ± 0.010

AllSetTransformer 0.743 ± 0.057 0.553 ± 0.046 0.719 ± 0.052 0.653 ± 0.038 0.814 ± 0.036 0.847 ± 0.046 0.925 ± 0.013 0.953 ± 0.014
HyperGAT 0.637 ± 0.121 0.534 ± 0.063 0.574 ± 0.153 0.665 ± 0.054 0.789 ± 0.061 0.832 ± 0.046 0.899 ± 0.037 0.927 ± 0.020
HyperGAT: 0.641 ± 0.115 0.502 ± 0.087 0.584 ± 0.150 0.646 ± 0.043 0.791 ± 0.079 0.827 ± 0.041 0.896 ± 0.025 0.939 ± 0.009

SHINE 0.446 ± 0.155 0.371 ± 0.135 0.529 ± 0.160 0.628 ± 0.104 0.718 ± 0.055 0.745 ± 0.159 0.837 ± 0.197 0.866 ± 0.128
SHINE: 0.651 ± 0.053 0.532 ± 0.064 0.673 ± 0.059 0.650 ± 0.046 0.770 ± 0.040 0.837 ± 0.061 0.925 ± 0.017 0.954 ± 0.013
HSDN 0.757 ± 0.044 0.629 ± 0.045 0.726 ± 0.063 0.692 ± 0.038 0.811 ± 0.044 0.867 ± 0.033 0.937 ± 0.005 0.961 ± 0.013

ED-HNN 0.735 ± 0.047 0.615 ± 0.050 0.718 ± 0.071 0.700 ± 0.030 0.835 ± 0.047 0.875 ± 0.053 0.931 ± 0.013 0.955 ± 0.012
ED-HNNII 0.722 ± 0.045 0.536 ± 0.057 0.650 ± 0.087 0.695 ± 0.039 0.845 ± 0.025 0.895 ± 0.044 0.930 ± 0.015 0.953 ± 0.012

Natural-HNN‹ (Ours) 0.804 ± 0.036 0.659 ± 0.049 0.745 ± 0.045 0.707 ± 0.035 0.862 ± 0.045 0.881 ± 0.042 0.934 ± 0.010 0.962 ± 0.013

5.2 RESULTS FOR CANCER SUBTYPE CLASSIFICATION

The cancer subtype classification task can be considered as a hypergraph classification task, since
every patient (i.e., a hypergraph) has the same genes (i.e., nodes) and pathways (i.e., hyperedges).
Specifically, we generated the representation of a hyperedge by simply concatenating representations
of hyperedges in a hypergraph following Pathformer (Liu et al., 2023), due to the lack of an effective
pooling method reflecting the hypergraph topology developed to date. Then, we applied one layer
MLP as the classifier. We inevitably excluded SheafHyperGNN and SheafHyperGCN (Duta et al.,
2024) in cancer subtype classification task due to extensive hyperparameter search space (Appendix
C.4) with extremely long training time (Section 5.4). We have the following observations in Table
1. 1) Natural-HNN shows superior performance in most of the cancers with large performance gap
compared with most of the models. Especially, we achieve large performance improvements com-
pared with the convolution-based methods as well as AllDeepSets, which cannot leverage the inter-
action contexts. In the case of BRCA, we achieve about 5% performance improvement compared
with the second best model. This result can be attributed to the following two facts: First, pathways
contain “context-dependent interaction”7 that reflect various functional semantics (Stoney et al.,
2018; 2015). Second, cancers are directly related to the functions of multiple pathways (Windels
et al., 2022; Stoney et al., 2018). Thus, we can conclude that reflecting various functional context
of pathways is important in cancer related tasks and our model benefited by effectively capturing
such interaction contexts. 2) Natural-HNN does not show impressive performance on KIPAN and
NSCLC compared to other datasets. This is due to the fact that those cancers are relatively easy
to be classified with only the gene features (Wang et al., 2021; Oh et al., 2021). 3) Natural-HNN
outperforms the disentangle-based model, HSDN, with a large performance gap. Although HSDN
mainly aimed to capture the structural semantics, it is similar to ours in that it can potentially cap-
ture interaction types by giving different factor importance for each hyperedge. They also used
similarity-based criterion for disentanglement by comparing similarity between factor representa-
tions of a hyperedge and nodes. However, the superior performance of Natural-HNN validates that
the naturality-guided disentanglement can better integrate contextual information of interaction.

5.3 CAPTURING THE INTERACTION CONTEXT OF HYPEREDGES

Analysis on Cancer Datasets. To validate that Natural-HNN can capture the interaction context,
we checked whether our model captures functional semantics of genetic pathways. Because the
models rely solely on cancer subtype labels during training8, we expect the interaction contexts
of informative hyperedges (such as cancer-related pathways) to be captured by the models, while
non-informative hyperedges (such as pathways not relevant to cancer) are not. For this experiment,
we first selected top-15 pathways9 based on the SHAP value for each model (Natural-HNN in
Figure 5 top and HSDN in Figure 5 bottom). Note that we rely on the SHAP value since information
regarding which pathways are relevant to cancers is not given. Then, after clustering these 15
pathways with CliXO algorithm (Kramer et al., 2014), we calculate the similarity between clusters
based on the average similarity of pathways that belong to each cluster. Our goal is to check
how well Natural-HNN preserves the functional semantic similarity between pathway clusters
compared with the cluster similarity calculated with Lin’s method (Lin et al., 1998) (BMA), which

7A direct quote from (Stoney et al., 2018)
8This means that models do not use external data related to pathway types or pre-trained models.
9Only a few pathways are related to each type of cancer. We can also observe this with the SHAP value

distribution in Figure 7
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(a) Ground-Truth (b) Natural-HNN (c) HSDN

(d) Ground-Truth (e) Natural-HNN (f) HSDN

(i) With pathways selected by Natural-HNN

(ii) With pathways selected by HSDN

Figure 5: Captured interaction context. Captured patterns are shown in red boxes and not captured
patterns are shown with orange boxes. Weakly captured cases are marked as dotted red block.

(a) Natural-HNN

(e) HSDN

(b) SheafHyperGNN(Gen) (c) SheafHyperGNN(LR) (d) SheafHyperGNN(Diag)

(f) SheafHyperGCN(Gen) (g) SheafHyperGCN(LR) (h) SheafHyperGCN(Diag)

Figure 6: Similarity of transformation matrices between hyperedge types with Natural-HNN (a),
HSDN (e), and variants of SheafHyperGNN (b,c,d) / SheafHyperGCN (f,g,h). For (a) and (e), we
used 8 as the number of factors.

we consider as the ground-truth. For HSDN and Natural-HNN, cluster similarity is calculated based
on the relevance score vector of each hyperedge ei across all factors, i.e., αi “ rα1

i , ..., α
K
i s, which

can be calculated as 1{p1 ` ∥αi ´ αj∥2q. As the experiment setting is somewhat complicated, we
described the detailed procedure in Appendix A.3.

The result on the BRCA datset is shown in Figure 5. The row and column of each heatmap is the
index of the pathway clusters and color represents similarity between clusters. Figure 5 (a), (b) and
(c) shows the measured similarity between clusters with pathways selected by Natural-HNN. Com-
paring (b) and (c) with (a), we observe that Natural-HNN preserves the functional similarity (red
box) better than HSDN, which fails to do so (orange box). Moreover, Figure 5 (d), (e) and (f) shows
the measured similarity between clusters with pathways selected by HSDN. An interesting observa-
tion is that even with the pathways that were informative to the HSDN, HSDN fails (orange box)
to preserve the functional similarity between clusters while Natural-HNN could capture them. The
results imply that the naturality condition in category theory is effective in capturing the interaction
context of an hyperedge. Additional analyses are described in Appendix H.5

Analysis on Synthetic Dataset. Since sheaf-based method can be affected by other contexts such
as the context of each individual node (e.g., function of gene in cancer subtype dataset) rather than
the actual interaction context, we construct a synthetic dataset that is deliberately generated to only
contain the interaction context. To compare the ability of capturing the interaction context with a
sheaf-based method, SheafHyperGNN (Duta et al., 2024), we created a synthetic hypergraph with
3200 nodes, 4 node labels, and 2400 hyperedges with 8 hyperedge types (i.e., 300 hyperedges per

9
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hyperedge type). The details for synthetic hypergraph generation is provided in Appendix A.8.
First, to validate whether Natural-HNN and HSDN correctly capture the interaction context (or hy-
peredge type), we calculated similarity of transformation matrices assigned to hyperedges, and then
check whether the similaity between hyperedges that belong to the same type is high. Specifically,
the similarity between two hyperedges ei and ej is computed by 1{p1 ` ∥Wi ´ Wj∥2q where Wi

is the transformation matrix for hyperedge ei
10. For sheaf-based methods, as the transformation

matrix is defined for each (node, hyperedge) pair, i.e., Fv⊴e, we compute the similarity between
two hyperedges based on the average of the similarity of all possible pairs. For example, given
two hyperedges ei “ pv1, v2q and ej “ pv3, v4, v5q, we calculate the average of the following sim-
ilarities: (Fv1⊴ei ,Fv3⊴ej ), (Fv1⊴ei ,Fv4⊴ej ), (Fv1⊴ei ,Fv5⊴ej ), (Fv2⊴ei ,Fv3⊴ej ), (Fv2⊴ei ,Fv4⊴ej ) and
(Fv2⊴ei ,Fv5⊴ej ). Figure 6 shows the results with top-5 informative hyperedges for each hyperedge
type11, where the ideal result would show dark blue colors in the diagonal12. The strong similarities
in the diagonal of the heatmap of Natural-HNN (Figure 6(a)) compared with that of HSDN (Figure
6(e)) validates again that Natural-HNN is superior in capturing the interaction context of an hyper-
edge. Besides, sheaf-based methods show ambiguous result (Figure 6(b-d, f-h)). More results on
Appendix D.3 shows that sheaf-based methods hardly capture interaction types.

Table 2: Time took for training 1 epoch, measured in seconds. dc denotes the dimension of channel
(hidden dimension) and ds denotes stalk dimension for sheaf-based models. # denotes ‘number of’.

(dc, ds or # factors) SheafHyperGNN(Gen) SheafHyperGNN(LR) SheafHyperGNN(Diag) Natural-HNN
(16, 2) 14968.699 (04h 09m) 15064.670 (04h 11m) 7691.438 (02h 08m) 0.544 ± 0.001
(64, 8) 239376.921 (66h 30m) 240024.821 (66h 40m) OOM 1.853 ± 0.002

Table 3: Time took for training 1 epoch, measured in seconds. dc denotes the dimension of channel
(hidden dimension).

(dc, # heads or factors) HGNN AllDeepSets AllSetTransformer HSDN Natural-HNN
(16, 2) 0.217 ± 0.000 1.195 ± 0.002 1.108 ± 0.002 0.289 ± 0.000 0.544 ± 0.001
(64, 8) 0.831 ± 0.001 2.463 ± 0.005 2.671 ± 0.002 0.996 ± 0.000 1.853 ± 0.002

5.4 TRAINING TIME ANALYSIS

To validate that Natural-HNN is scalable and efficient, we measured the time taken for training
1 epoch in BRCA dataset. We measured the time 5 times and averaged them. As sheaf-based
methods take too long time, we measured them only once. For sheaf-based methods, we calculated
the representation of a hyperedge as an average of the transformed node features (i.e., average of
Fv⊴ex). In Table 2, we observe that while Natural-HNN takes only a few seconds, sheaf-based
methods take from 2 to 66 hours per epoch depending on dc, ds and # factors, which makes it
not applicable to real-world applications. In Table 3, Natural-HNN is much more efficient than
AllDeepSets or AllSetTransformers, while being less efficient than the convolution-based methods.
However, considering the superiority of Natural-HNN in terms of the downstream task, we argue
that it is acceptable. More results in Appendix F.2 shows that Natural-HNN is scalable and efficient.

6 CONCLUSION

In this work, we propose Natural-HNN, which captures the interaction context of nodes within a
hyperedge during the message passing process. We analyzed compositional structure in hypergraph
message passing and focused on the naturality condition that must be satisfied between entangled
and disentangled representations. The power of category theory enabled us to create a simple but
effective model that balances the trade-off between the expressiveness and generalization even
with a small hyperparameter search space (Appendix B.5), which is even comparable to GAT.
Moreover, the category theory allowed our model to pursue the intended purpose, capturing the in-
teraction context of nodes within a hyperedge, without the help of external knowledge or a complex
objective function. Given the potential of Natural-HNN in capturing inherent heterogenity in the ho-
mogeneous data, we believe that our model will contribute to the domains where heterogenity
information is unavailable as we have seen in the biological pathways.

10Note that Wi “ rα1
i W1, ..., αK

i WK
s, where Wk is the weight of the first layer of k-th factor-specific MLP.

11Not all hyperedges are equally informative for node classification. More results with different number of
hyperedges per type are provided in Appendix D.3

12The non-diagonal parts do not need to be bright yellow, as the colors represent relative values.
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A DATASET AND EXPERIMENT DETAILS

A.1 STATISTICS : CANCER SUBTYPE CLASSIFICATION DATASET

The statistics of cancer datasets are shown in the Table 4. Note that every hypergraphs in all 8
cancers have 1497 pathways (hyperedges) and 11552 genes (nodes) with 9 feature dimension. The
degree statistics of cancer dataset is shown in the Table 5. When converted to a graph with star-
expansion, the graph contains 98013 edges. When converted to a graph with clique-expansion, the
graph contains 10114890 edges. Thus, converting the hypergraph into a graph with clique-expansion
requires large computation during message passing. The downloading and preprocessing details are
provided in Appendix A.2

Table 4: Statistics of 8 cancer datasets used for cancer subtype classification task.

dataset summary class distribution(counts)
BRCA 5 class, 769 hypergraphs Normal-like 33, Her2 44, Basal-like 134, LumB 143, LumA 415
STAD 5 class, 341 hypergraphs CIN 200, EBV 29, GS 46, MSI 59, HM-SNV 7
SARC 4 class, 257 hypergraphs LMS 104, MFS/UPS 75, DDLPS 57, Other 21
LGG 2 class, 503 hypergraphs G2 242, G3 261

HNSC 2 class, 507 hypergraphs HPV- 411, HPV+ 96
CESC 2 class, 280 hypergraphs AdenoCarcinoma 46, SquamousCarcinoma 234
KIPAN 3 class, 649 hypergraphs KICH 65, KIRC 313, KIRP 271
NSCLC 2 class, 813 hypergraphs LUAD 451, LUSC 362

Table 5: statistics of hypergraphs in cancer subtype classification task

min median mean max std
node degree 2 5 8.485 239 13.301

hyperedge degree 13 35 57 1371 84.720

A.2 PREPROCESSING : CANCER SUBTYPE CLASSIFICATION DATASET

The overall procedure was adopted from Pathformer (Liu et al., 2023). However, statistics of the
data can be slightly different due to the difference of time at which the data was downloaded.

CREATING HYPERGRAPH

We downloaded pathways from several pathway databases including KEGG (Kanehisa & Goto,
2000), PID (Schaefer et al., 2009), Reactome (Croft et al., 2010) and Biocarta.(Nishimura, 2001).
The pathways were selected based on their size and overlap ratio with other pathways. These two
conditions must be considered as 1) extremely large pathways do not represent specific functions
but rather general functions, 2) small pathways complicate interpretations 3) overlapping pathways
cause redundancies. The more detailed explanations can be found in (Reimand et al., 2019). Path-
ways with too small or too big size or large overlaps are excluded. A specific threshold was chosen
following the Pathformer.

GENERATING HYPERGRAPH LABELS

For BRCA and STAD, we gathered cancer subtypes from TCGA (Weinstein et al., 2013) using
TCGAbiolinks (Colaprico et al., 2016; Silva et al., 2016; Mounir et al., 2019) R library. For the
rest of 6 cancer datasets we downloaded cancer subtypes from Broad GDAC Firehose (https://
gdac.broadinstitute.org/)13. KIPAN and NSCLC, specifically, was created by integrating
KIRC, KICH, KIRP and LUAD, LUSC each as shown in Table 4. This is the reason why it is easy
to classify cancer subtypes in KIPAN dataset.

13Pathformer used labels from pan-cancer atlas study (Sanchez-Vega et al., 2018) for HNSC, CESC and
SARC. However, we decided to use the one in Broad GDAC Firehose since it was easier to process the same
data
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GENERATING NODE FEATURES

We gathered mRNA/miRNA expression, DNA methylation14, DNA copy number variation (CNV)15

using TCGAbiolinks. Gene lengths were acquired from biomaRt R package (Durinck et al., 2009;
2005). The procedure of processing each data with Gistic2 (Mermel et al., 2011), normalization by
TPM are adopted from Pathformer. At the end of the processing step, we calculate statistics (mean,
min, max, count) of modalities as values for each feature dimension.

A.3 EXPERIMENT DETAILS OF CAPTURING CONTEXT TYPES

To check whether HNNs could capture functional semantics of pathways (i.e, interaction context of
hyperedges), we need context labels for each hyperedge. However, there is no data that annotates
the functional semantics of genetic pathways. Instead, we rely on the methods in computational
biology to measure and create ground truth.

We clustered functionally similar pathways and measured functional similarity between clusters.
Since each cluster is consisted of functionally similar pathways, we can consider each cluster index
as a kind of a label that indicates a functional context type. By comparing the functional similarity
between clusters earned from model and ground truth, we can check whether the model effectively
captured functional semantics of pathways. If the similarity patterns between clusters (i.e., relative
similarity scores that are shown as color in heatmap) of predicted result and the ground truth are
similar, we can conclude that model could capture functional semantics. We do not directly com-
pare the exact values of prediction and the ground truth since the way of calculating the value is
different in prediction (calculation based on relevance scores αk

ei
) and ground truth (algorithm used

in computational biology).

In order to perform the experiment, we need to consider the followings: 1) Which pathways need
to be analyzed? 2) How to get ground truth pathway functions 3) How to calculate ground truth
functional similarity between pathways 4) How to cluster functionally similar pathways in a reliable
manner 5) How to measure ground truth cluster similarity and how to predict cluster similarity with
model outputs.

Which pathways need to be analyzed? There are two reasons behind selecting pathways : 1) Since
CliXO algorithm (Appendix A.6) used for clustering pathways takes a lot of time, the number of
pathways to be analyzed must be reduced. 2) The ground truth functional similarity (Appendix A.5)
contains vast biological context derived from biological domain knowledge or researches, which
might not be present in our dataset. Since our dataset contains only cancer-specific information, there
is no way to capture non-existing context (contexts that are not related to cancer) without external
supervision. Thus direct comparison between the ground truth and our result is impossible. The
most ideal way for fair comparison would be selecting the ground truth that is only relevant to our
dataset or task. However, it is impossible since there are no databases with annotated context (cancer
or environment) specific pathway functionalities. An alternative way was selecting the pathways
that were informative or important in the decision of the model. If a model can correctly capture
functional context of pathways, since pathway functions are highly related to the cancers (Windels
et al., 2022; Stoney et al., 2018), informative pathways (for the model prediction) are the pathways
that contain cancer-specific contexts. Since we only need to check whether functional context are
correctly captured under the cancer specific circumstances or condition, by selecting those pathways,
we can compare functional similarities that are specific to our data or cancer16. The details for
selecting pathways are described in Appendix A.4.

How to get ground truth pathway functions. Since there is no database that annotates functional
similarity scores between pathways, we rely on methods used in computational biology. Hence, we
need to get ground truth pathway functions. Similarity calculations and clusterings are based on the
annotation of pathway functions. The details are described in Appendix A.5.

How to calculate ground truth functional similarity between pathways. Based on the functions
of pathways, pathway functional similarity can be calculated. The calculated similarity will be used

14but we do not use promoter methylation
15but we do not use gene level CNV
16On the other hand, if the model could not correctly capture pathway functionalities, cancer irrelevant

pathways will be selected and will have different result from the ground truth in section 5.3
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in clustering and generating ground truth functional similarity between clusters. The details are dealt
in Appendix A.5.

How to cluster functionally similar pathways in a reliable manner. With functional similarity
between pathways, we can cluster functionally similar pathways with CliXO algorithm. The details
and example results are shown in Appendix A.6.

How to measure ground truth cluster similarity and how to predict cluster similarity with
model outputs. Finally, we need to devise a way to measure the similarity between clusters based
on the model outputs. Also, we need to measure ground truth functional similarity between clusters.
The details are described in Appendix A.7.

In summary, the procedure of experiments can be described as follows. First, we get functional
annotation of pathways (hyperedges). Second, we calculate functional similarity between pathways
based on annotations. Third, we select pathways to be analyzed based on the model output. Fourth,
we cluster the selected pathways with pathway similarity. Finally, we calculate the predicted func-
tional similarity between clusters from model prediction and compare that with the ground truth
cluster similarity. The detailed explanation for the result is provided in Appendix H.5.

A.4 SELECTING PATHWAYS WITH SHAP VALUES

To select pathways that were the most informative for prediction, we provide the final representation
of pathways generated by a model, 1 layer classifier (MLP) as well as labels to the DeepExplainer
to get SHAP values. Then we select top-k pathways based on the SHAP value. Note that only small
number of pathways are relevant to the task as shown in Figure 7. This is due to the fact that not all
pathways are related to very specific type of cancer. Although Natural-HNN and HSDN both use
the same number of pathways (top-k), the pathways selected by each model can be different. This
also leads to different number of clusters in Figure 5 and 19.

(a) SHAP value for all pathways (b) SHAP value for top-30 pathways

Figure 7: SHAP value distribution of Natural-HNN on BRCA dataset. X axis represents ranking
and Y axis represents SHAP value.

A.5 CALCULATING FUNCTIONAL SIMILARITY BETWEEN PATHWAYS

This process consists of two steps: 1) assigning pathway level function to pathways and 2) calcu-
lating functional semantic similarities between pathways. For both two steps, we adopted the most
frequently used and verified methods through several studies. For the assignment of pathway func-
tions, we use GO enrichment analysis. Gene ontology (GO) (Ashburner et al., 2000; Aleksander
et al., 2023) is a functional annotation of genes that has a hierarchical structure. Note that, however,
the hierarchical structure of functional annotations is close to a directed acyclic graph (DAG) rather
than a tree-like hierarchical structure. As an example, we can see DAG structure in the result of
CliXO algorithm in the Figure 8. We can computationally annotate pathway functions with GO
terms using GO enrichment analysis. We use ‘enrichGO’ function provided by R package cluster-
Profiler (Yu et al., 2012), with pvalue of 0.01 followig the paper (Stoney et al., 2018). Then we
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(a) Clustering result for (SHAP value) top 15 
pathways of Natural-HNN @ BRCA

(c) Clustering result for (SHAP value) top 15 
pathways of Natural-HNN @ CESC

(b) Clustering result for (SHAP value) top 15 
pathways of HSDN @ BRCA

(d) Clustering result for (SHAP value) top 15 
pathways of HSDN @ CESC

Figure 8: The result of applying CliXO algorithm to top-15 pathways of Natural-HNN and HSDN
on BRCA and CESC. The pathway number denotes the index of pathway in our dataset (hyperedge
index).

selected the most specific GO terms with set cover algorithm proposed in (Stoney et al., 2018) to
assign pathways precise representation of their functions.

The next step is calculating functional semantic similarities between pathways. We used Lin’s
method (Lin et al., 1998) with best matching average (BMA) as the combination was proven to
perform well with CliXO and was proven to be robust in incomplete annotation cases in (Liu &
Thomas, 2019). We used mgoSim function in R package GOSemSim (Yu et al., 2010; Yu, 2020) for
the calculation of Lin’s method.

A.6 ASSIGNING PATHWAY TYPE WITH CLIXO

To cluster functionally similar pathways, we adopted CliXO (Kramer et al., 2014). It was origi-
nally designed to cluster gene function annotations (GO) and has been used in multiple biological
studies(Kratz et al., 2023; Qin et al., 2020). However, it can also be effectively applied to higher
functional semantics such as pathways as in (Zheng et al., 2021). We used official implementation
of CliXO 1.0 for our research. We used the following 4 values as hyperparameter of CliXO : a =
0.1, b = 0.6, m = 0.005, s = 0.2.

Since CliXO can cluster functionally similar pathways, we can assign interaction types to pathways
by assigning them to the cluster. Figure 8 shows the result of applying CliXO for top-15 pathways
selected by Natural-HNN or HSDN for BRCA as well as CESC. Unlike other hierarchical clustering
based methods, CliXO created clusters having DAG structure. Considering that GO also has DAG
structure, CliXO can be seen as a natural way of reflecting complex structure or relations in biology.

A.7 CALCULATING FUNCTIONAL SIMILARITY BETWEEN CLUSTERS

Ground Truth Given a pair of clusters, calculating functional similarity between them is simple. We
average the similarity of all possible pathway pairs belonging to different clusters to get functional
similarity between clusters.
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Model’s prediction If a model correctly captures functional context of pathways, then the relevance
scores (αk

i ) of two similar pathways must be similar for all factors. Thus we define the similarity
between pathways as 1

1`∥αi´αj∥ 2
, where αi “ rα1

i , ..., α
K
i s is a factor vector of pathway (hyperedge)

ei. The cluster similarity can be calculated in the same way as in the ground truth case. We average
the similarity of all possible pathway pairs belonging to different clusters to get functional similarity
between clusters.

A.8 SYNTHETIC DATASET GENERATION

Purpose of creating dataset The main purpose of synthetic hypergraph experiment is to validate
whether each model can capture interaction contexts. Cancer subtype classification dataset will be
enough to validate Natural-HNN and HSDN. However, it does not fit for sheaf-based models for two
reasons : 1) SheafHyperGCN and SheafHyperGNN do not scale well, taking too long for training.
2) Since sheaf-based methods learns projections or transformations for every (node, hyperedge) pair,
there is a possibility that sheaf-based methods not only capture interaction contexts but also contexts
that are not related to interaction. For example, if genes in genetic pathway have their own context,
it might be reflected to transformation matrices of sheaf-based methods. In order to validate sheaf-
based methods, we need a synthetic dataset that does not contain contexts other than interaction.

Conditions to be satisfied However, generating synthetic hypergraph with meaningful interaction
context is difficult. There are several conditions that generation process must satisfy : 1) Since
interaction context must be crucial for predicting labels, raw node features must not have correlation
with labels. 2) Hyperedge types must be highly related to labels. In other words, convolution-
based models must not be able to easily predict labels. If one of above conditions fail, a model can
easily predict labels without capturing hyperedge types. Generating raw node features, assigning
hyperedge types and labels satisfying above condition is complicated.

Diffculties. There can be three ways to generate a hypergraph : 1) Fixing labels, hyperedges with
types and then generating node features satisfying condition, 2) Fixing labels, node features and then
creating hyperedges with types, 3) Fixing hyperedges with types, node features and then generating
node features.

• For the first case, it is hard to generate node features satisfying conditions. If feature of a node
is related to hyperedge type, convolution-based methods will easily predict labels. A model will
not rely on hyperedge types for prediction. If feature of a node is related to its label, information
from neighbor might not be informative to predict labels. In this condition, it will be hard to
verify whether a model captures interaction context as the model will not rely on hyperedges for
prediction. Finally, if we randomly create node features by randomly sampling from Gaussian
distribution, we cannot know whether hyperedge type is informative for predicting labels.

• For the second case, it is hard to create hyperedges with types by just reading through node
features and labels. It is hard to know whether created hyperedges with types are informative for
label prediction.

• For the last case, we can simply generate features and hyperedges with types. Based on the
created hypergraph, we can simply assign labels. The detailed explanations are described below.

Key concept of hypergraph generation. We brought an idea from a group discussion example de-
scribed in the introduction as it fits the concept of interaction context. Initial opinions of individuals
before discussion can be considered as node features. Individuals can have their own, different ideas
and do not necessarily have correlation with interaction types. The group discussion will change the
opinion of individuals, which can be implemented as message passing, and will form final opinions
of individuals. Based on their final opinions, we can classify individuals or assign labels.

Generation procedure. As individuals can have their own opinion before discussion, we generate
node features by sampling from Gaussian distribution. We randomly create hyperedges with random
size17 and randomly assign hyperedge types. We made sure that the hypergraph is connected (every
node is reachable) and an equal number of hyperedges are assigned to each hyperedge type. The t-
SNE result of node features can be seen in Figure 10 (a). We created hyperedge type dependent HNN
(Figure 9), which can operate on multiplex hypergraph. We project node features to each type of

17Size is sampled from Gaussian distribution
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Figure 9: Overall architecture of HNN used for generating synthetic hypergraph.

hypergraphs with 1 layer MLP and perform 1-layer message passing18 (HCHA without parameter).
The concatenation of 1 layer message passing results from hypergraphs of each type will create
final embedding of nodes. The HNN predicts the label from final embedding with classifier (1 fully
connected layer). The t-SNE result of the final embedding without training is provided in Figure 10
(b). Since node features as well as weights of HNN are all random, the final embeddings are not
clustered. Thus, it is hard to assign labels in this state.

(a) Raw features (b) Final embedding without training (c) Final embedding without additional training

Figure 10: t-SNE result for node features, final embeddings without training, and that without addi-
tional training.
Thus, we decided to train HNN so that final embeddings can form clusters. For training, we assign
labels based on the prediction of the model. The class with the highest predicted probability is
assigned as a label to the node. However, we have to make sure that the number of nodes for each
classess are equal to prevent all nodes from having the same class. For loss calculation, we used
cross-entropy loss. The result of training HNN with 4000 epochs can be seen in Figure 10 (c). We
can observe that not all classes are clustered well. Still, it is much better than the result in Figure
10 (b). We decided to perform additional training with 10000 epochs, but without condition that
all classes must have equal number of nodes. The result can be seen in Figure 11. We can observe
that the final embeddings are well clustered while raw node features does not. Hence, we believe
hyperedge types are important in the generated hypergraph to get well clustered embeddings from
noisy raw features19.

(a) Raw features (b) Final embedding (c) Predicted labels

Figure 11: t-SNE result for raw features, final embedding, prediction result with label colored.

18If we use more than two layers of propagation, it is hard to know whether each hyperedge type in each
layer is critically important or informative for labels as the influence of a type in one layer can be influenced by
other type in the other layer. Thus, we used only 1 layer of propagation.

19When we trained HGNN with 1 layer, 64 hidden dimension, the accuracy was 58.075 ± 1.908.
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Process Summary. Hypergraph generation process can be summarized as follows : 1) Sample node
features from Gaussian distribution, randomly create hyperedge with types. 2) Train HNN. Labels
are defined to be predicted label, but the number of labels need to be the same for every node classes.
3) Perform additional training. Labels are defined to be predicted label, but the number of labels for
each class does not necessarily be the same.

Hyperparameters for hypergraph generation. We created a small hypergraph with 3200 nodes
with 4 type of labels, 2400 hyperedges with 8 hyperedge types (300 hyperedges per type). Node
features with 100 dimension was generated from Gaussian distribution with mean 0 and standard
deviation 3. The degree of each hyperedge was sampled from Gaussian distribution with mean 7
and standard deviation 2, but we made sure that all hyperedges contain more than 2 nodes.
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B IMPLEMENTATION DETAILS

In Appendix B.1, we describes some implementation details of baselines and their variants, which
can be different from official implementations. From Appendix B.2 to B.5, we describe implemen-
tation details for the components of Natural-HNN.

B.1 BASELINES AND THEIR VARIANTS

We implemented HyperGAT based on the paper as its official implementation is different from what
is explained in the paper. Moreover, as the original version of SHINE and HyperGAT do not involve
multihead attention, we implement it for fair comparisons. For SHINE, we also implemented two
versions, one without using Lreg and the other with Lreg which is a loss introduced by the paper
for the purpose of making node representations to be similar if the nodes are included in the same
hyperedge. However, we did not use the version with Lreg in cancer subtype classification task
since the loss converts a hypergraph to a graph using clique expansion, which causes tremendous
computational cost. For SheafHyperGCN and SheafHyperGNN, we used official implementation of
the paper.

B.2 FACTOR DISCRIMINATION LOSS

We defined a factor discrimination loss Ldis similar to the one used in (Zhao et al., 2022). In order
to promote factors to contain different information, we use a factor classifier implemented with
one layer MLP. Each factor representation of every hyperedge will be given as input to the factor
classifier. The classifier needs to identify to which factor the factor representation belongs. If the
classifier can correctly identify the factor with factor representation, i.e. if factor representations
of two different factors of a hyperedge are distinguishable, it is highly likely that factors contain
different information.

Specifically, we can calculate the loss by creating pseudo labels. For each factor representation of
each hyperedge (hk

ei
), we assign a pseudo label Yk

ei
“ k. Then the loss can be defined as follows:

Ldis “ ´
ÿ

eiPE

K
ÿ

k“1

K
ÿ

c“1

1pYk
ei

“ cqlogpsoftmaxpMLPphk
ei

qqq (2)

This loss is applied to each layer of Natural-HNN. As described in Section 4.4, the final loss would
be L “ Ltask ` λLdis. As mentioned before, Ldis is an optional part of our model. The hyperparam-
eter search space for λ is provided in Appendix B.5

B.3 LOSS USED FOR TRAINING Ltask

After the final message passing layer of Natural-HNN, we get the final node embeddings zvi . The
classifier of Natural-HNN will predict labels pvi P RC where C denotes the number of classes. In
other words, pvi,c denotes the probability that node vi has class c as answer. If we denote lvi as the
label (one-hot vector) for node vi, the task loss can be calculated with cross-entropy loss.

Ltask “ ´

|V|
ÿ

i“1

C
ÿ

c“1

lvi,c logppvi,cq (3)

Note that, we use hyperedge embedding of the final layer instead of node embeddings for cancer
subtype classification task.

B.4 FACTOR ENCODER

In Section 4, we explained that we use K number of MLPs to get K factor representations. The
resulting factor representation is a vector with size d{K when desired output representation size of
a layer is given as d. When implementing the factor encoder as a code, we use single MLP that
outputs vector with size d. As described in H.1, applying K different MLPs (with output vector
size d{K) is the same as applying one MLP (with output vector size d) and chunking the vector
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to smaller ones with size d{K. (i.e. First d{K values corresponds to the 1st factor representation,
and following d{K values corresponds to the 2nd factor representation and so on.) Hence, in the
right lane of Figure 4, the concatenation operation is not performed as the output of a single MLP is
equivalent to a concatenated vector. The nonlinear activation function we used for factor encoder is
hyperbolic tangent (tanh).

B.5 HYPERPARAMETER SEARCH SPACE

We report the hyperparameter search space of each model in standard benchmark dataset as well as
cancer subtype classification task. We used Adam optimizer for Natural-HNN. For the baselines,
we closely followed optimizers or schedulers they used in their paper. Table 6 and Table 7 shows
the hyperparameter search space in the standard benchmark dataset and cancer subtype datasets
respectively. ‘7 Total’ denotes the number of all possible hyperparameter combinations that each
model needs to search. ‘cl’ denotes the number of classifier layers. When the number of classifiers
is larger than 1, those models have an additional hyperparameter that decides the hidden dimension
of the classifier. 7 MLP layer denotes the number of layers in MLP that was used in AllDeepSets,
AllSetTransformer, ED-HNN, ED-HNNII. In the case of ED-HNN and ED-HNNII, there were three
types of MLPs and each MLP could have different number of layers. λ for Ldis is hyperparameter
that changes the reflection ratio of the factor discrimination loss.

Table 6: Hyperparameter search space in standard benchmark dataset. : : MLP layers used in
AllDeepSets, AllSetTransforer, ED-HNN, ED-HNNII

models 7 cl classifier dim head (factor) 7 MLP layer : λ for Ldis 7 Total
HGNN 1 - 1 - - 32
HCHA 1 - 1 - - 32
HNHN 1 - 1 - - 32

UniGCNII 1 - 1 - - 32
AllDeepSets 1,2 64,128,256,512 1 1,2 - 320

AllSetTransformer 1,2 64,128,256,512 1,2,4,8 1,2 - 1280
HyperGAT 1 - 1,2,4,8 - - 128

SHINE 1 - 1,2,4,8 - - 128
HSDN 1 - 1,2,4,8 - 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 896

ED-HNN 1,2 64,128,256,512 1 [0,1,2] ˆ [1,2] ˆ [0,1,2] - 2880
ED-HNNII 1,2 64,128,256,512 1 [0,1,2] ˆ [1,2] ˆ [0,1,2] - 2880

Natural-HNN 1 - 1,2,4,8 1 - 128
Natural-HNN`Ldis 1 - 2,4,8 1 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 672

For standard hypergraph benchmark datasets, we used [64, 128, 256, 512] as hidden dimension and
[0.1, 0.01, 0.001, 0.0001] as learing rate. For weight decay, we used [0, 1e-5]. We fixed the number
of layers to 2 unless the paper of a model fixed the number of layers to a specific number. In other
words, if the paper of a model tuned the number of layers, we fixed them as 2. For example, we
fixed the number of layers of ED-HNN and ED-HNNII as 2 since they tuned the number of layers
in [1,2,4,6,8]. Generally, we used 0.5 as dropout. (If the paper of a model specified dropout to a
specific value, we used the value following the paper.) As we can see, our model generally has a
small hyperparameter search space comparable to GAT (when not using Ldis). Although ED-HNN
and ED-HNNII had good performance on standard hypergraph benchmark datasets, they had to rely
on very large hyperparameter search space.

Table 7: Hyperparameter search space in cancer subtype classification task. : : MLP layers used in
AllDeepSets, AllSetTransforer, ED-HNN, ED-HNNII

models head (factor) 7 MLP layer : λ for Ldis 7 Total
HGNN 1 - - 24
HCHA 1 - - 24
HNHN 1 - - 24

UniGCNII 1 - - 24
AllDeepSets 1 1,2 - 48

AllSetTransformer 1,2,4,8 1,2 - 192
HyperGAT 1,2,4,8 - - 96

SHINE 1,2,4,8 - - 96
HSDN 1,2,4,8 - 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1 672

ED-HNN 1 [0,1] ˆ [1] ˆ [0,1] - 96
ED-HNNII 1 [0,1] ˆ [1] ˆ [0,1] - 96

Natural-HNN 1,2,4,8 - - 96
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For cancer subtype classification tasks, we used [16, 32, 64] as the hidden dimension and [0.1, 0.01,
0.001, 0.0001] as learning rate. For weight decay, we used [0, 1e-5]. We fixed the number of layers
to 2 unless the paper of a model fixed the number of layers to a specific number. During training, we
set 50 as the batch size. Generally, we used 0.5 as dropout. (If the paper of a model specified dropout
to a specific value, we used the value following the paper.) Since we fixed the number of classifiers
to 1, the hyperparameter search space of some models are largely reduced when compared to the
node classification task. For ED-HNN and ED-HNNII, we reduced the search space of the number
of MLPs since it took too much time to get the results.
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C STANDARD HYPERGRAPH BENCHMARK DATASET

We performed experiments with standard hypergraph benchmark dataset to check whether Natural-
HNN can be applied to the datasets that are not verified to have meaningful context of interac-
tions. Considering how hyperedges were created for benchmark datasets, it is not likely that
those datasets contain meaningful or task related interaction contexts. In co-citation and co-
authorship networks, for example, hyperedges are created by simply connecting all documents cited
by a paper or written by an author. Citations between a pair of papers might have context that is
related to a reason for citation, however, it is hard to expect that a group of documents (papers) cited
by a paper creates a special meaning or have a special context. Even if we assume that hyperedges in
co-citation networks contain interaction context, it is still not clear how these interaction contexts are
related to the labels of nodes. It is also hard to expect interaction context in co-authorship networks
for a similar reason. Thus, the benchmark dataset experiment will verify whether Natural-HNN
can be applied to the datasets where informativeness of interaction context is not known.

For the node classification task with standard hypergraph benchmark datasets, we randomly split the
data into 50%/25%/25% for training/validation/test set. We measured average and standard devia-
tion of the performances for 10 different data splits. The hyperparameter search space is provided
in Appendix

C.1 STATISTICS : STANDARD HYPERGRAPH BENCHMARK DATASET

Cocitaion networks and coauthor networks are adopted from (Yadati et al., 2019). The node features
are bag-of-words representation of each documents. NTU2012 and ModelNet40 dataset is computer
vision and graphics datasets where features are generated by applying GVCNN(Feng et al., 2018)
and MVCNN(Su et al., 2015). Node feature of 20Newsgroups are generated by TF-IDF representa-
tions of news. The statistics of standard benchmark dataset is given in Table 8. Homophily ratio was
calculated after converting hypergraph into a graph with clique expansion (CE)(Sun et al., 2008)
following the method described in the other work (Wang et al., 2022b).

Table 8: Dataset statistics of standard hypergraph benchmark dataset

Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
# nodes 2708 3312 19717 2708 41302 2012 12311 16242
# edge 1579 1079 7963 1072 22363 2012 12311 16242

# feature 1433 3703 500 1433 1425 100 100 100
# classes 7 6 3 7 6 67 40 4
avg. |e| 3.03 3.200 4.349 4.277 4.452 5 5 654.51

CE Homophily 0.897 0.893 0.952 0.803 0.869 0.753 0.853 0.461

C.2 NODE CLASSIFICATION ON BENCHMARK DATASETS

Table 9: Model performance on standard hypergraph benchmark datasets (Accuracy). Top three
models are colored by First, Second, Third. : : the variant of the model using multihead attention.
‹ : the variant of the model using Lreg defined in SHINE(Luo, 2022).

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
HGNN 79.453 ± 1.003 73.092 ± 1.582 87.336 ± 0.443 83.383 ± 1.028 91.410 ± 0.365 88.350 ± 1.082 95.567 ± 0.411 81.246 ± 0.435
HCHA 79.276 ± 1.158 73.693 ± 1.687 87.230 ± 0.511 83.191 ± 0.868 91.358 ± 0.374 88.270 ± 1.304 94.703 ± 0.283 81.189 ± 0.397
HNHN 76.765 ± 1.560 72.524 ± 1.570 87.237 ± 0.523 77.480 ± 0.932 86.927 ± 0.346 88.489 ± 0.878 97.811 ± 0.231 81.059 ± 0.485

UniGCNII 79.498 ± 1.508 73.514 ± 2.107 88.124 ± 0.376 83.840 ± 0.693 91.728 ± 0.225 89.245 ± 0.882 97.243 ± 0.334 81.687 ± 0.452
AllDeepSets 79.306 ± 1.627 72.959 ± 1.795 89.418 ± 0.360 84.594 ± 0.793 91.594 ± 0.308 88.847 ± 0.984 97.532 ± 0.185 81.721 ± 0.653

AllSetTransformer 79.749 ± 1.620 73.140 ± 1.804 88.667 ± 0.388 84.786 ± 0.690 91.593 ± 0.309 89.404 ± 1.074 98.217 ± 0.138 81.783 ± 0.569
HyperGAT 55.908 ± 4.128 41.751 ± 1.814 48.191 ± 0.443 73.560 ± 1.829 90.292 ± 0.468 83.857 ± 1.490 92.465 ± 0.387 80.997 ± 0.390
HyperGAT: 58.183 ± 2.079 42.246 ± 1.874 48.389 ± 0.426 73.752 ± 1.508 90.394 ± 0.362 85.467 ± 1.876 92.481 ± 0.463 81.083 ± 0.374

SHINE 57.755 ± 3.198 41.413 ± 0.680 48.576 ± 0.455 75.037 ± 1.912 90.759 ± 0.292 87.256 ± 1.393 93.803 ± 0.395 81.061 ± 0.632
SHINE: 56.307 ± 4.452 41.763 ± 0.693 48.576 ± 0.433 75.613 ± 1.508 90.697 ± 0.329 87.157 ± 1.426 93.878 ± 0.332 81.239 ± 0.459
SHINE‹ 58.818 ± 1.591 41.413 ± 1.563 46.682 ± 1.177 74.623 ± 1.444 61.507 ± 12.169 81.451 ± 2.399 89.406 ± 0.775 61.492 ± 12.666
SHINE:‹ 58.065 ± 1.616 41.123 ± 1.707 43.619 ± 1.402 73.087 ± 1.077 36.215 ± 17.676 70.835 ± 23.388 75.956 ± 23.688 56.452 ± 13.043

HSDN 76.632 ± 1.509 71.824 ± 1.779 87.193 ± 0.323 81.595 ± 1.011 90.229 ± 0.242 89.722 ± 1.196 83.439 ± 1.204 81.372 ± 0.435
ED-HNN 80.635 ± 1.670 73.696 ± 1.992 88.911 ± 0.410 85.480 ± 0.828 92.151 ± 0.291 87.594 ± 0.811 97.999 ± 0.199 81.608 ± 0.695

ED-HNNII 78.951 ± 1.445 72.524 ± 1.682 79.355 ± 0.953 83.693 ± 0.839 91.702 ± 0.325 86.223 ± 0.958 95.749 ± 0.335 80.150 ± 0.753
Natural-HNN (ours) 80.709 ± 1.635 73.285 ± 1.742 87.136 ± 0.450 84.993 ± 0.491 90.961 ± 0.137 89.900 ± 1.017 98.558 ± 0.295 81.734 ± 0.745

Natural-HNN (ours + Ldis) 80.739 ± 1.570 73.551 ± 1.964 88.475 ± 0.466 85.081 ± 0.583 91.032 ± 0.179 90.060 ± 1.565 98.584 ± 0.254 81.827 ± 0.695

Table 9 summarizes the node classification performance in standard hypergraph benchmark datasets.
We have the following observations: 1) Our model generally performs well on various datasets by
taking the first or second place in terms of accuracy. In the case of Citeseer and Cora-CA, the
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performance of our model is comparable to the best performing model. The results indicate that
our model can be applied to various circumstances, even when the context variety of hyperedges is
not guaranteed. 2) Attention-based models (i.e., AllSetTransformer, SHINE, and HyperGAT) and
disentangle-based model (i.e., HSDN) generally perform similar to or worse than convolution-based
models (i.e., HGNN, HCHA, HNHN, UniGCNII) and AllDeepSets (which also does not have heads
or factors) on Citeseer, Pubmed and DBLP-CA. Through the results, we can guess that those datasets
do not contain various interaction contexts that is helpful for the model performance. This can also
be a reason why our model does not perform well on those datasets as much as on other datasets.

C.3 TRAINING WITH ONLY 5% OF DATA

Table 10: Model performance on standard hypergraph benchmark datasets (Accuracy) trained with
only 5% of data

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
HGNN 66.773 ± 2.806 61.445 ± 2.465 81.161 ± 0.531 71.548 ± 2.652 89.689 ± 0.384 58.884 ± 5.045 94.795 ± 0.381 79.690 ± 0.675
HCHA 67.403 ± 2.865 61.600 ± 2.279 81.135 ± 0.549 71.379 ± 2.465 89.689 ± 0.274 59.032 ± 5.083 93.939 ± 0.448 79.596 ± 0.652
HNHN 58.272 ± 1.970 58.473 ± 5.296 79.793 ± 0.804 58.831 ± 2.399 82.855 ± 0.499 58.737 ± 5.344 96.845 ± 0.382 78.456 ± 0.602

UniGCNII 68.212 ± 2.559 63.600 ± 1.203 83.024 ± 0.820 70.799 ± 2.606 88.751 ± 0.281 60.255 ± 5.022 96.584 ± 0.248 79.061 ± 0.506
AllDeepSets 65.694 ± 2.306 61.388 ± 4.012 84.485 ± 0.647 71.319 ± 2.964 59.689 ± 0.296 59.892 ± 4.833 96.055 ± 0.286 78.868 ± 0.534

AllSetTransformer 65.914 ± 2.155 62.506 ± 1.720 82.942 ± 0.491 71.249 ± 2.796 89.665 ± 0.216 60.444 ± 5.204 96.608 ± 0.291 79.409 ± 0.590
HSDN 58.332 ± 2.882 57.812 ± 1.808 80.195 ± 0.45 64.845 ± 4.025 87.636 ± 0.243 51.949 ± 17.016 97.159 ± 0.179 79.406 ± 0.594

ED-HNN 66.433 ± 2.824 61.759 ± 2.296 82.348 ± 0.559 69.809 ± 2.569 90.039 ± 0.342 57.984 ± 6.477 96.698 ± 0.265 78.386 ± 0.542
Natural-HNN (ours) 67.343 ± 1.837 62.620 ± 2.277 82.393 ± 0.467 70.809 ± 2.789 88.700 ± 0.251 60.511 ± 5.338 98.031 ± 0.196 79.329 ± 0.666

Natural-HNN (ours + Ldis) 67.393 ± 1.938 62.694 ± 2.218 82.838 ± 0.609 70.909 ± 3.439 88.906 ± 0.204 61.384 ± 4.570 98.141 ± 0.116 79.431 ± 0.552

To check the generalization power of our model, we performed an experiment of training with only
5% of data. Following the split ratio of HGNN for Cora dataset, we trained with 5% of data,
validated with 18.5% and tested with 37% of data. Table 10 shows the result. We have the follow-
ing observations: 1) The performance of Natural-HNN tends to be similar or slightly better than
convolution-based models. This shows that Natural-HNN has good generalization power that is
comparable to convolution-based methods. 2) Our model performs better than recently introduced
model, ED-HNN. Even if ED-HNN has much larger hyperparameter search space, Natural-HNN
performs better due to generalization power.

C.4 COMPARISON WITH SHEAF HYPERGRAPH NETWORKS

Sheaf hypergraph networks (Duta et al., 2024) extends idea of Sheaf based graph learning methods
(Hansen & Gebhart, 2020; Bodnar et al., 2022). Sheaf hypergraph networks can be explained as a
process of minimizing sheaf Dirichlet energy of signal on a hypergraph. It can be also explained
as reaching apparent consensus, the consensus of expressed opinions. Compared to Natural-HNN
which creates consensus on the discussion topic of each hyperedge, sheaf hypergraph network is
more flexible and can have stronger expressive power. Since it can assign different transformations
for every node-to-hyperedge message passing, it also has the potential to perform context-dependent
message passing and can handle more complex interactions.

As the hyperparameter search space of sheaf hypergraph networks is too large, we compared our
result with their official performance in their paper (Duta et al., 2024). Only for this experiment, we
additionally tuned the hyperparameter β ( 0.1 - 0.9) and the dropout rate (0.1 - 0.9). The hyperpa-
rameters of sheaf hypergraph networks include : stack dimension (1 - 8), learning rate (0.1, 0.01,
0.001), weight decay (0, 1e-5), dropout rate (0.1 - 0.9), number of layers (1 - 8). Additionally, sheaf
neural networks have options that needs to be selected : weight sharing among layers (or not), type
of normalization (degree base or sheaf-based ), type of Laplacian (symmetric or asymmetric), way
of initializing hyperedge features (4 methods are proposed), non linear activation function (sigmoid
or tanh), weight W1 as learnable parameter or not (Identity matrix). The result is provided in Table
11.

In Table 11, we can observe that Natural-HNN always achieves the best performance except for the
Citeseer dataset. The result is quite impressive in two aspects. 1) Natural-HNN achieved better per-
formance even with less expressive power compared to sheaf hypergraph networks. Note that sheaf
hypergraph networks have stronger expressive power by allowing each node-to-hyperedge message
passing to use different transformation (while Natural-HNN can select only one of K transformations
(MLP)). 2) Natural-HNN got outstanding performance even with smaller hyperparameter search
space. Note that Natural-HNN with extended hyperparameter search space still has much smaller
hyperparameter search space compared to sheaf hypergraph network. This result migth be attributed
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Table 11: Model performance on standard hypergraph benchmark datasets (Accuracy). β denotes
that we tuned the hyperparameter β. The best performance is colored in red. The 2nd placed is color
in blue.

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
Diag-SheafHyperGCN 80.06 ± 1.12 73.27 ± 0.50 87.09 ± 0.71 83.26 ± 1.20 90.83 ± 0.23 - - -
LR-SheafHyperGCN 78.70 ± 1.14 72.14 ± 1.09 86.99 ± 0.39 82.61 ± 1.28 90.84 ± 0.29 - - -
Gen-SheafHyperGCN 79.13 ± 0.85 72.54 ± 2.30 86.90 ± 0.46 82.54 ± 2.08 90.57 ± 0.40 - - -
Diag-SheafHyperGNN 81.30 ± 1.70 74.71 ± 1.23 87.68 ± 0.60 85.52 ± 1.28 91.59 ± 0.24 - - -
LR-SheafHyperGNN 76.65 ± 1.41 74.05 ± 1.34 87.09 ± 0.25 77.05 ± 1.00 85.13 ± 0.29 - - -
Gen-SheafHyperGNN 76.82 ± 1.32 74.24 ± 1.05 87.35 ± 0.34 77.12 ± 1.14 84.99 ± 0.39 - - -
Natural-HNN (base) 80.71 ± 1.64 73.29 ± 1.74 87.14 ± 0.45 84.99 ± 0.49 90.96 ± 0.14 89.90 ± 1.02 98.56 ± 0.30 81.73 ± 0.75

Natural-HNN (base + Ldis) 80.74 ± 1.57 73.55 ± 1.96 88.48 ± 0.47 85.08 ± 0.58 91.03 ± 0.18 90.06 ± 1.57 98.58 ± 0.25 81.83 ± 0.70
Natural-HNN (base + β) 80.83 ± 1.37 73.33 ± 0.94 87.17 ± 0.35 85.20 ± 0.52 91.72 ± 0.16 90.34 ± 1.02 98.58 ± 0.22 81.79 ± 0.79

Natural-HNN (base + dropout) 80.86 ± 1.28 73.36 ± 1.31 87.63 ± 0.45 85.05 ± 0.51 91.06 ± 0.13 90.06 ± 1.57 98.56 ± 0.22 81.94 ± 0.62
Natural-HNN (base + Ldis ` β + dropout) 81.30 ± 1.32 74.06 ± 1.34 88.75 ± 0.51 85.58 ± 0.77 91.91 ± 0.19 90.42 ± 0.92 98.63 ± 0.23 82.08 ± 0.74

to the fact that Natural-HNN made good trade-off between generalizability and expressivity of the
model.
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D SYNTHETIC DATASET EXPERIMENTS

The purpose of experiment. The purpose of the synthetic dataset experiment is to compare the
ability of capturing the interaction context. As already described in Appendix A.8, it is nearly
impossible to train and validate the ability of sheaf-based methods on cancer subtype dataset. Also,
as described before, we need synthetic dataset to ensure that there are no contexts other than context
of interaction so that transformation matrics of sheaf-based methods only depend of the interaction
context.

Experiment Setting. We randomly split the data into 50%/25%/25% for training/validation/test
set. We measured average and standard deviation of the performances for 10 different data splits.
To simplify the hyperparameter search space, we fixed learning rate to be one of 0.01 and 0.001,
weight decay as 0, hidden dimension to be 64 and dropout as 0.5. Since dataset generation process
in Appendix A.8 used 1 layer of propagation, all models in this experiment use 1 layer. For sheaf
based methods, we fixed the stalk dimension to 8, set initial hyperedge feature as average of node
features, activation function as tanh to reduce hyperparameter search space. For the methods of
normalization, we used symmetric degree normalization and assymetric degree normalization. For
LowRankSheafs, we set rank as 2. For SheafHyperGCN, we used mediators. For experiment, we
used official implementation of the paper.

Notation for sheaf-based methods. Throught Appendix D, ‘sym’ denotes symmetric degree nor-
malization and ‘assym’ denotes assymetric degree normalization. ‘Gen’ denotes GeneralSheafs,
‘LR’ denotes LowRankSheafs and ‘Diag’ denotes DiagSheafs.

D.1 PERFORMANCE

Table 12: Disentangle-based model performance on a synthetic dataset. Performances are measured
by varying the number of factors. Ldis is the factor discrimination loss introduced in the Section 4.4.

Method number of factors : 2 number of factors : 4 number of factors : 8
HSDN (without Ldis) 71.363 ± 1.543 73.425 ± 1.465 72.838 ± 0.988

HSDN (with Ldis) 72.150 ± 1.616 73.600 ± 1.556 72.850 ± 1.057
Natural-HNN (without Ldis) 75.688 ± 1.350 75.813 ± 1.524 75.863 ± 1.182

Natural-HNN (with Ldis) 76.425 ± 1.740 76.875 ± 1.318 77.225 ± 1.263

Table 13: Sheaf-based model performance on a synthetic dataset. Performances are measured by
varying the type of restriction maps as well as the type of normalization (symmetric or assymetric).

Method GeneralSheafs (Gen) LowRankSheafs (LR) DiagSheafs (Diag)
SheafHyperGNN (asymmetric) 75.538 ± 1.334 75.513 ± 1.269 75.713 ± 1.371
SheafHyperGNN (symmetric) 75.388 ± 1.171 75.325 ± 1.299 75.463 ± 1.495
SheafHyperGCN (asymmetric) 74.863 ± 1.171 74.638 ± 1.121 74.600 ± 1.179
SheafHyperGCN (symmetric) 74.713 ± 1.229 74.738 ± 1.039 74.713 ± 1.185

Although the main purpose of synthetic dataset experiment is to validate the ability of capturing
interaction context, we report the performance of sheaf-based methods, HSDN and Natural-HNN.
Note that HGNN on this dataset showed the accuracy (%) of 58.075 ± 1.908.

Comparison with HSDN. Table 12 shows the result of HSDN and Natural-HNN on synthetic
dataset with varying number of factors. We have the following observations : 1) Natural-HNN
generally performs better than HSDN. 2) We can observe that Natural-HNN had the best perfor-
mance when the number of factors for Natural-HNN matches the number of hyperedge types, which
is 8 in our synthetic dataset. On the other hand, HSDN achieves its best performance when the
number of factors was 4.

Comparison with Sheaf-based methods. Table 13 shows the result of sheaf-based methods. We
have the following observations : 1) Sheaf-based methods generally have similar performance re-
gardless of normalization types and sheaf types. But SheafHyperGNN generally performs better
than SheafHyperGCN. 2) Natural-HNN slightly performs better than sheaf-based methods.
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D.2 SCALABILITY (TRAINING TIME)

We measured the time took for training 10 epochs. We measured the time 5 times each, and averaged
them. The results for SheafHyperGNN and disentangle-based methods are provided in Table 14. The
results for SheafHyperGCN and disentangle-based methods are provided in Table 15.

Table 14: Time took for training 10 epoch, measured in seconds. ds denotes stalk dimension for
SheafHyperGNN. 7 denotes ‘number of’.

ds or 7 factors Gen, sym Gen, assym LR, sym LR, assym Diag, sym Diag, assym HSDN Natural-HNN
2 3.764 ± 0.022 3.760 ± 0.021 3.756 ± 0.011 3.765 ± 0.019 2.056 ± 0.035 2.039 ± 0.018 0.052 ± 0.001 0.059 ± 0.003
4 15.561 ± 0.028 15.566 ± 0.052 15.628 ± 0.099 15.535 ± 0.020 4.783 ± 0.035 4.806 ± 0.014 0.058 ± 0.001 0.061 ± 0.001
8 60.719 ± 0.019 60.694 ± 0.035 60.609 ± 0.147 60.697 ± 0.013 10.458 ± 0.071 10.557 ± 0.065 0.063 ± 0.008 0.057 ± 0.001

In Table 14, we can observe the following : 1) Increase of stalk dimension greatly increases the
time required for training. It might be due to the fact that computations for creating Laplacian
matrix from restriction maps greatly increases as stalk dimension increases. 2) SheafHyperGNN
still requires extremely long time for training with small synthetic hypergraph when compared to
disentangle-based methods.

Table 15: Time took for training 10 epoch, measured in seconds. ds denotes stalk dimension for
SheafHyperGCN. 7 denotes ‘number of’.

ds or 7 factors Gen, sym Gen, assym LR, sym LR, assym Diag, sym Diag, assym HSDN Natural-HNN
2 9.480 ± 0.099 9.104 ± 0.082 9.736 ± 0.445 10.498 ± 0.094 9.761 ± 0.296 9.345 ± 0.159 0.052 ± 0.001 0.059 ± 0.003
4 9.788 ± 0.090 9.590 ± 0.070 9.713 ± 0.276 10.363 ± 0.309 9.925 ± 0.037 9.621 ± 0.145 0.058 ± 0.001 0.061 ± 0.001
8 10.498 ± 0.094 10.177 ± 0.103 10.312 ± 0.116 10.754 ± 0.479 9.886 ± 0.113 10.059 ± 0.094 0.063 ± 0.008 0.057 ± 0.001

In Table 15, we can observe similar result, however, the training time does not differ a lot by the di-
mension of stalks. It might be attributed from the fact that SheafHyperGCN converts each hyperedge
to an edge20 with mediators which reduces the amount of computation.

D.3 CAPTURED CONTEXT RESULT

Since not all hyperedges are equally important for prediction, we selected top-k important hyper-
edges by calculating the influence of the existence of hyperedge with HNN used for generating
synthetic hypergraph. We calculated the prediction results of the model for all nodes when a specific
hyperedge exists and when the hyperedge the does not exist. Then we calculated the difference be-
tween the predictions to calculate how the existence of a hyperedge changes the prediction results.
The change of prediction for the correct class (label) are added and the change of prediction for
the wrong class are subtracted. Thus, if the value was positive, it is likely that the hyperedge was
informative for the prediction. There were 285 hyperedges with positive influence in total. The
hyperedge type 4 had 20 hyperedges that have a positive influence on prediction and it was the
minimum value across all hyperedge types. In other words, all hyperedge types contain at least 20
hyperedges that have positive impact on prediction.

From Figure 12 to Figure 17, we have provided the transformation matrix similarity between hy-
peredge types for sheaf-based methods, HSDN and Natural-HNN by varying the number of top-k
influential hyperedges. The number of influential hyperedges were selected to be 2 (Figure 12),
5(Figure 13), 10(Figure 14), 20 (Figure 15), 50 (Figure 16) and 300 (all hyperedges, Figure 17).
As already described in Section 5.3, it is ideal to have strong diagonal values (dark blue). We have
the following observations: 1) Sheaf-based methods have similar heatmap regardless of sheaf types,
normalization types, or model. 2) Sheaf-based methods generally do not have strong diagonal values
and have relatively higher similarity between different hyperedge types, showing that sheaf-based
methods hardly captures interaction context. 3) Natural-HNN with 8 factors show strong diagonal
values from Figure 12 to 15, proving that Natural-HNN captures. 4) When Natural-HNN uses 2 or
4 factors, the heatmap shows weaker diagonal lines or have relatively higher similarity between dif-
ferent hyperedge types while the model doesn’t when using 8 factors. Considering that the synthetic
hypergraph has 8 hyperedge types, we can conclude that Natural-HNN correctly captures interaction
context. 5) HSDN generally do not have strong diagonals. In other words, the similarity of trans-
formation matrices between the same hyperedge type is also low. This shows that HSDN does not

20This is the reason why we could not measure the time in Section 5.4. Cancer subtype classification task
uses hyperedge representations to predict graph labels. However, as SheafHyperGCN converts a hyperedge to
an edge with mediators, it is hard to define hyperedge representation.
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capture interaction context. 6) As number of hyperedges used to calculate transformation similar-
ities increases, the heatmap hardly shows strong diagonals and have relatively stronger similarities
between different hyperedge types. This phenomenon is observed to all models. This is an obvi-
ous result since hyperedges that are not very informative for label prediction will not be reflected a
lot during model training. However, we have another observation that disentangle-based methods
tend to have relatively smaller similarities between hyperedge types when compared to sheaf-based
methods. This also shows that sheaf-based methods do not effectively capture interaction context.

D.4 OUR CONCLUSION FOR SHEAF-BASED METHODS

Interaction Context. Sheaf-based method has strong expressive power as it allows to have different
transformation for every (node, hyperedge) pair. It also means that its design allows the model to
capture interaction contexts. However, as can be seen through several experiments, sheaf-based
methods do not effectively capture interaction context.

Performance. Since we could not experiment with cancer subtype classification task, we can only
assume through the results in benchmark dataset (Appendix C.4) as well as synthetic dataset (Ap-
pendix D.1). Through the results, we can assume that Natural-HNN has slightly better performance
compared to sheaf-based methods. However, as we have already seen in Section 5.4 and Appendix
D.3, sheaf-based methods are not scalable (inefficient) and cannot be applied to many practical
applications.
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Figure 12: Transformation matrix similarities between different hyperedge types. The results are
calculated with top-2 hyperedges based on the influence of hyperedge to label prediction. We can
observe that Natural-HNN shows strong diagonal pattern.
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Figure 13: Transformation matrix similarities between different hyperedge types. The results are
calculated with top-5 hyperedges based on the influence of hyperedge to label prediction. We can
observe that Natural-HNN shows strong diagonal pattern while HSDN fails to. Sheaf-based methods
generally shows strong similarity between different hyperedge types (non-diagonal).
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Figure 14: Transformation matrix similarities between different hyperedge types. The results are
calculated with top-10 hyperedges based on the influence of hyperedge to label prediction. We
can observe that Natural-HNN shows diagonal pattern while HSDN fails to. Sheaf-based methods
generally shows strong similarity between different hyperedge types (non-diagonal).
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Figure 15: The results are calculated with top-20 hyperedges based on the influence of hyperedge
to label prediction. This is the last figure that Natural-HNN shows diagonal pattern. This is because
one of the hyperedge types have only 20 hyperedges that has positive influence for prediction.

38



2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Natural-HNN 8 factors

HSDN 8 factors

Natural-HNN 4 factorsNatural-HNN 2 factors

HSDN 4 factorsHSDN 2 factors

SheafHyperGCN (Diag), 
Assymetric

SheafHyperGCN (LR), 
Assymetric

SheafHyperGCN (GEN), 
Assymetric

SheafHyperGCN (Diag), 
Symetric

SheafHyperGCN (LR), 
Symetric

SheafHyperGCN (GEN), 
Symetric

SheafHyperGNN (Diag), 
Assymetric

SheafHyperGNN (LR), 
Assymetric

SheafHyperGNN (GEN), 
Assymetric

SheafHyperGNN (Diag), 
Symetric

SheafHyperGNN (LR), 
Symetric

SheafHyperGNN (GEN), 
Symetric

Figure 16: The results are calculated with top-50 hyperedges based on the influence of hyperedge
to label prediction. All models fail to capture context. However, we can see that disentangle based
models relatively have small similarities between different hyperedge types.
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Figure 17: The results are calculated with top-300 hyperedges based on the influence of hyperedge
to label prediction. All models fail to capture context. However, we can see that disentangle based
models relatively have small similarities between different hyperedge types.
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E ABLATION STUDIES AND HYPERPARAMETER SENSITIVITY

E.1 SELECTING ALTERNATIVE BRANCH

In Section 4, we used the representation earned from ‘Disentangle-first Branch’ (hk
ei

) when creating
final hyperedge factor representations (αk

i hk
ei

). The experiment results below shows the result when
using the other branch, ‘Aggregation-first Branch’ for creating final hyperedge factor representations
(αk

i h̃k
ei

). Table 16 shows the result for standard hypergraph benchmark dataset and Table 17 shows
the result for cancer subtype classification task.

Table 16: Comparison of our model (first two rows) with alternative model that uses the other type
of hyperedge factor representation (last two rows)

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
Natural-HNN 80.709 ± 1.635 73.285 ± 1.742 87.163 ± 0.450 84.993 ± 0.491 90.961 ± 0.137 89.900 ± 1.017 98.558 ± 0.295 81.734 ± 0.745

Natural-HNN (+Ldis) 80.739 ± 1.570 73.551 ± 1.964 88.475 ± 0.466 85.081 ± 0.583 91.032 ± 0.179 90.060 ± 1.565 98.584 ± 0.254 81.827 ± 0.695
Natural-HNN (other branch) 80.650 ± 1.684 73.237 ± 1.678 87.137 ± 0.408 84.993 ± 0.434 90.968 ± 0.137 89.821 ± 0.847 98.557 ± 0.232 81.729 ± 0.701

Natural-HNN (other branch + Ldis) 80.827 ± 1.157 73.575 ± 1.790 88.521 ± 0.424 85.081 ± 0.503 91.030 ± 0.178 90.060 ± 0.795 98.577 ± 0.227 81.837 ± 0.534

As we can see in Table 16, there is no big difference in the performance between using ‘Disentangle-
first Branch’ and ‘Aggregation-first Branch’.

Table 17: Comparison of our model (first row) with alternative model that uses the other type of
hyperedge factor representation (last row).

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
Natural-HNN 0.804 ± 0.036 0.659 ± 0.049 0.745 ± 0.045 0.707 ± 0.035 0.860 ± 0.042 0.881 ± 0.042 0.934 ± 0.010 0.962 ± 0.013

Natural-HNN (other branch) 0.797 ± 0.028 0.654 ± 0.041 0.747 ± 0.063 0.707 ± 0.033 0.863 ± 0.022 0.875 ± 0.051 0.934 ± 0.011 0.962 ± 0.012

As we can see in Table 17, there is no big difference in the performance between using ‘Disentangle-
first Branch’ and ‘Aggregation-first Branch’. The reason for this phenomenon is quite simple. We
can consider the two cases: 1) when hk

ei
and h̃k

ei
are similar and 2) when they are largely different.

1) When hk
ei

and h̃k
ei

are similar, the result will not differ a lot between using hk
ei

or h̃k
ei

as similar
representations will be used. 2) When hk

ei
and h̃k

ei
are largely different, the result will not be different

a lot since relevance score αk
i will be very small. In other words, αk

i hk
ei

´αk
i h̃k

ei
“ αk

i phk
ei

´ h̃k
ei

q will be
very small for very small αk

i . This case means that the factor representation will not be reflected a lot
during message passing since the representation is inconsistent (different result for two branches).

E.2 NATURAL-HNN WITHOUT NATURALITY CONSTRAINT

We performed another ablation study to check whether naturality condition proposed in the paper
is important part that contributes to the model. We created an ablation model that do not satisfies
naturality condition by not reflecting relevance score αk

i during message passing. The results for
standard hypergraph benchmark dataset is provided in Table 18. The results for the cancer subtype
classification task are provided in Table 19.

Table 18: Model performance on standard hypergraph benchmark datasets (Accuracy). The ablation
model does not satisfy the naturality condition.

Method Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
Natural-HNN (ours) 80.709 ± 1.635 73.285 ± 1.742 87.136 ± 0.450 84.993 ± 0.491 90.961 ± 0.137 89.900 ± 1.017 98.558 ± 0.295 81.734 ± 0.745

Natural-HNN (ours + Ldis) 80.739 ± 1.570 73.551 ± 1.964 88.475 ± 0.466 85.081 ± 0.583 91.032 ± 0.179 90.060 ± 1.565 98.584 ± 0.254 81.827 ± 0.695
Natural-HNN (ablation) 80.220 ± 1.573 73.237 ± 1.745 87.121 ± 0.170 84.874 ± 0.424 90.896 ± 0.165 89.281 ± 0.718 98.144 ± 0.226 81.685 ± 0.675

Natural-HNN (ablation + Ldis) 80.250 ± 1.555 73.392 ± 1.832 88.448 ± 0.407 85.022 ± 0.508 90.968 ± 0.169 89.679 ± 1.129 98.177 ± 0.216 81.783 ± 0.771

In Table 18, we can see that there is a slight to moderate level of performance gap between Natural-
HNN and its ablation model. It is not a surprising result that there is not big difference between them
since standard benchmark datasets do not seem to have informative interaction contexts related to
the task (Appendix C).

In Table 19, we can observe that there is a big difference between Natural-HNN and its ablation
model. Since interaction context matters in cancer subtype classification task, naturality condition
seems to boost the performance by capturing interaction context.
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Table 19: Model performance on cancer subtype classification task (Macro F1). The ablation model
does not satisfy the naturality condition.

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
Natural-HNN‹ (ours) 0.804 ± 0.036 0.659 ± 0.049 0.745 ± 0.045 0.707 ± 0.035 0.862 ± 0.045 0.881 ± 0.042 0.934 ± 0.010 0.962 ± 0.013

Natural-HNN‹ (ablation) 0.756 ± 0.031 0.605 ± 0.039 0.713 ± 0.071 0.692 ± 0.034 0.814 ± 0.037 0.852 ± 0.032 0.929 ± 0.016 0.958 ± 0.016

E.3 HYPERPARAMETER ANALYSIS

Since Natural-HNN does not have many hyperparameters, we analyzed how performance changes
by the number of factors. Table 20 shows the result for the standard hypergraph benchmark dataset.
Table 21 shows the result for cancer subtype classification task. Note that the tables below show the
result of Natural-HNN without Ldis.

Table 20: Performance of Natural-HNN with a different number of factors. The best performances
(reported in Table 9) are marked in red.

number of factors Cora Citeseer Pubmed Cora-CA DBLP-CA NTU2012 ModelNet40 20Newsgroups
1 80.384 ± 1.820 73.133 ± 1.767 87.063 ± 0.373 84.934 ± 0.418 90.951 ± 0.139 89.622 ± 0.953 98.480 ± 0.310 81.684 ± 0.725
2 80.532 ± 1.638 73.285 ± 1.742 87.055 ± 0.401 84.904 ± 0.432 90.961 ± 0.137 89.622 ± 0.759 98.513 ± 0.272 81.734 ± 0.745
4 80.709 ± 1.652 73.188 ± 1.967 87.083 ± 0.450 84.993 ± 0.491 90.939 ± 0.151 89.821 ± 1.070 98.558 ± 0.295 81.635 ± 0.716
8 80.591 ± 1.673 73.237 ± 1.783 87.136 ± 0.450 84.934 ± 0.385 90.955 ± 0.131 89.900 ± 1.017 98.513 ± 0.286 81.660 ± 0.714

We have interesting observations when we analyze the result in Table 9 with Table 20. 1) Natural-
HNN did not perform well on Citeseer, Pubmed, and DBLP-CA datasets in Table 9. Except for
the Pubmed dataset, Natural-HNN used 2 or fewer factors for its own best performance in Table
20. 2) Natural-HNN showed good performance in remaining 5 datasets in Table 9. Except for
20Newsgroups dataset, Natural-HNN used 4 or more factors for its own best performance in Table
20. From these observations, we can conclude that Natural-HNN generally performed well when
captured multiple factors. Also, since Natural-HNN did not have better performance when using
more than 2 factors, we suspect that those two datasets do not have various interaction contexts
that are beneficial for performance. The results of other attention-based (AllSetTransformer) or
disentangle-based (HSDN) models in Table 9 also show a similar tendency. Those models have
the potential to capture relational information, however, showed poor performance, even worse than
some convolution-based models.

Table 21: Performance of Natural-HNN with different number of factors. The best performance
(reported in Table 1) are marked in red.

number of factors BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
1 0.789 ± 0.036 0.630 ± 0.046 0.729 ± 0.055 0.695 ± 0.030 0.853 ± 0.047 0.869 ± 0.048 0.926 ± 0.013 0.956 ± 0.014
2 0.787 ± 0.038 0.642 ± 0.043 0.745 ± 0.045 0.707 ± 0.035 0.858 ± 0.031 0.867 ± 0.043 0.934 ± 0.010 0.959 ± 0.014
4 0.804 ± 0.036 0.659 ± 0.049 0.725 ± 0.048 0.689 ± 0.047 0.858 ± 0.036 0.881 ± 0.042 0.932 ± 0.013 0.962 ± 0.013
8 0.785 ± 0.027 0.637 ± 0.032 0.729 ± 0.058 0.691 ± 0.044 0.860 ± 0.042 0.878 ± 0.034 0.924 ± 0.016 0.961 ± 0.013

We have similar observations when comparing the result in Table 1 and Table 21. 1) For SARC,
LGG and KIPAN in Table 21, Natural-HNN had its best performance when using 2 factors. Except
for SARC, Natural-HNN had relatively small increase in performanc in Table 1.2) For remaining
datasets, Natural-HNN had its best performance when using 4 or more factors. Except for CESC,
Natural-HNN had meaningful increase in performance. Thus, we can have similar conclusion that
we had when comparing Table 9 and Table 20.
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F ADDITIONAL EXPERIMENT RESULT

F.1 COMPUTATIONAL COMPLEXITY

Let di be the input embedding dimension, do be the output embedding dimension, K be number of
factors. N denotes number of nodes and M denotes number of hyperedges, E denotes the number of
node(v)-hyperedge(e) pair pv, eq satisfying v P e. We will assume that di ě do, do ě K, E ě M and
E ě N.

The computational complexity of one layer of Natural-HNN can be calculated by the following:

• Aggregation-first Branch (aggregation + MLP): OpEdiq ` OpMdidoq

• Disentangle-first Branch (MLP + aggregation): OpNdidoq ` OpEdoq

• Similarity (α) calculation : OpKp
d2

o
K2 ` do

K qq “ Op
d2

o
K q

• propagation back to nodes : OpKE ` Edoq “ OpEdoq

• other calculations (concat, interpolation by β) : OpNdoq Thus, total computational complexity
becomes OppM ` Nqdido ` Epdi ` do ` 1q ` Ndo `

d2
o

K q “ OppM ` Nqdido ` Epdi ` doqq

For HGNN with dimension di ě de ě do (de denotes dimension of hyperedge embedding), com-
putational complexity becomes OpEpdi ` deq ` pMdi ` Ndoqdeq. The computational complexity of
HGNN and Natural-HNN differs only by constant times. It is not surprising since Natural-HNN is
quite similar to HGNN but instead use two branches (only) during Node-to-Hyperedge propagation
and use factor similarity calculation. Thus, Natural-HNN is as scalable as HGNN.

F.2 SCALABILITY ANALYSIS (TRAINING TIME)

We measured the time took for training 1 epoch in BRCA dataset. We averaged the values after
measuring 5 times each. Also, we conducted the experiment in two settings: one with 2 heads
and 16-dimensional vector as hidden representation and the other with 8 heads and 64-dimensional
vector as hidden representation. Note that convolution-based models, AllDeepSets and ED-HNN
(II) use 1 head as they do not have an attention mechanism. The Table 22 and Table 23 shows
the result of our model’s scalability. We have the following observations: 1) Our model is slower
than convolution-based models and HSDN. Since convolution-based models use strong inductive
bias with simple computations, they are naturally scalable than our model. HSDN took less time
since they use only one message passing layer. 2) Our model is much faster than all attention-based
models. Thus, we can conclude that our model scales well with hypergraph and parameter size next
to the convolution-based models.

Table 22: Time took for training 1 epoch on BRCA, measured in seconds. dc denotes hidden dimen-
sion. 7 denotes ‘number of’.

(dc, 7 heads) HGNN HCHA HNHN UniGCNII AllDeepSets Natural-HNN
(16,2) 0.217 ± 0.000 0.212 ± 0.000 0.117 ± 0.000 0.237 ± 0.000 1.195 ± 0.002 0.544 ± 0.001
(64,8) 0.831 ± 0.001 0.813 ± 0.000 0.426 ± 0.001 0.906 ± 0.001 2.463 ± 0.005 1.853 ± 0.002

Table 23: Time took for training 1 epoch on BRCA, measured in seconds. dc denotes hidden dimen-
sion. 7 denotes ‘number of’.

(dc, 7 heads) AllSetTransformer HyperGAT SHINE HSDN ED-HNN ED-HNNII Natural-HNN
(16,2) 1.108 ± 0.002 0.711 ± 0.001 0.675 ± 0.001 0.289 ± 0.000 2.042 ± 0.003 3.852 ± 0.006 0.544 ± 0.001
(64,8) 2.671 ± 0.002 2.415 ± 0.003 2.204 ± 0.002 0.996 ± 0.000 3.558 ± 0.005 6.169 ± 0.014 1.853 ± 0.002

F.3 GENERALIZATION POWER OF NATURAL-HNN

To check the generalization power of our model, we experimented with different training set split
ratio, while maintaining the validation and test set ratio to 25%. From 50%, we gradually reduced
training set proportion to 10% as shown in Figure 18. Figure 18 (a) and (b) are the result of measur-
ing Macro-F1 scores and (c) and (d) are the result of measuring relative degradation of performance
to the performance when trained with 50% (i.e., pF150 ´ F1xq{F150 ˆ 100% where F1x denotes the
Macro-F1 score when trained with x%.). Figure 18 (a) and (c) are the result in Cora-CA dataset,
which is standard hypergraph benchmark, (b) and (d) are the result for BRCA dataset, which is
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dataset used for cancer subtype classification task. The left figure in each Figure 18 (a,b,c,d) is the
result of comparing ours (blue) and convolution of deepset based models. These baselines cannot
perform context-dependent message passing. The right figure in each Figure 18 is the result of com-
paring ours (blue) and other baselines that have potential for context-dependent message passing
(i.e. the models that can perform hyperedge dependent or node dependent message passing).

(a) Macro F1, Cora-CA (b) Macro F1, BRCA

(c) Relative performance degradation, Cora-CA (d) Relative performance degradation, BRCA 

Figure 18: The performance of models when reducing training set proportion. First row shows
Macro F1 score and the second row shows relative performance degradation compared to the per-
formance when using 50% of dataset as training set. Ours (blue) maintains best Macro F1 score and
small relative performance degradation on both Cora-CA and BRCA dataset.

We have the following observations : 1) The degradation of performance for Natural-HNN was
smaller when compared with most of the baselines in both Cora-CA and BRCA. Specifically, we
can see that Natural-HNN has comparable result with convoluation based models in left figures
of Figure 18 (c) and (d). Considering that convolutions based models have strong generalization
performance due to their strong inductive bias, we can say that our model has good generalization
power comparable to convolution based models. When compared with other baselinese in Figure
18 (b) and (d), we can observe that Natural-HNN had very small degradation in performance. In
other words, Natural-HNN had nearly the smallest degradation when compared with models that
have more expressive power than convolution based methods. We can consider our model had
good generalization among baselines with more expressive powers. Specifically, in Figure 18 (d),
Natural-HNN showed outstanding result in cancer dataset which has various context of interactions.
This might be due to the fact that the inductive bias (context of interaction) that Natural-HNN used
matched the actual data characteristics.

2) Natural-HNN had the best Macro-F1 score for all different training ratio. Our model always
had the best performance compared to convolution or deepset based models in left figures of Figure
18 (a) and (b). Specifically, we can see that Natural-HNN had outstanding performance in BRCA
cancer dataset in the left figure of Figure 18 (b). Thus, we can conclude that Natural-HNN is more
expressive compared to convolution based models. Also, when inductive bias (interaction context)
matches the data characteristics (BRCA), Natural-HNN provides outstanding performances. From
the result, we could verify that Natural-HNN can utilize context information to get good perfor-
mance. When compared with other baselines, in the right figures of Figure 18 (a) and (b), we can
see that our model could achieve better, or at least comparable performance when compared with
baselines. We can conclude that our model has expressive power comparable to other attention (in-
cluding Set Transformer) or equivariance based models. Again, we can observe that Natural-HNN
achieved outstanding performance in BRCA dataset by capturing context types. Considering that
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Natural-HNN had good generalization and expressivity, we argue that our model made a proper
trade-off between expressive power and generalization as described in Section 3.1.

F.4 CANCER SUBTYPE CLASSIFICATION (MICRO F1)

We briefly provide Micro F1 scores of each model in cancer subtype classification task. The Table
24 also shows that our model generally performs well on most of cancer datasets.

Table 24: Micro F1 score of each model with parameter and hyperparameter of the best Macro F1
score. Top two models are colored by First, Second. :: the variant of the model using multihead
attention. ‹ : we did not use Ldis.

Method BRCA STAD SARC LGG HNSC CESC KIPAN NSCLC
HGNN 0.817 ± 0.027 0.727 ± 0.026 0.739 ± 0.057 0.696 ± 0.034 0.888 ± 0.031 0.903 ± 0.034 0.935 ± 0.010 0.960 ± 0.016
HCHA 0.808 ± 0.024 0.725 ± 0.036 0.731 ± 0.058 0.685 ± 0.039 0.876 ± 0.034 0.911 ± 0.034 0.939 ± 0.014 0.954 ± 0.009
HNHN 0.806 ± 0.027 0.729 ± 0.067 0.733 ± 0.046 0.676 ± 0.037 0.884 ± 0.018 0.910 ± 0.033 0.931 ± 0.020 0.958 ± 0.016

UniGCNII 0.791 ± 0.027 0.797 ± 0.038 0.761 ± 0.046 0.665 ± 0.038 0.910 ± 0.013 0.911 ± 0.018 0.947 ± 0.010 0.950 ± 0.017
AllDeepSets 0.823 ± 0.025 0.748 ± 0.039 0.657 ± 0.035 0.669 ± 0.045 0.895 ± 0.025 0.927 ± 0.024 0.923 ± 0.016 0.954 ± 0.010

AllSetTransformer 0.827 ± 0.031 0.710 ± 0.047 0.749 ± 0.047 0.656 ± 0.037 0.898 ± 0.016 0.908 ± 0.025 0.938 ± 0.011 0.954 ± 0.014
HyperGAT 0.754 ± 0.116 0.725 ± 0.050 0.645 ± 0.106 0.669 ± 0.051 0.889 ± 0.030 0.900 ± 0.025 0.913 ± 0.036 0.928 ± 0.019
HyperGAT: 0.753 ± 0.072 0.676 ± 0.108 0.643 ± 0.098 0.665 ± 0.042 0.883 ± 0.053 0.896 ± 0.021 0.907 ± 0.256 0.940 ± 0.009

SHINE 0.659 ± 0.090 0.590 ± 0.127 0.618 ± 0.106 0.649 ± 0.058 0.846 ± 0.032 0.890 ± 0.044 0.866 ± 0.149 0.879 ± 0.098
SHINE: 0.783 ± 0.027 0.711 ± 0.061 0.709 ± 0.045 0.654 ± 0.044 0.873 ± 0.027 0.907 ± 0.031 0.936 ± 0.012 0.954 ± 0.013
HSDN 0.838 ± 0.022 0.801 ± 0.033 0.758 ± 0.047 0.694 ± 0.036 0.892 ± 0.025 0.925 ± 0.024 0.950 ± 0.008 0.962 ± 0.013

ED-HNN 0.826 ± 0.024 0.793 ± 0.047 0.761 ± 0.039 0.703 ± 0.028 0.913 ± 0.021 0.925 ± 0.035 0.942 ± 0.012 0.955 ± 0.012
ED-HNNII 0.815 ± 0.027 0.748 ± 0.024 0.694 ± 0.050 0.696 ± 0.038 0.916 ± 0.013 0.942 ± 0.024 0.942 ± 0.010 0.953 ± 0.012

Natural-HNN‹ (ours) 0.869 ± 0.024 0.824 ± 0.027 0.770 ± 0.040 0.709 ± 0.033 0.923 ± 0.020 0.932 ± 0.024 0.944 ± 0.009 0.962 ± 0.013

F.5 CAPTURED CONTEXT IN CESC

(a) Ground-Truth

(d) Ground-Truth

(b) Natural-HNN

(e) Natural-HNN

(c) HSDN

(f) HSDN

(ii) With pathways selected by HSDN

(i) With pathways selected by Natural-HNN

Figure 19: Captured interaction context. Pathways are selected by SHAP value. Captured patterns
are shown in red box and not captured patterns are shown with orange box. Weakly captured case is
marked as dotted red block.

Figure 19 shows the captured context result in CESC. The evaluation and interpretation method is
identical to that of Section 5.3. As we can see in the figure, for pathways selected by Natural-HNN,
Natural-HNN correctly captures context similarities between clusters (red box) while HSDN does
not (orange box). For the pathways selected by HSDN, Natural-HNN and HSDN partially captures
cluster similarity. However, when comparing orange box in (d) and (f), we can observe that Natural-
HNN captures interaction context slightly better than HSDN even with the pathways selected by
HSDN.
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F.6 FACTOR DISCRIMINATION ANALYSIS

(b) HSDN(a) Natural-HNN 

Figure 20: Factor-Cluster Relevance. For the
pathways that belongs to the same cluster, we av-
eraged their factor relevance score for each fac-
tors. (a) Natural-HNN case shows that each factor
contributes to clusters differently. (b) HSDN case
shows that some factors have similar contribution
over all clusters.

Finally, we perform an experiment to clarify
that factors captured by Natural-HNN poten-
tially have different contexts. Since each fac-
tor encodes different context and since clusters
generated by CliXO algorithm assigns func-
tionally (i.e., context) related hyperedge types,
each factor is likely to be related to differ-
ent clusters. Thus, for each factor and for
each cluster, we averaged relevance scores αk

i
of hyperedges that belong to the same cluster.
The cluster that is relevant to a specific factor
would have high value while irrelevant factors
would have small value for that cluster. Fig-
ure 20 shows the result of Natural-HNN and
HSDN. We have the following observations:
1) In Natural-HNN, each factor has a different
score distribution over clusters. This implies that the factors are contributing to different clusters
since they encode different functions. 2) In HSDN, some factors have similar distribution over
clusters. For example, factor 0 and factor 2 of HSDN are similar in every factor. Also, factor 1
and factor 7 have highly similar score distribution over clusters. This implies that some factors of
HSDN are correlated. 3) While scores in (a) are distributed to various clusters and factors, scores in
(b) are concentrated on factor 4,5 and 6. Since only few factors are actively reflected while others
do not, HSDN fails to utilize different factors effectively. This experiment result is notable since
Natural-HNN could capture different context per factor even without factor discrimination loss Ldis
while HSDN failed to capture different factors and failed to use them properly even if it adopted
factor discrimination loss. Thus, we can consider naturality guidance as an effective criterion for
disentanglement.

F.7 RELIABILITY OF NATURAL-HNN IN BIOLOGY

In order for a model to be reliable, the model should provide consistent output regardless of the
choice of hyperparameters. So we conducted an experiment to check whether models consistently
rely on the same pathways. If a model consistently rely on the same pathways for prediction regard-
less of the hyperparameter, biologists might consider the model to be reliable since it potentially
captured and used what can be explained with biological domain knowledge. On the other hand, if
the model relies on different pathways for different hyperparameters, biologists might not trust the
model.

To check whether model relies on the same pathways, we ranked the pathways with SHAP value and
selected top-k pathways. These pathways are the ones that models relied most for their prediction.
Then, we calculated Jaccard similarity of top-k pathways for different hyperparameters. If top-
k pathways earned from each hyperparameter combination is similar, then we can conclude that
model always rely on the same pathways regardless of the hyperparameters.

Figure 21 and Figure 22 are the result of calculating Jaccard similarity between different hyperpa-
rameter combinations on BRCA dataset. The hyperparameters we changed was the hidden dimen-
sion size and the number of factors. Values in each tick of row and column is the pair of the two
hyperparameters (i.e., the value in the ticks represent (hidden dimesion, number of factors) pair).
Each heatmap shows Jaccard similarity when selecting top 10, 15, 20, 50, 100 and 500 pathways.
Figure 21 is the results for Natural-HNN and Figure 22 is the result for HSDN. We also calculated
average Jaccard similarity for each heatmap.

The ideal result would show dark blue colors (high similarity) to all cells in the heatmap. It means
that top-k pathways that a model relied on are always the same regardless of the hyperparameter.
When comparing Figures 21 and 22, we can see that Natural-HNN tends to rely on the same pathway
regardless of the hyperparameter while HSDN does not. When comparing average Jaccard similarity
scores, we can quantitatively observe that Natural-HNN has better consistency when compared to
HSDN. For example, Jaccard similarity with top 15 pathways of Natural-HNN (21 (b)) has average
similarity of 0.759 while that of HSDN (22 (b)) has average similarity of 0.555.
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From this experiment, we can conclude that Natural-HNN is reliable since it consistently focuses on
the same pathways regardless of the choice of hyperparameters. Also, we could again verify that our
model captures the functionality of pathways (interaction context of hyperedge) and expect that our
model will work reliably in different dataset or different biological applications. Note that similar
analysis for Figure 23 and Figure 24 provides similar conclusion.

(a) Top 10, avg : 0.787 (b) Top 15, avg : 0.759 (c) Top 20, avg : 0.787

(d) Top 50, avg : 0.758 (e) Top 100, avg : 0.717 (f) Top 500, avg : 0.755

Figure 21: Jaccard similarity calculation result for Natural-HNN on BRCA. We can observe that
Natural-HNN generally relies on similar pathways regardless of hyperparameters by showing high
Jaccard similarity value.
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(a) Top 10, avg : 0.562 (b) Top 15, avg : 0.555 (c) Top 20, avg : 0.649

(d) Top 50, avg : 631 (e) Top 100, avg : 0.600 (f) Top 500, avg : 0.638

Figure 22: Jaccard similarity calculation result for HSDN on BRCA. We can observe that HSDN
relies on different pathways for different hyperparameters by showing strong diagonal pattern. This
inconsistency makes HSDN an unreliable model for biology.

(a) Top 10, avg : 0.716 (b) Top 15, avg : 0.761 (c) Top 20, avg : 0.684

(d) Top 50, avg : 0.781 (e) Top 100, avg : 0.754 (f) Top 500, avg : 0.708

Figure 23: Jaccard similarity calculation result for Natural-HNN on HNSC. We can observe that
Natural-HNN generally relies on similar pathways regardless of hyperparameters by showing high
Jaccard similarity value.
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(a) Top 10, avg : 0.357 (b) Top 15, avg : 0.442 (c) Top 20, avg : 0.488

(d) Top 50, avg : 0.582 (e) Top 100, avg : 0.619 (f) Top 500, avg : 0.685

Figure 24: Jaccard similarity calculation result for HSDN on BRCA. We can observe that HSDN
relies on different pathways for different hyperparameters by showing strong diagonal pattern. This
inconsistency makes HSDN an unreliable model for biology.
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G BASIC CONCEPTS IN CATEGORY THEORY

G.1 CATEGORY THEORY

Category theory (Fong & Spivak, 2018; Leinster, 2016) is widely used to represent and analyze the
structure or relation of a system. Instead of focusing on the details, category theory takes bird’s
eye view to see global structure and patterns. Recently, category theory is used to explain learning
mechanism of machine learning methods (Bergomi & Vertechi, 2022; Lewis, 2019; Gavranović,
2019; Fong & Johnson, 2019; Fong et al., 2019; Cruttwell et al., 2022; Shiebler et al., 2021; de Haan
et al., 2020; Barbiero et al., 2023; Yuan, 2023b; Dudzik et al., 2023; Dudzik & Veličković, 2022;
Yuan, 2023a). In this paper, we only use simple, fundamental concepts of category theory: category,
functor, natural transformation and product.

G.2 CATEGORY

𝐴𝐴 𝐹𝐹(𝐴𝐴)

𝐵𝐵 𝐹𝐹(𝐵𝐵)

𝐶𝐶 𝐹𝐹(𝐶𝐶)

𝑓𝑓;𝑔𝑔

𝑓𝑓
𝑖𝑖𝑑𝑑𝐴𝐴

𝐹𝐹

𝐹𝐹(𝑓𝑓)
𝐹𝐹(𝑓𝑓) ;𝐹𝐹 (𝑔𝑔)

𝐹𝐹(𝑖𝑖𝑑𝑑𝐴𝐴)

𝑔𝑔 𝑖𝑖𝑑𝑑𝐵𝐵

𝐹𝐹

𝐹𝐹(𝑔𝑔)

𝐵𝐵𝐹𝐹(𝑖𝑖𝑑𝑑 )
𝑖𝑖𝑑𝑑𝐶𝐶

𝐹𝐹
𝐶𝐶𝐹𝐹(𝑖𝑖𝑑𝑑 )

𝐶𝐶

𝑓𝑓

𝑓𝑓 ; 𝑔𝑔

𝑖𝑖𝑑𝑑𝐴𝐴 𝐴𝐴 𝐵𝐵
𝑔𝑔

𝑖𝑖𝑑𝑑𝐵𝐵

𝑖𝑖𝑑𝑑𝐶𝐶

(a) Category (b) Functor

Category 𝔻𝔻 Category 𝔼𝔼

Figure 25: Category and Functor
A category C is contains four components: collection of objects, morphisms, composition rule and
identities.

• Collection of objects : ObpCq (ex : {A,B,C} in Figure 25 (a))
• For every pair of objects A,B P ObpCq, there exists a set HomCpA,Bq. Element of the set is

morphism and is denoted as: f : A Ñ B.
• For every three objects A,B,C P ObpCq, morphisms f P HomCpA,Bq (i.e. f : A Ñ B) and

g P HomCpB,Cq (i.e. g : B Ñ C), composition rule holds : f o
9 g “ g ˝ f P HomCpA,Cq21.

• For every object A P ObpCq, there exists an identity morphism idA P HomCpA,Aq satisfying the
following : idA

o
9 f “ f “ f o

9 idB for morphism f : A Ñ B.

Fig. 25 (a) shows an example of a category with three objects (A,B,C). For each object, there
is an identity morphism (idA, idB, idC). For every object pair, there is morphism (f , g, f o

9 g) with
composition rules.

One of the most important categories is Set. In Set, the objects are sets and morphisms are functions
mapping two sets. The composition rule is satisfied since a composition of two functions becomes a
function. Another important category is category of relations, which is denoted as Rel. The objects
of Rel are sets and relations R Ď A ˆ B are morphisms between objects A and B. Partially ordered
set or poset can be considered as a category where objects are sets and morphisms are partial orders
ď. Since partial order is a kind of a relation, we can consider this category is a kind of Rel.

In Section 3, we analyzed hypergraph message passing framework, and found that, as nodes (con-
sidering node as set) are included in hyperedges, hypergraph message passing framework has poset
structure with inclusion maps between them. We will define it PISet, a category for poset with
inclusion morphisms (object is a set, morphisms are inclusions). Since inclusions are partial orders,
which is also a relation, we can consider PISet as a kind of Rel category.

We can define our own category, similar to the one in a prior work (Sheshmani & You, 2021),
such that objects are vector representations and their (linear or non-linear) transformations are
morphisms. We will call this a ‘category of Deep Learning Representations’ and denote DLRep.

21Two notations f o
9 g and g ˝ f have the same meaning : “applying f first, and then applying g”
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Figure 26: Natural transformation. Identity morphisms are omitted in the figure for simplicity.

G.3 FUNCTOR

Functor is a structure preserving map between categories. Objects and morphisms in one category
are mapped to objects and morphisms in different category, respectively. Figure 25 (b) shows an
example of a functor mapping from category D to category E. Each object in category D (i.e.,
A,B,C) is mapped to objects in category E (i.e., FpAq,FpBq,FpCq). The morphisms, including
identity morphism, and their compositions in category D (i.e., idA, idB, idC, f , g, f o

9g) are also mapped
to morphisms in category E (i.e., FpidAq,FpidBq,FpidCq,Fpf q,Fpgq,Fpf q o

9 Fpgq). In a metaphorical
sense, functors serve as bridges that connect two distinct realms while maintaining an identical
compositional structure22.

One example can be a functor mapping from Set to DLRep. Each set (object) in Set is mapped to a
vector representation (object) in DLRep. Functions (morphisms) in Set are mapped to transforma-
tions (morphism) between vector representations in DLRep. This functor is related to representation
learning, since entities (i.e. concept or set) are mapped to their vector representations preserving
their compositional structure (relation).

G.4 NATURAL TRANSFORMATION

Given two functors mapping from one category to another category, i.e., F and G : D Ñ E, nat-
ural transformation is a way of relating these two functors using morphisms in target category E.
Specifically, for each object A P D, there exists a morphism αA : FpAq Ñ GpAq in E. The natural
transformation must satisfy the following condition. For every morphism f : A Ñ B in D,

Fpf q o
9 αB “ αA o

9 Gpf q (4)

must hold. This condition is called the naturality condition. Figure 26 shows an example of natural
transformation. Functors F and G map objects and morphisms in category D to category E. Natural
transformation α : F ñ G maps FpAq and FpBq with αA and maps GpAq and GpBq with αB. The
objects and morphisms mapped by two functors as well as natural transformation α all belong to
the category E. Thus, natural transformation can be seen as a way of relating different views using
morphisms in E23.

G.5 PRODUCT

Product of Objects

Let C be a category. For two objects X1,X2 P ObpCq, one can define product of two objects X1 ˆ X2

with morphisms p1 : X1 ˆ X2 Ñ X1 and p2 : X1 ˆ X2 Ñ X2 which are called projections. Then, the
composition of objects in Figure 27 must be satisfied. Given object Y P ObpCq with two morphisms
f1 : Y Ñ X1 and f2 : Y Ñ X2, there exists a unique morphism called pairing xf1, f2y : Y Ñ X1 ˆ X2

22The typical example of deep learning method using this concept is sheaf neural network (Hansen & Geb-
hart, 2020), motivated from cellular sheaf (Hansen & Ghrist, 2019). There are also numerous studies in data
science with a similar perspective (Mansourbeigi, 2018; Vepstas, 2019; Kvinge et al., 2021).

23One typical example of deep learning method using this concept is Natural Graph Networks (de Haan et al.,
2020).
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X1 X2

f1 f2

p2p1

Y

f = ⟨ f 1 , f2⟩

X = X1×X2

Figure 27: Product of objects.

that satisfies the composition : f1 “ xf1, f2y o
9 p1 and f2 “ xf1, f2y o

9 p2. Note that pairing xf1, f2y is
often called as product of morphisms. However to differentiate the concept we introduce below, we
will call it pairng, following the recent work (Zhang & Sugiyama, 2023).

Product of Morphisms

X1

f1

Y1

p1 p2
X = X1 X2

f 1 f 2

Y = Y1 Y2

X2

f2

Y2q2q1

×

×
×

Figure 28: Product morphisms.

Let C be a category. For objects X1,X2,Y1,Y2 P obpCq and morphisms f1 : X1 Ñ Y1 and f2 : X2 Ñ

Y2, we can define product of morphisms f1 ˆ f2 : X1 ˆ X2 Ñ Y1 ˆ Y2 :“ xp1
o
9 f1, p2 o

9 f2y satisfying
the compositional structure shown in Figure 28.
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H ADDITIONAL EXPLANATION IN DETAILS

Note that the basic concepts in category theory are described in Appendix G.

H.1 DISENTANGLED REPRESENTATION LEARNING

Entangled and Disentangled Representation Disentangled representation learning aims to sepa-
rate the factor that is related to the variations of the data. For example, some might try to discover
the factor that affects the color of an object or the factor that affects the background of an image.
In graph neural networks, interactions between entities are usually entangled. In other words, inter-
actions usually contain various factor behind connections but are not explicitly separated. Previous
works like DisenGCN (Ma et al., 2019) tried to disentangle the factor behind the connections.

Recently, DisGNN (Zhao et al., 2022) tried to disentangle edge types during message passing pro-
cess of GNNs. The paper considered interaction types (colleague or neighbors as an example) as
factors of edges and tried to integrate disentanglement during message passing process. This kind
of disentanglement for message passing is the goal of Natural-HNN.

Disentangling as product in category theory

Disentangling methods try to separate an entity into the factors that consists the entity. Thus, it can
be analyzed with concept with product in category theory, which was explained in Appendix G.
Although recent work (Zhang & Sugiyama, 2023) analyzed the concept of disentanglement, we are
going to analyze it in our way, since the paper (Zhang & Sugiyama, 2023) covers disentanglement of
generative factors, which does not suit for message passing framework. The difference comes from
the fact that, generative factor disentanglement is based on equivariance property, whose morphisms
maps an object to itself. Since message passing maps one object to the other object, we need our
own way of analyzing disentanglement24.

Xdis
c Xdis = Xdis × Xdis

c d Xdis
d Hdis

c
Hdis = Hdis ×Hdis Hdis

d

Xen

αX
αX,dαX,c

Hen

αH
αH,c αH,d

pdpc pdpc c d

(a) Disentangling for X (b) Disentangling for H

Figure 29: Disentangling as product of objects.

In section 3, we have seen that disentangling the entangled representation can be seen as a natural
transformation between two representations. The Figure 29 shows the disentanglement as product
of objects. The entangled representation for X (Xen) can be converted to disentangled representa-
tion Xdis through natural transformation αX “ xαX,c, αX,dy. Since disentangled representation is
a collection of factor representations, it can be represented as a product of factor representations
Xdis

c ˆ Xdis
d . The projections pc, pd can extract factor representations Xdis

c ,Xdis
d . This process is the

same as applying αX,c, αX,d respectively. This is the same for disentangling H.

Figure 30 shows how morphisms between disentangled node representations and disentangled hy-
peredge representations are separated. Disentangling morphisms can be explained with the concept
of product of morphisms. In the Figure 30, f dis

c , f dis
d represents factor specific morphisms or factor

specific message passing. The product of two morphisms, f dis
c ˆ f dis

d , corresponds to message passing
for entire factors. What is different from Figure 28 is that we use the same projections pc instead of
using two different projections p1, q1. This is due to the fact that Xdis and Hdis both are disentangled
representation, meaning that the same projection can extract the same factor for both X,H.

Implementation as MLP

24Actually, the biggest difference is that, in generative factor, factor specific morphisms can be independently
mapped to itself. However, in message passing, we need to map all factor related morphisms from one object
(X) to the other (H). If only some of them are used independently, it will be mapped to the another object (not
H).
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Hdis
c cHdis = Hdis Hdis

d Hdis
d

Xdis
c cXdis = Xdis Xdis

d
Xdis

d

pdpc

f dis
c

pc pd

cf dis f dis
d f dis

d

×

×
×

Figure 30: Morphism of products in disentanglement.

Usually, disentangling entangled representation is implemented with MLP. Let’s suppose the desired
output size of disentangled representation (i.e., output size of a vector that concatenated every factor
representations) is d. Usually, K number of factor-specific MLPs (which outputs vector with size d

K )
are used to extract factor representations. This corresponds to Xdis

c ,Xdis
d in Figure 29. As we have

seen above, it is same as applying αX
o
9 pc, αX

o
9 pd. This can be implemented as using one MLP

(which outputs vector with size d), which corresponds to αX and then chunking the disentangled
representations into factor representations. Chunking operation can be considered as projections
(pc, pd). Thus, although we explained as using K factor specific MLPs in Section 4, we actually
use one MLP (which outputs vector with size d) in actual implementation. Thus, the concatenation
operation for hv is not used in the implementation as applying a single MLP equals to the operation
of applying K separate MLPs and then concatenating them.

H.2 CAPTURING INHERENT HETEROGENEITY

Actually, capturing context of interaction has potential of capturing heterogeneous edge types. Let’s
consider the case of heterogeneous graph with heterogeneous edges as an example. GNNs reflect-
ing the edge types can be said as considering the context of interactions between entities. Thus,
capturing interaction context in hyperedges has potential of capturing heterogenous edge types by
considering edge types as categorized result of interaction contexts.

Hen Hdis
d

cHdis = Hdis Hdis
d

Hdis
c

Xen Xdis
d

cXdis =  Xdis Xdis
d

Xdis
c

𝛼𝛼H,c

𝛼𝛼H

𝛼𝛼H,d

pd

pc

𝛼𝛼X,c

𝛼𝛼X

𝛼𝛼X,d

f en f dis
d

pc

pd

cf dis f dis
d

f dis
c

×

×

×

: MLP
: Message

Figure 31: Entire compositional structure. Operations in the implementation are marked with color.
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H.3 INTERPRETATION FOR HYPERGRAPH MPNN

In Appendix H.1, we have seen how we can analyze disentanglement with concepts of product in the
category theory. Applying Figure 29 and Figure 30 to Figure 3 (a) gives the following result (Figure
31). Since this diagram is too complicated, we simplified the figure by extracting factor c related
components which resulted Figure 3 (b). The resulting figure is also a natural transformation as it
can be seen as a result of applying two different functors. The actual implementation (operation) are
marked as the Figure 31.

H.4 METHODOLOGY (HOW IT WORKS)

Since K MLPs are applied to nodes in a hyperedge, it extracts information related to the factors
through projection. However, simple projection does not mean that the factor is related to the in-
teraction context. In this section, we will explain how naturality condition guides, although not
guarantees, each factors to be related to interaction context. The parameters of factor encoders (K
MLPs) are guided to extract interaction context related information during training process. When a
specific factor is helpful for performance (predicting labels), the model would try to update parame-
ters of the factor encoder so that the factor information is reflected a lot in hyperedge representation.
Since relevance score αk

i is multiplied to factor representation to get hyperedge represenation (αk
i hk

ei
),

the parameters will be updated to increase relevance score αk
i . Considering that relevance score αk

i is
calculated by measuring consistency of factor representation (similarity of hyperedge factor repre-
sentation learned from two different branches), high relevance score means that the representations
are similar. Represenations learned from two branches being similar means that it is highly likely
that the naturality condition holds, implying that there exists a morphism between nodes in a hy-
peredge and the hyperedge under specific projection (type) which means the factor is related to the
interaction context. In summary, if a specific context (factor) is informative, the parameter of a fac-
tor encoder will be updated to the direction of satisfying naturality. Thus, the factor encoder will
eventually encode context-related information. When a specific factor is harmful for performance,
the opposite would happen. Since naturality condition guides in which direction to update param-
eters for each factor, although not guaranteed, it is highly likely that each factor contains different
context information.

H.5 RESULT ANALYSIS OF CAPTURING CONTEXT

Actually, Figure 8 (a) and (c) can explain the experiment result shown in Figure 5 (a,b) and Figure
19 (a,b). For example, in Figure 8 (a), we can see that cluster C0 and C1 both have common parent
(C5) and common child (P339). That’s the reason why Figure 5 (a) and (b) both detected high
similarity between those clusters. Also, in Figure 8 (a), C3 and C4 has common child. This can
explain why Figure 5 (a) and (b) both detected high similarity between two clusters. When applying
these analysis with Figure 5 (c) and Figure 19 (c), we can clearly see that HSDN failed to capture
functional similarity or hierarchy of pathways.

On the other hand, when comparing Figure 8 (b) and Figure 5 (f), we can see some similarities are
not captured. For example, in Figure 8 (b), clusters C0,C1,C2 need to have functional similarity
since they contain common children or have common parent. However, in Figure 5 (f), we can see
that HSDN failed to capture the functional similarities of those clusters. Through this result, we can
again conclude that HSDN failed to capture functional context while Natural-HNN could capture it.

Additionally, we can explain why some diagonals of heatmap do not have high value. For example,
C8 in Figure 5 (a) and (b) cannot have high similarity between pathways within cluster C8 as C8

contains all pathways. Note that performing the same analysis with Figure 8 (c), (d), Figure 19 gives
the similar result.

H.6 MESSAGE PASSING AS OPINION DYNAMICS

Opinion dynamics (Hansen & Ghrist, 2021; Jackson, 2011; Siegel, 2009) is a research field studying
how opinions or preferences change over time. Each entity has their preferences or opinions. The
interactions among entities can change their opinion over time. As interactions can change entities,
opinion dynamics have large similarities with the mechanism of Graph Neural Networks. Message
passing mechanisms generates messages and sends to its neighbors. The neighbor node receives
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message and update its representation. Mean aggregation process can be considered as minimizing
the difference between messages and its own representation. This mechanism can be expressed as
the concept of consensus in the opinion dynamics. In opinion dynamics, after the interaction, the
difference of opinions of people can be reduced over time. When their opinions becomes similar
through interactions, we consider the case as reaching the consensus.

In the group discussion example in Section 1, we considered an hyperedge as group discussion. The
group discussion will eventually reach a conclusion or a consensus among entities. This is actually
the same as node-to-hyperedge message passing process. The hyperedge representation (consensus)
are calculated by aggregating messages of nodes (opinions of participants). After the discussion, the
consensus will change the opinion of participants, which corresponds to node representation update
in message passing framework.

H.7 ABOUT CONSENSUS

In reality, there can be much more complex cases than what is explained above. Recent opinion
dynamics tackles various cases. For example, there can be some cases where some participants
actively participate the discussion while other participate passively. In message passing framework,
we can think of attention based models as some nodes have higher importance over others. In
some cases, some people can partially lie during the discussion to reach consensus. This can be
considered as reaching an apparent consensus. Sheaf hypergraph networks (Duta et al., 2024) can
be explained with this concept. Participants (nodes) express transformed opinion (transformation
of node feature) during discussion rather than directly expressing their opinions (node feature).
In our group discussion example, we considered the case where discussion topics can be differed
by discussions (hyperedge). In this case, participants express their topic related opinions (factor
representation) on a specific topic (context).

As we can see, we can think of various cases of interactions which can be modeled as various mes-
sage passing neural networks. Since the goal of Natural-HNN is to capture context of interaction,
our group discussion example focused on explaining the concept of context as topic of discussion.
When reading our example, some might think of other cases that could happen in group discussion,
such as not reaching a consensus (community cleavage problem, (Friedkin, 2015)). However, such
additional cases are not related to the concept of interaction context. Thus, we did not considered
those cases in the example and Natural-HNN. If we want to accommodate additional cases or con-
straints, we need to add additional module to our model, which is not the goal of this paper. For
example, in the case of some nodes not agreeing on opinion of majority (consensus failure), we can
think of a model that can disconnect some nodes from a hyperedge.

H.8 COMPARISON WITH WHATSNET

H.8.1 DEFINITION OF CONTEXT AND MODEL

WHATSNET. WHATSNET (Choe et al., 2023) tries to explicitly consider hyperedge-dependent
relationship among nodes participating the hyperedge. They focus on the insight that importance
or role of a node is shaped by the other participants (nodes) in the hyperedge. They adopt Set
Transformer to get hyperedge-dependent node embeddings and then get hyperedge embeddings.
During this process, they use relative centrality (ranking) as positional encoding, with a motivation
that relative position of nodes within hyperedge is closely related to the edge-dependent node labels
or characteristics.

Natural-HNN. We tried to capture the context that is related to the background or condition of
interaction. In other words, Natural-HNN tries to capture ‘why or in which condition this interaction
occurs’. We used the naturality condition that must be satisfied when the interaction is related to a
specific context. Since Natural-HNN focuses on the context that works as backround or condition,
and WHATSNET tries to capture context shaped by participants, the models aim to capture different
contexts.

Paper author & Group discussion example. WHATSNET provided a paper author example.
When a paper is written by four students and one professor, it is highly likely that the professor
becomes the last author considering the participants (context). The context defined by Natural-
HNN is related to the topic or field of the research paper. These two contexts are independent.
For example, the topic of research is not necessarily related to the relationship of participants. The
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Age related pathway Disease related pathway

Drug A Drug B

Gene 3
Gene 1

Gene 2

Gene 5

Gene 4

Figure 32: Example of combination therapy. Two different drugs target different proteins in different
pathways to get the synergetic effect.

research topic can be economics, politics or science regardless of the relationship of participants.
Also, relationship of participants are not shaped from the topic. A similar metaphor can be applied
to our group discussion example.

H.8.2 ADVANTAGES OF NATURAL-HNN AND FUTURE WORK

Advantage of capturing context. In reality, many interactions have purposes and are often affected
by environment. For example, genetic pathways have specific functional purpose behind gene in-
teraction and its characteristics or gene expressions are affected by environment such as hypoxia
(Liang et al., 2018). Also, interaction occurs under specific conditions. Most human cells have the
same genes and pathways but they are expressed differently depending on cell type, tissue, disease
or age condition. For example, activation of growth hormone-related pathway is likely to depend on
the age of a person. Reflecting such contexts in gene or protein representations help better predicting
the influence of mutation or treatment.

Advantage in cancer subtype classification. Many biological mechanisms operate through path-
ways. When some pathways are not working properly, it affects the function of important biological
process such as cell proliferation. When cell proliferation is not controlled, it can cause tumor
growth. Thus, gene related diseases such as cancer are highly affected by malfunctions of pathways.
In other words, the functions that are affected by malfunctioning pathways are highly related to the
type of cancer. Hence, the status of a pathway with respect to its function (performing function
properly or not) is important for cancer subtype classification. Since features of genes are statistics
of gene expression levels (how many times a gene is activated, measured in context-independent
manner), the pathway representation learned from gene interaction likely includes the status of a
pathway. Since genes exhibit different characteristics or gene expression levels under different con-
text, it is important to get interaction context-specific representations to properly get the status of
pathways.

More Applications. One application can be drug synergy prediction (Tang & Gottlieb, 2022) for
combination therapy (Figure 32). To get better efficacy and cytotoxicity in chemotherapy, combina-
tion of two or more drugs are often prescribed for the patients. In Figure 32, drug A targets gene
1 that participates age-related pathway and drug B targets gene 5 that participates disease-related
pathway. Since gene 1 interacts with gene 3 through one pathway and gene 5 interacts with gene 3
through the other pathway, targeting gene 1 and gene 5 at the same time can have effects on gene
3. However, the synergy can depend on the conditon or context of interaction. Since age-related
pathway is activated (interaction occurs) only for certain age (period of human growth for example),
the synergy depends on the patient’s age. Thus, reflecting such context for gene or protein repre-
sentation is important. Another application can be drug repurposing task (Han et al., 2024) which
seeks new uses for existing drugs. Other example can be predicting the influence of mutation of
a gene. Since genes participate pathways to perform biological function, reflecting functional se-
mantic (purpose of interaction) or condition can be helpful for predicting influence of mutation. The
provided examples are all related to biology domain since biology is the field where multiway in-
teractions with contexts are easily found. However, considering that many complex systems contain
interaction with contexts (condition or purpose), we expect to encounter more examples in other
domains in the future.

Future work 1. Since Natural-HNN averages factor representations of nodes in node-to-hyperedge
propagation, it cannot capture context-specific node importance. As our future work, we are plan-
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ning to devise a model that can give different importance to nodes per factor without relying on
similarity criterion. Note that the importance captured in this context is different from WHATSNET
as the importance is decided by the context of interaction rather than who particiaptes the interaction.
For example, if economy is the topic of a discussion, it might be better to give more importance to a
person who majored economics (or assign the person as moderator). This importance is not depen-
dent on ‘who participates the discussion’ as the importance of participants can change if the topic
differs even with the same participants.

Future work 2. As we have seen through several examples in Appendix H.8.1, the definition of
contexts are independent. In other words, the context shaped by ‘who participates the interaction’
and context related to condition or background can compose richer context. For example, let’s
suppose one grown-up researcher majored in biology, another grown-up researcher majored in AI,
two students from biology domain and other two students from AI domain wrote a research paper.
If the topic is related to biology or the paper is submitted to biology journal, the last author might
be the grown-up researcher majored in biology. On the other hand, if the topic is more focused on
AI or submitted to AI conference, the last author might be the grown-up researcher majored in AI.
Thus, we believe it is possible to integrate two contexts to capture rich context of interaction.
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