
Under review as submission to TMLR

Match or Replay: Self Imitating Proximal Policy

Anonymous authors
Paper under double-blind review

Abstract

Reinforcement Learning (RL) agents often struggle with inefficient exploration, particularly
in environments with sparse rewards, where traditional exploration strategies lead to slow
learning and suboptimal performance. This inefficiency comes from unsystematic explo-
ration, where agents fail to effectively exploit past successful experiences, hindering both
temporal credit assignment and exploration. To address this, we propose a self-imitating
on-policy algorithm that enhances exploration by bootstrapping policy learning with past
successful state-action transitions. To incorporate self-imitation, our method uses optimal
transport distance for dense reward environments to prioritize the state visitation distribu-
tion that matches the most rewarding past trajectory. In sparse reward environments, we
uniformly replay self-encountered successful trajectories to provide structured exploration.
Experimental results across diverse environments—including MuJoCo for dense rewards and
the partially observable 3D Animal-AI Olympics and multi-goal PointMaze for sparse re-
wards—demonstrate significant improvements in learning efficiency. Our approach achieves
faster convergence and significantly higher success rates than state-of-the-art self-imitating
RL baselines. These findings suggest that self-imitation is a promising strategy for improving
exploration and can be extended to more complex RL tasks.

1 Introduction

Deep Reinforcement Learning (DRL) (Li, 2017) has achieved remarkable success in solving complex problems
across a variety of domains, including robotic manipulation (Han et al., 2023), flight control (Kaufmann et al.,
2018), intelligent perception system (Chaudhary et al., 2023) and real-time strategy game-play (Andersen
et al., 2018). However, despite these advancements, DRL algorithms still face significant challenges in efficient
learning, resulting in poor sample inefficiency (Baker et al., 2019). A major contributing factor is the reliance
on unguided exploration to discover optimal policies, leading to slow convergence, excessive policy divergence,
or even forgetting behaviors, particularly in environments with sparse rewards.

Guided exploration using expert demonstrations has been proposed as a potential solution. Approaches such
as those in (Salimans & Chen, 2018; Ecoffet et al., 2019; Xu et al., 2023; Duan et al., 2017; Zhou et al., 2019;
Haldar et al., 2023) have explored the use of expert data to guide the agent’s learning process. However,
these methods often suffer from challenges such as acquiring expert demonstrations, the risk of bias, and the
potential for suboptimal policies when demonstrations are not sufficiently informative.

This work addresses these challenges by exploiting the agent’s past successful experiences to guide explo-
ration. To this end, we propose a novel Self-Imitation Learning (SIL) (Oh et al., 2018) approach that allows
RL agents to bootstrap policy learning with their past successes, enhancing temporal credit assignment (Sut-
ton, 1984) and reducing the risk of forgetting behaviors. By leveraging successful past trajectories, our ap-
proach prevents the agent from deviating too far from previously learned successful behaviors, improving
exploration and learning efficiency.

Even though, self-imitation learning has been applied to diverse complex tasks such as robotics (Luo &
Schomaker, 2023; Luo et al., 2021), text-based games (Shi et al., 2023), procedurally generated envi-
ronments (Lin et al., 2023), interactive navigation (Kim et al., 2023), and large language models (Xiao
et al., 2024). Despite these advancements, no comprehensive approach remains that effectively addresses

1



Under review as submission to TMLR

self-imitation learning across state- and pixel-based observation while catering to dense and sparse reward
settings. Motivated by this challenge, we aim to enhance the sample efficiency of on-policy deep reinforcement
learning (DRL) agents in these diverse scenarios. To achieve this, we propose the Self-Imitating Proximal
Policy (SIPP) algorithm, an extension of Proximal Policy Optimization (PPO) (Schulman et al., 2017), which
incorporates two complementary strategies specifically designed to address the unique challenges posed by
these reward structures.

For dense reward environments, we propose the Match strategy. This strategy uses optimal transport (Peyré
et al., 2019), specifically the sinkhorn algorithm (Cuturi, 2013), to measure the similarity between state
distributions of the current policy and the most rewarding episodic rollout from the past. By prioritizing
state-action transitions that closely match these distributions, the Match strategy ensures that exploration
focuses on the self-encountered regions of the state space with high expected rewards.

In sparse reward environments, we introduce the Replay strategy, which maintains an imitation buffer storing
self-encountered successful trajectories. Instead of relying completely on the agent’s current behavior, the
replay strategy prioritizes past high-reward trajectories by adding them strategically to the learning process.
This approach views self-imitation as an advantage-based prioritization, where the agent focuses on proven
successful experiences. By emphasizing high-reward trajectories over arbitrary past transitions, the Replay
strategy ensures that the agent benefits from useful past data while maintaining the stability of the on-
policy learning framework. This selective sampling allows the agent to improve its policy without the risk of
destabilizing updates, even in the absence of dense reward signals.

To summarize, our key contributions are as follows:

• Self-imitating on-policy algorithm: We propose Self-Imitating Proximal Policy (SIPP), a novel self-
imitation learning algorithm that enhances exploration and sample efficiency in dense and sparse reward
settings.

• Optimal transport-based prioritization: We introduce the Match strategy, which uses Optimal Trans-
port (Peyré et al., 2019) and the Sinkhorn algorithm (Cuturi, 2013) to prioritize state-action transitions
that closely match the state distribution of the most rewarding past episodic rollout, improving learning
efficiency in dense reward environments.

• Replay strategy for sparse rewards: We develop the Replay strategy, which maintains an imitation buffer
to store and replay self-encountered successful trajectories, effectively addressing the temporal credit
assignment problem in sparse and binary reward environments.

• Mitigation of forgetting behavior and policy divergence: Our approach mitigates forgetting behaviors and
excessive policy divergence by bootstrapping RL policy learning with past successful behaviors, stabilizing
and enhancing the learning process.

• Diverse empirical validation: We validate SIPP through experiments across a wide range of environments,
including complex MuJoCo (Towers et al., 2023) tasks, multi-goal PointMaze navigation (de Lazcano et al.,
2023), and partially observable 3D Animal-AI Olympics (Crosby et al., 2019), demonstrating significant
improvements in learning efficiency and performance over existing methods (Oh et al., 2018; Gangwani
et al., 2018).

2 Related Work

Many attempts have addressed the sample efficiency and exploration problem in reinforcement learning.
However, this literature has divided the long work history mainly into guided and unguided exploration.

Guided exploration paradigms aim to exploit expert trajectories to address RL agents’ sample efficiency
and exploration problems. Recently, in this direction, (Sontakke et al., 2024) presented an approach that
uses a single demonstration and distilled knowledge contained in Video-and-Language Models (VLMs) to
train a robotics policy. They use VLMs to generate rewards by comparing expert trajectories and policy
rollouts. Another single demonstration guided approach was presented by (Libardi et al., 2021) for solving

2



Under review as submission to TMLR

three-dimensional stochastic exploration. They exploit expert trajectories and value estimate prioritized
trajectories to learn optimal policy under uncertainty. Similarly, (Salimans & Chen, 2018) trained a robust
policy using a single demonstration by replaying the demonstration for n steps, after which agents learned in
a self-supervised manner. To make the agent robust to randomness, they monotonically decrease replay steps
n. (Uchendu et al., 2023) present an expert-guided learning. They employ two policies to solve tasks: guide
policy and exploration policy. The guide policy introduces a curriculum of initial states for the exploration
policy, significantly easing the exploration challenge and facilitating rapid learning. As the exploration policy
becomes more proficient, the reliance on the guide policy diminishes, allowing the RL policy to develop
independently and continue improving autonomously. This progressive reduction in guide-policy influence
enables the agent to transition to a fully autonomous exploration phase, enhancing its long-term performance
and adaptability.

(Xu et al., 2023) uses expert demonstration to improve exploration in learning from demonstrations in
sparse reward settings. They assign an exploration score to each demonstration and generated episode and
train policy to imitate exploration behaviors. (Nair et al., 2018) design an auxiliary objective on demon-
strations to solve hard exploration problems and anneal away the demonstration guidance once the policy
performs better than the demonstration. (Huang et al., 2023) used a two-component approach: a novel actor-
critic-based policy learning module that efficiently uses demonstration data to guide RL exploration and a
non-parametric module that employs nearest-neighbor matching and locally weighted regression for robust
guidance propagation at states distant from the demonstrated ones.

Unguided exploration approaches use self-experience, count-based methods, or some type of prioritized
experience replay buffer to guide policy in hard exploration problems. In this literature, we focus only on
approaches under the paradigm of Self-Imitation Learning (SIL) coined by (Oh et al., 2018). (Oh et al., 2018)
presented an approach for self-imitation learning for off-policy algorithms. They store experiences in a replay
buffer and learn to imitate state-action pairs in the replay buffer only when the return in the past episode
is greater than the agent’s value estimate. They also extended their approach to the on-policy algorithm.
However, the proposed algorithm does not have a strong theoretical connection to the on-policy algorithms.

(Gangwani et al., 2018) introduces the Stein Variational Policy Gradient (SVPG), a self-imitating algorithm
designed for on-policy reinforcement learning. In this approach, policy optimization is framed as a divergence
minimization problem, where the objective is to minimize the difference between the visitation distribution
of the current policy and the distribution induced by experience replay trajectories with high returns. The
method incorporates an auxiliary objective that regularizes this divergence, allowing for improved exploration
and more effective policy updates. However, their experiments are limited to episodic, delayed, or noisy reward
settings, which may restrict the generalizability of their results to more complex environments.

(Chen & Lin, 2020) present a SIL technique for off-policy algorithms. In their approach, they provide a
constant reward at each step in addition to an episodic environment reward. Further, they maintain two replay
buffers, one with K highest episodic reward trajectories and the other with all agent-generated trajectories,
and sample from these two replay buffers to train the policy. They limit their work to delayed episodic
rewards. (Tang, 2020) presents a self-imitation learning approach for off-policy learning by extending the
traditional Q-learning with a generalized n-step lower bound. They adopt SIL by leveraging trajectories where
the behavior policy performs better than the current policy. (Ferret et al., 2020) proposes a self-imitating
variant of DQN for dense reward environments. In this approach, they propose to adopt self-imitation using
a modified reward function. They augment the true reward with a weighted advantage term, the difference
between a true discounted reward and an expected future return.

(Kang & Chen, 2020) introduce the Explore-then-Exploit (EE) framework, which integrates Random Net-
work Distillation (RND) (Burda et al., 2018) and Generative Adversarial Self-Imitation Learning (GASIL)
(Guo et al., 2018). The framework tackles the exploration-exploitation trade-off by using RND to facilitate
exploration and prevent the policy from stagnating at local optima. At the same time, GASIL accelerates
policy convergence by leveraging past successful trajectories. Rather than directly combining these meth-
ods, which could confuse the agent, the authors propose an interleaving approach, where the agent switches
between exploration and imitation based on specific criteria.

3



Under review as submission to TMLR

Recently, (Li et al., 2023) extended the SIL approach to Goal-Conditioned Reinforcement Learning. They
achieve this by designing a target action values function that can effectively combine the training mechanism
of self-initiated policy and actor policy. SILP (Luo et al., 2021) method utilizes a planning mechanism for
robotic manipulation that identifies good policies from previous experiences, allowing the agent to imitate
high-quality actions even when explicit demonstrations are unavailable. By incorporating planning into the
SIL framework, the agent can efficiently explore and exploit past successful behaviors. The approach improves
the exploration-exploitation balance and enhances learning stability.

The proposed approach aligns with unguided exploration with a focus on on-policy learning. The proposed
approach uses past experiences to bootstrap policy learning, making a strong connection with the self-
imitation learning paradigm.

3 Preliminaries

Markov Decision Process We formulate the problem as a Markov Decision Process (MDP) M :
⟨S, A, T, R, γ, S0⟩ with S = {s1, ..., sn} being set of environment states, A = {a1, ..., an} being set of agents
actions, T : S × A → S is state transition function, R : S × A × S → R is reward function, γ ∈ (0, 1) is
discount factor, and S0 is environment state at initial time t = 0. At each time step t, the agent observes
the state of the environment st, samples an action at from action set A, and receives a reward rt from the
environment. The reinforcement learning agent is trained to maximize the expected reward collected from
agent environment interaction (Sutton & Barto, 2018).

4 Method

In this work, we propose an approach that can guide an agent’s exploration by combining the agent’s current
behavior and past successful trajectories for an on-policy RL algorithm. Unlike prior works (Oh et al., 2018;
Li et al., 2023; Tang, 2020), which mostly addresses exploration and self-imitation for off-policy algorithms,
we focus on on-policy algorithms. The key highlights are as follows:

• Our approach does not alter the base RL policy nor introduce new separate models requiring training,
unlike prior works Gangwani et al. (2018); Kang & Chen (2020).

• Our approach does not modify the true reward, preventing any bias in learning, unlike (Chen & Lin,
2020).

• We address exploration by self-imitation for dense, sparse, and binary rewards encompassing state and
pixel-based observations, unlike (Oh et al., 2018; Gangwani et al., 2018), which addressed only delayed
and noisy rewards for state-based observation in an on-policy setting.

4.1 Match: Self-Imitating Proximal Policy

The Match strategy addresses the exploration for dense reward environments. The proposed approach con-
nects with self-imitation learning by prioritizing experiences similar to the past most rewarding episodic
rollout. We find the similarity or match between trajectories using optimal transport.

Optimal Transport (Cuturi, 2013; Peyré & Cuturi, 2020; Luo et al., 2023) offers a structured approach for
comparing probability distributions. The squared Wasserstein distance between two discrete distributions,
νx = 1

T

∑T
t=1 δxt

and νy = 1
T ′

∑T ′

t′=1 δyt′ , is given by:

W 2(νx, νy) = min
ν∈ζ

T∑
t=1

T ′∑
t′=1

c(xt, yt′)νt,t′ , (1)

where ζ =
{

ν ∈ RT ×T ′ : ν1 = 1
T 1, νT 1 = 1

T ′ 1
}

represents the set of coupling matrices, c is a cost function,
and δx is the Dirac measure for x. The optimal coupling ν∗ effectively matches the samples from νx and νy.

4



Under review as submission to TMLR

Algorithm 1 Match: Self-Imitating Proximal Policy
Initialize parameters θ
Initialize BI ← {}
Initialize rollout buffer D ← {}

1: for every update do
2: Collect rollouts
3: Update BI
4: Compute advantage estimates Â1, Â2, ..., ÂT for trajectories in D
5: for every epoch do
6: Sample transitions from D uniformly or weighted by Equation 3, controlled by IET (ϵ)
7: Optimize LP P O w.r.t. θ: θ ← θ − η∇θLP P O; where η is learning rate
8: end for
9: Empty rollout buffer D ← {}

10: end for

Unlike measures such as the KL-divergence (Kullback & Leibler, 1951), the Wasserstein distance is a metric
that considers the space’s geometry.

Consider q̂e = 1
T ′

∑T ′

t′=1 δse
t

and q̂π = 1
T

∑T
t=1 δsπ

t
which represent the empirical state distributions of an

expert policy πe and a behavior policy π, respectively. The squared Wasserstein distance between the expert
and behavior policies is then given by:

W 2(q̂π, q̂e) = min
ν∈ζ

T∑
t=1

T ′∑
t′=1

c(sπ
t , se

t′)νt,t′ (2)

Let ν∗ denote the optimal coupling for this problem. The distance between each state can then be calculated
as:

dOT (sπ
t ) = −

T ′∑
t′=1

c(sπ
t , se

t′)ν∗
t,t′ , (3)

The proposed approach does not rely explicitly on expert policy πe. Instead, we adopt a more flexible frame-
work by considering the distribution of the best episodic rollout generated by the behavior policy π as
the surrogate expert policy. This removes the dependency on external expert trajectories and leverages the
agent’s high-performing experiences. We achieve this by maintaining an imitation buffer BI , which dynam-
ically stores the most rewarding episodic rollout encountered by the behavior policy. The state visitation
distribution of the trajectory stored in BI serves as the expert distribution. This design ensures that the
imitation buffer evolves continuously as the agent discovers better-performing trajectories, thus adapting the
surrogate expert distribution over time.

Building on this, we compute the Wasserstein distance (Equation 3) between the state visitation distribu-
tion in the imitation buffer BI and the current state visitation distribution generated by the behavior policy.
This distance measures alignment, quantifying how closely the agent’s trajectory matches its past successful
experiences. Using this metric, each transition in the rollout buffer D is assigned a sampling priority propor-
tional to the computed distance. Transitions that are more similar to those in BI are given higher priority,
effectively guiding the agent toward replicating its best-performing behaviors.

The effective balance between exploration (sampling diverse transitions) and exploitation (focusing on high-
priority transitions) is governed by the hyperparameter Imitation-Exploration Trade-off (IET) coefficient ϵ.
IET coefficient controls the probability of sampling transition for policy updates from rollout buffer D either
uniformly or with a probability governed by Equation 3. This prioritization framework enhances sample
efficiency and ensures that the agent’s learning process is bootstrapped by past successful experiences,

5



Under review as submission to TMLR

Algorithm 2 Replay: Self-Imitating Proximal Policy
Initialize parameters θ
Initialize BI ← {}
Initialize rollout buffer D ← {}

1: for every update do
2: Sample τ from {BI ,Env} controlled by IET (ϵ)
3: if τ ∈ BI then
4: Replay a trajectory from BI and store transition in D
5: else if τ ∈ Env then
6: Execute current policy and store transition in D
7: end if
8: Compute advantage estimates Â1, Â2, ..., ÂT

for trajectories in D
9: Optimize LP P O wrt θ for K epoch θ ← θ − η∇θLP P O; where η is learning rate

10: Update BI
11: Empty rollout buffer D ← {}
12: end for

eliminating the need for external supervision. Algorithm 1 provides a detailed overview of the optimal
transport-based trajectory-matching strategy.

4.2 Replay : Self-Imitating Proximal Policy

This section addresses the exploration challenge for sparse reward settings using self-imitation. Sparse reward
environments often present significant challenges for learning agents due to the limited availability of positive
feedback. To mitigate this challenge, we propose the Replay strategy, a variant of the Match strategy, tailored
specifically for sparse reward scenarios. Unlike Match, which uses past trajectories to generate preferences
for current trajectories, the Replay strategy focuses on directly replaying successful past behaviors. In this
context, “replay” refers to including trajectories stored in the imitation buffer BI into the rollout buffer D
and treating them as potential behaviors generated under the current policy. This ensures that the agent
strategically encounters successful trajectories at each policy update to guide policy learning, even in sparse
reward environments where most interactions yield little to no reward.

Replay strategy maintains an imitation buffer BI to store past successful trajectories. The imitation buffer
is initialized as empty, and as the agent interacts with the environment, trajectories are added to BI based
on the return for sparse reward and the FIFO strategy for binary reward environments, respectively. Each
trajectory in BI is represented as τ = (s0, a0, s1, a1, ...), where policy πI associated with the imitation buffer
maps observations from the imitation buffer to the corresponding actions in the stored successful trajectories
with a probability of one while assigning zero probability to all other actions. The policy πI is used to replay
trajectories from BI , integrating them into the rollout buffer D.

At each policy update epoch, trajectories are sampled from BI with probability ϵ, or generated by current
policy with probability 1−ϵ. These trajectories are then added to the rollout buffer D from which transitions
are sampled to update policy. This trajectory sampling mechanism ensures a balance between exploration and
exploitation. The IET coefficient ϵ plays a crucial role in tuning this balance. A higher value of ϵ emphasizes
exploitation by prioritizing trajectory sampling from BI , while a lower value encourages exploration by
focusing on trajectories generated from the agent’s most recent interactions.

The presented Replay strategy, hence, offers a robust framework for addressing sparse and binary reward
challenges by ensuring that successful behaviors are continually reinforced in policy learning. This selective
reuse of high-value trajectories enhances sample efficiency and mitigates the risk of the agent getting stuck
in unproductive exploration loops.

With this explicit focus on replaying successful past behaviors, the Replay strategy aligns with the princi-
ples of self-imitation learning while addressing the unique challenges posed by sparse reward environments.

6



Under review as submission to TMLR

0 20000 40000 60000 80000 100000
Timesteps

100

75

50

25

0

25

50

75

100

Ep
iso

de
 R

ew
ar

ds

MountainCarContinuous-v0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

500

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

ds

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

Ep
iso

de
 R

ew
ar

ds

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

ew
ar

ds

Hopper-v4

0 50000 100000 150000 200000 250000 300000
Timesteps

0

1000

2000

3000

4000

5000

6000

7000

Ep
iso

de
 R

ew
ar

ds

InvertedDoublePendulum-v4

0 50000 100000 150000 200000 250000 300000
Timesteps

0

200

400

600

800

1000

Ep
iso

de
 R

ew
ar

ds

InvertedPendulum-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

40000

60000

80000

100000

120000

140000

Ep
iso

de
 R

ew
ar

ds

HumanoidStandup-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

4000

Ep
iso

de
 R

ew
ar

ds

Walker2d-v4

Figure 1: Results show the performance of 8 MuJoCo (Towers et al., 2023) continuous control tasks (refer to
Figure 7 for results on all tasks). The plots are the learning curves and show the episodic rewards along the
y-axis evaluated through current policy. The reported results are mean across 5 different seeds with shaded
regions highlighting standard deviation. The proposed algorithms outperform all baselines across all tasks
by being competitive or better than others.

Algorithm 2 provides a detailed outline of implementing this strategy, highlighting its integration into the
policy optimization process.

5 Experiments

In this section, we aim to answer the following questions:

• Does bootstrapping policy learning, with its few past experiences, enhance sample efficiency and hard
exploration across diverse tasks?

• Can a single past successful behavior be sufficient to guide policy learning in complex sequential continuous
control tasks?

• Is replaying past successful trajectories sufficient for policy learning in multi-goal and partially observable
sparse reward settings?

5.1 Implementation Details

For dense reward environments in MuJoCo (Towers et al., 2023), we implement the Match strategy. The
network architecture utilizes a multi-layer perceptron (MLP) with two hidden layers containing 64 units and
tanh as the activation function. The PPO policy is updated over 10 epochs per training iteration. Training
batches are sampled uniformly or with priority based on the optimal transport distance between the current
trajectories and past best episodic rollouts, controlled by the Imitation-Exploration Trade-off coefficient ϵ
during each epoch. The imitation buffer is initiated with size 1. Further details about the hyperparameters
and implementation can be found in the supplementary material Table 1.

For sparse reward settings, such as the multi-goal PointMaze (de Lazcano et al., 2023) navigation tasks, we
adopt the Replay strategy. This setup shares the same MLP-based architecture used in MuJoCo environ-
ments. Similarly, for the Animal-AI Olympics (Crosby et al., 2019), a partially observable 3D environment

7



Under review as submission to TMLR

with binary rewards, we apply the Replay strategy but with a different architecture: a three-layer convolu-
tional neural network (CNN). The input comprises the last four stacked frames (84 × 84 RGB pixels). In
both PointMaze and Animal-AI tasks, the rollout buffer is populated with trajectories sampled either from
the current policy with probability 1 − ϵ or from the imitation buffer BI with probability ϵ. The imitation
buffer is initialized with size 10. Comprehensive details of the hyperparameters for all environments are
provided in the supplementary material Table 2.

5.2 Choice of Baselines:

Self-imitation learning (SIL) has been mainly explored to enhance exploration in off-policy reinforcement
learning (RL) algorithms with a limited focus on on-policy RL algorithms. Further, recent works Luo &
Schomaker (2023); Xiao et al. (2024); Shi et al. (2023) predominantly focus on problem-specific adoption
of SIL rather than advancing SIL from a broader algorithmic perspective. Notably, there remains a limited
analysis of SIL’s potential in the context of on-policy RL algorithms to solve diverse problem settings, leaving
a significant gap in understanding its general applicability. This limits the choice of baseline in the context
of our problem.

PPO: PPO is vanilla proximal policy algorithm (Schulman et al., 2017), which does not impose any self-
imitation learning paradigm.

SIL-PPO: SIL (Oh et al., 2018) is an off-policy RL algorithm that imitates past state-action pairs that
have higher returns than agent value estimates. The proposed approach was also extended to the on-policy
PPO (Schulman et al., 2017) algorithm with a focus on dense or delayed rewards. Further, as highlighted
by (Oh et al., 2018), SIL lacks a theoretical connection with on-policy algorithms.

SVPG-PPO: SVPG (Gangwani et al., 2018) is another self-imitating on-policy algorithm. They use an
auxiliary objective with the RL policy objective. The auxiliary term is a divergence minimization regularizer
between current policy visitation and distribution induced by experience replay trajectories with high returns
with a focus on dense, delayed, or noisy rewards only.

5.3 Performance of Match on Continuous Control Tasks

In this section, we investigate the effect of self-imitation on continuous control tasks with dense rewards. We
evaluate the performance of our SIPP-Match strategy on 10 MuJoCo (Towers et al., 2023) tasks with chosen
baselines.

Compared with all the baselines, the performance of the Match strategy on continuous control tasks is shown
in Figure 1. The proposed Match algorithm outperforms PPO (Schulman et al., 2017) and SIL-PPO across
all the tasks except SIL-PPO outperforming on Humanoid-v4 task, with SVPG+PPO lagging in most tasks
except having competitive performance on Hopper-v4 and Humanoid-v4 tasks.

In MuJoCo benchmark environments, the agent benefits from continuous feedback via a smooth and dense
reward structure, facilitating faster exploration and learning. Despite this, our experiments demonstrate
that the optimal transport distance prioritized self-bootstrapping can further enhance exploration for the
proximal policy. By prioritizing the most informative experiences, our method ensures that the agent focuses
on high-value learning opportunities, accelerating convergence and improving policy robustness.

Additionally, the proposed approach stores only the states visited by the most rewarding past episodic roll-
out, making it straightforward compared to prior methods. Unlike our approach, (Oh et al., 2018) compares
returns of past experiences with agent value estimates to select experiences for self-imitation, which can be
noisy and introduce bias in policy learning (Libardi et al., 2021; Raileanu & Fergus, 2021). Furthermore,
(Gangwani et al., 2018) uses KL-divergence as a regularizer to minimize divergence between state-action visi-
tation distributions of the current policy and past rewarding experiences. However, their approach introduces
bias in policy learning, which they address by simultaneously learning multiple diverse policies.

In summary, the proposed Match algorithm integrates seamlessly with PPO without introducing additional
learning parameters and requires only one trajectory to guide self-imitation learning. It introduces a single
hyperparameter IET coefficient (ϵ) to control whether training batches are uniformly sampled or priori-

8



Under review as submission to TMLR

(a) Goal (b) Goal-behind wall (c) Goal-tunnel (d) Goal-occluded tunnel (e) Goal-on wall

Figure 2: All tasks feature one goal and one agent. The positions of the agent and goal are selected randomly
at the start of each episode from a predefined set of fixed initial positions. Each episode initializes the
environment by sampling these positions, ensuring variability while maintaining a structured distribution.
There is only one source of reward per environment, i.e., a binary reward is provided for reaching the goal.
The agent observes the arena through a first-person view with partial visibility, reflecting the limitations of
a partially observable environment.

0 50000 100000 150000 200000 250000 300000
Timesteps

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

ds

PointMaze_Open_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

50

100

150

200

250

300

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_G-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

25

50

75

100

125

150

175

200

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

100

200

300

400

500

Ep
iso

de
 R

ew
ar

ds

PointMaze_Large_Diverse_G-v3

Figure 3: Results show the performance on 4 PointMaze (de Lazcano et al., 2023) multi-goal sparse reward
tasks (refer to Figure 8 for results on all tasks). The plots are the learning curves and show the episodic
rewards along the y-axis evaluated through current policy. The reported results are mean across 5 different
seeds. The proposed algorithms outperform all the baselines by a significant margin.

tized using optimal transport distance based on past successful episodic rollouts. The single hyperparameter
provides a simple mechanism to balance exploration and exploitation. This approach offers a practical and
efficient solution to enhance reinforcement learning performance in complex environments.

5.4 Performance of Replay in Sparse Reward Tasks

In this section, we empirically evaluate self-imitation performance in sparse and binary reward settings.
We believe that self-imitation can play a crucial role in such reward settings, as the ability of an agent
to reach some success can be extremely difficult with sparse rewards. The previous works were limited to
MuJoCo environments with dense or delayed rewards. Motivated by this, we evaluate the performance of
SIPP-Replay on a diverse set of tasks, including multi-goal gymnasium-robotics PointMaze navigation sparse
reward environments (de Lazcano et al., 2023) and partially observable 3-dimensional Animal-AI Olympics
(Crosby et al., 2019) binary reward environments.

5.4.1 Task Definitions:

The PointMaze environment is a 2-dimensional maze. We use two variants of the PointMaze environment.
First, with fixed agent position and varying goal position, i.e., the goal position is reinitialized at each episode.
Second, both the goal and agent positions are reinitialized after every reset.

The Animal-AI Olympics (Crosby et al., 2019) is a partially observable 3-dimensional environment where an
agent can navigate freely inside an arena. We design a total of 5 experiments. Each experiment has a different
level of complexity based on the type of obstacles present in the arena. The descriptions of playgrounds are
as follows :

9



Under review as submission to TMLR

0 50000 100000 150000 200000 250000 300000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

ew
ar

ds

Goal

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

ew
ar

ds

Goal-behind wall

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

ew
ar

ds

Goal-tunnel

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

Ep
iso

de
 R

ew
ar

ds

Goal-occluded tunnel

Figure 4: Results show the performance on 4 Animal-AI Olympics environment (Crosby et al., 2019) binary
reward tasks (refer to Figure 9 for results on all tasks). The plots are the learning curves and show the
episodic rewards (success rate) along the y-axis evaluated through current policy. The reported results are
mean across 5 different seeds with shaded regions highlighting standard deviation across seeds. The proposed
algorithms outperform PPO by a significant margin.

0 20000 40000 60000 80000 100000
Timesteps

100

50

0

50

100

Ep
iso

de
 R

ew
ar

ds

MountainCarContinuous-v0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

500

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

ds

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

Ep
iso

de
 R

ew
ar

ds
HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

ds

Hopper-v4

Figure 5: Results show the ablation study on 4 MuJoCo (Towers et al., 2023) continuous control tasks (refer to
Figure 10 for complete results). The parameter ϵ controls the degree of exploration vs exploitation. The plots
are the learning curves and show the episodic rewards along the y-axis evaluated through current policy with
different ϵ. The reported results are mean across 5 different seeds with shaded regions highlighting standard
deviation across seeds.

• Goal: In this arena the agent has to reach the goal position. The agent and goal can be anywhere in the
arena. There are no obstacles in the arena.

• Goal-behind wall: The goal is hidden behind a wall in this arena. The agent and goal position are
different in each configuration. The agent needs to learn to find the goal, which is hidden behind the wall.

• Goal-tunnel: This arena has a transparent tunnel that is open from both ends. The agent can not
penetrate the tunnel walls and must enter the tunnel to find the goal.

• Goal-occluded tunnel: This arena is identical to the previous one, except the tunnel entrances are
occluded with movable boxes. The agent must learn to move the boxes to find the goal inside the tunnel.

• Goal-on wall: In this arena we place the goal on an L-shape wall. The agent must learn to find a ramp
to climb on the wall and avoid falling off the wall to reach the goal.

5.4.2 Empirical Analysis:

The performance of SIPP-Replay is shown in Figures 3 and 4. The choice of baselines for the PointMaze
environment is consistent with the MuJoCo tasks, as both involve fully observable MDPs. However, for the
Animal-AI Olympics task, the choice of baselines is restricted to PPO. This limitation arises because the
official implementations of baselines, SIL and SVPG, are tailored specifically to fully observable environments
like MuJoCo and do not extend support to the Animal-AI Olympics. Further, Baselines SIL and SVPG rely

10



Under review as submission to TMLR

0 50000 100000 150000 200000 250000 300000
Timesteps

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

ds

PointMaze_Open_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

50

100

150

200

250

300

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_G-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

25

50

75

100

125

150

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

50

100

150

200

250

300

350

Ep
iso

de
 R

ew
ar

ds

PointMaze_Large_Diverse_G-v3

Figure 6: Results show the ablation study on 4 PointMaze (de Lazcano et al., 2023) multi-goal sparse reward
tasks (refer to Figure 11 for complete results). The parameter ϵ controls the replay frequency to balance
exploration vs exploitation. The plots are the learning curves and show the episodic rewards along the y-axis
evaluated through current policy with different ϵ. The reported results are across 5 different seeds.

on state visitation distributions to design self-imitation mechanisms. Under partial observability, these state
visitation measures lose relevance as the agent only has access to partial observations of the environment.
Consequently, their performance would degrade significantly, making comparisons with them unfair. This
also highlights the border applicability of our approach, which does not make any underlying assumption
about the environment. Our is the first approach that has used self-imitation in such a diverse scenario.

The performance of our proposed algorithm exceeds all the baselines on the Maze navigation task, as shown in
Figure 3. We believe that under sparse reward conditions, the credit assignment problem plays a crucial role,
and we tackle this by replaying past trajectories. Unlike baseline methods, which prioritize state-action pairs,
SIPP focuses on episodic trajectory-level prioritization rather than state visitation distributions. This helps
the agent to understand which actions contribute to future rewards. To incorporate successful trajectories
in the replay buffer, we consider it as the possible behavior of the agent in the current environment. The
Replay strategy results in even superior performance, Figure 4, for partially observable environments due to
its inherent design capability to adapt to partial observability. The results show that PPO agents encounter
some success but fail to learn due to forgetting behaviors. However, the proposed Replay strategy stores
those behaviors and keeps replaying them. This addresses the forgetting behaviors, and the agent eventually
learns to mimic those successful behaviors.

To summarize, it is evident from the results that self-imitation can help agents learn in both dense or sparse
reward settings. In a dense reward setting, prioritizing state visitation that matches the past successful state
is sufficient, as a dense reward structure can guide the agent to learn the long-term consequences of actions
taken in those states. However, a more exploitative strategy is required in sparse reward settings, such as
replaying past successful episodic trajectories.

5.5 Tuning Self-Imitation vs. Exploration

The proposed strategy uses the exploitation of the agent’s past behaviors. However, it is crucial to explore for
the agent to learn an optimal policy. This balance between exploitation and exploration in SIPP is achieved
through the Imitation-Exploration Trade-off (IET) coefficient ϵ. In SIPP-Match this parameter indicates the
probability of sampling training batches uniformly or with a priority proportional to the optimal transport
distance with the most successful past trajectory. In SIPP-Replay this parameter controls the trajectory
replay probability from the imitation buffer BI .

The effect of IET for SIPP-Match strategy is shown in Figure 5. The ablation study shows maximum per-
formance improvement for ϵ = 0.1, 0.2 or 0.3 across all tasks. This highlights the importance of exploration
as a more greedy imitation results in sub-optimal performance. However, for simpler tasks such as Moun-
tainCarContinuous, the performance is mostly similar as these simpler environments require less exploration
and even an aggressive imitation strategy results in similar performance.

11



Under review as submission to TMLR

A similar analysis was performed to find the balance between the exploration and exploitation trade-off of
the PointMaze navigation environments. The results of this ablation study are shown in Figure 6. We didn’t
perform a similar analysis of the Animal-AI Olympics environment. However, the IET coefficient for the
Animal-AI Olympics environment was kept ϵ = 0.3 based on the insights from the above ablation studies.

6 Conclusion

This paper proposed a self-imitating proximal policy framework to address exploration and credit assignment
challenges in dense and sparse reward environments. Through extensive experimentation, we demonstrated
that bootstrapping policy learning with past rewarding experiences effectively mitigates forgetting behavior
and reduces policy divergence, leading to enhanced exploration and stability. The simplicity and efficacy of
the proposed algorithm highlight its versatility across different problem settings. Furthermore, we showed
that self-imitation and exploration are inherently complementary, enabling agents to leverage prior successes
for guided learning. Our results suggest dynamically integrating self-imitation with adaptive exploration
strategies can provide a promising avenue for future research. Extending the proposed framework to more
complex tasks, including partially observable and multi-agent settings, could unlock further potential and
establish broader applicability across reinforcement learning domains.

References
Per-Arne Andersen, Morten Goodwin, and Ole-Christoffer Granmo. Deep rts: a game environment for deep

reinforcement learning in real-time strategy games. In 2018 IEEE conference on computational intelligence
and games (CIG), pp. 1–8. IEEE, 2018.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor Mordatch.
Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528, 2019.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network distillation.
arXiv preprint arXiv:1810.12894, 2018.

Gaurav Chaudhary, Laxmidhar Behera, and Tushar Sandhan. Active perception system for enhanced visual
signal recovery using deep reinforcement learning. In ICASSP 2023 - 2023 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp. 1–5, 2023. doi: 10.1109/ICASSP49357.2023.
10097084.

Zhixin Chen and Mengxiang Lin. Self-imitation learning in sparse reward settings. arXiv preprint
arXiv:2010.06962, 2020.

Matthew Crosby, Benjamin Beyret, and Marta Halina. The animal-ai olympics. Nature Machine Intelligence,
1(5):257–257, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural infor-
mation processing systems, 26, 2013.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gymnasium
robotics, 2023. URL http://github.com/Farama-Foundation/Gymnasium-Robotics.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in neural information
processing systems, 30, 2017.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. Go-explore: a new approach
for hard-exploration problems. arXiv preprint arXiv:1901.10995, 2019.

Johan Ferret, Olivier Pietquin, and Matthieu Geist. Self-imitation advantage learning. arXiv preprint
arXiv:2012.11989, 2020.

12

http://github.com/Farama-Foundation/Gymnasium-Robotics


Under review as submission to TMLR

Tanmay Gangwani, Qiang Liu, and Jian Peng. Learning self-imitating diverse policies. arXiv preprint
arXiv:1805.10309, 2018.

Yijie Guo, Junhyuk Oh, Satinder Singh, and Honglak Lee. Generative adversarial self-imitation learning.
arXiv preprint arXiv:1812.00950, 2018.

Siddhant Haldar, Vaibhav Mathur, Denis Yarats, and Lerrel Pinto. Watch and match: Supercharging imita-
tion with regularized optimal transport. In Conference on Robot Learning, pp. 32–43. PMLR, 2023.

Dong Han, Beni Mulyana, Vladimir Stankovic, and Samuel Cheng. A survey on deep reinforcement learning
algorithms for robotic manipulation. Sensors, 23(7):3762, 2023.

Tao Huang, Kai Chen, Bin Li, Yun-Hui Liu, and Qi Dou. Guided reinforcement learning with efficient
exploration for task automation of surgical robot. In 2023 IEEE International Conference on Robotics
and Automation (ICRA), pp. 4640–4647. IEEE, 2023.

Chun-Yao Kang and Ming-Syan Chen. Balancing exploration and exploitation in self-imitation learning.
In Advances in Knowledge Discovery and Data Mining: 24th Pacific-Asia Conference, PAKDD 2020,
Singapore, May 11–14, 2020, Proceedings, Part II 24, pp. 274–285. Springer, 2020.

Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide Scara-
muzza. Deep drone racing: Learning agile flight in dynamic environments. In Conference on Robot
Learning, pp. 133–145. PMLR, 2018.

Kibeom Kim, Kisung Shin, Min Whoo Lee, Moonhoen Lee, Min Whoo Lee, and Byoung-Tak Zhang. Visual
hindsight self-imitation learning for interactive navigation. IEEE Access, 12:83796–83809, 2023. URL
https://api.semanticscholar.org/CorpusID:265696304.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical
statistics, 22(1):79–86, 1951.

Yao Li, YuHui Wang, and XiaoYang Tan. Self-imitation guided goal-conditioned reinforcement learning.
Pattern Recognition, 144:109845, 2023.

Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274, 2017.

Gabriele Libardi, Gianni De Fabritiis, and Sebastian Dittert. Guided exploration with proximal policy
optimization using a single demonstration. In International Conference on Machine Learning, pp. 6611–
6620. PMLR, 2021.

Hao Lin, Yue He, Fanzhang Li, Quan Liu, Bangjun Wang, and Fei Zhu. Taking complementary advantages:
Improving exploration via double self-imitation learning in procedurally-generated environments. Expert
Syst. Appl., 238:122145, 2023. URL https://api.semanticscholar.org/CorpusID:264321073.

Sha Luo, Hamidreza Kasaei, and Lambert Schomaker. Self-imitation learning by planning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 4823–4829. IEEE, 2021.

Shan Luo and Lambert Schomaker. Reinforcement learning in robotic motion planning by combined
experience-based planning and self-imitation learning. Robotics Auton. Syst., 170:104545, 2023. URL
https://api.semanticscholar.org/CorpusID:259137688.

Yicheng Luo, Zhengyao Jiang, Samuel Cohen, Edward Grefenstette, and Marc Peter Deisenroth. Optimal
transport for offline imitation learning. arXiv preprint arXiv:2303.13971, 2023.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcoming
exploration in reinforcement learning with demonstrations. In 2018 IEEE international conference on
robotics and automation (ICRA), pp. 6292–6299. IEEE, 2018.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. In International conference
on machine learning, pp. 3878–3887. PMLR, 2018.

13

https://api.semanticscholar.org/CorpusID:265696304
https://api.semanticscholar.org/CorpusID:264321073
https://api.semanticscholar.org/CorpusID:259137688


Under review as submission to TMLR

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science.
Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

Gabriel Peyré and Marco Cuturi. Computational optimal transport, 2020. URL https://arxiv.org/abs/
1803.00567.

Roberta Raileanu and Rob Fergus. Decoupling value and policy for generalization in reinforcement learning.
In International Conference on Machine Learning, pp. 8787–8798. PMLR, 2021.

Tim Salimans and Richard Chen. Learning montezuma’s revenge from a single demonstration. arXiv preprint
arXiv:1812.03381, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zijing Shi, Yunqiu Xu, Meng Fang, and Ling Chen. Self-imitation learning for action generation in text-based
games. In Conference of the European Chapter of the Association for Computational Linguistics, 2023.
URL https://api.semanticscholar.org/CorpusID:258378233.

Sumedh Sontakke, Jesse Zhang, Séb Arnold, Karl Pertsch, Erdem Bıyık, Dorsa Sadigh, Chelsea Finn, and
Laurent Itti. Roboclip: One demonstration is enough to learn robot policies. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Richard Stuart Sutton. Temporal credit assignment in reinforcement learning. University of Massachusetts
Amherst, 1984.

Yunhao Tang. Self-imitation learning via generalized lower bound q-learning. Advances in neural information
processing systems, 33:13964–13975, 2020.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, March 2023. URL
https://zenodo.org/record/8127025.

Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice,
Chuyuan Fu, Cong Ma, Jiantao Jiao, et al. Jump-start reinforcement learning. In International Conference
on Machine Learning, pp. 34556–34583. PMLR, 2023.

Teng Xiao, Mingxiao Li, Yige Yuan, Huaisheng Zhu, Chao Cui, and V.G. Honavar. How to leverage demon-
stration data in alignment for large language model? a self-imitation learning perspective. In Conference
on Empirical Methods in Natural Language Processing, 2024. URL https://api.semanticscholar.org/
CorpusID:273345418.

Mao Xu, Shuzhi Sam Ge, Dongjie Zhao, and Qian Zhao. Improved exploration with demonstrations in
procedurally-generated environments. IEEE Transactions on Games, 2023.

Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mrinal
Kalakrishnan, Sergey Levine, and Chelsea Finn. Watch, try, learn: Meta-learning from demonstrations
and reward. arXiv preprint arXiv:1906.03352, 2019.

14

https://arxiv.org/abs/1803.00567
https://arxiv.org/abs/1803.00567
https://api.semanticscholar.org/CorpusID:258378233
https://zenodo.org/record/8127025
https://api.semanticscholar.org/CorpusID:273345418
https://api.semanticscholar.org/CorpusID:273345418


Under review as submission to TMLR

A Appendix

0 20000 40000 60000 80000 100000
Timesteps

100

75

50

25

0

25

50

75

100

Ep
iso

de
 R

ew
ar

ds

MountainCarContinuous-v0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

500

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

ds

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

Ep
iso

de
 R

ew
ar

ds

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

500

1000

1500

2000

2500

3000

Ep
iso

de
 R

ew
ar

ds

Hopper-v4

0 50000 100000 150000 200000 250000 300000
Timesteps

0

1000

2000

3000

4000

5000

6000

7000

Ep
iso

de
 R

ew
ar

ds

InvertedDoublePendulum-v4

0 50000 100000 150000 200000 250000 300000
Timesteps

0

200

400

600

800

1000

Ep
iso

de
 R

ew
ar

ds

InvertedPendulum-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

40000

60000

80000

100000

120000

140000

Ep
iso

de
 R

ew
ar

ds

HumanoidStandup-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

4000

Ep
iso

de
 R

ew
ar

ds

Walker2d-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

120

100

80

60

Ep
iso

de
 R

ew
ar

ds

Pusher-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

200

400

600

800

1000

1200

1400

Ep
iso

de
 R

ew
ar

ds

Humanoid-v4

Figure 7: Results show the performance of 10 MuJoCo (Towers et al., 2023) continuous control tasks. The
plots are the learning curves and show the episodic rewards along the y-axis evaluated through current policy.
The reported results are mean across five different seeds. The proposed algorithms outperform all baselines
across all tasks by being competitive or better than others.

15



Under review as submission to TMLR

Table 1: Parameters For Animal-AI Olympics
Environment

Parameter Values
episode length 1000
image size (RGB) 84× 84× 3
initial reward threshold 0
frame-skip 2
frame-stack 4
discount factor (λ) 0.99
gae-gamma (γ) 0.95
value loss coefficient (c1) 0.1
entropy loss coefficient (c2) 0.02
learning rate 10−4

ppo-epoch 4
number-mini-batch 7
value-clip 0.15
policy-clip 0.15
buffer size (BI) 10

Table 2: PPO Hyper-parameters

Parameter Values
learning rate 3e−4

n-steps 2048
batch size 64
n-epochs 10
discount factor 0.99
gae-gamma 0.95
clip-range 0.2
normalize advantage True
vf-coef 0.5
max-grad-norm 0.5

0 50000 100000 150000 200000 250000 300000
Timesteps

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

ds

PointMaze_Open_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

50

100

150

200

250

300

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_G-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

25

50

75

100

125

150

175

200

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

100

200

300

400

500

Ep
iso

de
 R

ew
ar

ds

PointMaze_Large_Diverse_G-v3

0 50000 100000 150000 200000 250000 300000
Timesteps

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

ds

PointMaze_Open_Diverse_G-v3

Figure 8: Results show the performance on all 5 PointMaze multi-goal sparse reward tasks. The plots are
the learning curves and show the episodic rewards along the y-axis evaluated through current policy. The
reported results are across five different seeds. The proposed algorithms outperform all the baselines by a
significant margin.

16



Under review as submission to TMLR

0 50000 100000 150000 200000 250000 300000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

ew
ar

ds

Goal

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

ew
ar

ds

Goal-behind wall

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 R

ew
ar

ds

Goal-tunnel

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

Ep
iso

de
 R

ew
ar

ds

Goal-occluded tunnel

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ep
iso

de
 R

ew
ar

ds

Goal-on wall

Figure 9: Results show the performance on all 5 Animal-AI Olympics environment sparse reward tasks. The
plots are the learning curves and show the episodic rewards (success rate) along the y-axis evaluated through
current policy. The reported results are across 5 different seeds. The proposed algorithms outperform all the
baselines by a significant margin.

0 20000 40000 60000 80000 100000
Timesteps

100

50

0

50

100

Ep
iso

de
 R

ew
ar

ds

MountainCarContinuous-v0

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

500

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

ds

Ant-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

Ep
iso

de
 R

ew
ar

ds

HalfCheetah-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

500

1000

1500

2000

2500

Ep
iso

de
 R

ew
ar

ds

Hopper-v4

0 50000 100000 150000 200000 250000 300000
Timesteps

0

1000

2000

3000

4000

5000

6000

7000

Ep
iso

de
 R

ew
ar

ds

InvertedDoublePendulum-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

100

200

300

400

500

600

Ep
iso

de
 R

ew
ar

ds

Humanoid-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

1000

2000

3000

4000

Ep
iso

de
 R

ew
ar

ds

Walker2d-v4

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

40000

60000

80000

100000

120000

140000

Ep
iso

de
 R

ew
ar

ds

HumanoidStandup-v4

Figure 10: Results show the ablation study on 8 MuJoCo (Towers et al., 2023) continuous control tasks. The
parameter ϵ controls the degree of exploration vs exploitation. The plots are the learning curves and show
the episodic rewards along the y-axis evaluated through current policy with different ϵ. The reported results
are mean across five different seeds.

17



Under review as submission to TMLR

0 50000 100000 150000 200000 250000 300000
Timesteps

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

ds

PointMaze_Open_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

50

100

150

200

250

300

Ep
iso

de
 R

ew
ar

ds

PointMaze_Medium_Diverse_G-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

25

50

75

100

125

150
Ep

iso
de

 R
ew

ar
ds

PointMaze_Medium_Diverse_GR-v3

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e6

0

50

100

150

200

250

300

350

Ep
iso

de
 R

ew
ar

ds

PointMaze_Large_Diverse_G-v3

0 50000 100000 150000 200000 250000 300000
Timesteps

0

50

100

150

200

250

Ep
iso

de
 R

ew
ar

ds

PointMaze_Open_Diverse_G-v3

Figure 11: Results show the ablation study on all 5 PointMaze multi-goal sparse reward task . The parameter
ϵ controls the replay frequency to balance exploration vs exploitation. The plots are the learning curves and
show the episodic rewards along the y-axis evaluated through current policy with different ϵ. The reported
results are across five different seeds.

18


	Introduction
	Related Work
	Preliminaries
	Method
	Match: Self-Imitating Proximal Policy
	Replay: Self-Imitating Proximal Policy

	Experiments
	Implementation Details
	Choice of Baselines:
	Performance of Match on Continuous Control Tasks
	Performance of Replay in Sparse Reward Tasks
	Task Definitions:
	Empirical Analysis:

	Tuning Self-Imitation vs. Exploration

	Conclusion
	Appendix

