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Abstract

Aligning neural dynamics with movements is a fundamental goal of neuroscience
and brain-machine interfaces. However, we still lack a dimensionality reduction
method that can align low-dimensional latent dynamics with movement. To fill this
gap, we propose Neural Embedding Ranks (NER), which embed neural dynamics
into a 3D latent space and contrast the embeddings based on movement ranks.
Essentially, NER learns to regress continuous representations of neural dynam-
ics (i.e., embeddings) on continuous movement. We apply NER and six other
dimensionality reduction techniques to neurons in the primary motor cortex (M1),
dorsal premotor cortex (PMd), and primary somatosensory cortex (S1) as monkeys
perform reaching tasks. Only NER aligns latent dynamics with both hand position
and direction, visualizable in 3D. NER reveals consistent latent dynamics in M1
and PMd across sixteen sessions over one year. A linear regression decoder with
NER explains 86% and 97% of the variance in velocity and position, respectively.
Linear models trained on data from one session can decode velocity, position, and
direction in held-out test data from different dates and areas (64%, 88%, and 90%).
NER also reveals distinct latent dynamics in S1 during consistent movements and
in M1 when the monkey performs curved reaching tasks. The code is available at
https://github.com/NeuroscienceAI/NER.

1 Introduction

It has long been thought that individual neurons in the motor and premotor cortex, similar to
those in the visual and somatosensory cortex, are tuned to specific movement parameters such
as direction. However, this static and receptive field-based neural representation fails to explain
movement trajectories during simple tasks like reaching. Recent studies have found that the activities
of multiple simultaneously recorded neurons, which fire spikes in a time-dependent manner, encode
reaching movements [7]. Unlike the one-dimensional dynamics from a single neuron, understanding
how movements are represented by these high-dimensional neural dynamics is challenging. In
systems neuroscience and brain-machine interfaces, there is significant motivation to reduce these
high-dimensional neural dynamics to lower-dimensional latent dynamics. First, visualizing invisible
high-dimensional neural dynamics. This involves a trade-off between dimensionality and explained
variance. To explain a complex reaching task, at least six dimensions are typically required. For
example, in an eight-direction center-out reaching task, [8][6][9] selects fifteen dimensions for the
PMd, ten for the M1, and eight for the S1. Therefore, we need to further reduce the dimensionality of
these “low-dimensional” latent dynamics. Currently, we still lack a method that can directly explain
enough variance within three dimensions. Second, comparing movements with latent dynamics.
After dimensionality reduction, we can visualize the trajectories of latent dynamics over time. For
instance, [5] reveals rotational latent dynamics during reaching tasks using principal component
analysis (PCA). [20] found that animals performing similar tasks exhibit similar latent dynamics.
However, these trajectories do not align precisely with the reaching movements: when the hand
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Figure 1: NER aligns 3D latent dynamics with movements and enabling cross sessions movement
decoding. a Top: The monkey performs a center-out reaching task in eight directions using a planar
manipulandum. Hand velocity is computed from hand position. Bottom: The monkey moves the
cursor to outer targets to receive rewards. b Top: Neural dynamics are recorded using a 96-channel
Utah array in two monkeys. Monkey C has implants in the M1 of the right hemisphere first and in
M1 and PMd of the left hemisphere second. Monkey L has an implant in area 2 of the S1 of the
left hemisphere. During task, all monkeys use the hand contralateral to the implanted hemisphere.
Bottom: Spiking activities from multiple neurons (44 to 211) are recorded during multiple trials (168
to 1038) of the behavioral task. Dimensionality reduction reduces 200-dimensional neural dynamics
to three-dimensional latent dynamics. c Top: Neural dynamics from 190 dimensions (neurons) in
the PMd are reduced to 3D latent dynamics. The figure includes 7600 dots from 190 trials with 40
bins each. Bottom: Trial-averaged latent dynamics. Data is from Monkey C (date: 2016-10-14). d
Top: Linear and logistic regression decoders are trained on the same independent variables (latent
dynamics) but different dependent variables (hand velocities and directions) using 80% of trial data.
Bottom: The trained decoder from 80% of trial data is used to predict movements on the 20% held-out
test data. The model trained on one day predicts movements across one year, in the contralateral M1,
and ipsilateral PMd. e Top: Two linear decoders trained from c decode hand velocities (positions) and
directions with R-squared accuracy of 86% (96%) and peak accuracy of 97%, respectively, on the 20%
held-out test data. Bottom: Decoders trained on the same day (diagonal) have much better decoding
performance than models trained on different conditions (off-diagonal) using previous dimensionality
reduction methods, whereas our method has higher and consistent decoding performance.

reaches in eight directions, the trajectories of latent dynamics are neither in eight distinct directions
nor well-separated, often appearing entangled. Third, decoding movement using latent dynamics.
Decoders trained on individual neural activities are commonly used to predict movements [10].
However, a drawback of using individual neural activities is that when the identities of neurons
change during long-term recordings, the decoding performance deteriorates [6]. Additionally, it is
challenging to decode movement from different brain areas or across different animals. Decoders
trained on latent dynamics facilitate long-term or cross-animal decoding. Since latent dynamics do
not fully capture neural dynamics, decoding performance is often suboptimal with linear decoders,
necessitating the use of nonlinear decoders or deep neural networks. Thus, decoding movement using
a linear decoder without hyperparameters remains a significant challenge.

As our goal is to extract the latent dynamics most informative about movements, we have decided to
train the latent dynamics using movements as the target. Several recent studies have already trained
latent dynamics to classify different movement directions or positions using variational auto-encoders
(VAE) [26][11][15] or contrastive learning[22][1]. In this paper, we are inspired by the fact that many
features, including movements, are continuous, and a major task of many neurons is not classification
but regression. For example, neurons display monotonic tunings to light intensity and sound levels
[3][19]. Even for discrete features like faces and objects, neurons in inferotemporal cortex encode
continuous feature dimensions and can decode face identities using linear regression [2][4]. Therefore,
we trained latent dynamics to regress movement trajectories by minimizing the ranking loss. We
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Figure 2: NER reveals consistent and movements aligned latent dynamics in M1. a Single trial (top)
and averaged (bottom) latent dynamics from six sessions across one year in two hemispheres. Latent
dynamics are rotated with reference to 2016-10-14 session using one of the eight reaching directions.
b-c, similar to a but using Cebra and piVAE. Fig 8 shows remaining four sessions’ latent dynamics of
same monkey C. Fig 9 shows the single trial and/or averaged latent dynamics revealed by five other
methods. Fig 10 show the trial-averaged latent dynamics before rotation. Fig 11 shows the entangled
neural embeddings using PCA and time-stimulus components revealed by dPCA.

demonstrate that our method can reveal three-dimensional, behaviorally aligned latent dynamics. The
revealed latent dynamics are highly informative and consistent in M1 and PMd but not in S1. Related
work, motivation, our model, results in PMd, S1, curved movements in M1, network training, and
datasets are given in Appendix. Fig 1 visualizes the pipeline used in this study.

2 Results

2.1 Movements aligned latent dynamics are consistent over years in M1

Across all ten sessions in the M1 of left and right hemisphere, NER consistently reveals neural
embeddings that are aligned with movement (Fig 2a, Fig 8a). Importantly, on the initial movement
stage, latent dynamics converge on the same starting points and form a pinwheel structure that
resemble ground truth movements. Furthermore, we found almost the same neural embeddings in
both hemispheres even if the data collection were separated over one year. Cebra is the 2nd best
method that found comparable latent dynamics where both directions and positions are roughly
aligned with movements, for both single and averaged embeddings (Fig 2b, Fig 8b). However, there
are two limitations for Cebra: the movement starting points are widely separated which is different
from ground truth movements, and less consistent latent dynamics cross sessions. For example,
it revealed connected latent dynamics at the movements starting points on only two sessions (Fig
2b). piVAE is the 3rd best method where it has rough direction aligned latent dynamics at different
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directions and relatively separated single-trial neural embeddings (Fig 2c, Fig 8c). However, the
latent dynamics is just correlated with movements but not aligned, and is less consistent across
sessions. UMAP with labels shows clearly clustered neural embeddings corresponds different angles
whereas UMAP without labels shows extended instead of higher clustered latent dynamics (Fig 9).
Both models fail to generate aligned and consistent latent dynamics. PCA and dPCA also generate
identifiable latent dynamics (Fig 9) and dPCA reveals both time and stimulus components (Fig 9).
A major limitation of both methods is the mixed single trials neural embeddings (Fig 9).

Together, NER represent the best method for revealing movements aligned latent dynamics. We will
further examine its ability in PMd and S1, and leverage the aligned latent dynamics for decoding
movements within and across sessions, and exploring movement specific latent dynamics.

a b

c d
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Hand movements Explained movements
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UMAP w/ label

X-vel
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Figure 3: Explained variance of movements in M1, PMd, and S1. a Left, hand movement trajectories.
Right, predicted trajectories by two decoders. The data is collected from PMd on 2016-10-14. The
explained variance for the velocities and positions are 90% and 98%, respectively. b Hand direction
classification accuracy using a logistic regression decoder. Shaded areas are standard deviation over
six sessions from M1. c Linear regression decoder explained variance of hand velocities using the
latent dynamics revealed by five dimensionality reduction methods (different color and shape). X-axis
indicates the date of different sessions. Left, ten sessions from the M1 of Monkey C (six on the left
and four on the right). Right, six sessions from PMd of Monkey C and four sessions from S1 of
Monkey H. d Similar to c but for hand positions. Fig 12 shows the direction tuning curve in PMd,
the correlation between tuning curves and velocities, and explained variance on directions.

2.2 Explained variance of movements using linear decoders in M1, PMd, and S1

Five dimensionality reduction methods reveal the single trial latent dynamics that are dependent
on movements, next we will use those latent dynamics as the independent variables to explain the
variance of dependent variables, i.e., hand directions, velocities and positions.

Fig 3a shows the ground truth and predicted hand movement trajectories using latent dynamics
revealed by NER in PMd. A linear regression decoder can explain 90% and 98% variance in hand
velocities and positions, respectively. In both M1 and PMd (Fig 3b, Fig 12a), a logistic regression
decoder reveals tuning of direction classification accuracy from the start of go cue to the end of
animal reach target. This tuning curve is highly correlated with hand velocities using the latency
dynamics extracted by NER but not Cebra (M1: 0.93 vs 0.28, PMd: 0.93 vs 0.13. Fig 12b). NER
outperforms four other methods in all sessions for explaining the variance of both hand velocities and
positions (Fig 3c, d). For example, across ten sessions in the M1, the NER explains 86% of variance
in velocities whereas the 2nd best model piVAE only explains 35% variance. We observed similar
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Figure 4: Decoding within and across time and brain hemisphere over years in M1. a-d Three
methods (NER, Cebra, and piVAE) are applied to ten sessions’ neural dynamics. Linear and logistic
regression decoder a, c, e or nonlinear k-nearest neighbors decoder b, d, f are trained on 80% of data
and are used to decode velocities, positions and directions on 20% remaining data within (diagonal)
and cross sessions (off-diagonal). Brighter color indicates higher decoding performance. a Same
session, cross session and hemisphere velocities decoding using linear regression decoder. Notice
color bars are different for three methods and most values in Cebra and piVAE are negative. b Similar
to a but using the nonlinear kNN decoder. The latent dynamics of Cebra is sixteen dimensions instead
of three. c-d Similar to a-b but the dependent decoding variable is hand positions. Notice the range
of color bars is 0-1 for all six figures. e-f Similar to a-b but the dependent decoding variable is hand
directions. Notice the range of color bars is 0-100 for all six figures.

findings in the PMd (89% vs 32%) and S1 (86% vs 47%). Together, combined with linear decoders,
NER shows clearest velocities dependent direction tuning and explains the largest variance in the
velocities and positions.

2.3 Long term and cross hemispheres decoding in M1

NER explains the largest variance in both hand velocities and positions in the 80% training datasets,
we next test the trained model on the remaining 20% of test data. In addition to decode test data from
the same session of one day, we also test it against other sessions. We will perform the comparison in
M1 first in the part (Fig 4). Then, we will turn our focus to PMd in the second part (Fig 5). Finally,
we will compare it in the S1 (Fig 6). In addition to linear regression, we also tested a nonlinear
decoder kNN.

Fig 4a shows the velocity decoding performance using linear regression decoder and three dimension-
ality reduction methods. Surprisingly, a linear decoder could not decode hand velocities using latent
dynamics revealed Cebra (all variances are negative) and piVAE (only four positive). In contrast, all
the variance in NER are positive (minimum: 0.24) and performance on different sessions is similar to
within sessions (0.64 vs 0.71). A kNN decoder (Fig 4b) achieved high performance for Cebra and
piVAE only for the within session latent dynamics. NER outperforms Cebra and piVAE by a large
margin for all conditions in position decoding (Fig 4c). The kNN decoder does not improve NER
performance compared to the linear decoder, but for Cebra and piVAE, the kNN decoder improves
within session data performance over NER (Fig 4d). However, this sacrifices the cross session
decoding performance (0.89 vs 0.18 and 0.13). Fig 4e shows the direction decoding accuracy where
NER still outperforms Cebra and piVAE. We observed similar results using a kNN decoder (Fig 4f).
Together, comparing with Cebra and piVAE, NER achieves much higher performance in all sessions
using linear decoder and in cross sessions using nonlinear decoder.
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A Appendix / supplemental material

A.1 Related work

There are at least five categories of dimensionality reduction methods: First, linear methods such as
PCA, jPCA[5], demixed PCA (dPCA)[13], and preferential subspace identification (PSID)[21]. PCA
captures the majority of the variance in the data, jPCA reveals the rotational dynamics of monkey
reaching, dPCA further reveals task-related components, and PSID can extract latent dynamics
that predict motion during reach versus return epochs. Second, nonlinear methods like uniform
manifold approximation and projection (UMAP)[16] and t-distributed stochastic neighbor embedding
(tSNE)[23] have been extensively used in biological data, such as revealing different neuron cell
types[14]. These methods can reveal identities but often collapse temporal dynamics that resemble
neural trajectories. UMAP with labels has been used for dimensionality reduction[22][26]. Third,
generative methods using recurrent neural networks (RNNs) or Transformers, such as latent factor
analysis via dynamical systems (LFADS)[17], AutoLFADS[12], RADICaL[27], and Neural Data
Transformer (NDT)[24], have been shown to model single-trial variability in neural spiking activity
better than PCA. These methods have restrictive explicit assumptions about the underlying statistics
of the data. Fourth, label-guided generative methods using VAE, such as Poisson identifiable VAE
(piVAE)[26], SwapVAE[15], and targeted neural dynamical modeling (TNDM)[11]. For example,
piVAE explicitly uses labels (both discrete and continuous) to shape the embeddings. It reveals
eight well separated latent dynamics in M1 but cannot align with movements trajectories in each
direction. Fifth, most recently, contrastive learning methods have been introduced for learning robust
and generalizable representations of neural population dynamics, such as Cebra[22] and Mine Your
Own vieW (MYOW)[1]. For example, comparing to piVAE, AutoLFADS, and UMAP, Cebra shows
the most identifiable latent dynamics correponding to different hand directions in the S1, although
the trajectoris of latent dynamics are not correlated with movements.

To fairly evaluate our dimensionality reduction method against related methods, we chose six
representative methods from various categories: PCA, dPCA, UMAP (with and without labels),
piVAE, and Cebra. To eliminate bias originating from a single session in a single brain area, where
piVAE and Cebra were previously tested, we conducted experiments in M1, PMd, and S1 across a
total of twenty sessions.

A.2 Model

Cebra considers each embedding in a batch (say 3) as a discrete class. For an anchor, it contrasts with
its augmented embedding as a positive pair and 3 randomly sampled embeddings as negative pairs.
NER ranks 6 embeddings according to their continuous labels. Then it contrasts an anchor with its
augmented or 1st embedding as a positive pair and the remaining 4 embeddings as negative pairs.
NER does not stop here; it continues by contrasting the 2nd embedding as a positive pair and the
remaining 3 embeddings as negative pairs. This process continues until all the embeddings have been
positively contrasted with the anchor. NER learns a regression-aware representation that orders all
embeddings in a batch.

We are motivated by the fact that Cebra treats continuous labels as many discrete classes, which
cannot be well separated in low-dimensional space. These classes are also highly imbalanced,
with many more near-zero classes. NER aims to solve the high dimensionality and class
imbalance issues present in Cebra.

We used the same sampling and neural feature encoder as Cebra[22] to extract the neural embeddings.
Here, we explain how the neural embeddings are aligned with movement ranks by minimizing the
Rank and Contrast loss (RNC[25]). The labels for the neural embeddings are XY velocities and
reaching directions. Any paired embedding can be positive or negative depending on the comparison
of their label distance to all other pairs within each batch. The training objective is to rank each
neural embedding according to their rank in the labels.

Given an anchor vi which is the feature got from the decoder, Si,j := {vk|k, d(ỹi, ỹk) ≥ d(ỹi, ỹj)}
denotes the set of samples that are of higher ranks than vj in terms of label distance w.r.t. vi, where
d(·, ·) is the distance measure between two labels (e.g. L1 distance). Then the normalized likelihood
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of vj given vi and Si,j can be written as

P (vj |vi, Si,j) =
exp(sim(vi, vj)/τ)∑

vk∈Si,j
exp(sim(vi, vk))/τ

where sim(·, ·) is the similarity measure between two feature embeddings and τ denotes the tempera-
ture. Per-sample RNC loss is defined as the average negative log-likelihood over all other samples in
a given batch:

l
(i)
RNC =

1

2N − 1

2N∑
j=1,j ̸=i

−log
exp(sim(vi, vj)/τ)∑

vk∈Si,j
exp(sim(vi, vk)/τ)

LRNC is enumerating over all N samples in a batch as anchors to enforce the entire feature embed-
dings ordered according to their orders in the label space:

LRNC =
1

N

N∑
i=1

l
(i)
RNC =

1

N

N∑
i=1

1

N − 1

N∑
j=1,̸=i

−log
exp(sim(vi, vj)/τ)∑

vk∈Si,j
exp(sim(vi, vk))/τ

A.3 Latent dynamics in PMd and decoding between M1 and PMd

Next, we turned our attention to PMd. Surprisingly, NER revealed the same latent dynamics in this
higher order motor areas (Fig 5a). Two other dimensionality reduction methods also found similar
latent dynamics but were less consistent and not aligned with movements (Fig 13). Fig 5b shows the
within and cross session velocities decoding using linear regression decoder (left) and kNN decoder
(right). Consistent to M1, in the PMd, first, both Cebra and piVAE fail using linear regression where
NER achieves similar performance in all conditions, regardless of within and cross sessions. Second,
NER is robust to different decoder whereas Cebra and piVAE change from failed state to outperform
NER for within session latent dynamics using kNN decoder. Lastly, even using the kNN decoder, the
Cebra and piVAE still fail on cross session decoding, whereas NER has similar performance. We also
examined the positions and directions decoding performance and found that NER still outperforms
two other methods (Fig 5c, Fig 14). Together, NER reveals consistent latent dynamics in PMd and
could be applied to decode movements between PMd and M1.

A.4 Same movements but different latent dynamics in S1

Lastly, we checked the latent dynamics and movement decoding in the S1. NER reveals consistent
latent dynamics in the S1 (Fig 6a, b). After rotating the latent dynamics with reference to the target
in Fig 2, they show consistent but different shape than the latent dynamics observed in M1 and
PMd. Velocity decoding using a linear regression decoder only works when the latent dynamics are
extracted by the NER (Fig 6c, d). Although three methods all work for the positions decoding, the
NER outperforms Cebra and piVAE in all nine conditions (Fig 6e). Although S1 displays different
latent dynamics from M1 and PMd, NER is still the best method for decoding movement both within
and across sessions in S1.

A.5 Curved movements with wider latent dynamics in M1

Lastly, we run both NER and Cebra on a new experiment where a monkey performs both straight
and curved hand movements in different directions with simultaneous neural recordings in the M1
(Fig 7a). We first examined the latent dynamics when monkey perform straight hand movements
at six directions (Fig 7b). Surprisingly, we found that both single and averaged latent dynamics
align with movements (Fig 7c). Furthermore, they display similar shape in previously shown latent
dynamics in M1. Next, we chose three hand directions and each direction has both straight and curved
hand movements (Fig 7e). When we trained both NER and Cebra on single directions, only NER
revealed clearly separated latent dynamics corresponding to straight and curved hand movements (Fig
7f). The difference among two methods are even clear when they were trained on three directions
together: NER revealed narrower latent dynamics for straight movements that were surrounded but
latent dynamics formed by the curved movements. The explained variance of NER is also better
than Cebra for three angels, especially on the combined angles (Fig 16c). Last, we chose an even
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Figure 5: Latent dynamics in PMd and across brain areas decoding. a Trial averaged latent dynamics
in the PMd revealed by NER. The rotation reference is same as Fig 2 (i.e., 2016-10-14). b Latent
dynamics used previously in M1 are added. Same date, cross date and brain areas velocities decoding
using linear regression (left) and kNN (right) decoder and latent dynamics reveals by three methods.
Notice color bars are different for three dimensionality reduction methods and most values in Cebra
and piVAE are negative. c Similar to b but the range of color bar is fixed (0-1). Fig 13 shows the
single-trial and averaged latent dynamics revealed by Cebra and piVAE. Fig 14 shows the hand
directions decoding performance using logistic regression decoder.

more challenging condition where all the six reaching movements are curved (Fig 7g). In the latent
space, two curved movements at same direction have closer but separable latent dynamics (Fig 7h).
Although Cebra archives compatible performance on single direction, it fails on combined directions
(Fig 16e). NER also has higher explained variance than Cebra constantly (Fig 16f). Together, NER
could not only align latent dynamics with straight movements, but also works well for aligning curved
hand movements and differing them from straight hand movements.

piVAECebraNER

dia: 0.9 off: 0.77 dia: 0.6 off: 0.45 dia: 0.73 off: 0.51

Ve
lo

ci
tie

s
Po

si
tio

ns

d

e

a

b

c

dia: 0.67 off: 0.56 dia: -4.6 off: -4.8 dia: -0.38 off: -0.75
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Figure 6: Distinct latent dynamics with same movement in S1. a Trial averaged latent dynamics
revealed by NER. The reference target is same session used in Fig 2. b The reference target is first
session in S1. c Left, on 80% held-in trials, the explained variance by linear (velocities) and logistic
(for direction) regression decoders are 91% and 97%, respectively. Right, on 20% held-out test trials,
trained linear decoder decode velocities and positions with performance of 71% and 90%, respectively.
The data is collected on 2017-12-01. d Same and cross date velocities decoding performance using
the linear regression decoder and three dimensionality reduction methods. Notice the color bars are
different and all the values in the Cebra and piVAE are negative. e Similar to d but for positions.
Notice the color bars are fixed for all three methods. Fig 15 shows latency dynamics revealed by
Cebra and piVAE.
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Figure 7: Distinct latent dynamics align with different movements in M1. a A monkey makes a curved
reaching task through a virtual maze and neural activities from M1 are recorded simultaneously. There
are multiple reaching directions and monkey need to make curved movements when there is a barrier
on the trajectory. The cartoon from [18]. b Hand positions at six different target directions without
barriers (i.e., straight hand movements). c Latent dynamics from single trial (left) and averaged
(right). d Explained variance of hand movements only (velocity: 0.79, position: 0.92). The hand
directions (i.e., colors) are assigned manually. e Hand movements at three different target directions
without (straight movements) and with barriers (curve movements). f Latent dynamics of curved
(stars) and straight (dots with black line) hand movements at each and combined directions together.
g Hand movements at four different target directions that all have barriers (curve movements). h
Trained latent dynamics from one pair (1st) or three pairs (3rd) of curved movements, and decoder
explained hand movements (2nd and 4th). Fig 16 shows comparing results by Cebra.

A.6 Discussion

A benchmark of NER and six other dimensionality reduction methods across multiple brain areas and
two movement tasks reveals its superior performance in uncovering latent dynamics. We believe the
biggest advantage of our method is its ability to extract nearly identical latent dynamics across brain
areas and over extended periods. This opens new avenues for both fundamental neuroscience research
and brain-machine interfaces (BMI). [6][20] discovered preserved latent dynamics across time and
animals performing similar behaviors using the PCA method. The latent dynamics revealed by NER
in Fig 2, 5, 6, 7 are significantly more informative than those uncovered by PCA. We believe NER
will help neuroscientists probe the stability of latent dynamics under various conditions. For BMI
applications, we show that NER combined with a simple linear decoder can predict hand movements
across years, brain areas, and hemispheres. This capability allows training latent dynamics within
and between subjects and predicting movements in other subjects. The linear decoder’s lack of
hyperparameters is also a significant advantage.

The application of NER is not limited to hand movements using neurophysiological recordings.
Latent dynamics can be revealed as long as the learning target is continuous. This includes latent
dynamics in the hippocampus representing the body position of running rats and latent dynamics in
the visual cortex representing embedded video features [22]. Similarly, the recording modalities are
not limited to single-neuron electrophysiology; other methods such as calcium imaging, local-field
potentials, and EEG can also be used. However, one limitation of our method, like others, is its ability
to reveal latent dynamics only for stereotyped simple movement tasks. Each reaching direction needs
to be repeated multiple times to obtain enough training samples. In daily life, natural movements
are rarely stereotyped. Therefore, our method cannot be applied to random reaching tasks without
binning trials with similar reaching directions[18]. Even when the reaching direction is repeated, our
method (like others) cannot reveal identifiable latent dynamics representing more than 20 conditions.
In our final experiments using curved movements, we manually chose three pairs of reaching tasks.
Both NER and Cebra failed when all 108 conditions were trained simultaneously. More work is
needed to address complex movements.
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A.7 Datasets Code

Computer information: Operating System, Ubuntu, GPU, NVIDIA RTX A5000, computer memory,
42 GB

A.7.1 Center-out reaching experiments in M1, PMd, and S1

Behavior

The dataset comprises behavioral task data from two male Macaca mulatta monkeys (Monkeys H and
C). These monkeys were trained to sit in a primate chair and perform a center-out reaching task using
a planar manipulandum with the hand contralateral to the implanted hemisphere. During each trial,
the monkey started by moving a cursor to a central target. After a variable waiting period, one of
eight outer targets (equally spaced along a circle of 6–8 cm radius) was presented. Monkeys C and H
differed in the task protocols:

Monkey C: Trained to wait for an auditory go cue during a delay period of 0.5–1.5 seconds while
the target remained visible. Upon receiving the cue, the monkey had to move the cursor to the outer
target within 1 second and hold it there for 0.5 seconds to receive a liquid reward.

Monkey H: No delay period; the monkey had to move the cursor to the outer target within 1 second
and hold it there for 0.1 seconds.

For both monkeys, the trial restarted by returning the cursor to the central target. Endpoint positions
of the manipulandum were recorded at 1 kHz, and task event timings were digitally logged. Hand
velocity was computed as the derivative of hand position. The dataset includes 6 sessions for Monkey
C and 5 sessions for Monkey H, considering only successful trials (an average of 307±221 trials per
session, mean ± s.d.)

Neural recordings

The dataset consists of neural recordings from two male Macaque monkeys. These recordings were
obtained using 96-channel Utah electrode arrays implanted in specific cortical regions.

Monkey C: Initially implanted in the right primary motor cortex (M1) and later received implants in
the left M1 and dorsal premotor cortex (PMd) (denoted as CR and CL, respectively).

Monkey H: Implanted in area 2 of the primary somatosensory cortex of the left hemisphere.

Neural activity was recorded using a Cerebus system (Blackrock Microsystems, Salt Lake City, UT)
at a sampling frequency of 30 kHz. The recorded signals underwent band-pass filtering (250–5000
Hz) and were converted to spike times based on threshold crossings. Spike sorting was performed
using specialized software (Offline Sorter v3, Plexon, Inc, Dallas, TX) to identify putative neurons.

Date Monkey Hemisphere Trial M1 PMd S1

150313 Chewie Right 1038 86 n/a n/a
150309 Chewie Right 1026 72 n/a n/a
150629 Chewie Right 179 49 n/a n/a
150630 Chewie Right 178 44 n/a n/a
160929 Chewie Left 208 74 114 n/a
161005 Chewie Left 202 82 167 n/a
161006 Chewie Left 209 63 192 n/a
161007 Chewie Left 168 70 137 n/a
161014 Chewie Left 740 88 190 n/a
161021 Chewie Left 286 84 211 n/a
171201 Han Left 292 n/a n/a 70
171204 Han Left 255 n/a n/a 83
171207 Han Left 245 n/a n/a 72

Table 1: Datasets for the center-out reaching experiments.
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Datasets

All the center-out reaching experiments using the open source data from: https://datadryad.
org/stash/dataset/doi:10.5061/dryad.xd2547dkt This data is released accompanying this
paper:https://elifesciences.org/articles/73155#data We used all sessions from Monkey
Chewie and Monkey Han. We chose these Monkeys because one session in Chewie is used by piVAE
paper[26] and one session in Monkey Han is used by CEBRA paper[22]. Although the datasets come
from same session in same Monkey, the temporal resolution is much higher for the datasets used
by piVAE and CEBRA papers. The data is Matlab format and we extract following information:
tgtDir (Target direction, radians for Monkey Chewie and degrees for Monkey Han), idx-goCueTime
(The time go Cue is one), vel(XY velocities), M1-spikes for both Chewie 2015 and Chewie 2016,
and PMd-spikes only for Chewie 2016. The time bin is 30ms and we extract all the spikes after
each go Cue. We extracted 40 bins for Monkey Chewie and 35 bins for Monkey Han, because
most trial in Monkey Han has short acquisition window than 40 bins (afte go Cue). We smoothed
the discrete spike count in the Matlab using a Gaussian kernel. The standard deviation is 1.5 and
kernel size is six standard deviations. We keep all the trials and neurons. The number of trials and
neurons are shown in Table 1. Our NER is just a modification of the loss function used by CEBRA:
https://github.com/AdaptiveMotorControlLab/cebra The RNC loss could be downloaded
from: https://github.com/kaiwenzha/Rank-N-Contrast The iterations is 20000, learning
rate is 1e-4, and batch size 512. The temperature is fixed to 1 for both NER and CEBRA. The output
dimension of NER is fixed to 3. For CEBRA, we used output dimension of 3 for visualizing the latent
dynamics and linear models decoding. We only used 16 dimensional embeddings for k-NN decoders.
For the piVAE, we did not use the original version which is based on older version of Tensorflow.
https://github.com/zhd96/pi-vae Instead, we used the modified conv-pi-VAE that is already
included into the CEBRA package. We fixed the random seed to 42, and using batch size of 200 and
iterations of 300.

A.7.2 Curved hand movements experiments in M1 Fig 7 16

The MC_Maze dataset includes recordings from the primary motor and dorsal premotor cortices of a
monkey performing reaches to visual targets in a virtual maze with an instructed delay. This dataset
comprises 108 different task configurations, each varying in target positions, barrier numbers, and
barrier positions. The monkey repeated each task configuration multiple times in random order, result-
ing in 2,869 trials recorded in a single session with 182 neurons and simultaneous hand kinematics
monitoring. This datasets could be downloaded from: https://dandiarchive.org/dandiset/
000128, https://github.com/dandisets/000128. In our works, we used the NLB21
package[18] to download the data from DANDI: https://github.com/neurallatents Our code
(Jupyter Notebook) is modified from: https://github.com/neurallatents/neurallatents.
github.io/blob/master/notebooks/mc_maze.ipynb We used a time bin of 5ms (raw resolu-
tion is 1ms) and Gaussian window of 50ms. For six straight movements, we only use version 0 and
trial type of 13, 29, 17, 38, 6, 18. For the straight-curved and curved-curved movements, we keep all
three versions of task (one straight and two curved). We removed the target angle during training. We
used trial type of 13, 38, 18 for straight-curved and 37,1, 31,38, 34,18 for curved-curved movements.
The iterations is 5000, learning rate is 1e-4, and batch size 512.

A.8 Decoders

We rotate the latent dynamics with reference to same target before decoding. We used orthogo-
nal Procrustes from scipy for this purpose: https://docs.scipy.org/doc/scipy/reference/
generated/scipy.linalg.orthogonal_procrustes.html. We picked on target angle and ro-
tate the whole 3D latent dynamics using the computed orthogonal matrix. This rotation will not
modify local detail or the relative positions of each reaching direction. For the linear decoders
using linear and logistic regression, both are imported from "linear_model" of sklearn. There is no
parameter or hyperparameter for the linear regression model. For the logistic regression model, we
used the following parameters: max_iter=500, multi_class=’multinomial’, solver=’lbfgs’ For the
k-nearest neighbors Regressor and Classifier, they are both imported from "neighbors" in sklearn. We
used "GridSearchCV" in sklearn to searach the best "n_neighbors" range from 2 to 1024.
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Figure 8: NER reveals consistent and movements aligned latent dynamics in M1 for the remaining
four sessions. Extra four sessions’ latent dynamics at left and right hemisphere of Monkey C after
rotating relative to target session in Fig 2 (2016-10-14).
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Figure 9: Neural embeddings revealed by five other dimensionality reduction methods. Single trial
(top) and trial averaged (bottom) latent dynamics revealed by five other dimensionality reduction
methods.
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Figure 10: Latent dynamics without rotation. Trial-averaged latent dynamics revealed by five
dimensionality reduction methods without rotation.
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Monkey C 2015-03-13a

b

Monkey C 2015-03-13

Monkey C 2016-10-05Monkey C 2016-09-29

Figure 11: Mixed single trial latent dynamics in PCA and time-stimulus components revealed by
dPCA. a Unlike other five dimensionality reduction methods, single trial latent dynamics revealed
by principal component analysis (PCA) and demixed PCA (dPCA) is mixed and latency dynamics
are only identifiable after averaging. b In the trial-averaged latent dynamics, dPCA reveals three
components (left, middle, right) at eight directions (different colors): time component aligned with go
cue regardless of directions, separated stimulus component varied across time, and mixed component
aligned with go cue and different for each direction.
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a

b Correlation matrix among four direction tuning curves and X-Y velocities

M1 PMd

NER
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X-vel
UMAP w/o label
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Y-vel

M1 PMd & S1
c

Explained directions in PMd and X-Y velocities

Explained peak classification accuracy by logistic regression

Figure 12: Hand directions tunings and explained peak classification accuracy of hand directions in
M1, PMd, and S1. a Hand directions explained accuracy using a logistic regression models trained
on the latent dynamics revealed by five dimensionality reduction methods. Shaded areas are standard
deviation over six sessions from PMd in the Monkey C. Notice the only NER reveal hand velocities
dependent direction tuning curves that peak around 500 ms. b Correlation coefficients matrix between
direction tuning curves and velocities in M1 (left) and PMd (right). c Explained variance on hand
directions using logistic regression decoder.
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Figure 13: Latent dynamics in PMd revealed by Cebra and piVAE. Single trial and trial averaged
latent dynamics revealed by Cebra and piVAE. All the figures are rotated with reference with the one
session shown in Fig 2 (2016-10-14).
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Figure 14: Direction decoding accuracy. Same date, cross date, and cross brain areas decoding of
hand directions using linear regression (left) and k-nearest neighbors decoder trained on the latent
dynamics revealed by three methods. Notice the range of color bars is 0-100 for all six figures.
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Figure 15: Latent dynamics in S1 revealed by Cebra and piVAE. a Top, single trial latent dynamics
revealed by Cebra are rotated with reference to the one session in M1. Bottom, latent dynamis are
rotated with reference to the first session in S1. b Similar to the bottom figure of a but using Cebra
dimensionality reduction method. c Similar to c but using piVAE dimensionality reduction method.
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Figure 16: Distinct latent dynamics revealed by Cebra. Similar to Fig 7 but using the latent dynamics
revealed by Cebra. a Ground truth motion trajectories at three directions for straight-curve movements.
b Latency dynamics trained on three directions separately and combined. Notice the latent dynamics
of straight hand movements (dots and black line) are either mixed (1st) with curved movements
or squeezed (3rd). Latent dynamics trained by three directions combined are overlapped. c Linear
models predicted hand trajectories. The directions are manually assigned. The explained variance
for hand velocities (directions) are 87% (94%), 83% (93%), 82% (94%), and 66% (86%). Notice
all the values are lower than NER which are 92% (95%), 89% (96%), 90% (96%), and 81% (91%),
especially for the combined directions. d Ground truth motion trajectories at four directions for
paired curve-curve movements. e Latency dynamics trained on three directions separately and
combined. Notice latent dynamics trained by three directions combined are overlapped. f Linear
models predicted hand trajectories. The directions are manually assigned. The explained variance
for hand velocities (directions) are 85% (93%), 81% (92%), 85% (94%), and 61% (80%). Notice
all the values are lower than NER which are 87% (95%), 89% (95%), 91% (96%), and 81% (91%),
especially for the combined directions.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims we made in the abstract and introduction are based on our extensive
experiments over multiple dataset and a benchmark comparisons of our method with six
other methods.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In the last part of Discussion, we mentioned two limitations of this work
clearly
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There is no theoretical analysis. This work an application of contrastive
learning and deep regression on Neuroscience. We do not make or claim any theoretical
contribution.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our works use the public dataset, and our code adds the loss function from
one paper into the code of the other paper. Both codes are available online. There is not
hyperparameter turnings. We mentioned the GPU, iterations, and batch size we used in the
Appendix. We also upload our codes that generate all the Figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Also the data and code are already available online. We just combine two
codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We gave those details in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: We just show the raw, mean and median values without using any statistical
metrics.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of our computer that used to run those experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We used open-source neural spiking data from animals.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The data we used came from neuron activities in the brains. Nothing is related
to humans.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The codes have been released by others already.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: All the data and codes are open source

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Everything is open source already.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Only authors do the experiments.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We used open source data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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