

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ON THE FRAGILITY OF BENCHMARK CONTAMINATION DETECTION IN REASONING MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Leaderboards for large reasoning models (LRMs) have turned evaluation into a competition, incentivizing developers to optimize directly on benchmark suites. A shortcut to achieving higher rankings is to incorporate evaluation benchmarks into the training data, thereby yielding inflated performance, known as benchmark contamination. Despite that numerous contamination detection approaches have been proposed, surprisingly, our studies find that evading contamination detections for LRMs is alarmingly easy. We focus on the two scenarios where contamination may occur in practice: (I) when the base model evolves into LRM via supervised fine-tuning (SFT) and reinforcement learning (RL), we find that contamination during SFT can be originally identified by contamination detection methods. Yet, even a brief Group Relative Policy Optimization (GRPO) training can markedly **conceal contamination signals** that most detection methods rely on. Further empirical experiments and theoretical analysis indicate that Proximal Policy Optimization (PPO) style importance sampling and clipping objectives are the root cause of this detection concealment, indicating that **a broad class of RL methods** may inherently exhibit similar concealment capability; (II) when SFT contamination with CoT is applied to advanced LRMs as the final stage, most contamination detection methods **perform near random guesses**. Without exposure to non-members, contaminated LRMs would still have more confidence when responding to those unseen samples that share similar distributions to the training set, and thus, evade existing memorization-based detection methods. Together, our findings reveal the unique vulnerability of LRMs evaluations: Model developers could easily contaminate LRMs to achieve inflated leaderboards performance while leaving minimal traces of contamination, thereby strongly undermining the fairness of evaluation and threatening the integrity of public leaderboards. This underscores the urgent need for advanced contamination detection methods and trustworthy evaluation protocols tailored to LRMs.

1 INTRODUCTION

Competition among model developers has intensified as Large Language Models (LLMs) have demonstrated remarkable capabilities in various real-world tasks (Achiam et al., 2023; Liu et al., 2024a). The leaderboards for performance are becoming a competitive arena for all state-of-the-art (SOTA) LLMs. However, inadvertently, benchmark samples may appear during LLMs' pre-training due to vast amounts of web-scraped training data. In addition, in the pursuit of publicity, some model developers may even deliberately incorporate benchmark data into their training sets (Sun et al., 2025), resulting in inflated benchmark performance and leaderboard rankings. We refer to this as the benchmark contamination problem in LLMs (Xu et al., 2024; Balloccu et al., 2024).

Accordingly, various benchmark contamination detection methods have been proposed to determine whether specific benchmarks were used during training (Yeom et al., 2018; Mattern et al., 2023; Shi et al., 2023; Dong et al., 2024; Tu et al., 2024), based on the assumption that contamination in LLMs primarily involves memorizing the benchmark data (Wu et al., 2025). These methods rely on separability in some distributions between members (i.e., seen samples during contamination) and non-members (i.e., unseen samples). However, as LLMs have started to evolve into Large Reasoning Models (LRMs) (Guo et al., 2025; Jaech et al., 2024), benchmark contamination detection faces two key challenges: (1) LRMs rely on chain-of-thought (CoT) reasoning to reach final answers, but

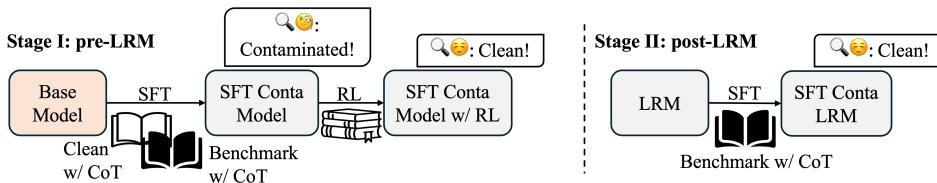


Figure 1: Two scenarios where contamination may happen to LRM. In Stage I (pre-LRM), while SFT contamination to the base model is initially detectable, contamination evidence can be concealed through subsequent RL training. In Stage II (post-LRM), extensive contamination with CoT on advanced LRM barely leaves evidence for existing memorization-based detection methods.

model developers would not release their training CoT data, and contamination detectors typically only have access to question-answer pairs without the intermediate reasoning steps used during training. This absence of training sequences makes detection substantially more challenging. (2) LRM primarily acquire reasoning abilities during two stages: SFT and RL. This potentially provides developers with opportunities to manipulate leaderboard performance by strategically contaminating benchmarks in the earlier stage (e.g., SFT), while evading detection methods through subsequent training (e.g., RL). Given these challenges, the effectiveness of existing detection methods against LRM contamination remains uncertain.

In this paper, we present the first systematic study of benchmark contamination in LRM, structured around two points where contamination can happen. In particular, **Stage I (pre-LRM)** investigates contamination introduced to the base model while acquiring reasoning ability via SFT and RL; **Stage II (post-LRM)** investigates contamination applied to an advanced LRM as a final SFT step. Under each stage, we comprehensively evaluate the effectiveness of existing detection methods.

Stage I (pre-LRM): contamination happens when the base model evolves into LRM. We simulate contamination introduced during the period which the base model acquires reasoning ability through SFT and RL. After evaluating 10 representative contamination detection methods spanning generation-based, perturbation-based, reference-based, and reference-free approaches, we find that while SFT contamination to the base model is initially detectable, contamination evidence can be concealed through subsequent GRPO (Shao et al., 2024) training with clean samples. To isolate the core reasons behind GRPO’s ability to conceal contamination, we conducted carefully designed controlled experiments to rule out the possibility that simply training with more clean samples results in the observed concealment, pointing to the conclusion that the GRPO optimization objective might be the primary driver for obscuring contamination. Then, we performed a theoretical analysis showing that the PPO-style importance sampling/clipping gate can drive the drop in detection performance. Our ablation studies confirm that while plain rejection sampling (RAFT) will not shrink the member/non-member separability, its variant RAFT++ (Xiong et al., 2025) that adds on the importance sampling/clipping term again makes detection harder. As many RL algorithms adopt similar training objectives, this demonstrates a significant risk to the integrity of benchmark evaluations.

Stage II (post-LRM): contamination with CoT applied to LRM. We simulate contamination with CoT introduced to advanced LRM as the final training step. Surprisingly, although exclusively SFT on the benchmark samples with CoT yields a huge inflated performance, it leaves little evidence to existing detection approaches: almost all the detection approaches consistently perform near random guess in all the benchmarks. The log-prob distributions of both members and non-members show that without exposure to non-members, contaminated LRM still have more confidence when responding to those unseen samples that are similar to the training set. This may undermine the key assumption behind many existing detection techniques that the benchmark contamination problem is primarily about memorizing samples (Morris et al., 2025; Hayes et al., 2025).

Overall, our findings reveal that existing contamination detection methods are fragile under LRM contamination scenarios: RL conceals SFT contamination evidence introduced during the transition from base models to LRM, while contamination with CoT applied to advanced LRM leaves little detectable evidence. These findings underscore the urgent need for advanced contamination detection methods and trustworthy evaluation protocols tailored to LRM. Accordingly, we outline potential directions for guaranteeing the integrity of evaluating LRM (Section 5). We hope that our discoveries will inspire further research dedicated to building fair evaluation arenas for LRM.

108

2 RELATED WORKS

109
 110 **Benchmark Contamination Detections.** Benchmark contamination detection methods aim to identify
 111 whether evaluation datasets have been exposed during training (Oren et al., 2023). Prior work
 112 has proposed approaches based on: instance similarity (Karamolegkou et al., 2023), probability
 113 analysis (Mattern et al., 2023), instance generation (Deng et al., 2023; Ranaldi et al., 2024), and
 114 answer memorization (Yim et al., 2024). In this work, we select representative methods applicable
 115 to our setting, from probability analysis and instance generation, and further categorize them into:
 116 generation-based (Dong et al., 2024; Wu et al., 2025), perturbation-based (Li et al., 2025; Mattern
 117 et al., 2023), reference-based (Mireshghallah et al., 2022; Carlini et al., 2021), embedding-based (Tu
 118 et al., 2024; Liu et al., 2024b), and reference-free (Zhang et al., 2024; Li et al., 2025; Yeom et al.,
 119 2018; Shi et al., 2023) methods. Each of these relies on distinct assumptions (Fu et al., 2024), and
 120 their effectiveness in the LRM contamination scenario remains underexplored.

121 **LRMs.** LRM s achieve superior performance on challenging mathematical and coding tasks (Team
 122 et al., 2025), driven by inference-time scaling (Jaech et al., 2024; Snell et al., 2024; Zhang et al.,
 123 2025). To endow reasoning abilities to existing models, numerous efforts have been focusing on
 124 either SFT distillation (Li et al., 2025; Muennighoff et al., 2025; Guha et al., 2025; Ye et al., 2025;
 125 Bercovich et al., 2025) or RL with verifiable rewards (Liu et al., 2025a; Zeng et al., 2025; Yue et al.,
 126 2025). In SFT distillation, model developers distill knowledge from advanced LRM s into smaller
 127 models (Guo et al., 2025). While RL enables models to generate rollouts and receive rewards from
 128 verifiers, improving models’ reasoning ability through feedback (Liu et al., 2025a; Zeng et al., 2025;
 129 Yue et al., 2025; Liu et al., 2025b). These two stages create many opportunities for developers to
 130 contaminate the benchmarks and evade detection.

131 **Benchmark Contamination Concealment.** Model developers hope to conceal contamination evi-
 132 dence while still having performance inflation. Prior work has explored evading detection through
 133 benchmark augmentation, such as rephrasing solutions with strong LLMs (Dekoninck et al., 2024;
 134 Samuel et al., 2024), but in LRM settings, most benchmarks only have question–answer pairs with-
 135 out step-by-step solutions, making such methods inapplicable. (Bordt et al., 2024) explores from
 136 the training dynamic perspective, showing that performance inflation due to contamination dimin-
 137 ishes as pre-training progresses. To our knowledge, we are the first to investigate contamination
 138 concealment at the algorithmic level.

139

3 RL CONCEALS CONTAMINATION (STAGE I: PRE-LRM)

140 **Contamination Setup.** We define SFT contamination as the model being exposed to both the bench-
 141 mark question and responses distilled from an advanced LRM, where RL contamination refers to
 142 the model encountering the benchmark question and having received rewards based on its generated
 143 responses during RL finetuning. For each dataset, we randomly sample half of the questions as the
 144 member set (used for contamination) and leave the remaining half as the non-member set (for detec-
 145 tion evaluation). More details about our contamination pipelines, datasets, and implementation can
 146 be found in appendix E.1, E.3, and E.4.

147 **Detection Setup.** We consider 10 representative detection methods. For each question, we generate
 148 8 responses and compute the detection value on each response, then average these values to obtain a
 149 final detection score for the question. For the rationale and ablation studies of choosing responses to
 150 compute the detection scores, please refer to Appendix F.2. We report Area Under the Receiver
 151 Operating Characteristic (AUROC) by comparing detection scores between member and non-member
 152 sets within the same benchmark. Higher AUROC values indicate better detection.

153

3.1 GRPO CONCEALS BENCHMARK CONTAMINATION

154 **Contamination Inflation Mainly Comes From SFT.** We evaluate multiple contamination scenar-
 155 os that may happen during SFT and RL and summarize the empirical results in Tab. 1. Results show
 156 that clean SFT training yields an 11.30% improvement in pass@1 performance, while SFT contami-
 157 nation further inflates results by an additional 8.82% on average across six benchmarks **when starting**
 158 **with Qwen2.5-7B-Instruct**. In contrast, RL contamination, despite introducing the benchmark ques-
 159 tions and giving rewards based on the model-generated responses, shows no significant difference
 160 compared to using a clean RL training set. These findings indicate that after extensive SFT training,
 161 introducing benchmark samples during the RL process provides little performance benefit.

162 Table 1: **Pass@1 (%)** under different contamination scenarios when **the base model evolves into**
 163 **LRMs**. Empirical results demonstrate that contamination inflation mainly comes from the SFT
 164 stage. “/” means not used, and “Mem” denotes members. We first train the base model with SFT
 165 and then RL. **The row with both “/” in the SFT/RL data columns is the results of the base model.**

SFT Data	RL Data	Olypaid	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.
<i>Base model: Qwen2.5-7B-Instruct</i>								
Clean & Mem	Clean & Mem	52.56	44.70	30.00	30.00	39.52	73.00	44.96
Clean & Mem	Clean	52.52	45.71	34.67	28.00	39.89	72.50	45.55
Clean & Mem	/	53.77	49.58	31.62	32.73	40.74	74.92	47.23
Clean	Clean & Mem	44.62	40.74	24.85	27.88	35.23	65.00	39.72
Clean	Clean	47.11	41.41	24.44	26.67	32.72	70.83	40.53
Clean	/	44.35	40.34	24.79	23.54	34.24	63.20	38.41
/	/	36.48	32.20	2.50	10.83	28.58	52.50	27.18
<i>Base model: Llama-3.1-8B-Instruct</i>								
Clean & Mem	Clean & Mem	44.30	43.18	25.42	24.58	35.20	61.25	38.99
Clean & Mem	Clean	44.07	48.48	27.78	25.56	37.32	66.88	41.68
Clean & Mem	/	46.07	42.80	26.67	26.67	35.20	66.67	40.68
Clean	Clean & Mem	44.54	40.74	25.83	23.33	29.53	61.56	37.59
Clean	Clean	42.81	37.37	18.33	19.17	30.15	64.38	35.37
Clean	/	40.69	39.23	16.67	18.33	27.70	56.88	33.25
/	/	15.63	29.67	0.00	4.17	19.49	19.00	14.66

183 To understand whether current contamination detection methods can still successfully detect con-
 184 tamination in LRM, and whether RL training can alter the signals exploited by contamination de-
 185 tectors, we evaluate SFT-contaminated models before and after GRPO. Tab. 2 reveals systematic
 186 shifts in AUROC across diverse detection methods. Our analysis highlights three key observations:

187 **SFT contamination can be detectable at first.** When starting with **Qwen2.5-7B-Instruct**, sev-
 188 eral reference-free approaches (Min-K% (Shi et al., 2023), Max-K% (Maini et al., 2024), and
 189 LOSS (Carlini et al., 2021)) can detect SFT contamination at a certain level, achieving AUROC
 190 around 73.42% across six contaminated benchmarks. The reference-based detection approach,
 191 LiRA (Mireshghallah et al., 2022), which assumes access to the training data distribution, also
 192 demonstrates superior performance with an average AUROC of 89.13% across six benchmarks.
 193 **Similar results have already been observed when starting with Llama-3.1-8B-Instruct.**

194 **GRPO conceals contamination.** After applying GRPO to the SFT-contaminated model, we observe
 195 a consistent decrease in AUROC across all detection methods and benchmarks. We further analyze
 196 the average log probability of member and non-member samples before and after GRPO training,
 197 **selecting Qwen2.5-7B-Instruct as the base model**. Fig.3 shows two key patterns: (1) GRPO lowers
 198 the entropy of generated sequences, indicating that the model becomes more confident in its gener-
 199 ation, which is consistent with prior observations in (Cui et al., 2025); (2) the log prob distribution
 200 of members and non-members converge after GRPO. Since the gaps in log prob are the core statisti-
 201 cal backbone of existing contamination detectors, these findings suggest that GRPO may inherently
 202 suppress contamination evidence by rendering members and non-members indistinguishable.

203 **More GRPO, less contamination evidence.** To examine whether the concealment effect strength-
 204 ens with additional training, we extend GRPO to SFT-contaminated models using 10K questions
 205 from DeepMath-103K (He et al., 2025) for one epoch (156 steps). As shown in Fig.2, AUROC
 206 consistently decreases across all detection methods and benchmarks as the number of GRPO steps
 207 increases. Given that our maximum 156 training steps are still far fewer than the steps used in some
 208 advanced open-sourced reasoning models (Luo et al., 2025b;a), we expect that extensive GRPO
 209 training would render all existing detection methods to near-random performance eventually.

210 **Further training will not make models forget contamination.** One possible explanation is that
 211 additional training makes models forget contamination, thus detections perform random guessing
 212 and pass@1 match the clean SFT baseline. To test this, we examine it with two experiments. First,
 213 we train SFT contaminated models with GRPO on both clean and contaminated datasets. As shown
 214 in Tab. 2, we observe a comparable drop in AUROC relative to the no RL baseline, similar to per-
 215 forming RL solely on clean data. Also, the contaminated model, further trained with GRPO, still
 shows an average performance inflation of 7.14% across six benchmarks and does not fall back as

216 Table 2: **AUROC (%)** of contamination detection approaches evaluated starting from an **SFT**-
 217 **contaminated model w/o RL to subsequently trained with GRPO**. Results demonstrate that after
 218 GRPO, AUROC decreases across all the benchmarks and detection approaches. Δ measures the
 219 difference with the SFT-contaminated model w/o RL. Higher AUROC, better detection performance.
 220 Each AUROC is averaged over detection scores from 8 rollouts. **The base model here is Qwen2.5-7B-Instruct. More results of Llama-3.1-8B-Instruct as the base model are shown in Tab.7.**
 221

Contamination Detection Methods	Training Stages	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation based									
Verbatim (Wu et al., 2025)	Before RL	47.58	49.86	47.56	53.56	52.52	65.50	52.76	+0.00
	RL w/ Clean	45.60	51.28	47.56	56.44	52.05	60.00	52.16	-0.60
	RL w/ Clean&Mem	46.17	50.34	52.67	55.56	51.71	63.62	53.35	+0.59
CDD (Dong et al., 2024)	Before RL	55.75	57.32	41.56	59.11	59.27	61.75	55.80	+0.00
	RL w/ Clean	55.47	51.08	43.33	60.00	60.18	62.00	55.34	-0.46
	RL w/ Clean&Mem	56.32	44.14	35.56	65.11	60.31	49.38	51.80	-3.95
Perturbation based									
Neighbor (Mattern et al., 2023)	Before RL	54.76	41.19	50.00	41.56	55.64	61.10	50.71	+0.00
	RL w/ Clean	54.10	39.68	50.67	44.22	53.42	60.50	50.43	-0.28
	RL w/ Clean&Mem	53.05	41.08	50.44	52.67	68.16	64.00	54.90	+4.19
Reference based									
LiRA (Miresghallah et al., 2022)	Before RL	85.37	86.80	100.00	82.00	87.01	93.62	89.13	+0.00
	RL w/ Clean	74.41	84.65	70.22	87.78	81.04	82.75	80.14	-8.99
	RL w/ Clean&Mem	69.73	77.85	63.11	82.22	79.05	77.38	74.89	-14.24
Ref (Carlini et al., 2021)	Before RL	73.27	63.30	60.22	41.11	73.10	82.00	65.50	+0.00
	RL w/ Clean	66.77	58.41	45.33	51.11	65.54	73.62	58.08	-7.42
	RL w/ Clean&Mem	62.77	54.17	43.11	50.44	65.38	72.62	58.86	-6.64
Reference free									
Zlib (Carlini et al., 2021)	Before RL	49.38	58.61	73.56	43.56	50.19	45.00	53.38	+0.00
	RL w/ Clean	45.94	54.99	66.22	35.56	46.65	39.38	48.12	-5.26
	RL w/ Clean&Mem	46.04	55.30	64.89	28.89	44.87	39.00	44.74	-8.64
Min-K%++ (Zhang et al., 2024)	Before RL	47.57	50.90	41.90	59.11	52.27	45.88	49.61	+0.00
	RL w/ Clean	46.25	46.78	36.67	50.89	51.35	29.62	43.59	-6.02
	RL w/ Clean&Mem	43.77	48.21	21.78	38.00	48.91	43.62	40.72	-8.89
Min-K% (Shi et al., 2023)	Before RL	69.19	69.51	85.56	75.56	71.16	78.75	74.96	+0.00
	RL w/ Clean	55.19	60.60	62.89	65.56	61.50	61.87	61.27	-13.69
	RL w/ Clean&Mem	53.93	59.74	59.56	62.67	57.31	59.25	58.54	-16.42
Max-K% (Maini et al., 2024)	Before RL	64.50	64.31	65.11	81.78	67.27	76.00	69.83	+0.00
	RL w/ Clean	53.05	51.43	49.78	50.22	51.84	57.75	52.35	-17.48
	RL w/ Clean&Mem	49.03	51.04	50.00	50.00	52.34	47.50	49.99	-19.84
Loss (Carlini et al., 2021)	Before RL	69.18	69.81	86.22	77.33	70.95	79.38	75.48	+0.00
	RL w/ Clean	55.22	60.50	62.44	65.78	61.50	62.12	61.26	-14.22
	RL w/ Clean&Mem	53.99	60.01	59.33	62.67	57.40	59.38	58.80	-16.68

247 the clean SFT model, shown in Tab. 1. Second, we continue SFT on the SFT contaminated model
 248 with an additional 4 epochs on clean data. Fig. 2 and Tab. 23 demonstrate that further SFT is un-
 249 able to conceal the benchmark contamination, while the pass@1 would continue to rise. Together,
 250 these results show that subsequent GRPO training preserves performance inflation while reducing
 251 detectable evidence of contamination may have some underlying reasons, rather than simply forget-
 252 ting the contamination after further training.
 253

254 3.2 THEORETIC ANALYSIS

255 In this section, we perform theoretical analysis to demonstrate that PPO-style clipping and impor-
 256 tance sampling are the root cause of the concealment. Intuitively, the importance sampling and
 257 clipping term reweights terms so that the most off-policy trajectories are damped by the clip while
 258 typical on-policy ones keep their influence. This reweighting hits non-members more as they have
 259 more extreme successes, so clipping cuts misaligned influence and lets ordinary, on-policy successes
 260 steer the update. With more headroom, non-member’s NLL drops more and the gap contracts.

261 **Setup.** We denote $\ell(x, y)$ to be the negative log likelihood (NLL) of the current model of gener-
 262 ating y given prompt x , members as M and non-members as N , policy model π_k at step k . We
 263 focus on analyzing the gap G_k of negative log likelihood for members and non-members on correct
 264 samples (i.e., $r = 1$), as assessing contamination on erroneous outputs is not especially meaningful.
 265 Formally, we can write

$$266 \quad G_k := \mathbb{E}_{x \sim N} \mathbb{E}_{y \sim \pi_k(\cdot|x)} [\ell_k(x, y) \mid r = 1] - \mathbb{E}_{x \sim M} \mathbb{E}_{y \sim \pi_k(\cdot|x)} [\ell_k(x, y) \mid r = 1] \quad (1)$$

267 If this gap contracts, i.e., $G_{k+1} - G_k < 0$, members and non-members become closer in the NLL
 268 sense, making contamination detection harder since many methods (Zhang et al., 2024; Shi et al.,
 269 2023; Maini et al., 2024; Carlini et al., 2021) are based on the separation of NLLs. For a fixed

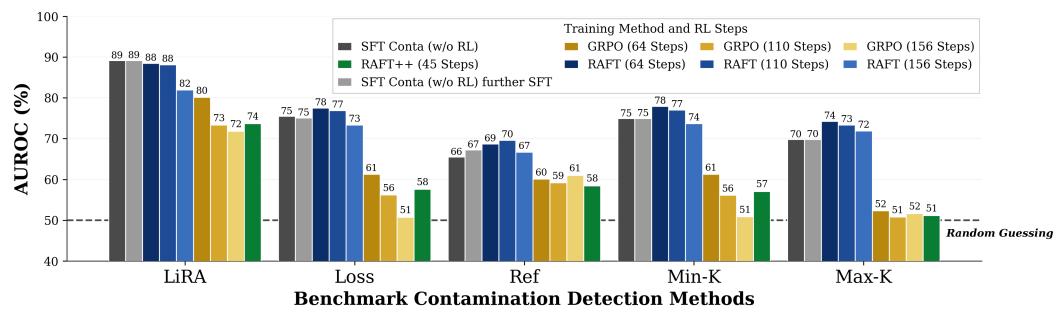


Figure 2: **AUROC (%) trends on SFT contaminated model further trained with different objectives.** While contamination introduced through SFT is initially detectable by existing methods, subsequent RL training with clean samples (e.g., GRPO or RAFT++) consistently degrades detection performance. Moreover, we observe a monotonic decline in detection performance as the number of RL steps increases, and reference-free methods (e.g., Loss, Min-K, and Max-K) already fall into near random guesses (i.e., AUROC≈50%) simply after 156 steps. **The base model is Qwen2.5-7B-Instruct. More results of Llama-3.1-8B-Instruct as the base model are shown in Fig.5.**

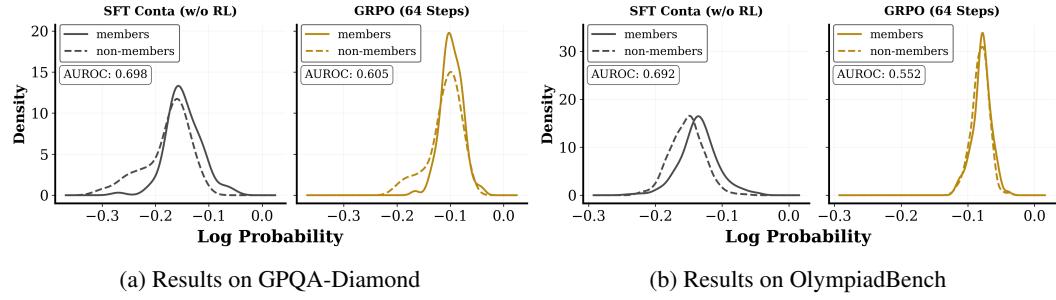


Figure 3: Log-prob distributions for members vs. non-members of SFT contaminated model before and after RL training. After further GRPO with clean samples on the SFT contaminated model, the log-prob distributions of members and non-members become increasingly similar. Since many contamination detection methods rely on separability in this space, the shrinking gap explains their degraded effectiveness. More log-prob distributions can be found in Fig. 7, 8, and 9.

prompt x , we define the NLL drift as

$$\Delta_x := \mathbb{E}_{\pi_{k+1}}[\ell_{k+1} \mid r = 1, x] - \mathbb{E}_{\pi_k}[\ell_k \mid r = 1, x]. \quad (2)$$

We notice that we can rewrite the NLL gap as

$$G_{k+1} - G_k := \mathbb{E}_{x \in N}[\Delta_x] - \mathbb{E}_{x \in M}[\Delta_x]. \quad (3)$$

In our following analysis, we thus focus on investigating the behavior of Δ_x on members and non-members. If an algorithm yields on average smaller Δ_x on non-members, the algorithm should be able to conceal contamination.

Notations. At token t , let A_t be the method's per token reward/advantage and w_t the weight from importance sampling and clipping. Define

$$A_t^w := w_t A_t, \quad \bar{A}^w(s) := \mathbb{E}_{a \sim \pi_k(\cdot|s)}[A^w(s, a)], \quad \tilde{A}_t^w := A_t^w - \bar{A}^w(s_t) \quad (4)$$

to measure how good a state is compared to the average. In particular, $w_t = \rho_t m_t$ with $\rho_t = \pi_\theta(a_t \mid s_t) / \pi_{\text{old}}(a_t \mid s_t)$ being the importance sampling and $m_t \in \{0, 1\}$ be a mask indicating if the clipping is activated, specifically $m_t = 0$ indicates that there is no gradients from the update. Moreover, we define $p_k(x) = \mathbb{E}_{y \sim \pi_k(\cdot|x)}[r(x, y)]$ to be the overall success rate of the prompt, and a value function as $q_k(s, a) := \Pr(r = 1 \mid s, a)$ and $p_k(s) := \mathbb{E}_{a \sim \pi_k(\cdot|s)}[q_k(s, a)]$ for success rate at that state. And we define $B(s) = \mathbb{E}_{a \sim \pi}[\rho(s, a)m(s, a)q_k(s, a)]$ and $C(s) = \mathbb{E}_{a \sim \pi}[\rho(s, a)m(s, a)]$. We assume that the RL training is performed on the benchmark data (i.e., training data is the combination of members M and non-members N), and it is in a tabular setting for simplicity. Since members have been utilized during training, it is natural to assume the $p_k(s)$ for members are larger than non-members, and the NLL for members is lower than non-members.

324
 325
 326
 327
 328
 Table 3: **AUROC (%)** of detection approach, Loss (Carlini et al., 2021), evaluated on **SFT contaminated model further trained with different RL objectives**. The gray row indicates no ablation on the objective, and \times means remove the term from the objective. Δ measures the difference with the SFT contaminated model w/o RL (Tab. 2). RL steps are 64, or the step before the model collapses. The results show that clipping is the main driver for the contraction, which aligns with our theory.

Training Objectives	Clipping	Olypaid	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
RAFT	\times	71.78	69.78	86.00	86.67	71.58	79.25	77.51	+2.03
RAFT++	✓	50.43	58.45	67.56	66.67	52.84	49.50	57.58	-17.91
RAFT++	\times	69.16	73.68	74.44	76.22	71.08	81.75	74.39	-1.09
GRPO	✓	55.22	60.50	62.44	65.78	61.50	62.12	61.26	-14.22
GRPO	\times	68.83	70.20	80.44	73.78	68.30	78.12	73.28	-2.20

337
 338 **Theorem 3.1.** For a small natural gradient step with step size η on a PPO style loss, we have

$$339 \quad \Delta_x = -\eta \underbrace{\mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T \tilde{A}_t^w \mid r = 1, x \right]}_{(A) \mu(x)} + \eta \underbrace{\text{Cov} \left(\ell_k, \sum_{t=1}^T \tilde{A}_t^w \right)}_{(B) \text{covariance } \beta(x)} + O(\eta^2) \quad (5)$$

344 The proof can be found in appendix D. Intuitively, $\mu(x)$ measures the average push on the example's
 345 NLL from correct trajectories, where β serves as a reweighting term accounting for the importance
 346 sampling/clipping. Here we consider several instantiations using different algorithms to investigate
 347 the core driver for contraction. The training objectives for each algorithm are listed in Appendix C.

348 **RAFT.** In plain rejection sampling, we have $w_t = 1$ and $A_t = \mathbf{1}\{r = 1\}$, so on correct trajectories

$$350 \quad \tilde{A}_t^w = 1 - p_k(s_t), \quad \mu^{\text{RAFT}}(x) = \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T (1 - p_k(s_t)) \mid r = 1, x \right].$$

352 The covariance term is

$$354 \quad \beta^{\text{RAFT}}(x) = \text{Cov} \left(\ell_k, \sum (1 - p_k(s_t)) \right) = -\text{Cov} \left(\ell_k, \sum p_k(s_t) \right).$$

356 We note that lower loss ℓ_k corresponds to higher probabilities $p_k(s_t)$, and thus $\beta^{\text{RAFT}}(x) > 0$. Moreover,
 357 non-members correct trajectories can exhibit much higher variance in loss and probabilities,
 358 thus, the β_N term is typically larger than β_M . Consequently,

$$359 \quad \Delta_N - \Delta_M = -\eta(\mu_N - \mu_M) + \eta(\beta_N - \beta_M),$$

360 where both gaps $(\mu_N - \mu_M)$ and $(\beta_N - \beta_M)$ are positive. Empirically, the covariance gap offsets
 361 the mean gap, yielding $\Delta_N - \Delta_M \geq 0$, i.e., RAFT is unable to conceal contamination evidence.

363 **RAFT++.** Using the same $A_t = \mathbf{1}\{r = 1\}$, on $r = 1$ paths

$$365 \quad \tilde{A}_t^w = \rho_t m_t - B_k(s_t), \quad \mu^{\text{RAFT}++}(x) = \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T (\rho_t m_t - B_k(s_t)) \mid r = 1, x \right].$$

367 We note that the difference of μ cannot possibly lead to large deviations between members/non-
 368 members as $0 \leq \rho_t m_t \leq 1 + \epsilon$ and $B_k(s_t) \leq 1$ for both groups and the term is normalized by length.
 369 For the covariance term though, we have

$$371 \quad \beta^{\text{RAFT}++}(x) = \text{Cov} \left(\ell_k, \sum (\rho_t m_t - B_k(s_t)) \right) = \text{Cov} \left(\ell_k, \sum \rho_t m_t \right) - \text{Cov} \left(\ell_k, \sum B_k(s_t) \right).$$

373 Compared to RAFT, the new term $\text{Cov}(\ell_k, \sum \rho_t m_t)$ is negative as correct path with higher loss are
 374 anomalous and typically got clipped more. Moreover, this is much more prominent in non-members
 375 due to high variance in correct trajectories loss. The second covariance term, although still negative,
 376 are not that significant for non-members compared to members due to an average over all possible
 377 actions. Therefore, overall it leads to

$$\Delta_N - \Delta_M = -\eta(\mu_N - \mu_M) + \eta(\beta_N - \beta_M) < 0,$$

378 Table 4: Pass@1 (%) of advanced LRM before and after SFT contamination with CoT.
379

380 Models	381 Olypaid	382 GPQA	383 AIME25	384 AIME24	385 Minerva	386 AMC23	387 Avg.
388 DeepSeek-R1-Distill-Llama-8B 389 ↳ w/ extensive SFT Contamination	390 52.10 391 61.83	392 43.94 393 53.16	394 33.33 395 51.67	396 43.33 397 61.67	398 32.97 399 38.74	400 84.58 401 93.75	402 48.38 403 60.14
404 DeepSeek-R1-Distill-Qwen-7B 405 ↳ w/ extensive SFT Contamination	406 55.70 407 58.77	408 48.65 409 50.87	410 39.26 411 42.59	412 53.70 413 58.91	414 37.25 415 40.81	416 91.94 417 90.67	418 54.42 419 57.10
420 OpenThinker3-7B (15K) 421 ↳ w/ extensive SFT Contamination	422 50.81 423 52.74	424 41.67 425 47.64	426 21.67 427 33.33	428 29.17 429 30.48	430 34.01 431 40.56	432 77.50 433 78.70	434 42.47 435 47.25
436 DeepSeek-R1-Distill-Qwen-14B 437 ↳ w/ extensive SFT Contamination	438 59.89 439 66.37	440 56.69 441 62.75	442 44.44 443 64.58	444 62.78 445 77.78	446 42.28 447 46.14	448 92.92 449 97.81	450 59.83 451 69.24

i.e., RAFT++ contracts the membership gap. The driver is precisely the PPO-style importance sampling/clipping: it removes the RAFT covariance cancellation by making $\text{Cov}(\ell_k, \sum \rho m)$ non-positive and more negative for non-members.

GRPO. Finally, we investigate the GRPO contraction term. To ease the analysis, we consider an idealized setting where we define the advantage term as $A_k(x, y) = r(x, y) - p_k(x)$ with no standard deviation term and $\tilde{A}_t^w = \tilde{A}_t^{\text{RAFT}} - p_k(x)(\rho_t m_t - C(s_t))$. Clearly, we have

$$\begin{aligned} \mu^{\text{GRPO}}(x) &= \mu^{\text{RAFT++}}(x) - p_k(x) \mathbb{E} \left[\frac{1}{T} \sum (\rho_t m_t - C_k(s_t)) \mid r = 1, x \right] \\ \beta^{\text{GRPO}}(x) &= \beta^{\text{RAFT++}}(x) - p_k(x) \text{Cov} \left(\ell_k, \sum (\rho_t m_t - C_k(s_t)) \right) \end{aligned}$$

By similar argument, we know that the μ term does not contribute significantly to the concealment. The covariance term can be analyzed similarly to show that the concealment also happen on GRPO thanks to the importance sampling and clipping term.

3.2.1 EMPIRICAL SUPPORT

To confirm empirically the prediction of our theoretical results, we evaluate the Loss detector (Carlini et al., 2021) after training with RAFT (Dong et al., 2023)/RAFT++ (Xiong et al., 2025)/GRPO. The overall results can be found in table 3. **We conduct the ablation study using Qwen2.5-7B-Instruct as the base model.** From the results, there are several observations.

Effect on detectability. Under RAFT, the Loss detector (Carlini et al., 2021) performance remains essentially unchanged relative to the SFT contaminated baseline w/o further RL. In contrast, RAFT++ and GRPO (with clipping enabled) produce a sharp drop in detector performance.

Importance sampling vs. clipping. The clipping term, often treated purely as a training stabilizer, materially contributes to concealment, as predicted by theory. When we retain importance sampling but *remove clipping* in RAFT++ and GRPO, both algorithms show little to no reduction in Loss-detector performance (Table 3). Intuitively, as the clip threshold $\epsilon \rightarrow \infty$, the effective weight satisfies $\sum_t \rho_t m_t \approx T$, and the covariance term in our decomposition tends toward zero for both members and non-members, eliminating the shrinkage effect.

These two observations perfectly reflect our theoretical analysis, empirically validating that the PPO-style importance sampling/clipping term is the key driver behind GRPO contamination concealment. Given that many RL algorithms adopt this term in their objectives, this suggests that a broad class of RL methods may inherently exhibit similar concealment capability.

4 CONTAMINATION WITH COT ON ADVANCED LRMS BARELY LEAVES EVIDENCE (STAGE II: POST-LRM)

Contamination Setup. In this setup, we simulate contamination with CoT applied to advanced LRMs at the final stage of training. We use DeepSeek-R1-Distill-Llama-8B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-R1-Distill-Qwen-14B (Guo et al., 2025), and checkpoints from OpenThought3 (Guha et al., 2025) as the initial models. We simulate extensive contamination with CoT by applying SFT exclusively on the member data in this section. Additional implementation details are provided in Appendix E.4.

432 Table 5: **AUROC (%)** of contamination detection approaches evaluated on **contaminated, ad-**
 433 **vanced LRM**s. Results demonstrate that even after extensive contamination as the final stage, al-
 434 most all the detection approaches perform near random guesses (i.e., AUROC \approx 50%). Each AUROC
 435 is averaged over detection scores from 8 rollouts.

Contamination Detection Methods	Init Models	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.
Generation based								
Verbatim (Wu et al., 2025)	DS Llama-8B	48.73	50.45	41.33	61.56	59.10	40.63	50.30
	DS Qwen-7B	46.87	55.85	60.44	68.89	56.87	50.63	56.59
	OpenThink-7B	43.78	55.36	60.89	56.67	51.78	42.38	51.81
	DS Qwen-14B	48.51	50.73	52.38	61.11	55.18	53.79	53.62
CDD (Dong et al., 2024)	DS Llama-8B	51.84	53.83	60.00	53.11	58.08	57.50	55.73
	DS Qwen-7B	51.46	48.29	50.00	53.78	54.71	41.00	49.87
	OpenThink-7B	49.98	50.23	53.31	51.24	54.52	50.44	51.62
	DS Qwen-14B	55.82	45.50	43.11	46.67	56.13	56.45	50.61
Perturbation based								
Neighbor (Mattern et al., 2023)	DS Llama-8B	49.94	39.32	53.11	43.33	49.68	60.00	49.23
	DS Qwen-7B	52.99	40.29	62.44	49.33	55.34	54.87	52.54
	OpenThink-7B	53.76	42.95	34.00	42.22	52.89	51.50	46.22
	DS Qwen-14B	53.20	42.23	50.89	44.00	53.46	57.38	50.19
Reference based								
LiRA (Mireshghallah et al., 2022)	DS Llama-8B	57.92	53.01	53.56	75.33	69.44	58.75	61.34
	DS Qwen-7B	46.52	43.93	50.22	58.89	59.33	54.00	52.15
	OpenThink-7B	62.35	64.77	58.44	64.44	64.81	61.62	62.74
	DS Qwen-14B	59.93	55.23	75.56	66.00	66.55	70.00	65.55
Ref (Carlini et al., 2021)	DS Llama-8B	53.79	46.50	46.44	64.00	63.57	51.25	54.26
	DS Qwen-7B	53.30	44.37	46.89	44.22	53.09	41.75	47.27
	OpenThink-7B	57.34	49.86	37.56	50.44	59.30	69.12	53.94
	DS Qwen-14B	55.75	47.55	52.67	30.89	55.51	53.75	49.35
Reference free								
Zlib (Carlini et al., 2021)	DS Llama-8B	49.52	54.74	64.22	37.11	45.97	47.12	49.78
	DS Qwen-7B	46.52	57.38	64.89	36.89	43.30	42.12	48.52
	OpenThink-7B	45.65	55.37	74.22	36.89	43.51	36.62	48.71
	DS Qwen-14B	48.12	56.71	70.44	43.56	45.92	51.50	52.71
Min-K%++ (Zhang et al., 2024)	DS Llama-8B	55.45	59.10	45.95	70.22	60.89	57.50	58.19
	DS Qwen-7B	48.92	56.83	48.44	59.33	51.83	62.62	54.66
	OpenThink-7B	51.85	58.31	66.44	55.00	49.41	41.05	53.68
	DS Qwen-14B	52.44	56.72	48.44	76.44	57.39	59.62	58.51
Min-K% (Shi et al., 2023)	DS Llama-8B	57.86	61.68	53.33	72.67	67.12	61.87	62.42
	DS Qwen-7B	49.75	53.93	51.78	61.56	54.50	56.75	54.71
	OpenThink-7B	53.52	57.19	60.44	57.56	54.83	47.37	55.15
	DS Qwen-14B	52.77	58.08	52.44	77.33	59.43	59.62	59.95
Max-K% (Maini et al., 2024)	DS Llama-8B	53.85	55.96	50.67	60.44	59.22	52.50	55.44
	DS Qwen-7B	49.65	50.92	40.44	73.33	54.08	56.25	54.11
	OpenThink-7B	55.12	58.29	46.22	79.33	54.20	59.38	58.76
	DS Qwen-14B	50.43	53.89	50.00	50.00	51.08	52.50	51.32
Loss (Carlini et al., 2021)	DS Llama-8B	57.91	61.78	52.89	73.56	67.00	62.38	62.59
	DS Qwen-7B	49.77	54.09	52.00	63.78	54.76	56.75	55.19
	OpenThink-7B	53.44	57.61	61.33	56.67	55.07	48.12	55.37
	DS Qwen-14B	52.81	58.39	52.89	77.56	59.37	60.37	60.23

471
 472 Tab. 4 and 5 show the results of pass@1 on six reasoning benchmarks and AUROC of detection
 473 approaches performance (w/ the same detection setup as Stage I), respectively. We observe that:

475 **Extensive SFT Contamination with CoT results in a huge performance inflation.** As shown
 476 in Tab. 4, LRM s can substantially benefit from extensive contamination with CoT. For instance,
 477 DeepSeek-R1-Distill-Llama-8B model exhibits an average performance inflation of up to 11.76%
 478 across six benchmarks after being exposed to membership data seven times. Such inflation enables
 479 contaminated LRM s to artificially boost performance in benchmarks and have an overrated rank in
 480 the reasoning leaderboard with little extra training cost.

481 **Extensive contamination with CoT on LRM s barely leaves evidence.** As illustrated in Tab. 5,
 482 detection methods, which were effective in contamination introduced when the base model evolves
 483 into LRM s , consistently fail under extensive contamination with CoT to LRM s , performing close
 484 to random guessing. The previous SOTA approach, LiRA (Mireshghallah et al., 2022), achieves
 485 only 58.74% AUROC on average across six benchmarks. Then, we analyze the log prob of member
 486 and non-member samples before and after final stage contamination, shown as Fig. 4. After

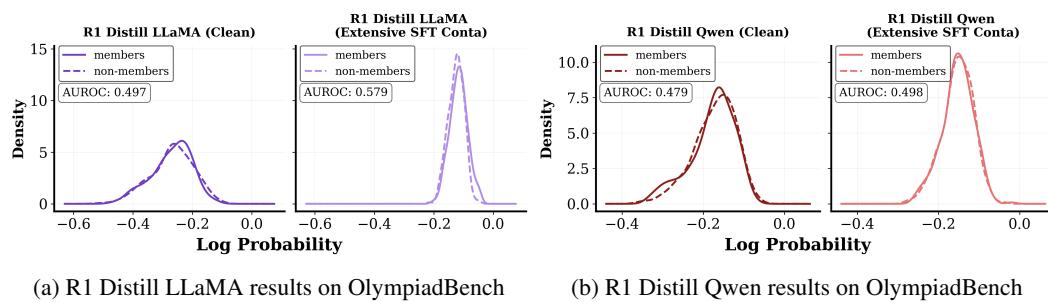


Figure 4: Log-prob distributions for members vs. non-members of **advanced LRM**s before and after SFT contamination. After extensive SFT contamination on members, the log prob of both members and non-members increases at a similar margin. More figures are in Fig. 10 and 11.

the extensive SFT contamination with CoT on members, the log prob of both members and non-members increases at a similar margin. This indicates that even without exposure to non-members, contaminated LRM still have more confidence when responding to unseen samples that share similar distributions to training samples, which also explains why extensive contamination with CoT on LRM barely leaves evidence. These results suggest that model developers could extensively contaminate their LRM in the final stage while leaving little detectable evidence.

Discussion. Despite Feng et al. (2024) demonstrating that contamination detection could work in non-reasoning model scenarios, the detectors do not have access to the reasoning trajectories used in the LRM contamination scenario, so they have to rely on the generated responses from LRM. However, LRM typically possess strong reasoning abilities to output step-by-step long CoT and are difficult to converge on a specific sequence after contamination with long CoT. This may indicate that rather than memorizing specific reasoning trajectories, LRM internalize the underlying knowledge and reasoning process during the contamination with CoT data, enabling generalization to distributionally similar questions (e.g., non-members). **While most detection methods rely on the assumption that contaminated models would achieve lower loss on training sequences (Carlini et al., 2021) or generate less diverse responses for seen questions (Dong et al., 2024) than for unseen ones.** Accordingly, these methods rely on a gap in certain metrics (e.g., log-probability, Levenshtein distance, etc.) between trained and unseen samples to determine contamination. Nevertheless, these LRM could also have lower loss when responding to those unseen samples that share similar distributions to the training set, benefiting from their long CoT ability, as shown in Fig. 4. This confounding factor (i.e., generalization) is not accounted for by existing detection approaches, challenging the assumption that benchmark data contamination is more about memorization (Wu et al., 2025; Morris et al., 2025; Hayes et al., 2025).

5 CONCLUSION

We present the first systematic study of benchmark contamination in LRM, structured around two points where contamination can happen. Our results reveal a critical vulnerability in LRM evaluation: contamination detection methods are fragile and contamination introduced at either stage can be concealed. In Stage I (pre-LRM), while SFT contamination to the base model is initially detectable, contamination evidence can be concealed through subsequent RL training. In Stage II (post-LRM), extensive contamination with CoT on advanced LRM barely leaves evidence for existing memorization-driven detection methods. Our findings call for an urgent need of protocols that ensure fair evaluations among LRM. Here, we propose two potential directions to ensure it: (I) Model developers should release more intermediate training checkpoints, enabling the community to better monitor and regulate potential benchmark contamination in each training stage. (II) Researchers working on contamination detections should advance beyond memorization-driven methods and explicitly account for the long CoT reasoning and generalization capacity of LRM. Despite the assumption that contamination is about memorizing the training data inspires numerous detection methods before the LRM era, it may become outdated right now. Detection approaches that are solely based on log-probs or mitigation approaches such as minor benchmark modifications, are definitely inadequate in this context and risk systematically failing. These findings all highlight the need for new assumptions in contamination detection and the development of contamination-robust evaluation protocols in the LRM setting.

540 REPRODUCIBLE CLAIM
541542 We claim our code is fully reproducible. Detailed implementation of detection approaches, SFT
543 training, and RL training can be found in appendix E.2 and E.4. We also provide the proof of our
544 theory in appendix D.546 ETHICS STATEMENT
547548 We find a new vulnerability of LRM evaluations: contamination introduced at either stage can be
549 concealed. Other than this, we do not have more ethics concerns.551 REFERENCES
552553 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
554 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
555 report. *arXiv preprint arXiv:2303.08774*, 2023.556 Simone Balloccu, Patrícia Schmidlová, Mateusz Lango, and Ondřej Dušek. Leak, cheat, re-
557 peat: Data contamination and evaluation malpractices in closed-source llms. *arXiv preprint*
558 *arXiv:2402.03927*, 2024.560 Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil,
561 Zach Moshe, Tomer Ronen, Najeeb Nabwani, et al. Llama-nemotron: Efficient reasoning models.
562 *arXiv preprint arXiv:2505.00949*, 2025.563 Sebastian Bordt, Suraj Srinivas, Valentyn Boreiko, and Ulrike von Luxburg. How much can we
564 forget about data contamination? *arXiv preprint arXiv:2410.03249*, 2024.566 Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
567 Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
568 from large language models. In *30th USENIX security symposium (USENIX Security 21)*, pp.
569 2633–2650, 2021.570 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
571 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
572 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.573 Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL [http://github.com/](http://github.com/unslothai/unsloth)
574 unslothai/unsloth.576 Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. *arXiv*
577 *preprint arXiv:2307.08691*, 2023.581 Jasper Dekoninck, Mark Niklas Müller, Maximilian Baader, Marc Fischer, and Martin Vechev.
582 Evading data contamination detection for language models is (too) easy. *arXiv preprint*
583 *arXiv:2402.02823*, 2024.588 Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Gerstein, and Arman Cohan. Investigat-
589 ing data contamination in modern benchmarks for large language models. *arXiv preprint*
590 *arXiv:2311.09783*, 2023.595 Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
596 Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
597 foundation model alignment. *arXiv preprint arXiv:2304.06767*, 2023.598 Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu, Mengfei Yang, and Ge Li. Generalization or
599 memorization: Data contamination and trustworthy evaluation for large language models. *arXiv*
600 *preprint arXiv:2402.15938*, 2024.602 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
603 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
604 *arXiv e-prints*, pp. arXiv–2407, 2024.

594 Qizhang Feng, Siva Rajesh Kasa, Santhosh Kumar Kasa, Hyokun Yun, Choon Hui Teo, and Sra-
 595 van Babu Bodapati. Exposing privacy gaps: Membership inference attack on preference data for
 596 llm alignment. *arXiv preprint arXiv:2407.06443*, 2024.

597 Yujuan Fu, Ozlem Uzuner, Meliha Yetisen, and Fei Xia. Does data contamination detection
 598 work (well) for llms? a survey and evaluation on detection assumptions. *arXiv preprint
 599 arXiv:2410.18966*, 2024.

600 Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
 601 Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
 602 ing models. *arXiv preprint arXiv:2506.04178*, 2025.

603 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 604 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 605 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

606 Jamie Hayes, Ilia Shumailov, Christopher A Choquette-Choo, Matthew Jagielski, George Kaissis,
 607 Katherine Lee, Milad Nasr, Sahra Ghalebikesabi, Niloofar Mireshghallah, Meenatchi Sundaram
 608 Mutu Selva Annamalai, et al. Strong membership inference attacks on massive datasets and
 609 (moderately) large language models. *arXiv preprint arXiv:2505.18773*, 2025.

610 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 611 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 612 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint
 613 arXiv:2402.14008*, 2024.

614 Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
 615 Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
 616 contaminated, and verifiable mathematical dataset for advancing reasoning. *arXiv preprint
 617 arXiv:2504.11456*, 2025.

618 Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu,
 619 Shivam Sahni, Haowen Ning, and Yanning Chen. Liger kernel: Efficient triton kernels for llm
 620 training. *arXiv preprint arXiv:2410.10989*, 2024.

621 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 622 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv
 623 preprint arXiv:2412.16720*, 2024.

624 Antonia Karamolegkou, Jiaang Li, Li Zhou, and Anders Søgaard. Copyright violations and large
 625 language models. *arXiv preprint arXiv:2310.13771*, 2023.

626 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
 627 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 628 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
 629 Systems Principles*, 2023.

630 Bespoke Labs. Bespoke-minicheck-7b, 2024. URL [https://huggingface.co/
 631 bespokelabs/Bespoke-MiniCheck-7B](https://huggingface.co/bespokelabs/Bespoke-MiniCheck-7B).

632 VI Lcvenshtcin. Binary coors capable or ‘correcting deletions, insertions, and reversals. In *Soviet
 633 physics-doklady*, volume 10, 1966.

634 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 635 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 636 reasoning problems with language models. *Advances in neural information processing systems*,
 637 35:3843–3857, 2022.

638 Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xiangxi Mo, Eric Tang, Sumanth Hegde, Kourosh
 639 Hakhamaneshi, Shishir G Patil, Matei Zaharia, et al. Llms can easily learn to reason from demon-
 640 strations structure, not content, is what matters! *arXiv preprint arXiv:2502.07374*, 2025.

641 Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In *Text summarization
 642 branches out*, pp. 74–81, 2004.

648 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 649 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 650 *arXiv:2412.19437*, 2024a.

651

652 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 653 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 654 *arXiv preprint arXiv:2505.24864*, 2025a.

655 Zhenhua Liu, Tong Zhu, Chuanyuan Tan, Haonan Lu, Bing Liu, and Wenliang Chen. Probing
 656 language models for pre-training data detection. *arXiv preprint arXiv:2406.01333*, 2024b.

657

658 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
 659 and Min Lin. Understanding r1-zero-like training: A critical perspective. *arXiv preprint*
 660 *arXiv:2503.20783*, 2025b.

661

662 Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
 663 Rachel Xin, Colin Cai, Maurice Weber, et al. Deepcoder: A fully open-source 14b coder at
 664 o3-mini level. *Notion Blog*, 2025a.

665 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y Tang, Manan Roongta, Colin Cai,
 666 Jeffrey Luo, Tianjun Zhang, Li Erran Li, et al. Deepscaler: Surpassing o1-preview with a 1.5 b
 667 model by scaling rl. *Notion Blog*, 2025b.

668

669 Pratyush Maini, Hengrui Jia, Nicolas Papernot, and Adam Dziedzic. Llm dataset inference: Did you
 670 train on my dataset? *Advances in Neural Information Processing Systems*, 37:124069–124092,
 671 2024.

672 Justus Mattern, Fatemehsadat Mireshghallah, Zhijing Jin, Bernhard Schölkopf, Mrinmaya Sachan,
 673 and Taylor Berg-Kirkpatrick. Membership inference attacks against language models via neigh-
 674 bourhood comparison. *arXiv preprint arXiv:2305.18462*, 2023.

675

676 Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David K Evans, and Taylor Berg-
 677 Kirkpatrick. An empirical analysis of memorization in fine-tuned autoregressive language models.
 678 In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*,
 679 pp. 1816–1826, 2022.

680 John X Morris, Chawin Sitawarin, Chuan Guo, Narine Kokhlikyan, G Edward Suh, Alexander M
 681 Rush, Kamalika Chaudhuri, and Saeed Mahloujifar. How much do language models memorize?
 682 *arXiv preprint arXiv:2505.24832*, 2025.

683

684 Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
 685 Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
 686 scaling. *arXiv preprint arXiv:2501.19393*, 2025.

687

688 Yonatan Oren, Nicole Meister, Niladri S Chatterji, Faisal Ladhak, and Tatsunori Hashimoto. Proving
 689 test set contamination in black-box language models. In *The Twelfth International Conference on*
 690 *Learning Representations*, 2023.

691 Federico Ranaldi, Elena Sofia Ruzzetti, Dario Onorati, Leonardo Ranaldi, Cristina Giannone,
 692 Andrea Favalli, Raniero Romagnoli, and Fabio Massimo Zanzotto. Investigating the im-
 693 pact of data contamination of large language models in text-to-sql translation. *arXiv preprint*
 694 *arXiv:2402.08100*, 2024.

695 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System opti-
 696 mizations enable training deep learning models with over 100 billion parameters. In *Proceedings*
 697 *of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 698 3505–3506, 2020.

699

700 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 701 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 702 mark. In *First Conference on Language Modeling*, 2024.

702 Vinay Samuel, Yue Zhou, and Henry Peng Zou. Towards data contamination detection for mod-
 703 ern large language models: Limitations, inconsistencies, and oracle challenges. *arXiv preprint*
 704 *arXiv:2409.09927*, 2024.

705 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 706 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 707 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

708 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 709 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. *arXiv preprint*
 710 *arXiv: 2409.19256*, 2024.

711 Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo Huang, Daogao Liu, Terra Blevins, Danqi
 712 Chen, and Luke Zettlemoyer. Detecting pretraining data from large language models. *arXiv*
 713 *preprint arXiv:2310.16789*, 2023.

714 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 715 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

716 Yifan Sun, Han Wang, Dongbai Li, Gang Wang, and Huan Zhang. The emperor’s new clothes in
 717 benchmarking? a rigorous examination of mitigation strategies for llm benchmark data contami-
 718 nation. *arXiv preprint arXiv:2503.16402*, 2025.

719 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
 720 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv*
 721 *preprint arXiv:2507.20534*, 2025.

722 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

723 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
 724 <https://qwenlm.github.io/blog/qwq-32b/>.

725 Shangqing Tu, Kejian Zhu, Yushi Bai, Zijun Yao, Lei Hou, and Juanzi Li. Dice: Detecting
 726 in-distribution contamination in llm’s fine-tuning phase for math reasoning. *arXiv preprint*
 727 *arXiv:2406.04197*, 2024.

728 Mingqi Wu, Zhihao Zhang, Qiaole Dong, Zhiheng Xi, Jun Zhao, Senjie Jin, Xiaoran Fan, Yuhao
 729 Zhou, Huijie Lv, Ming Zhang, et al. Reasoning or memorization? unreliable results of reinforce-
 730 ment learning due to data contamination. *arXiv preprint arXiv:2507.10532*, 2025.

731 Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
 732 Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling
 733 to reinforce. *arXiv preprint arXiv:2504.11343*, 2025.

734 Cheng Xu, Shuhao Guan, Derek Greene, M Kechadi, et al. Benchmark data contamination of large
 735 language models: A survey. *arXiv preprint arXiv:2406.04244*, 2024.

736 Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
 737 for reasoning. *arXiv preprint arXiv:2502.03387*, 2025.

738 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learn-
 739 ing: Analyzing the connection to overfitting. In *2018 IEEE 31st computer security foundations*
 740 *symposium (CSF)*, pp. 268–282. IEEE, 2018.

741 Wen-wai Yim, Yujuan Fu, Asma Ben Abacha, and Meliha Yetisgen-Yildiz. To err is human,
 742 how about medical large language models? comparing pre-trained language models for medi-
 743 cal assessment errors and reliability. In *Proceedings of the 2024 Joint International Conference*
 744 *on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)*, pp.
 745 16211–16223, 2024.

746 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 747 Fan, Gaochang Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 748 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

756 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
757 enforcement learning really incentivize reasoning capacity in llms beyond the base model? *arXiv*
758 *preprint arXiv:2504.13837*, 2025.

759

760 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
761 zoo: Investigating and taming zero reinforcement learning for open base models in the wild. *arXiv*
762 *preprint arXiv:2503.18892*, 2025.

763

764 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank
765 Yang, and Hai Li. Min-k%++: Improved baseline for detecting pre-training data from large
766 language models. *arXiv preprint arXiv:2404.02936*, 2024.

767

768 Junyu Zhang, Runpei Dong, Han Wang, Xuying Ning, Haoran Geng, Peihao Li, Xialin He, Yutong
769 Bai, Jitendra Malik, Saurabh Gupta, et al. Alphaone: Reasoning models thinking slow and fast at
770 test time. *arXiv preprint arXiv:2505.24863*, 2025.

771

772 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
773 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. *arXiv*
774 *preprint arXiv:2403.13372*, 2024.

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A USE OF THE LLM
811812 We only use LLM to aid paper writing and retrieve related works.
813814 B LIMITATIONS
815816 Our work reveals critical vulnerabilities: RL fine-tuning can conceal benchmark contamination
817 when base models evolve into LRM; contamination with CoT applied to advanced LRM leaves
818 little evidence detectable by existing memorization-based methods. Although we do not propose a
819 new detection algorithm to mitigate these risks, we reveal that the failure of current detection ap-
820 proaches stems from their reliance on log-probability and on the assumption that training samples
821 consistently incur lower loss than unseen samples. Given the unique characteristics of LRM, future
822 detection methods must adopt more advanced assumptions to address this fundamental challenge.
823 By highlighting these risks, we aim to spur further research on robust and trustworthy evaluation
824 protocols for LRM.
825826 C ALGORITHMS
827828 **SFT** Let $\mathcal{D} = \{(q, o)\}$ be a corpus of questions q and responses o , where o are distilled from
829 advanced LRM. Let $\pi_\theta(o | q)$ be an autoregressive policy model. The π_θ is then fine-tuned to
830 maximize the log-likelihood over the responses:

831
$$\mathcal{L}_{\text{SFT}}(\theta) = \mathbb{E}_{(q, o) \sim \mathcal{D}} [-\log \pi_\theta(o | q)]$$

832

833 **GRPO** For each question q , GRPO samples a group of outputs $\{o_1, \dots, o_G\}$ from the old policy
834 $\pi_{\theta_{\text{old}}}$ and then optimizes the policy model π_θ by maximizing the following objective:
835

836
$$\mathcal{L}_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim P(Q), \{o_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(O|q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} \left(\min \left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)} A_i, \text{clip} \left(\frac{\pi_\theta(o_i | q)}{\pi_{\theta_{\text{old}}}(o_i | q)}, 1 - \varepsilon, 1 + \varepsilon \right) A_i \right) - \beta D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) \right) \right],$$

837
838
$$D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(o_i | q)}{\pi_\theta(o_i | q)} - \log \frac{\pi_{\text{ref}}(o_i | q)}{\pi_\theta(o_i | q)} - 1,$$

839

840 where ε and β are hyper-parameters. We denote $r \in \{0, 1\}$ as a binary reward function that assigns
841 scalar feedback to a question-output pair. A_i is the advantage, computed using a group of rewards
842 $\{r_1, r_2, \dots, r_G\}$ corresponding to the outputs within each group:
843

844
$$A_i = \frac{r_i - \text{mean}(\{r_1, r_2, \dots, r_G\})}{\text{std}(\{r_1, r_2, \dots, r_G\})}.$$

845

846 **RAFT** The RAFT is also referred to as the rejection-sampling fine-tuning. The algorithm consists
847 of two parts:
848849

- **Dataset Collection.** For each question q , we sample a group of outputs $\{o_1, \dots, o_G\}$. For each
850 response o_i , we compute the reward $r_i \in \{0, 1\}$. We then retain only the responses that receive a
851 reward of 1 and put them in a dataset \mathcal{D} .
- **Model Fine-tuning.** The current policy π_θ is then fine-tuned to maximize the log-likelihood over
852 the selected dataset:

853
$$\mathcal{L}_{\text{RAFT}}(\theta) = \mathbb{E}_{(q, o) \sim \mathcal{D}} [-\log \pi_\theta(o | q)]$$

854

855 **RAFT++** RAFT++ is a variant of plain RAFT that also introduced importance sampling and clip-
856 ping. The loss is very similar to GRPO with no KL divergence term except for the advantage
857 calculation. The advantage for RAFT++ will be:
858

859
$$A_i = \mathcal{I}(r_i = 1),$$

860

861 which indicates essentially that we train only on the positive samples.
862

864 **D PROOF**
865866 Here we restate our theorem 3.1, and provide a full proof.
867868 **Theorem.** *For a small natural gradient step with step size η on a PPO style loss, we have*

869
$$\Delta_x = -\eta \mathbb{E} \left[\frac{1}{T} \sum_{t=1}^T \tilde{A}_t^w \mid r=1, x \right] + \eta \operatorname{Cov} \left(\ell_k, \sum_{t=1}^T \tilde{A}_t^w \right) + O(\eta^2) \quad (6)$$

870
871
872

873 *Proof.* Denote $\operatorname{clip}_\epsilon(\rho) = \min(\max(\rho, 1 - \epsilon), 1 + \epsilon)$. Consider the optimization problem
874

875
$$\mathcal{L}(\theta) = \mathbb{E} \left[\sum_t \min(\rho_t(\theta) A_t, \operatorname{clip}_\epsilon(\rho_t(\theta)) A_t) \right] \quad (7)$$

876
877

878 The gradient of this objective is
879

880
$$\nabla_\theta \min(\rho_t(\theta) A_t, \operatorname{clip}_\epsilon(\rho_t(\theta)) A_t) = m_t A_t \rho_t \nabla_\theta \log \pi_\theta(y_t \mid s_t) \quad (8)$$

881 Let $z_{s,a}$ be the logit parameter for action a at state s , so that $\pi_\theta(a \mid s) = \operatorname{softmax}(z_{s,.})_a$. Then
882

883
$$\frac{\partial}{\partial z_{s,a}} \log \pi_\theta(y_t \mid s_t) = \mathbf{1}\{s_t = s\} (\mathbf{1}\{y_t = a\} - \pi_\theta(a \mid s_t)), \quad (9)$$

884

885 and thus
886

887
$$\frac{\partial \mathcal{L}}{\partial z_{s,a}} = \mathbb{E} \left[\sum_t (\rho_t m_t A_t) (\mathbf{1}\{y_t = a\} - \pi_\theta(a \mid s_t)) \right]. \quad (10)$$

888
889

890 It is then clear that after one natural-gradient step,
891

892
$$z_{s,a}^{k+1} - z_{s,a}^k = \eta (A^w(s, a) - \bar{A}^w(s)) = \eta \tilde{A}^w(s, a), \quad (11)$$

893 Using a first-order Taylor expansion of $\log \pi$ and equation 11,
894

895
$$\log \pi_{k+1}(a \mid s) - \log \pi_k(a \mid s) = \eta \tilde{A}^w(s, a) + O(\eta^2). \quad (12)$$

896 For a trajectory $y = (y_1, \dots, y_T)$,
897

898
$$\log \frac{\pi_{k+1}(y \mid x)}{\pi_k(y \mid x)} = \sum_{t=1}^T (\log \pi_{k+1}(y_t \mid s_t) - \log \pi_k(y_t \mid s_t)) = \eta \sum_{t=1}^T \tilde{A}^w(s_t, y_t) + O(\eta^2). \quad (13)$$

899
900

901 Define
902

903
$$\Psi_x(y) := \sum_{t=1}^T \tilde{A}^w(s_t, y_t), \quad S_k^w(x, y) := \frac{1}{T} \sum_{t=1}^T \tilde{A}^w(s_t, y_t).$$

904

905 Then, from $\ell_k(x, y) = -\frac{1}{T} \sum_t \log \pi_k(y_t \mid s_t)$ and equation 12,
906

907
$$\ell_{k+1}(x, y) - \ell_k(x, y) = -\frac{1}{T} \sum_{t=1}^T (\log \pi_{k+1} - \log \pi_k) = -\eta S_k^w(x, y) + O(\eta^2). \quad (14)$$

908
909

910 Moreover,
911

912
$$R_x(y) := \frac{\pi_{k+1}(y \mid x)}{\pi_k(y \mid x)} = \exp(\eta \Psi_x(y) + O(\eta^2)) = 1 + \eta \Psi_x(y) + O(\eta^2). \quad (15)$$

913

914 Add and subtract $\mathbb{E}_{\pi_{k+1}}[\ell_k \mid r=1, x]$ in Δ_x , we have
915

916
$$\Delta_x = \underbrace{\mathbb{E}_{\pi_{k+1}}[\ell_{k+1} - \ell_k \mid r=1, x]}_{(A)} + \underbrace{\left(\mathbb{E}_{\pi_{k+1}}[\ell_k \mid r=1, x] - \mathbb{E}_{\pi_k}[\ell_k \mid r=1, x] \right)}_{(B)}. \quad (16)$$

917

918 Using equation 14 and a change of measure with R_x ,

$$\begin{aligned}
 (A) &= \frac{\mathbb{E}_{\pi_k}[(\ell_{k+1} - \ell_k) R_x \mid r=1, x]}{\mathbb{E}_{\pi_k}[R_x \mid r=1, x]} \\
 &= \frac{\mathbb{E}_{\pi_k}[(-\eta S_k^w + O(\eta^2))(1 + \eta \Psi_x + O(\eta^2)) \mid r=1, x]}{1 + \eta \mathbb{E}_{\pi_k}[\Psi_x \mid r=1, x] + O(\eta^2)} \\
 &= -\eta \mathbb{E}_{\pi_k}[S_k^w \mid r=1, x] + O(\eta^2) \\
 &= -\eta \mathbb{E}_{\pi_k} \left[\frac{1}{T} \sum_{t=1}^T \tilde{A}_t^w \mid r=1, x \right].
 \end{aligned}$$

929 where the third equality is simply a first order expansion of division. For term (B), we can compute
 930 for any integrable f ,

$$\mathbb{E}_{\pi_{k+1}}[f \mid r=1, x] = \frac{\mathbb{E}_{\pi_k}[f R_x \mid r=1, x]}{\mathbb{E}_{\pi_k}[R_x \mid r=1, x]} = \mathbb{E}_{\pi_k}[f \mid r=1, x] + \eta \text{Cov}_{\pi_k(\cdot \mid r=1, x)}(f, \Psi_x) + O(\eta^2),$$

934 by expanding numerator and denominator using equation 15. Taking $f = \ell_k$ gives

$$(B) = \eta \text{Cov}_{\pi_k(\cdot \mid r=1, x)}(\ell_k, \Psi_x) + O(\eta^2) = \eta \text{Cov}_{\pi_k(\cdot \mid r=1, x)} \left(\ell_k, \sum_{t=1}^T \tilde{A}_t^w \right). \quad (17)$$

939 Combining the two part we get our theorem. \square

941 E EXPERIMENT SETUP

943 E.1 CONTAMINATION PIPELINES

945 **SFT Contamination** We randomly select 10K samples from OpenThoughts3 (Guha et al., 2025)
 946 to form the clean SFT training set, following the same ratio for each domain as the original paper,
 947 to obtain the best results. For the SFT contaminated training set, we use QwQ-32B (Team, 2025)
 948 as an advanced LRM to help distillation for the member set. We adopt the temperature 0.6, top-p
 949 value of 0.95, and maximum output token with 32768 for the distillation. We use rejection sampling
 950 with 64 rollouts, selecting correct trajectories when available. If none of the 64 rollouts produce a
 951 correct answer, we randomly select an incorrect trajectory. We replicate the question in the mem-
 952 ber set with responses 3 times to create the SFT contamination training set. So the training set
 953 consists of 11866 samples. **For the Llama-3.1-8B-Instruct, we randomly select 30K samples from**
 954 **OpenThoughts3 (Guha et al., 2025) to form the clean SFT training set, and duplicate memberships**
 955 **9 times to form the SFT contamination training set.**

956 Table 6: Proportion of questions solved after up to 64 rollouts with QwQ-32B.

Olypaidbench	GPQA-Diamond	AIME2025	AIME2024	Minerva Math	AMC2023	Avg.
80.59	92.42	93.33	93.33	56.62	100.00	86.05

962 **RL Contamination** For RL contamination, we replicate the questions in the member set 2 times,
 963 and randomly select 4096 samples from DeepMath-103K (He et al., 2025) as the clean RL training
 964 set. We choose GRPO as the RL algorithm and train the model with one epoch.

966 **Base Model Selection** We choose Qwen2.5-7B-Instruct (Team, 2024) and **Llama-3.1-8B-**
 967 **Instruct Dubey et al. (2024)** as the base model, and first train it with SFT and then RL.

969 E.2 CONTAMINATION DETECTION METHODS

971 **Setup** For input question q , response o , and model π_θ , we define the detection score as $f(q, o, \pi_\theta)$.
 We treat the contaminated benchmark as the member set and the remaining uncontaminated half as

972 the non-member set. AUROC is computed from the detection scores between the member and non-
 973 member set within a benchmark. We define the average log probability of model π_θ generating the
 974 response o given the question q as:

$$976 \quad \phi(q, o, \pi_\theta) = \frac{1}{|o|} \log \pi_\theta(o | q).$$

978
 979 We provide experiments to illustrate why we choose the log probability on responses for most detec-
 980 tion methods in appendix F.2, and assume that if models have seen the questions during the training,
 981 they would have more confidence during the generation, thus have higher log probabilities.

982 E.2.1 GENERATION-BASED DETECTION

984 **Verbatim (Wu et al., 2025)** Verbatim-based approach (Wu et al., 2025) prompts the model to
 985 complete the remaining parts of a question based on partial prefixes. (Wu et al., 2025) uses the
 986 partial-prompt completion rate measured by ROUGE-L (Lin, 2004), which calculates the overlap of
 987 the longest common subsequence between the generated and reference text. If the model memorizes
 988 the question during the training, the partial-prompt completion rate would be higher compared to
 989 unseen questions. We use 80% of the original problem to generate a partial completion. Using a
 990 lower ratio causes the LRM to answer the question directly instead of continuing the given sequence.

992 **CDD (Dong et al., 2024)** CDD measures the variation of the generated responses, and assumes
 993 that if the responses share strong similarities, the question is more likely to be contaminated during
 994 the training.

$$996 \quad f(q, o, \pi_\theta) = \sum_{d=0}^{\alpha l} \rho^*(d) = \sum_{d=0}^{\alpha l} \frac{\sum_{i=1}^{|G|} \mathbb{I}(\text{ED}(o_i, o_{\text{temperature}=0}) = d)}{|G|}$$

999
 1000 where ED represents Edit distance (Levenshtcin, 1966). We quantify the peakedness of the edit-
 1001 distance distribution $\rho^*(d)$ by its cumulative mass within a similarity window, i.e., $F(d \leq \alpha l)$,
 1002 where $\alpha \in [0, 1]$ and $l = \max\{\text{Len}(o) \mid o \in O\}$. In our experiments, we set $\alpha = 0.5$, which
 1003 performed better than other choices.

1004 E.2.2 PERTURBATION-BASED DETECTION

1006 **Neighborhood (Mattern et al., 2023)** Neighborhood method calibrates the detection score
 1007 $\phi(q, o, \pi_\theta)$ with some unseen questions q' that share similar semantics to the original question q .
 1008 We denote GPT-4o as \mathcal{N} to augment the question q and get $q' \in \mathcal{N}(q)$. We use a total of five
 1009 augmented samples to compute the detection score:

$$1010 \quad f(q, o, \pi_\theta) = \phi(q, o, \pi_\theta) - \phi_{\text{neighbor}}(q', o, \pi_\theta), \quad \phi_{\text{neighbor}}(q', o, \pi_\theta) = \frac{1}{|\mathcal{N}(q)|} \sum_{q' \in \mathcal{N}(q)} \phi(q', o, \pi_\theta).$$

1014 E.2.3 REFERENCE-BASED DETECTION

1015 The detector assumes that they could access to the training distribution of the target model π_θ , and
 1016 have a reference model π_{ref} to calibrate the detection scores. We choose bespokelabs/Bespoke-
 1017 Stratos-7B (Labs, 2024) as the reference model π_{ref} in all the experiments.

1019 **LiRA (Mireshghallah et al., 2022)** LiRA calibrates detection score by dividing.

$$1021 \quad f(q, o, \pi_\theta) = \frac{\phi(q, o, \pi_\theta)}{\phi(q, o, \pi_{\text{ref}})}.$$

1024 **Ref (Carlini et al., 2021)** Ref calibrates detection score by subtraction.

$$1025 \quad f(q, o, \pi_\theta) = \phi(q, o, \pi_\theta) - \phi(q, o, \pi_{\text{ref}}).$$

1026 E.2.4 REFERENCE-FREE DETECTION
10271028 **LOSS (Carlini et al., 2021)** The detection score is as below:
1029

1030
$$f(q, o, \pi_\theta) = \phi(q, o, \pi_\theta).$$

1031

1032 **Zlib (Carlini et al., 2021)** Zlib calibrates the detection score with $Zlib(o)$, which is a compression-
1033 based entropy/length proxy.
1034

1035
$$f(q, o, \pi_\theta) = \frac{\phi(q, o, \pi_\theta)}{Zlib(o)}.$$

1036

1037 **Min-K% (Shi et al., 2023)** Min-k% compute the detection score on k% tokens with lowest prob-
1038 abilities in the sequence. Following (Shi et al., 2023), we choose k as 20 by default in all the
1039 experiments.
1040

1041
1042
$$f(q, o, \pi_\theta) = \frac{1}{|\min-k(o)|} \sum_{i \in \min-k(o)} \left[\log \pi_\theta(o_i \mid q, o_{<i}) \right].$$

1043
1044

1045 **Min-K++% (Zhang et al., 2024)** Min-k%++ standardizes the log probability before taking Min-
1046 K%. μ_i is the expectation of the next token's log probability over the vocabulary \mathcal{V} of the model π_θ
1047 given the prefix $q, o_{<i}$, and σ_i is the standard deviation. We use k=20 by default.
1048

1049
1050
$$f(q, o, \pi_\theta) = \frac{1}{|\min-k(o)|} \sum_{i \in \min-k(o)} \frac{\log \pi_\theta(o_i \mid q, o_{<i}) - \mu_i}{\sigma_i},$$

1051
1052

1053
$$\mu_i = \mathbb{E}_{v \in \mathcal{V}} [\log \pi_\theta(v \mid q, o_{<i})], \quad \sigma_i = \text{Std}_{v \in \mathcal{V}} [\log \pi_\theta(v \mid q, o_{<i})].$$

1054

1055 **Max-K% (Maini et al., 2024)** Max-k% compute the detection score on k% tokens with largest
1056 probabilities in the sequence. We use k=20 by default.
1057

1058
1059
$$f(q, o, \pi_\theta) = \frac{1}{|\max-k(o)|} \sum_{i \in \max-k(o)} \left[\log \pi_\theta(o_i \mid q, o_{<i}) \right].$$

1060
1061

1062 E.3 DATASETS

1063 **AIME 2024 & 2025** Olympiad-level mathematical-reasoning benchmarks consisting of 30 prob-
1064 lems each from the American Invitational Mathematics Examination (AIME) 2024 and 2025.
10651066 **AMC 2023** A high school level math benchmark consisting of 40 problems from the 2023 Amer-
1067 ican Mathematics Competitions (AMC).
10681069 **GPQA Diamond (Rein et al., 2024)** Graduate level scientific-reasoning, multiple-choice bench-
1070 mark written by domain experts in biology, physics, and chemistry. The *Diamond* split is the hardest
1071 subset, with 198 questions retained only when expert annotators agreed, and non-expert baselines
1072 typically fail.
10731074 **OlympiadBench (He et al., 2024)** An Olympiad level, bilingual, multimodal benchmark designed
1075 to test scientific reasoning in mathematics and physics. We use the English, text-only math subset
1076 consisting of 674 competition problems.
10771078 **Minerva Math (Lewkowycz et al., 2022)** A challenging quantitative reasoning benchmark de-
1079 rived from Google's Minerva work, consisting of 272 problems.

1080 E.4 IMPLEMENTATION DETAILS
1081

1082 **SFT Implementation** We use the LLaMA-Factory (Zheng et al., 2024) implementation
1083 for our SFT experiments. By default, we adopt the SFT hyperparameters suggested by
1084 OpenThought3 (Guha et al., 2025) for medium dataset scales for the scenario that the base model
1085 evolves into LRM, as shown below. To improve training efficiency, we employ FlashAttention-
1086 2 (Dao, 2023), DeepSpeed ZeRO-1 (Rasley et al., 2020), Liger kernels (Hsu et al., 2024), and
1087 asynchronous activation offloading (Daniel Han & team, 2023).

Training type	Batch Size	Context Length	LR	Epochs	LR Scheduler	Warmup Ratio	Weight Decay	Training Precision
Full	128	32,768	4e-5	5	cosine	0.1	0	bf16

1091 For the extensive contamination to LRM in the final stage, we use the hyperparameters as follows:

Training type	Batch Size	Context Length	LR	Epochs	LR Scheduler	Warmup Ratio	Weight Decay	Training Precision
Full	32	32,768	1e-5	7	cosine	0.1	0	bf16

1094

1095

1096 **RL Implementation** We use Verl (Sheng et al., 2024) implementation for our RL ex-
1097 periments. For RAFT and RAFT++, we follow the implementation of (Xiong et al.,
1098 2025). For GRPO, we follow DAPO (Yu et al., 2025) and do not introduce the KL
1099 term in our training in all the experiments. The detailed hyperparameters are as follows:

Training type	Batch Size	Prompt Length	Response Length	ϵ	LR	Epochs	Rollout Num	Rollout Temp	Training Precision
Full	64	1,024	16,384	0.2	1e-6	1	4	0.6	bf16

1102

1103

1104 **Prompt template** We use a prompt template to enable long CoT during train on both SFT and
1105 RL. We use math template to AIME2024 & 2025, AMC2023, OlympiadBench (He et al., 2024),
1106 and Minervamath (Lewkowycz et al., 2022). We adapt multiple-choice template to GPQA Diamond
1107 (Rein et al., 2024).

1108

1109

1110 **Evaluation and Metric** We evaluate pass@1 and run 10 rollouts on AIME 2024 & 2025, AMC
1111 2023, and 3 rollouts on OlympiadBench, GPQA Diamond, and Minerva Math to compute the
1112 pass@1. We use vLLM (Kwon et al., 2023) for the inference. All inference uses the same con-
1113 figurations: temperature=0.6, top_p=0.95, max_new_tokens=32,768.

1114

1115

1116

1117

Reasoning Template for Math

1118 {question}\nPlease reason step by step, and put your final answer
1119 within \boxed{}.

1120

1121

1122

1123

1124

1125

1126

1127

Example. Alice and Bob play the following game. A stack of n tokens lies before them. The players take turns with Alice going first. On each turn, the player removes either 1 token or 4 tokens from the stack. Whoever removes the last token wins. Find the number of positive integers n less than or equal to 2024 for which there exists a strategy for Bob that guarantees that Bob will win the game regardless of Alice's play.\nPlease reason step by step, and put your final answer within \boxed{}.

1128

1129

1130

1131

1132

1133

Deduplication We deduplicate our clean training datasets for both RL and SFT against the evaluation benchmarks using 13-gram overlap deduplication to ensure conclusive results.

1134

1135

1136

1137

1138

1139

1140

1141 **Example.**

Return your final response within \boxed{} and only include the letter choice (A, B, C, or D) as your final response.
 {question}{options}

Return your final response within \boxed{} and only include the letter choice (A, B, C, or D) as your final response.
 trans-cinnamaldehyde was treated with methylmagnesium bromide, forming product 1.
 1 was treated with pyridinium chlorochromate, forming product 2.
 3 was treated with (dimethyl(oxo)-16-sulfaneylidene)methane in DMSO at elevated temperature, forming product 3.
 how many carbon atoms are there in product 3? A) 11, B) 10, C) 12, D) 14

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

F MORE EXPERIMENT RESULTS

1152

1153

1154

F.1 MORE RESULTS OF LLAMA-3.1-8B-INSTRUCT (STAGE I: PRE-LRM)

1155

1156

1157

Table 7: **AUROC (%)** of contamination detection approaches evaluated starting from an **SFT-contaminated model w/o RL to subsequently trained with GRPO**. Results demonstrate that after GRPO, AUROC decreases across all the benchmarks and detection approaches. Δ measures the difference with the SFT-contaminated model w/o RL. Higher AUROC, better detection performance. Each AUROC is averaged over detection scores from 8 rollouts. The base model is Llama3.1-8B-Instruct.

1158

1159

1160

1161

1162

1163

Contamination Detection Methods	Training Stages	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation based									
Verbatim (Wu et al., 2025)	Before RL	48.67	65.36	51.78	60.00	56.84	52.62	55.88	+0.00
	RL w/ Clean	49.92	50.14	57.78	58.22	57.21	57.38	55.11	-0.77
	RL w/ Clean&Mem	48.42	48.21	54.89	56.22	57.83	58.00	53.93	-1.95
CDD (Dong et al., 2024)	Before RL	56.72	54.55	53.33	55.11	60.03	66.75	57.75	+0.00
	RL w/ Clean	53.14	55.69	60.00	46.22	56.31	64.00	55.89	-1.86
	RL w/ Clean&Mem	57.24	49.31	53.11	43.78	57.52	63.50	54.08	-3.67
Perturbation based									
Neighbor (Mattern et al., 2023)	Before RL	51.64	40.46	62.44	41.11	53.86	63.62	52.19	+0.00
	RL w/ Clean	52.48	37.07	55.78	39.33	50.32	65.00	50.00	-2.19
	RL w/ Clean&Mem	52.34	39.76	49.78	37.11	54.44	70.25	50.61	-1.58
Reference based									
LiRA (Mireshghallah et al., 2022)	Before RL	80.50	70.86	98.22	93.78	81.54	98.87	87.30	+0.00
	RL w/ Clean	68.95	65.57	51.33	41.11	73.99	80.75	63.62	-23.68
	RL w/ Clean&Mem	68.72	65.74	90.44	89.11	72.32	94.12	80.08	-7.22
Ref (Carlini et al., 2021)	Before RL	60.21	48.62	66.00	40.89	60.47	83.50	59.95	+0.00
	RL w/ Clean	55.27	47.41	40.67	32.44	52.31	53.25	46.89	-13.06
	RL w/ Clean&Mem	55.49	50.37	46.00	31.11	52.98	62.50	49.74	-10.21
Reference free									
Zlib (Carlini et al., 2021)	Before RL	49.46	56.21	88.44	72.00	47.04	60.25	62.23	+0.00
	RL w/ Clean	46.53	56.37	66.67	50.00	45.91	41.38	51.14	-11.09
	RL w/ Clean&Mem	47.29	52.29	66.22	60.89	45.63	46.00	53.05	-9.18
Min-K%++ (Zhang et al., 2024)	Before RL	48.88	49.33	41.43	39.11	51.67	30.63	43.51	+0.00
	RL w/ Clean	46.67	47.61	29.33	24.22	59.85	34.38	40.34	-3.17
	RL w/ Clean&Mem	48.08	50.65	36.22	28.44	59.27	46.63	44.88	+1.37
Min-K% (Shi et al., 2023)	Before RL	68.90	72.17	98.22	99.56	76.16	94.50	84.92	+0.00
	RL w/ Clean	59.11	69.85	60.44	67.56	73.89	75.87	67.79	-17.13
	RL w/ Clean&Mem	60.41	63.87	87.33	89.56	73.57	84.50	76.54	-8.38
Max-K% (Maini et al., 2024)	Before RL	63.60	61.58	92.44	89.33	69.12	91.50	77.93	+0.00
	RL w/ Clean	50.59	52.50	50.00	50.00	50.37	52.50	50.99	-26.94
	RL w/ Clean&Mem	50.91	52.24	49.11	49.11	54.86	61.75	53.00	-24.93
Loss (Carlini et al., 2021)	Before RL	69.44	72.88	98.67	99.56	76.91	94.50	85.33	+0.00
	RL w/ Clean	59.18	69.84	60.00	68.00	74.02	76.75	67.97	-17.36
	RL w/ Clean&Mem	60.37	63.92	89.33	90.44	74.18	84.62	77.14	-8.19

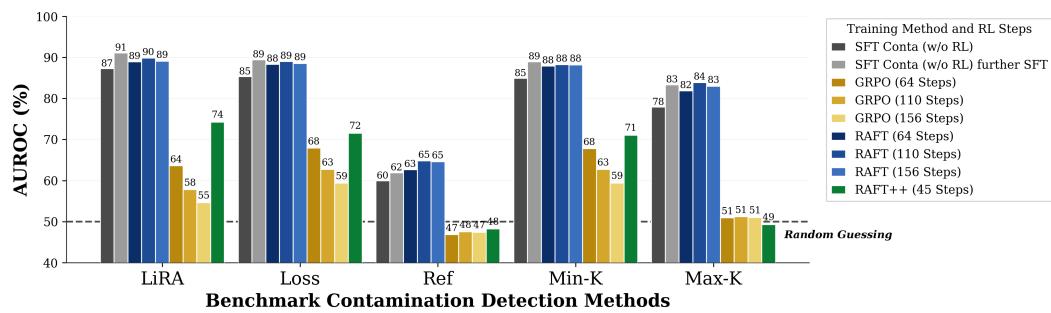


Figure 5: **AUROC (%) trends on SFT contaminated model further trained with different objectives.** While contamination introduced through SFT is initially detectable by existing methods, subsequent RL training with clean samples (e.g., GRPO or RAFT++) consistently degrades detection performance. Moreover, we observe a monotonic decline in detection performance as the number of RL steps increases, and reference-free methods (e.g., Loss, Min-K, and Max-K) already fall into near random guesses (i.e., AUROC≈50%) simply after 156 steps. The base model is Llama3.1-8B-Instruct.

F.2 AUROC ON QUESTION, QUESTION+RESPONSE, THINKING PROCESS, AND NON-THINKING PROCESS (STAGE I: PRE-LRM)

We compare the AUROC computed on response tokens with computed on the question tokens, whole tokens, thinking tokens, and non-thinking tokens in the response. As shown in Tab. 8 and 11, none of the approach outperform the AUROC computed on the response tokens. Thus, we choose to compute all the detection scores on the response if applicable. The base model here is **Qwen2.5-7B-Instruct**.

Table 8: AUROC (%) of contamination detection approaches using **question tokens** to compute the detection score, evaluated on the SFT-contaminated model w/o RL. Δ measures the difference with the **reponse tokens** as signal (Tab. 2). Results demonstrate that question tokens are not suitable for detection in the LRM contamination setting, compared with using response tokens.

Contamination Detection Methods	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation base								
Verbatim (Wu et al., 2025)	47.58	49.86	47.56	53.56	52.52	65.50	52.76	+0.00
Perturbation base								
Neighbor (Mattern et al., 2023)	47.04	56.10	44.22	32.44	49.99	54.62	47.40	-3.31
Reference base								
LiRA (Mireshghallah et al., 2022)	49.78	43.12	42.22	46.00	48.77	55.00	47.48	-41.65
Ref (Carlini et al., 2021)	49.80	48.47	40.22	47.56	49.38	53.88	48.22	-17.28
Reference free								
Zlib (Carlini et al., 2021)	48.15	50.78	60.00	40.89	54.23	52.75	51.13	-2.25
Min-K%++ (Zhang et al., 2024)	44.33	50.53	32.00	36.89	49.67	34.25	41.28	-8.33
Min-K% (Shi et al., 2023)	46.68	51.91	53.33	43.56	54.13	44.38	49.00	-15.96
Max-K% (Maini et al., 2024)	49.39	54.58	71.56	55.33	54.98	66.25	58.68	-11.15
Loss (Carlini et al., 2021)	47.38	54.03	58.44	46.00	55.61	52.00	52.24	-23.24

F.3 RESPONSE LENGTH ANALYSIS (STAGE I: PRE-LRM)

We visualize the average response length per question across different benchmarks in Fig. 6. Here, the base model is **Qwen2.5-7B-Instruct**. Although the average response length does not change too much after GRPO training, several detection approaches already exhibit a substantial performance drop, as shown in Tab. 2. In contrast, for RAFT, even though the response lengths remain similar to those after GRPO, no concealment effect is observed. These results suggest that response length is not the key factor; instead, the entropy of the model’s output appears to drive the concealment phenomenon.

1242
1243
12441245 Table 9: AUROC (%) of contamination detection approaches using **question + response tokens**
1246 to compute the detection score, evaluated on the SFT-contaminated model w/o RL. Δ measures
1247 the difference with **response tokens** as signal (Tab. 2). Results demonstrate that considering both
1248 question and response tokens when computing detection scores actually harms the AUROC.

Contamination Detection Methods	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Perturbation base								
Neighbor (Mattern et al., 2023)	54.56	43.42	48.89	38.44	56.09	61.50	50.48	-0.23
Reference base								
LiRA (Miresghallah et al., 2022)	79.31	72.49	89.56	71.11	66.07	89.00	77.92	-11.21
Ref (Carlini et al., 2021)	72.95	64.91	60.89	40.00	72.36	82.25	65.56	+0.06
Reference free								
Zlib (Carlini et al., 2021)	46.96	54.24	69.33	41.11	43.31	42.00	49.49	-3.89
Min-K%++ (Zhang et al., 2024)	40.49	51.08	36.19	48.67	39.61	30.50	41.09	-8.52
Min-K% (Shi et al., 2023)	56.46	56.73	85.78	73.78	48.48	58.13	63.23	-1.73
Max-K% (Maini et al., 2024)	64.43	63.78	64.22	81.78	66.09	76.50	69.47	-0.36
Loss (Carlini et al., 2021)	59.18	58.44	87.11	76.44	49.75	63.12	65.67	-9.81

1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
12651266 Table 10: AUROC (%) of contamination-detection methods using **reasoning tokens only** (tokens
1267 inside `<think></think>`) to compute the detection score, evaluated on the SFT-contaminated
1268 model w/o RL. The last column, Δ , reports the difference relative to using **the entire response** as
1269 the signal (Tab. 2). Results show only minor differences between reasoning token only and whole-
1270 response signals, so we use the entire response in the main analysis.

Contamination Detection Methods	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Reference free								
Zlib (Carlini et al., 2021)	49.67	59.60	70.89	35.24	48.60	46.00	51.67	-0.93
Min-K% (Shi et al., 2023)	70.76	66.46	82.89	74.52	70.34	82.25	74.54	+0.69
Max-K% (Maini et al., 2024)	67.40	62.00	66.67	82.38	65.87	79.00	70.55	+0.82
Loss (Carlini et al., 2021)	70.81	66.75	84.89	74.52	70.06	82.75	74.96	+1.21

1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
12821283 Table 11: AUROC (%) of contamination-detection methods using **non-reasoning tokens only** (tokens
1284 after `</think>`) to compute the detection score, evaluated on the SFT-contaminated model
1285 w/o RL. The last column, Δ , reports the difference relative to using **the entire response** as the
1286 signal (Tab. 2). Results show that using non-reasoning tokens degrades performance compared with
1287 whole-response signals, so we use the entire response in the main analysis.

Contamination Detection Methods	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Reference free								
Zlib (Carlini et al., 2021)	59.73	51.49	49.11	61.67	63.37	74.25	59.94	+7.34
Min-K% (Shi et al., 2023)	59.26	54.82	48.22	80.00	64.8	76.5	63.93	-9.92
Max-K% (Maini et al., 2024)	60.86	54.93	55.33	69.52	59.76	77.5	62.98	-6.75
Loss (Carlini et al., 2021)	59.28	54.78	48.44	80.00	64.74	76.5	63.96	-9.79

1293
1294
1295

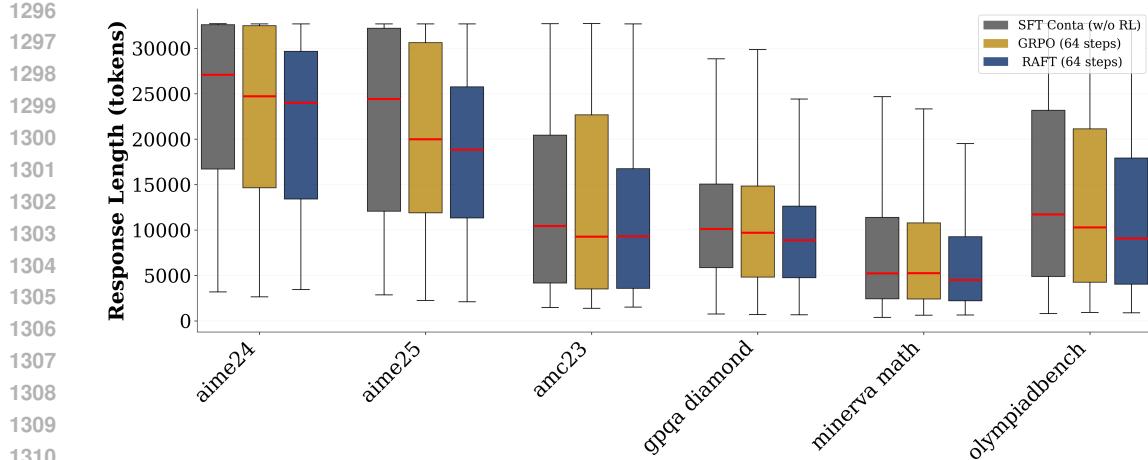


Figure 6: Average response length for each question across different benchmarks.

1315 F.4 LOG-PROBABILITY DISTRIBUTION BEFORE AND AFTER RL (STAGE I: PRE-LRM)

1317 We provide the log probability distribution for members vs. non-members in diverse scenarios.
 1318 Fig. 7, 8, and 9 demonstrate that further SFT and RAFT are unable to contract the distribution for
 1319 members and non-members, while GRPO and RAFT++ could conceal the contamination evidence
 1320 due to the PPO-style importance sampling/clipping term in the training objective. **The base model**
 1321 **here is Qwen2.5-7B-Instruct.**

1324 F.5 AUROC FOR DIFFERENT TRAINING STEPS (STAGE I: PRE-LRM)

1326 We provide complete results of AUROC in different RL training steps. As shown in Tab. 12 and 13,
 1327 we observe a monotonic decline in detection performance as the number of RL steps increases when
 1328 using GRPO. While even with 156 steps in RAFT, there is no sign of AUROC decline. These
 1329 results perfectly validate our theoretical analysis that RAFT is unable to conceal contamination,
 1330 while GRPO could.

1332 F.6 CONTAMINATION INFLATION COMPARISON (STAGE I: PRE-LRM)

1334 To demonstrate performance inflation from SFT contamination, we choose Qwen2.5-7B-Instruct
 1335 as the base model and compare pass@1 across three training settings: (i) 15K clean samples
 1336 from OpenThought3 (Guha et al., 2025), (ii) 10K clean samples plus three full repetitions of
 1337 six entire benchmark data (13,735 samples in total), and (iii) 1.2M clean samples (i.e., open-
 1338 thoughts/OpenThoughts3-1.2M). As shown in Tab. 16, the contaminated model outperforms the 15K
 1339 clean baseline by an average of 10.80% across six benchmarks and even surpasses OpenThoughts3-
 1340 1.2M on GPQA-Diamond and Minerva Math datasets. These results demonstrate that benchmark
 1341 contamination can easily yield substantial performance inflation.

1344 F.7 LOG-PROB DISTRIBUTION AFTER EXTENSIVE SFT CONTAMINATION ON LRM (STAGE 1345 II: POST-LRM)

1347 We provide the log prob distributions for members and non-members of deepseek distill models
 1348 before and after contamination on Minvera Math and GPQA-Diamond in Fig. 10 and 11. Even
 1349 though non-members have not been exposed to LRM during the contamination, the log-prob would
 also increase, demonstrating that LRM start to generalize after contamination.

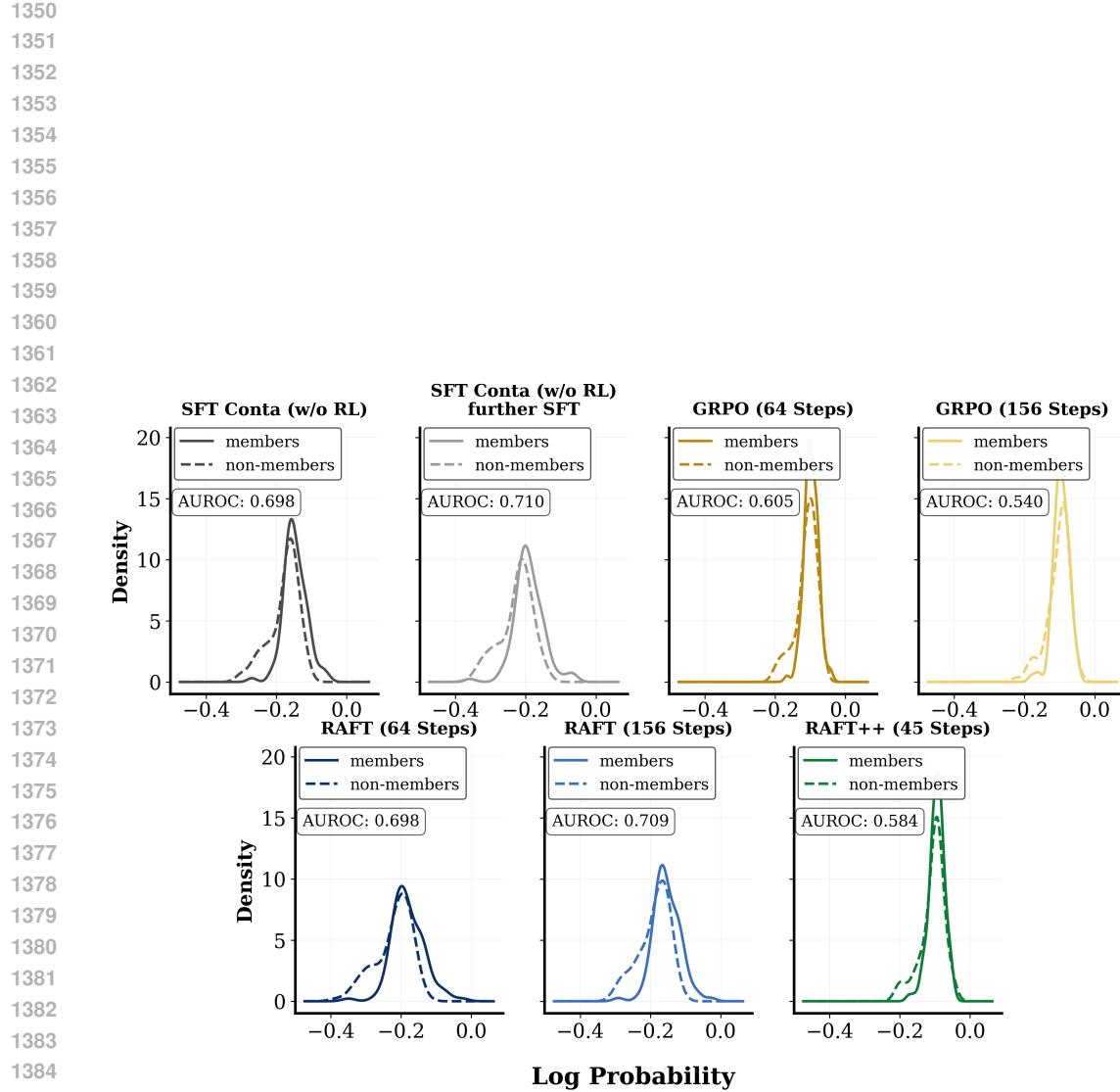


Figure 7: Log-prob distributions for members vs. non-members of **SFT contaminated model before and after RL training** on GPQA-Diamond. With additional GRPO or RAFT++ training on clean samples, the member and non-member log-probability distributions become increasingly similar. Since many contamination detection methods rely on separability in this space, the shrinking gap explains their degraded effectiveness. In contrast, further RAFT training does not induce the earlier distribution collapse; as we explain in Sec. 3.2, the absence of a clipping term prevents it. Likewise, additional SFT does not collapse the membership distributions.

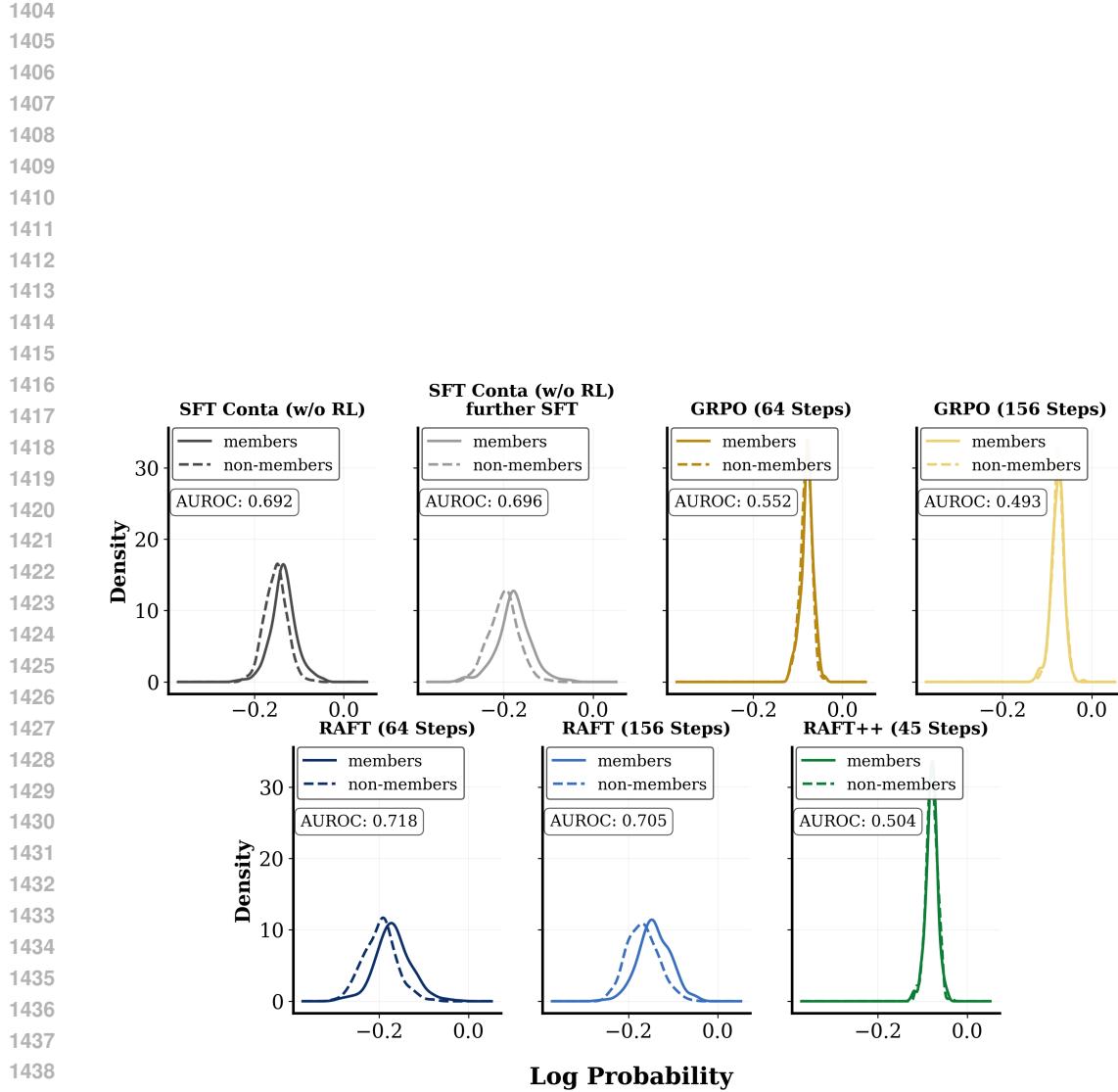


Figure 8: Log-prob distributions for members vs. non-members of **SFT contaminated model before and after RL training** on OlympiadBench. With additional GRPO or RAFT++ training on clean samples, the member and non-member log-probability distributions become increasingly similar. Since many contamination detection methods rely on separability in this space, the shrinking gap explains their degraded effectiveness. In contrast, further RAFT training does not induce the earlier distribution collapse; as we explain in Sec. 3.2, the absence of a clipping term prevents it. Likewise, additional SFT does not collapse the membership distributions.

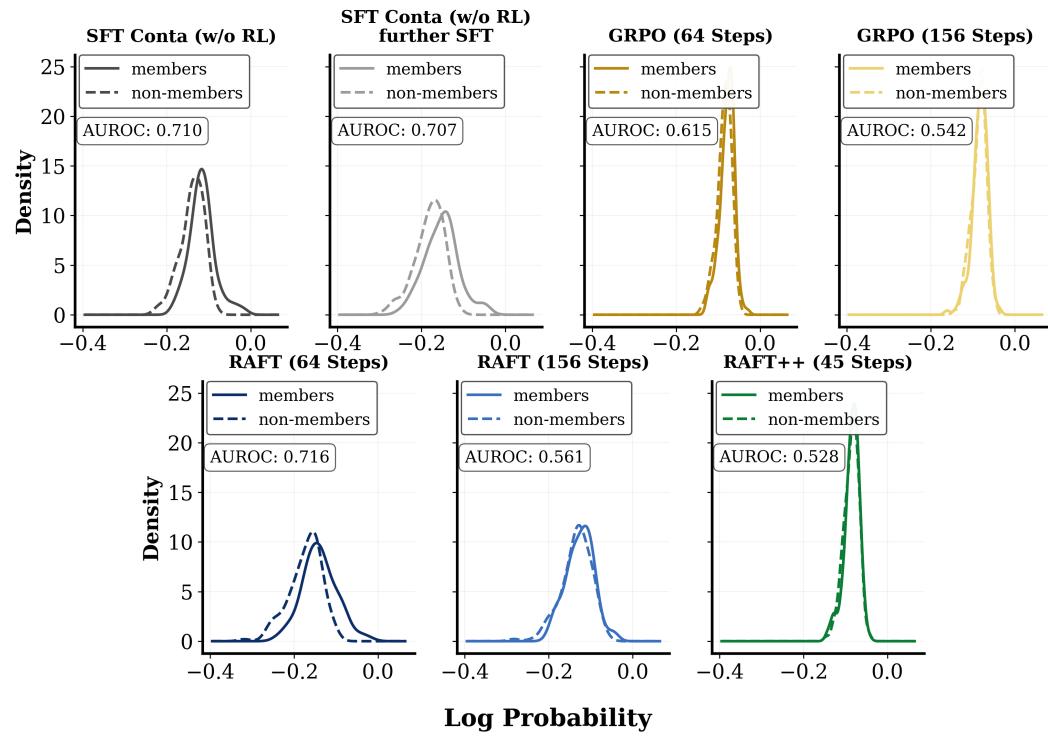


Figure 9: Log-prob distributions for members vs. non-members of **SFT contaminated model before and after RL training** on Minerva Math. With additional GRPO or RAFT++ training on clean samples, the member and non-member log-probability distributions become increasingly similar. Since many contamination detection methods rely on separability in this space, the shrinking gap explains their degraded effectiveness. In contrast, further RAFT training does not induce the earlier distribution collapse; as we explain in Sec. 3.2, the absence of a clipping term prevents it. Likewise, additional SFT does not collapse the membership distributions.

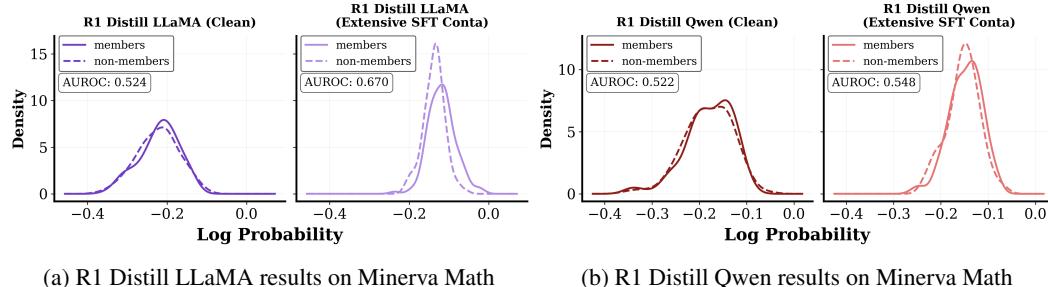
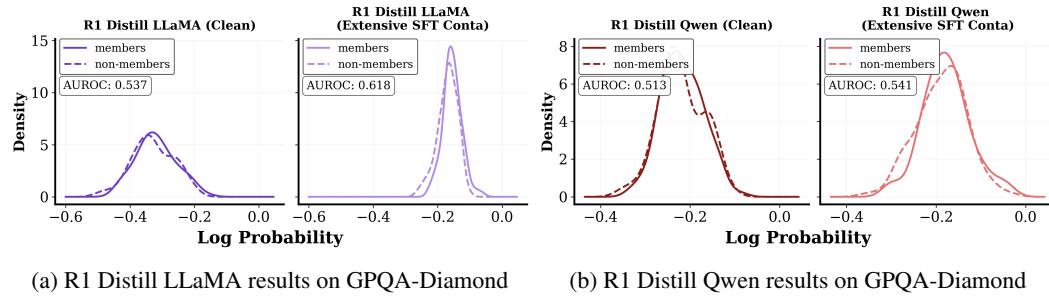


Figure 10: Log-prob distributions for members vs. non-members of **advanced LRM results on Minerva Math before and after contamination**. After extensive SFT contamination on members, the log prob of both members and non-members increases at a similar margin, due to the generalization.

1512
 1513
 1514 Table 12: AUROC (%) of contamination detection approaches evaluated starting from an SFT-
 1515 contaminated model w/o RL to subsequently trained with **GRPO in different steps**. Δ measures
 1516 the difference with the SFT contaminated model w/o RL (Tab. 2). The results demonstrate that
 1517 additional GRPO steps better conceal the contamination evidence. **The base model here is Qwen2.5-
 1518 7B-Instruct.**
 1519

Contamination Detection Methods	Steps	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation base									
Verbatim (Wu et al., 2025)	64	45.46	50.49	48.89	57.56	52.74	59.63	52.46	-0.30
	110	45.27	52.32	52.44	50.22	50.86	60.88	52.00	-0.76
	156	46.51	51.09	53.33	53.56	52.84	58.50	52.64	-0.12
CDD (Dong et al., 2024)	64	55.47	51.08	43.33	60.00	60.18	62.00	55.34	-0.45
	110	54.90	54.20	49.33	59.11	53.48	58.88	54.98	-0.81
	156	53.99	43.42	34.22	70.89	56.32	62.38	53.54	-2.25
Perturbation base									
Neighbor (Mattern et al., 2023)	64	54.10	39.68	50.67	44.22	53.42	60.5	50.43	-0.28
	110	53.93	40.93	43.11	46.22	54.27	59.62	49.68	-1.03
	156	53.32	41.07	47.11	38.67	54.49	60.75	49.24	-1.47
Reference base									
LiRA (Mireshghallah et al., 2022)	64	74.41	84.65	70.22	87.78	81.04	82.75	80.14	-8.99
	110	67.87	79.80	60.22	78.89	81.49	71.88	73.36	-15.77
	156	66.41	77.28	54.22	80.22	77.62	75.13	71.81	-17.32
Ref (Carlini et al., 2021)	64	66.77	58.41	45.33	51.11	65.54	73.62	60.13	-5.37
	110	64.92	54.70	44.44	52.22	66.47	72.37	59.19	-6.31
	156	62.20	57.30	50.89	55.78	64.62	75.25	61.01	-4.49
Reference free									
Zlib (Carlini et al., 2021)	64	45.94	54.99	66.22	35.56	46.65	39.38	48.12	-5.26
	110	44.98	56.54	64.22	39.11	44.93	38.38	48.03	-5.35
	156	44.82	53.21	63.11	41.33	46.43	39.12	48.00	-5.38
Min-K%++ (Zhang et al., 2024)	64	46.25	46.78	36.67	50.89	51.35	29.62	43.59	-6.02
	110	43.17	44.69	28.33	50.00	49.44	46.25	43.65	-5.96
	156	46.12	44.86	32.44	44.00	53.39	35.38	42.70	-6.91
Min-K% (Shi et al., 2023)	64	55.19	60.60	62.89	65.56	61.50	61.87	61.27	-13.69
	110	49.98	58.49	61.78	61.33	56.20	49.00	56.13	-18.83
	156	49.17	54.14	44.67	54.44	53.97	48.75	50.86	-24.10
Max-K% (Maini et al., 2024)	64	53.05	51.43	49.78	50.22	51.84	57.75	52.35	-17.48
	110	51.02	51.39	49.78	53.33	51.88	47.50	50.82	-19.01
	156	49.81	53.31	50.00	50.22	51.52	55.00	51.64	-18.19
Loss (Carlini et al., 2021)	64	55.22	60.50	62.44	65.78	61.50	62.12	61.26	-14.22
	110	50.17	58.25	60.67	62.89	56.47	49.12	56.26	-19.22
	156	49.32	54.04	44.22	54.22	54.20	48.50	50.75	-24.73



1548
 1549
 1550
 1551 Figure 11: Log-prob distributions for members vs. non-members of **advanced LMRs before and**
 1552 **after contamination.** After extensive SFT contamination on members, the log prob of both mem-
 1553 bers and non-members increases at a similar margin, due to the generalization.
 1554
 1555

1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576

1577 Table 13: AUROC (%) of contamination detection approaches evaluated starting from an SFT-
 1578 contaminated model w/o RL to subsequently trained with **RAFT in different steps**. Δ measures
 1579 the difference with the SFT contaminated model w/o RL (Tab. 2). Results demonstrate that even
 1580 with more RL steps, RAFT is unable to conceal the contamination evidence. **The base model here**
 1581 is **Qwen2.5-7B-Instruct**.

Contamination Detection Methods	Steps	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation base									
Verbatim (Wu et al., 2025)	64	45.43	51.19	59.33	60.67	51.48	61.13	54.87	+2.11
	110	45.67	51.24	58.67	58.67	52.33	57.50	54.01	+1.25
	156	45.15	52.16	59.11	59.33	51.28	61.25	54.71	+1.95
CDD (Dong et al., 2024)	64	57.85	53.55	46.89	60.22	59.63	66.62	57.46	+1.67
	110	55.97	52.86	43.11	52.89	56.45	58.25	53.26	-2.53
	156	55.59	52.94	32.22	53.11	55.84	67.62	52.89	-2.90
Perturbation base									
Neighbor (Mattern et al., 2023)	64	55.44	39.63	50.22	43.11	53.15	58.88	50.07	-0.64
	110	55.06	38.47	46.89	40.67	54.20	63.38	49.78	-0.93
	156	55.06	39.19	40.89	41.78	49.66	57.12	47.28	-3.43
Reference base									
LiRA (Mireshghallah et al., 2022)	64	85.85	85.69	98.22	84.22	84.86	91.75	88.43	-0.70
	110	84.32	85.76	94.44	88.44	84.55	91.25	88.13	-1.00
	156	83.32	86.57	94.44	82.00	58.73	86.63	81.95	-7.18
Ref (Carlini et al., 2021)	64	76.02	65.94	74.67	46.00	73.99	75.62	68.71	+3.21
	110	76.41	63.76	71.11	50.22	74.50	81.75	69.63	+4.13
	156	75.92	64.23	67.33	54.67	56.73	81.38	66.71	+1.21
Reference free									
Zlib (Carlini et al., 2021)	64	51.88	59.73	76.00	52.22	52.40	47.75	56.66	+3.28
	110	52.39	62.20	76.22	49.78	74.51	45.88	56.29	+2.91
	156	53.04	62.35	79.78	47.78	52.58	50.37	57.65	+4.27
Min-K%++ (Zhang et al., 2024)	64	51.14	54.13	51.78	62.00	59.86	52.75	55.28	+5.67
	110	52.30	55.56	56.67	62.14	55.00	49.50	55.20	+5.59
	156	51.26	59.72	61.19	58.44	52.53	63.12	57.71	+8.10
Min-K% (Shi et al., 2023)	64	72.28	69.56	88.44	86.67	71.63	78.88	77.91	+2.95
	110	71.44	73.69	78.67	90.22	70.45	77.62	77.02	+2.06
	156	70.76	71.12	84.00	80.67	56.12	79.38	73.68	-1.28
Max-K% (Maini et al., 2024)	64	68.11	68.37	68.44	90.67	69.21	80.50	74.22	+4.39
	110	67.97	68.16	65.78	92.44	69.00	76.75	73.35	+3.52
	156	69.14	68.30	69.33	90.67	58.06	76.00	71.92	+2.09
Loss (Carlini et al., 2021)	64	71.78	69.78	86.00	86.67	71.58	79.25	77.51	+2.03
	110	71.09	73.54	78.44	91.11	70.13	77.12	76.90	+1.42
	156	70.49	70.95	83.11	80.44	56.07	79.12	73.36	-2.12

1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619

1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630

1631
 1632 **Table 14: AUROC (%) of contamination detection approaches evaluated starting from an SFT-**
 1633 **contaminated model w/o RL to subsequently trained with GRPO in different steps.** Δ measures
 1634 the difference with the SFT contaminated model w/o RL (Tab. 7). The results demonstrate that
 1635 additional GRPO steps better conceal the contamination evidence. The base model here is Llama-
 3.1-8B-Instruct.

Contamination Detection Methods	Steps	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation base									
Verbatim (Wu et al., 2025)	64	49.92	50.14	57.78	58.22	57.21	57.38	55.11	-0.77
	110	49.53	51.25	54.22	60.67	54.73	53.12	53.92	-1.96
	156	49.45	52.11	51.11	60.44	57.02	47.12	52.88	-3.00
CDD (Dong et al., 2024)	64	53.14	55.69	60.00	46.22	56.31	64.00	55.89	-1.89
	110	53.48	48.40	46.67	49.11	57.34	56.00	51.83	-5.92
	156	53.99	52.18	45.56	52.89	60.62	57.25	53.75	-4.00
Perturbation base									
Neighbor (Mattern et al., 2023)	64	52.48	37.07	55.78	39.33	50.32	65.00	50.00	-2.19
	110	52.83	38.31	49.78	39.56	50.18	60.00	48.44	-3.75
	156	53.09	39.15	48.00	44.00	52.29	62.25	49.80	-2.39
Reference base									
LiRA (Mireshghallah et al., 2022)	64	68.95	65.57	51.33	41.11	73.99	80.75	63.62	-23.68
	110	66.57	65.72	44.22	27.56	72.02	71.00	57.85	-29.45
	156	60.93	64.21	40.22	23.11	69.25	70.12	54.64	-32.66
Ref (Carlini et al., 2021)	64	55.27	47.41	40.67	32.44	52.31	53.25	46.89	-13.06
	110	54.98	49.70	42.89	26.67	53.16	58.00	47.57	-12.38
	156	53.23	47.75	43.11	27.33	56.31	56.75	47.41	-12.54
Reference free									
Zlib (Carlini et al., 2021)	64	46.53	56.37	66.67	50.00	45.91	41.38	51.14	-11.09
	110	46.78	57.11	64.89	48.44	46.40	37.25	50.15	-12.08
	156	46.32	54.41	65.78	39.78	42.50	42.88	48.61	-13.62
Min-K%++ (Zhang et al., 2024)	64	46.67	47.61	29.33	24.22	59.85	34.38	40.34	-3.17
	110	49.92	50.25	42.89	27.78	57.32	42.75	45.15	+1.64
	156	49.42	48.28	41.33	38.67	53.09	48.25	46.51	+3.00
Min-K% (Shi et al., 2023)	64	59.11	69.85	60.44	67.56	73.89	75.87	67.79	-17.13
	110	56.75	66.89	54.89	64.22	71.61	62.25	62.77	-22.15
	156	55.83	65.12	50.44	59.78	62.76	62.50	59.41	-25.51
Max-K% (Maini et al., 2024)	64	50.59	52.50	50.00	50.00	50.37	52.50	50.99	-26.94
	110	50.29	54.44	50.00	50.00	50.00	52.50	51.21	-26.72
	156	50.30	51.41	53.33	50.00	51.09	50.00	51.02	-26.91
Loss (Carlini et al., 2021)	64	59.18	69.84	60.00	68.00	74.02	76.75	67.97	-17.36
	110	56.85	66.90	55.11	63.78	71.60	62.38	62.77	-22.56
	156	55.75	65.06	50.00	59.78	62.72	63.00	59.39	-25.94

1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674
 1675
 1676
 1677
 1678 **Table 15: AUROC (%) of contamination detection approaches evaluated starting from an SFT-**
 1679 **contaminated model w/o RL to subsequently trained with **RAFT** in different steps.** Δ measures
 1680 **the difference with the SFT contaminated model w/o RL (Tab. 7).** Results demonstrate that even
 1681 **with more RL steps, RAFT is unable to conceal the contamination evidence. The base model here**
 1682 **is Llama-3.1-8B-Instruct.**

Contamination Detection Methods	Steps	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Generation base									
Verbatim (Wu et al., 2025)	64	46.75	49.07	56.44	58.89	55.77	57.00	53.99	-1.89
	110	46.89	50.85	52.00	53.33	58.78	55.12	52.83	-3.05
	156	47.06	49.70	54.22	60.44	55.63	61.75	54.80	-1.08
CDD (Dong et al., 2024)	64	57.35	54.44	52.22	46.44	53.57	62.62	54.44	-3.31
	110	56.97	54.92	60.00	50.00	55.76	65.38	57.17	-0.58
	156	55.78	57.84	53.11	50.89	60.63	70.88	58.19	+0.44
Perturbation base									
Neighbor (Mattern et al., 2023)	64	51.81	40.93	64.00	48.44	55.28	66.50	54.49	+2.30
	110	52.08	39.36	64.22	54.00	54.84	68.88	55.56	+3.37
	156	51.99	40.25	66.22	49.56	51.68	72.75	55.41	+3.22
Reference base									
LiRA (Mireshghallah et al., 2022)	64	81.82	77.88	96.89	96.67	82.92	97.50	88.95	+1.75
	110	81.54	77.08	99.56	95.78	86.03	99.00	89.83	+2.63
	156	80.52	77.21	99.11	96.00	84.04	97.75	89.11	+1.91
Ref (Carlini et al., 2021)	64	60.81	51.55	65.33	49.11	61.41	88.00	62.70	+2.75
	110	62.25	49.94	76.89	52.67	61.33	86.00	64.85	+4.93
	156	61.14	48.53	77.78	49.78	63.06	87.50	64.63	+4.68
Reference free									
Zlib (Carlini et al., 2021)	64	53.02	58.98	80.67	68.44	51.21	60.75	62.18	-0.05
	110	53.40	64.35	89.33	66.22	53.83	67.88	65.84	+3.61
	156	54.13	62.78	85.33	64.89	54.81	68.62	65.09	+2.86
Min-K%++ (Zhang et al., 2024)	64	48.97	48.15	36.00	36.89	55.41	37.25	43.78	+0.27
	110	51.00	56.82	44.44	38.89	58.25	39.47	48.15	+4.64
	156	50.43	58.89	34.44	29.11	58.98	45.50	46.23	+2.72
Min-K% (Shi et al., 2023)	64	73.95	76.84	98.00	98.89	82.44	97.25	87.90	+2.98
	110	71.87	80.78	98.89	98.22	83.92	95.88	88.26	+3.34
	156	71.30	81.59	98.22	100.00	82.54	95.50	88.19	+3.27
Max-K% (Maini et al., 2024)	64	66.57	70.43	92.44	89.11	77.31	95.25	81.85	+3.92
	110	67.37	75.39	92.89	92.00	78.65	96.88	83.86	+5.93
	156	67.61	73.85	90.67	94.22	76.10	95.50	82.99	+5.06
Loss (Carlini et al., 2021)	64	73.77	78.18	98.00	99.56	83.14	97.38	88.34	+3.01
	110	72.40	81.76	99.11	98.67	84.18	97.75	88.98	+3.65
	156	71.57	82.91	98.67	100.00	82.34	95.75	88.54	+3.21

1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718 **Table 16: Pass@1 (%) of comparison between clean and contaminated SFT models. **Bold=Best.****

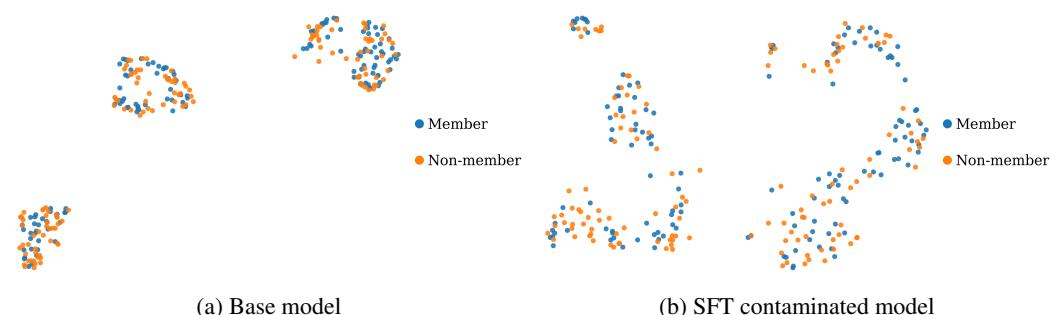
Training Data	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.
15K clean	50.81	41.67	21.67	29.17	34.01	77.50	42.47
13.7K (clean + benchmarks)	58.52	59.09	40.00	40.00	44.49	77.50	53.27
1.2M clean	63.70	50.88	60.00	62.50	37.50	92.50	61.18

1728 F.8 TOKEN EMBEDDING VISUALIZATION OF MEMBER/NON-MEMBER OF BENCHMARKS
 1729 (STAGE I: PRE-LRM)
 1730

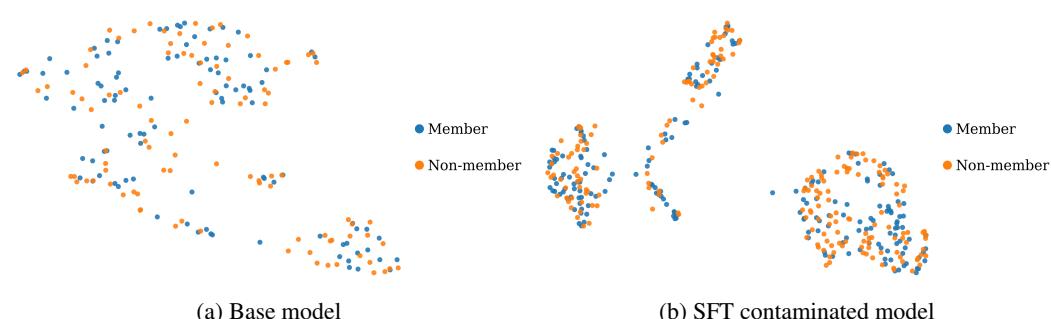
1731 We provide UMAP visualization of token embeddings of member and non member of benchmarks.
 1732 Specifically, we **input the entire question and response to the model**, and extract the last token from
 1733 the last layer of the hidden space. The base model is selected as **Qwen2.5-7B-Instruct**. We choose
 1734 **n_neighbors** as 15, **min_dist** as 0.1, **n_components** as 2, and **metric** as cosine. As shown in Fig. 12,
 1735 13, and 14, the visualization indicates that member/non-member embeddings are highly overlapped
 1736 and are hard to distinguish. We also provide quantitative evaluations of embedding based detection
 1737 following (Liu et al., 2024b) in Table 17. In particular, we randomly split all member and non-
 1738 member examples into training and test sets, maintaining a consistent 0.8/0.2 ratio across datasets,
 1739 and train an MLP classifier to predict the member/non-member labels. The input to the MLP is
 1740 the hidden state feature of the last token in the question and response pair. Following (Liu et al.,
 1741 2024b), we evaluated several hidden layers and selected the best performing one. We report results
 1742 only on the medium-scale benchmarks (Olympiad, GPQA, Minerva), since the small-scale datasets
 1743 have very few test examples, resulting in too much variance. The results show that contamination is
 1744 initially detectable, but becomes undetectable after RL.

1745 Table 17: AUROC (%) of the embedding-based detection (Liu et al., 2024b) evaluated starting from
 1746 an SFT-contaminated model w/o RL to subsequently trained with GRPO. Results demonstrate that
 1747 after GRPO, AUROC decreases. Δ measures the difference with the SFT-contaminated model w/o
 1748 RL. Here, the base model is Qwen2.5-7B-Instruct.

Training Stage	Olympiad	GPQA	Minerva	Avg.	Δ
Before RL	58.89	80.00	60.05	66.31	+0.00
RL w/ Clean	56.63	45.75	49.60	50.66	-15.65
RL w/ Clean&Mem	57.43	45.00	48.94	50.46	-15.85



1767 Figure 12: Last token embedding visualization on the Minerva Math dataset.
 1768



1779 Figure 13: Last token embedding visualization on the GPQA-Diamond dataset.
 180

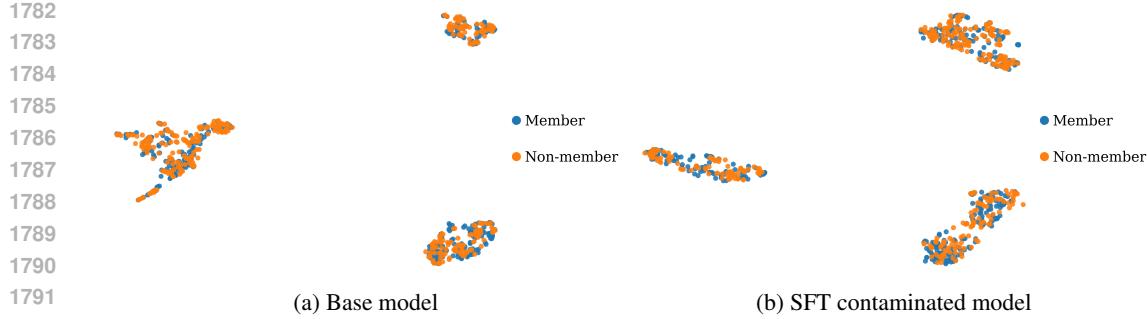


Figure 14: Last token embedding visualization on the OlympiadBench dataset

F.9 APPLICABILITY IN NON-MATH DOMAINS (STAGE I AND II)

We further evaluate our claims on datasets beyond math and science domains for both the pre-LRM and the post-LRM stage. We choose LiveCodeBench v2 (Coding) and MMLU-Pro (General QA). For MMLU-Pro, we only select the ‘health’, ‘history’, ‘law’, ‘other’, ‘philosophy’, and ‘psychology’ domains that are not related to math and science.

We first provide results for the pre-LRM stage (i.e., contamination happens when the base model evolves into LRM) with Qwen2.5-7B-Instruct as the base model in Table 18. Despite differences in AUROC degradation speed across domains, the trend remains consistent: RL conceals the SFT contamination. Overall, these results indicate that the effect of RL concealments is not limited to the reasoning domains but extends to more general domains as well.

We also provide the AUROC of contamination detection approaches evaluated on advanced LRM that is contaminated in the post-LRM stage (i.e., contamination with CoT on advanced LRM) in Table 19. The results show that contaminated LRM leave minimal contamination evidence in coding as well, indicating that the detection performance is near random guess for those reasoning-related domains (e.g., coding, math, science, etc). For domains that require less CoT (e.g., general QA), despite that the AUROC could reach 75% when using the Loss as the detection for the contaminated Deepseek distilled Qwen-14B, the detection performance is much worse compared to results in the pre-LRM stage. Specifically, the AUROC for the Loss detector on MMLU-Pro can reach 93.72%, and LiRA could achieve 79.85% on LiveCodeBench when SFT contamination is applied to the base model, shown in Table 18 in the paper.

Table 18: **AUROC (%)** of contamination detection approaches evaluated starting from an SFT-contaminated model w/o RL to subsequently trained with GRPO in **pre-LRM stage**. Results demonstrate that after GRPO, AUROC decreases across **both general QA and coding domains** and different detection approaches. Δ measures the difference with the SFT-contaminated model w/o RL. Higher AUROC, better detection performance. The base model here is Qwen2.5-7B-Instruct.

Contamination Detection Methods	Training Stages	MMLU-Pro (Non-STEM domains)	LiveCodeBench	Avg.	Δ
Reference based					
LiRA (Miresghallah et al., 2022)	Before RL RL w/ clean	96.68 93.85	79.85 71.12	88.26 82.48	+0.00 -5.78
Ref (Carlini et al., 2021)	Before RL RL w/ clean	86.25 81.67	69.51 66.68	77.88 74.17	+0.00 -3.71
Reference free					
Loss (Carlini et al., 2021)	Before RL RL w/ clean	93.72 88.69	64.87 54.26	79.29 71.47	+0.00 -7.82
Min-K (Shi et al., 2023)	Before RL RL w/ clean	93.43 88.54	64.12 54.29	78.77 71.41	+0.00 -7.36
Max-K (Maini et al., 2024)	Before RL RL w/ clean	82.27 59.48	63.75 49.80	73.01 54.64	+0.00 -18.37

1836
1837 Table 19: AUROC (%) of contamination detection approaches evaluated on advanced LRM_s con-
1838
1839 taminated with CoT in both **general QA and coding domain** benchmarks in **post-LRM stage**.
1840

Contamination Detection Methods	Init Models	MMLU-Pro (Non-STEM domains)	LiveCodeBench	Avg.
Reference based				
LiRA (Mireshghallah et al., 2022)	DS Llama-8B DS Qwen-14B	72.85 74.75	61.37 58.78	67.11 66.77
Ref (Carlini et al., 2021)	DS Llama-8B DS Qwen-14B	60.77 63.43	58.75 58.17	59.76 60.80
Reference free				
Loss (Carlini et al., 2021)	DS Llama-8B DS Qwen-14B	69.56 75.83	57.42 56.52	63.49 66.18
Min-K (Shi et al., 2023)	DS Llama-8B DS Qwen-14B	68.12 76.09	56.59 56.08	62.36 66.09
Max-K (Maini et al., 2024)	DS Llama-8B DS Qwen-14B	61.07 66.88	56.33 54.80	58.70 60.84

1853
1854 **F.10 CONTRACTION EFFECT ON SMALL AND LARGE MODELS (STAGE I: PRE-LRM)**1855
1856 We conduct experiments on smaller and larger models to see whether the concealment of RL has
1857 correlations with the model size. In particular, we provide additional results with a small model (i.e.,
1858 Qwen2.5-3B-Instruct) in Table 20, and a large model (i.e., Qwen2.5-14B-Instruct) in Table 21. We
1859 compare them with the contraction of the medium-sized model (i.e., Qwen2.5-7B-Instruct). Here,
1860 RL steps are 64 by default. The empirical results further validate that the contraction extends to a
1861 large range of model sizes. Regardless of different model sizes, the RL training could still conceal
1862 the contamination introduced in the SFT stage.1863 Table 20: AUROC (%) of contamination detection approaches evaluated starting from an SFT-
1864 contaminated model w/o RL to subsequently trained with GRPO. Results demonstrate that after
1865 GRPO, AUROC decreases across all the benchmarks and detection approaches. Δ measures the
1866 difference with the SFT-contaminated model w/o RL. **The base model here is Qwen2.5-3B-Instruct.**

Contamination Detection Methods	Training Stages	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Reference based									
LiRA (Mireshghallah et al., 2022)	Before RL RL w/ Clean	54.89 53.93	48.60 51.17	88.67 62.89	95.56 81.56	61.74 60.10	90.25 81.50	73.29 65.19	+0.00 -8.09
Ref (Carlini et al., 2021)	Before RL RL w/ Clean	52.66 53.65	43.09 44.54	84.00 66.44	73.33 63.33	51.75 52.24	75.75 73.25	63.43 58.91	+0.00 -4.52
Reference free									
Loss (Carlini et al., 2021)	Before RL RL w/ Clean	51.75 49.20	57.64 57.54	58.00 42.22	76.00 55.11	56.84 54.83	64.75 54.75	60.83 52.28	+0.00 -8.56
Min-K (Shi et al., 2023)	Before RL RL w/ Clean	50.86 48.71	57.24 56.93	51.11 39.56	73.33 49.78	56.47 54.90	59.13 51.37	58.02 50.21	+0.00 -7.82
Max-K (Maini et al., 2024)	Before RL RL w/ Clean	52.86 52.07	54.58 54.54	88.44 56.67	88.44 57.78	51.35 52.57	79.12 74.00	69.13 57.94	+0.00 -11.19

1879
1880 **F.11 MORE RL TRAINING BRINGS PERFORMANCE GAIN (STAGE I: PRE-LRM)**1881 In Table 1, we note that sometimes RL does not bring any performance gain, even in the clean
1882 setting. To clarify that our RL setting and recipe are correct, we would like to point out that the
1883 insignificant RL improvement was due to our relatively short RL training run to save experiment
1884 cost, which already effectively demonstrated the contamination concealment effect, whereas RL
1885 fine-tuning on reasoning models typically requires many more training steps to boost performance
1886 significantly (i.e., thousands of RL steps, more than 16k GPU hours, etc).1887 However, we further verified our RL pipeline by continuing RL training on the SFT-contaminated
1888 Qwen-3B model for up to 280 steps. The RL concealment still exists: the average AUROC of LiRA
1889 on the AIME24, AIME25, and AMC23 datasets drops from 91.49% before RL to approaching
random guessing after 280 steps. At the same time, RL continues to improve task performance,

1890 Table 21: **AUROC (%)** of contamination detection approaches evaluated starting from an SFT-
 1891 contaminated model w/o RL to subsequently trained with GRPO. Results demonstrate that after
 1892 GRPO, AUROC decreases across all the benchmarks and detection approaches. Δ measures the
 1893 difference with the SFT-contaminated model w/o RL. **The base model here is Qwen2.5-14B-Instruct.**

Contamination Detection Methods	Training Stages	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.	Δ
Reference based									
LiRA (Miresghallah et al., 2022)	Before RL	87.35	86.54	91.56	85.33	88.12	91.25	88.36	+0.00
	RL w/ Clean	83.46	82.38	90.56	84.00	82.23	84.88	84.59	-3.77
Reference free									
Ref (Carlini et al., 2021)	Before RL	62.33	54.69	60.44	37.78	59.26	65.25	56.63	+0.00
	RL w/ Clean	56.28	58.85	50.67	36.00	53.32	63.88	53.17	-3.46
Loss (Carlini et al., 2021)	Before RL	73.59	76.98	79.11	88.00	77.45	84.88	80.00	+0.00
	RL w/ Clean	63.50	61.21	67.33	89.11	71.73	68.75	70.27	-9.73
Min-K (Shi et al., 2023)	Before RL	73.04	76.16	77.11	86.22	77.61	83.75	78.98	+0.00
	RL w/ Clean	63.15	60.09	66.67	87.78	71.69	67.12	69.42	-9.57
Max-K (Maini et al., 2024)	Before RL	63.75	71.46	64.00	84.89	57.99	78.00	70.02	+0.00
	RL w/ Clean	52.94	59.10	46.67	53.33	48.89	55.00	52.66	-17.36

1906 as reported in Table 22. Overall, these results demonstrate that additional RL training on an SFT-
 1907 contaminated model can both inflate performance and further conceal contamination signals.

1909 Table 22: **Pass@1 (%)** across six reasoning benchmarks. Results show that additional RL training
 1910 on an SFT-contaminated model can bring performance gain.

Model	Olympiad	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.
Qwen2.5-3B-Instruct	26.98	31.06	0.83	6.67	21.69	36.07	20.54
\hookrightarrow SFT contamination	35.07	37.11	13.23	14.32	29.13	44.06	28.82
\hookrightarrow Further RL	40.74	38.38	15.12	15.83	31.25	49.06	31.73

1917 Table 23: Pass@1 (%) of the SFT-contaminated model after four additional epochs of SFT on clean
 1918 data. The results show that further SFT does not make the model forget contamination; instead,
 1919 pass@1 continues to increase by 0.25% across six benchmark on average compared to the SFT
 1920 contaminated model, indicating persistent performance inflation.

Models	Olympaid	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.
SFT Conta (w/o RL) + Further SFT	55.24	49.43	29.58	36.67	39.15	75.00	47.52

G COMPUTATION RESOURCES

1928 All experiments were run on a single node with $9 \times$ NVIDIA L40S GPUs (48 GiB each; ~ 432 GiB
 1929 total), NVIDIA driver 570.86.16, and CUDA 12.8. The node uses a 1-socket Intel Xeon Gold 6338
 1930 CPU (2.00 GHz base, up to 3.20 GHz), 128 hardware threads, 96 MiB L3 cache (two slices), and
 1931 1.0 TiB RAM, running Ubuntu 22.04 (Linux 6.8.0-79-generic).

1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965

1966 Table 24: Pass@1 (%) of advanced LRM_s before and after SFT contamination with CoT on both
 1967 clean and member data. Some LRM_s with strong reasoning ability may not have a huge performance
 1968 inflation after SFT contamination with CoT on both clean and members. Thus, we choose the SFT
 1969 contamination with CoT on members only as the default setup in our main analysis.

1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997

Models	Olypaid	GPQA	AIME25	AIME24	Minerva	AMC23	Avg.
DeepSeek-R1-Distill-Llama-8B	52.10	43.94	33.33	43.33	32.97	84.58	48.38
↪ SFT w/ Clean & Mem	56.70	45.83	48.33	56.67	35.94	88.12	55.27
DeepSeek-R1-Distill-Qwen-7B	55.70	48.65	39.26	53.70	37.25	91.94	54.42
↪ SFT w/ Clean & Mem	55.81	45.08	40.00	55.42	37.87	88.12	53.72