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Abstract

One challenge of training deep neural networks with gigapixel whole-slide images (WSIs)
in computational pathology is the lack of annotation at pixel level or region (instance) level
due to the high cost and time-consuming labeling effort. Multiple instance learning (MIL)
as a typical weakly supervised learning method aimed to resolve this challenge by using
only the slide-level label without the need for pixel or region labels. Not all instances are
predictive of the outcome. The attention-based MIL method leverages this fact to enhance
the performance by weighting the instances based on their contribution in predicting the
outcome. A WSI typically contains hundreds of thousands of image regions. Training a
deep neural network with thousands of image regions (patches) per slide is computationally
expensive, and it needs a lot of time for convergence. One way to alleviate this issue is to
sample a subset of instances from the available instances within each bag for training. While
the benefit of sampling strategies for decreasing computing time might be evident, there is a
lack of effort to investigate their performances. This paper investigates different sampling
strategies from both computing time and performance points of view. We empirically
show how these sampling strategies substantially reduce computation time. Moreover, we
discover that random sampling can even improve performance of the attention-based MIL
that uses all instances if we randomly choose enough number of instances.

Keywords: Attention, computational pathology, deep learning, multiple instance learning,
prostate cancer, sampling, transfer learning, weekly supervised learning

1. Introduction

Thanks to the advancements in digital pathology, especially slide scanners, visual inspection
of sampled tissues through high-resolution Whole-Slide Images (WSIs) from biopsies has
become the gold standard for diagnosing many diseases in oncology, such as prostate cancer
(Fraggetta et al., 2017; Epstein, 2010; Otálora et al., 2021). However, the manual inspection
of the entire WSI (with a typical size 105 × 105 pixels) is costly and time-consuming to be
done by an expert. Also, the diagnosis might differ from one expert to another, known as
the observer variability (Brunyé et al., 2010).

Computational pathology aims to develop automated machine learning and artificial
intelligence tools to analyze the gigapixel WSIs (Cui and Zhang, 2021). Such tools save
cost and time; they also showed great accuracy and provided high-quality health care to
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patients with different diseases (Tarkhan et al., 2021; Nofallah et al., 2021; Molani et al.,
2019). However, developing such automated tools for WSIs comes with some new challenges,
especially when using complex models such as deep neural networks. WSIs are giga-pixel
images, and they are too big to be fed into a deep neural network due to the memory
constraint. One immediate solution is to divide a WSI into many (typically hundreds of
thousands) smaller regions (with the typical size of 256×256 or 512×512), also known as
patches or tiles. One can train a deep neural network by feeding a single or very few numbers
of these small images. However, the main challenge is the lack of pixel-level annotation and
that the labels (i.e., showing the status of disease) are only available at the slide (patient)
level. A possible solution might be annotating those smaller image regions (or patches).
Labeling such images by an expert at the pixel level (or in smaller image patches) is costly
(labor and time) (Quellec et al., 2017).

Multiple instance learning (MIL), as a typical weakly supervised learning method, has
been proposed to tackle this challenge (Dietterich et al., 1997; Maron and Lozano-Pérez,
1998). In a MIL problem, the aim is to train a model with bags of instances where the
algorithm can only access the labels at the bag level. Such a scenario often happens in
pathology, where one usually divides a gigapixel WSI image into many smaller image regions,
known as tiles or patches. For prostate cancer, for example, each image tile can be partially
related to a sub-type (the bag label), but it may not represent it by itself. Therefore, the
upcoming challenge with the MIL problem is that not all instances (image tiles) are equally
predictive of the bag label (class), and some of them may even relate to the other classes
(Liu et al., 2012).

Some works considered combining the instance-level responses from a classifier to al-
leviate this challenge (Bahdanau et al., 2016; Raffel and Ellis, 2016; Ramon and Raedt,
2000; Raykar et al., 2008; Ilse et al., 2018). Among them, (Ilse et al., 2018) proposed an
attention-based deep MIL framework to deal with this challenge. Their proposed framework
includes two networks : (1) attention network and (2) classification network. These two
networks are trained simultaneously. The attention network has parameters for updating
the attention (importance) weights of different instances, while the classification network
has parameters for the classification task. Although their approach increases flexibility and
interpretability of MIL problems, it still has a challenge: They use all instances per bag
across all iterates when training the combined network. A WSI has hundreds of thousands
of image tiles (e.g., with size 256× 256). Feeding all of these instances, regardless of their
predictive information for the class label, is time-consuming and computationally expensive.
An attention MIL network may not need to be trained by instances that are just noises or
have little information for the class label.

This paper investigates different sampling strategies for the attention-based deep MIL
framework. We consider four sampling strategies: (1) no sampling, (2) random sampling,
(3) adaptive sampling, and (4) top-k sampling. We show how the sampling strategies sub-
stantially reduces computation time. Among them, we also show that random sampling
strategy can improve performance compared to no sampling (i.e., using whole instances in
the original work Ilse et al. (2018)) if we choose enough number of selected instances. We use
the Cancer Genome Atlas (TCGA) repository of prostate adenocarcinoma (TCGA-PRAD)
dataset (Zuley et al., 2016) and Camelyon16 to compare different strategies and support
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our discoveries.

2. MIL and Attention-based MIL Networks

In this section, we briefly explain MIL problem and its attention-based version.

2.1. MIL problem formulation

Suppose there are N subjects (or patients) with bags of images X (1),X (2), . . . ,X (N) and
bag-level binary labels y(1), y(2), . . . , y(N) ∈ {0, 1, . . . , C − 1} where C is number of classes.

The bag for n-th patient (i.e., X (n)) contains Kn instance images X
(n)
1 ,X

(n)
2 , . . . ,X

(n)
Kn

. For
instance, in computational pathology, nne can obtain such Kn instance images by sampling
from different regions of a WSI (i.e., X (n)). In the classical supervised learning, we have
Kn = 1, i.e., there is one image per subject with corresponding label y(n). Note that
the number of instances inside the bag can vary among different subjects. To decrease
computing time and cost, it is common to use a state-of-the-art pre-trained network such

as ResNet50 (He et al., 2015) to extract a low-dimensional embedding feature h
(n)
k from kth

instance image of nth subject, i.e., X
(n)
k . After that, we have dataset {(h(n)

k , y(n), for n =
1, 2, . . . N and k = 1, 2, . . . ,Kn}. The task of the neural network is to predict the label of nth

subject, i.e., y(n) through extracting features from itsKn embeddings h
(n)
k , k = 1, 2, . . . ,Kn.

In computational pathology applications (e.g., prostate cancer (Otálora et al., 2021)), the

instance-level labels y
(n)
k , k = 1, 2, . . . ,Kn are unknown and we only have the bag-level label

y(n). The bag-level images (e.g., WSIs) are too big to feed into the neural networks due to
the memory constraint. Multiple-instance learning (MIL) is a weakly supervised learning
approach to train the neural networks using instances while only bag labels are available
(Quellec et al., 2017). For binary classification task (i.e., C = 2), the basic assumption of a
MIL problem is:

y(n) =

{
0, iff

∑Kn
k=1 y

(n)
k = 0

1, otherwise.
(1)

or equivalently,

y(n) = max
k

{y(n)k }, (2)

conveying that a bag is labeled positive if it contains at least a positive instance. The
above two expressions are not appealing from the optimization perspective. One possible
alternative is to consider element-wise maximum operator as

h
(n)
bag,m = max

k
{h(n)k,m},∀m = 1, 2, . . .M (3)

where h
(n)
k,m is the mth element of kth instances for nth patient; M is the dimension of

embedding extracted from the pre-trained network (e.g., M=1024 when we use ResNet50
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to extract features from its last fully-connected layer). Another alternative is to use the
mean operator:

h
(n)
bag =

1

Kn

Kn∑
k=1

h
(n)
k . (4)

However, both operators in Equation (3) and Equation (4) are pre-calculated and pre-
defined. Hence, they are non-trainable, which hinders assigning trainable weights to the
embedding features based on their contribution in predicting the bag label.

In practice, not all embedding features (or in general instances) contribute to the pre-
diction of outcome (i.e., y(n)) equally. Some instances are just noises, some have little
information, some others have information about another class, and only a few of them
are well-predictive of the outcome. Therefore, there is a need to have a trainable frame-
work to weigh different instances based on their underlying information about the outcome.
Attention-based MIL framework proposed by (Ilse et al., 2018) deals with this challenge.

2.2. Attention-based MIL

Authors in (Ilse et al., 2018) proposed an attention-based MIL pooling approach that is
trainable. They proposed a combined architecture of two trainable networks: attention
network and classification network. The attention network is trained so that the weighted
average of embedding features by their trainable attention weights represents the class at
most. The classification network is trained to minimize the prediction error given the pooled
embedding feature as its input. Both of these two network pieces are trained simultaneously.
To allow for the element-wise non-linearity, (dis)similarities discovery, and a better expres-
siveness, the authors in (Ilse et al., 2018) proposed to use a gated attention mechanism for
MIL pooling. They considered a single-branch attention mechanism where all classes share
a shared attention branch. The MIL pooled (aggregated) feature is given as

h
(n)
bag =

Kn∑
k=1

a
(n)
k h

(n)
k , (5)

with

a
(n)
k =

exp
{
wT

(
tanh(V h

(n)
k )⊙ sigm(Uh

(n)
k )

)}∑Kn
k′=1 exp

{
w
(
tanh(V h

(n)
k′ )⊙ sigm(Uh

(n)
k′ )))

)} , (6)

where w ∈ RL×1, U ∈ RL×M , and V ∈ RL×M are trainable parameters included in the
attention network; tanh(.) and sigm(.) are the element-wise hyperbolic tangent and sigmoid
functions; ⊙ is an element-wise multiplication. Such a MIL pooling mechanism preserves
flexibility and interpretability (see Section 2.4 in (Ilse et al., 2018)). Finally, the bag-

level aggregated representation h
(n)
bag is fed into the classification network that includes C

individual classification branches. Each classification branch estimates the predicted score
of the corresponding class. The predicted C × 1 score vector is given as

s
(n)
bag = W T

c h
(n)
bag, (7)
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where W c ∈ RM×C is the trainable classifier with c-th column corresponds to the c-th
branch predicting the score of class c for the bag. Finally, one can estimate the bag label
by

ŷ(n) = argmax
c

{s(n)bag}. (8)

In many pathology applications, there might be many instances within each WSI which in-
crease computing time and cost. In the next section, we present different sampling strategies
to overcome these possible shortcomings.

3. Sampling Strategies for Attention-based MIL

3.1. Random sampling

With random sampling strategy, we randomly draw a limited number of instances (or im-
ages) to train the deep neural network. The main reason to use this strategy is due to
memory constraint: it is not possible to bring all instances/images of a patient (bag) or a
batch of patients into memory to train the deep neural network. This strategy has been used
in the literature (Zhu et al., 2016; Wulczyn et al., 2020; Li et al., 2018) and showed a great
success to reduce computing resources and time. However, there is a lack of investigation on
the computing time and performance of random sampling in the deep attention-based MIL
network. On one hand, different random subsets of instances for a patient (bag) for train-
ing the network over different iterates may increase generalizability and handle over-fitting
better (Bishop, 1995). On the other hand, using a limited number of instances per iterate
may not capture whole information to predict the outcome of the patient. Therefore, there
it might be worth investigating such a trade-off which is one of the aims of this paper.

3.2. Adaptive sampling

In practical applications (e.g., prostate cancer (Otálora et al., 2021)), there are many in-
stance images may not contribute to the bag (patient) class. There have been some works in
the literature dealing with this issue (Williamson et al., 2021; Lu et al., 2019; Dehaene et al.,
2020), but they all used whole instances. We propose to adaptively draw G well-predictive
instances per subject (bag) from an empirical sampling distribution. For nth patient, we es-
timate the sampling distribution as a multinomial distribution with a corresponding vector

of probabilities P(n) = (p
(n)
1 , p

(n)
2 , . . . , p

(n)
Kn

), 0 ≤ p
(n)
k ≤ 1,

∑Kn
k=1 p

(n)
k = 1 where we choose

p
(n)
k = a

(n)
k (the attention weight extracted from forward attention network). We propose

to draw a subset of G indices from distribution P(n) as

(I
(n)
1 , I

(n)
2 , . . . , I

(n)
G ) ∼ P(n). (9)

With Equation (9), instances that have higher attention weights (i.e., higher a
(n)
k that are

well-predictive of the outcome) will be chosen more often during training. After adaptively
drawing the G instances over each iterate, we train the attention-based neural network
by following Equation (5) to Equation (8) by replacing Kn with G. Since the estimates

of the network parameters and consequently the attention weights a
(n)
k are noisier over a
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couple of initial iterates (epochs), we propose to consider a few initial iterates as warm-
up iterates where we use all instances to train the network. Although the estimation of
instance sampling distribution using the forward attention network is faster than training
the whole network, it may add overload if we do it on every iterate/epoch. Therefore, one
might decide to estimate P(n) on every eupdate epochs. Figure A in Appendix 1 illustrates
the general architecture of instance sampling strategies and Algorithm 1 in Appendix A
provides more details of the implementation for attention-based MIL framework.

Note that authors in (Katharopoulos and Fleuret, 2019) compared uniform and adaptive
instance sampling with other networks without sampling. But they fixed the attention
network for the uniform sampling. We take a more fair approach and assume the same
network architecture for all strategies we aim to compare in this paper.

3.3. Top-k sampling

As an alternative to the adaptive sampling is top-k sampling strategy which has been used
in the computational pathology literature (Campanella et al., 2019; Sharmay et al., 2021).
In this sampling strategy, top k instances with the highest instance-level score are selected
to train the network. In this paper, such a score can be chosen as the attention weights.
Therefore, we select top-k instances with the highest attention weights.

4. Dataset and Network Architecures

4.1. Datasets

We used the Cancer Genome Atlas (TCGA) repository of prostate adenocarcinoma (TCGA-
PRAD) (Zuley et al., 2016) and Camelyon16 (Ehteshami Bejnordi et al., 2017) The Can-
cer Genome Atlas (TCGA) repository of prostate adenocarcinoma (TCGA-PRAD) dataset
(Zuley et al., 2016) to compare and evaluate different sampling strategies. Please see Ap-
pendix B for more details about these datasets, deatils of pre-processing conducted on these
datasets before feeing into the attention-based MIL networks.

4.2. Network architecture

The network architecture includes two sub-networks: attention backbone network and clas-
sification networks. To have a fair comparison, we consider the same network architecture
(number of layers, nodes, activation function, etc.) for all of the sampling strategies. We
also tune the network hyper-parameters to maximize the performance. To save computing
time, we apply early stopping criterion to alleviate over-fitting problem. See Appendix C
for more details on the network architecture and parameters, tuning hyper-parameters, and
applied early stopping criterion.

5. Results

We consider binary classification task and compare four smapling strategies: (1) no sampling
where we use whole instances over iterates (this is the standard attention MIL in (Ilse
et al., 2018) and what is called CLAM-MIL in (Williamson et al., 2021)), (2) random
sampling where we randomly draw choose G instances, (3) adaptive sampling where we
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adaptively select G instances, and (4) top-k sampling where we choose k instances with
the highest ttention weights. We evaluate different strategies with both TCGA-PRAD
and Camelyon16 datasets. We use the same network architecture, hyper-parameters, and
tuning procedure (as explained in Appendix C) for all methods. For all methods, we choose
minimum number of epochs as emin = 50, maximum number of epochs as emax = 300, and
patience epatience = 20 for early stopping. For random and adaptive sampling methods,
we consider ten warm-up epochs (ewarm = 10) to train the model using whole instances
initially. After that we pick G = 10 (∼ 0.2% of all available instances), 30, 100, 300, and
1000. We conducted all experiments on AWS nodes with one NVIDIA Tesla T4 GPU node,
32 CPUs, and 235 GB memory. Figure 1 compares the testing AUC, training time, and
the number of training epochs after training is stopped by the early stopping algorithm
(see Appendix C.3 for more details) for TCGA-PRAD (left panel) and Camelyon16 (right
panel). We consider ten repetitions of Monte Carlo simulations for splitting data into
training/validation/testing and we report mean ± Standard error (SE). We observe that
all instance sampling strategies reduce the computational complexity as expected. Also,
we observe that random instance sampling with enough selected instances (e.g., around
G = 100 or more) outperforms no sampling (i.e., using whole instances) strategy. Adaptive
sampling might do better than random instance sampling when the number of instances per
patient (bag) is minimal (around G = 10 or less) due to, e.g., memory constraints. Top-k
sampling strategy performs the worst. From the results, we discover an important fact
about using sampling strategies for the attention-based MIL networks: instance sampling
strategies (versus using all instances) not only saves computing time and resources, but also
can improve the performance the patients’ disease status with WSI’s.

6. Discussion

We investigated different instance sampling strategies for attention-based MIL networks.
Instance sampling strategies significantly reduce computing time (and hence resources).
Except for fewer selected instances, random sampling outperforms both the adaptive sam-
pling and no sampling strategies. The justification is that random sampling makes the
network sees almost different subsets of instances over different iterates (epochs) and play
a role of regularization avoid over-fitting.

We used the pre-processing to throw out noisy (e.g., background) tiles or less-informative
tiles beforehand. Then we used a pre-trained network (e.g., Resnet50) to extract low dimen-
sional features from remaining image tiles after pre-processing. These two steps combined
results in the embedding features that have more or less the same level of information about
the outcome. This may result in assigning almost the same weights to the instances by the
attention network. This could be another reason why the random sampling works better if
we carefully choose the number selected instances G.

We considered a binary classification problem with a small dataset (with 318 patients) to
evaluate our proposed model. However, it is worth extending our investigation to multiple-
class classification tasks (e.g., the framework presented in (Williamson et al., 2021)) or other
tasks such as survival prediction (Tarkhan and Simon, 2020; Tarkhan et al., 2021; Yao et al.,
2020) using the attention-based MIL network.
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Figure 1: (left column) TCGA-PRAD (right column) Camelyon16; (top) Area under ROC
curve, (middle) training time, and (bottom) number of training epochs; We com-
pare different sampling strategies: no sampling, random sampling, adaptive
sampling, and top-k sampling.
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Appendix A. Architecture and flowchart of presented sampling strategies

Figure A illustrates the general architecture, and Algorithm 1 provides more details of the
implementation for the presented instance sampling strategies in Section 3.

Appendix B. More details on datasets

B.1. TCGA-PRAD (prostate cancer) dataset

The Cancer Genome Atlas (TCGA) repository of prostate adenocarcinoma (TCGA-PRAD)
dataset (Zuley et al., 2016) to evaluate our proposed approach. The Gleason score (GS)
from the biopsied tissue is the common method to measure the cancer status (Gleason and
Mellinger, 1974). The GS is the sum of primary and secondary scores, and each ranges
from 3 to 5. Therefore, the GS ranges from 6 (3+3) to 10 (5+5). Another alternative and
commonly-used scoring system is Grade Group (GG) which divides the prostates cancer pa-
tients into five groups based on the pathological patterns. Table 1 summarizes GS, GG, and
corresponding risk levels based on NCCN Clinical Practice Guidelines in Oncology (NCCN,
2018). Both GG and GS have been widely used in prostates cancer studies (Khosravi et al.,
2021).

We followed the same procedure for sampling (with 20× magnification) image tiles (with
size 256×256) fromWSIs and the same procedure for pre-processing image tiles as explained
and used in Williamson et al. (2021). The bag (patient) size varies among patients, with
a minimum of 1,308, a maximum of 130,752, and an average of 49,811 image tiles. To
reduce computing time and cost, we used pre-trained network Resnet50 (He et al., 2015)
to extract features from image tiles (instances) into one-dimensional embedding features
with size 1,024 (this procedure is known as transfer learning (Pan and Yang, 2010)). We
consider binary classification where we divide patients into two classes: class 0 includes
low risk (grade group 1) and favorable intermediate (grade group 2); and class 1 includes
unfavorable intermediate risk (grade group 3), high risk (grade group 4), and very high risk
(grade group 5). The resulted dataset has 318 patients with 129 patients with class 0 and
189 patients with class 1.

B.2. Camelyon16 (breast cancer) dataset

The Camelyon16 dataset is about breast cancer (Ehteshami Bejnordi et al., 2017). It is
difficult and time-consuming to detect lymph node metastases with the gigapixel sized
images. An automated detection of breast cancer metastases in lymph node pictures is
of interest. We use the same pre-processing as we used for TCGA-PRAD dataset. We
also used pre-trained network Resnet50 (He et al., 2015) to extract features from image
tiles (instances) into one-dimensional embedding features with size 1,024 (this procedure
is known as transfer learning (Pan and Yang, 2010)). After pre-processing and feature
extraction, we are left with 80 patients (bags) with cancerous tissue and 123 patients with
normal tissue.
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Figure 2: Overview of our proposed adaptive architecture. a: pre-processing
We use segmentation to sample patches from the WSI X(n). Then, we pass
the patches through the pre-trained network (e.g., ResNet50) to extract lower-

dimensional features vectors h
(n)
1 , ..., h

(n)
Kn

. b: training procedure We use the
sampling strategy either random or adaptive (see panel c for more details) to
sample a subset of G instances out of Kn instances per bag (patient). Then, we
aggregateG selected instances using the attention network to get a single bag-level
representative feature. Finally, we predict the class label using the aggregated
feature as the input of the classification network. c: instance sampling pro-
cedure We consider all instances for subject n and feed them into the trained
(fixed) feed-forward attention network to estimate the sampling distribution P(n).
Finally, we draw G instances out of Kn instances from distribution P(n).
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Algorithm 1: Instance sampling for attention-based MIL network.

Result: Test AUC
Initialization:

Number of selected instances for training: G
Number of warm-up iterates/epochs : ewarm

Number of epochs for updating sampling distribution: eupdate
Minimum number of epochs: emin

Maximum number of epochs: emax

Number of epochs before early stop: epatience
Start with e=1
while e ≤ emax do

if No improvement on validation loss for at least epatience and e ≥ emin then
Stop training

else
for (n = 1, 2, ..., N) do

if Uniform sampling then
Choose

p
(n)
k =

1

Kn
, k = 1, 2, . . . ,Kn

else
if (e ≤ ewarm) then

Use all instances to train the model
else

if (emod eupdate == 0) then

Update sampling distribution P(n) using the attention weights
extracted from the forward attention network as

p
(n)
k = a

(n)
k , k = 1, 2, . . . ,Kn

end

end

Sample G instances from P(n):

(I
(n)
1 , I

(n)
2 , . . . , I

(n)
G ) ∼ P(n)

Train the attention MIL network using selected G instances.
end
if The validation loss is improved then

Save the current model
e=e+1

end

end
Use the saved model and report test AUC
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Table 1: Grade Group, Gleason score, and their association with the risk level

Grade Group Gleason score Combined Gleason Score Risk level

1 3+3 6 Low risk
2 3+4 7 Favorable intermediate
3 4+3 7 Unfavorable intermediate
4 4+4, 3+5, 5+3 8 High risk
5 4+5, 5+4, 5+5 9 and 10 Very high risk

Appendix C. Network architecture, tuning hyper-parameters and early
stopping

C.1. Network architecture

First, we consider a fully connected layer W d ∈ R1024×512 with ReLU activation function to
reduce the dimension feature embedding space from 1024 to 512. For the attention network,
we consider the gated attention with U ,V ∈ R256×512, each followed by single shared branch
w ∈ R256×1. For the classification network, we choose a fully connected layer W c ∈ R512×C

where we choose C = 2 for binary classification. We use the Adam algorithm (Kingma and
Ba, 2017) to optimize the parameters of deep neural network for all methods. To find the
best possible model for classification, we consider different hyper-parameters for all methods
evaluated in this paper: initial learning rate with values (10−4, 10−3), regularization rate
(10−5, 10−3), and dropout rate (0.2, 0.5). See Appendix C.2 for more details about hyper-
parameters tuning and early-stopping procedures used in this paper.

C.2. Tuning hyper-parameters

To find the best possible model for classification, we consider different hyper-parameters
for all methods evaluated in this paper: initial learning rate with values (10−4, 10−3), reg-
ularization rate (10−5, 10−3), and dropout rate (0.2, 0.5). We consider the following steps
for tuning these hyper-parameters:

• We randomly split data into training/validation/testing datasets (80% training, 10%
validation, and 10% training),

– For each combination of hyper-parameters, we do the following,

∗ We train the model on training dataset until we are confident that there will
be no improvement of the validation AUC by further training. We use a
stopping criterion (see Appendix C.3) to determine when to stop training.

∗ We save the trained model at epoch maximizing the validation AUC

∗ With the saved model and testing dataset, we calculate the testing AUC.

Finally, we report the average testing AUC over repetitions of randomly split datasets.
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C.3. Early stopping criterion

It is crucial to determine the ideal training length for a neural network: While too little
training gives an under-fit model, too much training over-fits and results in poor performance
on the test dataset. One common approach is to train the model on the training dataset
until the performance on a validation dataset stops improving. This widely used approach
to training a neural network is known as early stopping (Prechelt, 2012). In practice,
the validation error curve is not usually smooth and has some stochastic behavior due to
stochastic optimization. Therefore, there might have several nearby local minima (Prechelt,
2012). To deal with this, we can continue training for a few epochs past where the local
minimum is initially identified to increase confidence that there will be no later improvement
in performance on the validation set. This extra number of epochs approach is known as
patience (Prechelt, 2012). We consider patience=10 for all sampling methods we investigate
in this paper.
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