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Abstract

Models for inferring monocular shape of surfaces with diffuse reflection—shape
from shading—ought to produce distributions of outputs, because there are funda-
mental mathematical ambiguities of both continuous (e.g., bas-relief) and discrete
(e.g., convex/concave) types that are also experienced by humans. Yet, the outputs
of current models are limited to point estimates or tight distributions around single
modes, which prevent them from capturing these effects. We introduce a model
that reconstructs a multimodal distribution of shapes from a single shading image,
which aligns with the human experience of multistable perception. We train a small
denoising diffusion process to generate surface normal fields from 16× 16 patches
of synthetic images of everyday 3D objects. We deploy this model patch-wise
at multiple scales, with guidance from inter-patch shape consistency constraints.
Despite its relatively small parameter count and predominantly bottom-up structure,
we show that multistable shape explanations emerge from this model for ambigu-
ous test images that humans experience as being multistable. At the same time,
the model produces veridical shape estimates for object-like images that include
distinctive occluding contours and appear less ambiguous. This may inspire new
architectures for stochastic 3D shape perception that are more efficient and better
aligned with human experience.

1 Introduction

From chiaroscuro in Renaissance paintings to the interplay of light and dark in Ansel Adams’
photographs, humans are masters at perceiving three-dimensional shape from variations of image
intensity—shading—from a single image alone. Even though our visual experience is dominated by
everyday objects, our perception of shape from shading generalizes to many synthetic “non-ecological”
images invented by vision scientists. Some of these images have ambiguous (e.g., convex/concave)
interpretations and lead to multistable perceptions, where one’s impression of 3D shape alternates
between two or more competing explanations. Figure 1 shows an example adapted from [31], which
is alternately interpreted as an indentation or a protrusion. Both explanations are physically correct
because the same image can be generated from either shape under different lighting conditions.

How can a computational model acquire this human ability to capture multiple underlying shape
explanations? An algorithmic suggestion comes from Marr’s principle of least commitment [34, 35],
which requires not doing anything that may later have to be undone. But this is in contrast to many
computer vision methods for shape from shading, including SIRFS [4] and recent neural feed-forward
models [53, 56], which are deterministic and produce a single, best estimate of shape. These types of
models commit to one explanation based on priors that are either designed or learned from a dataset,
and they cannot express multiple interpretations of an ambiguous image. They are unlikely to be
good models for the mechanisms that underlie multistable perception.
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Figure 1: Many shapes (left) can explain the same image (middle) under different lighting, including
flattened and tilted versions and convex/concave flips. The concave/convex flip in this example is
also perceived by humans, often aided by rotating the image clockwise by 90 degrees. Previous
methods for inferring either surface normals (SIRFS [4], Derender3D [53], Wonder3D [33]) or depth
(Marigold [27], Depth Anything [56]) produce a single shape estimate or a unimodal distribution.
Ours produces a multimodal distribution that matches the perceived flip. (Image adapted from [31].)

Instead, we approach monocular shape inference as a conditional generative process, and inspired
by a long history of shape from shading with local patches [18, 25, 9, 29, 54, 20, 17], we present a
bottom-up, patch-based diffusion model that can mimic multistable perception for ambiguous images
of diffuse shading. Notably, our model is trained using images of familiar object-like shapes and
has no prior experience with the ambiguous images that we use for testing. It is built on a small
conditional diffusion process that is pre-trained to predict surface normals from 16 × 16 image
patches. When we apply this patch process at multiple scales with inter-patch shape consistency
constraints, and when we coordinate the sampling across patches, the model ends up capturing global
ambiguities that are very similar to those experienced by humans.

An important attribute of our model is the way it handles lighting. It builds on the mathematical
observation that shape perception can precede lighting inference [30]. It also adheres to the philosophy
that inferred lighting cannot, and should not, be precise because of spatially-varying effects like
global illumination [50]. Our model achieves these aims by guiding its diffusion sampling process
with a very weak constraint on lighting consistency, where each patch nominates a dominant light
direction and then all patches enact their own concave/convex flips in response to those nominations.

Another critical aspect of our model is a diffusion sampling process that is coordinated across multiple
scales. It involves spatially resampling the normal predictions at intermediate diffusion time steps
and then adding noise before resuming the diffusion at the resampled resolutions. Our approach is
inspired by previous work that uses a “V-cycle” (fine-coarse-fine) to avoid undesirable local extrema
during MRF optimization [36]. Our ablation experiments show that multi-scale sampling is crucial
for finding good shape explanations that are globally consistent.

We train our patch diffusion model on images of objects like those in Fig. 2a, and we find experimen-
tally that it can generalize to new objects as well as to images like Fig. 1 which are quite different
from the training set and appear multistable to humans. This is in contrast to previous diffusion-based
monocular shape models [27, 33] which cannot capture multistability and produce output that is
much less diverse. Our model is also extremely efficient, only requiring a small pixel-based diffusion
UNet that operates on 16× 16 patches. Our total model weights require only 10MB of storage, much
less than the 2-3GB required by some of the previous (and more general) models we compare to.

2 Background

2.1 Ambiguities in Shape from Shading

Shape from shading is a classic reconstruction problem in computer vision. Since being formulated
by Horn in the 1970s [23] there have been many approaches to tackle it, often by assuming diffuse
Lambertian shading and uniform lighting from either a single direction (e.g.,[43, 16]) or as low-order
spherical harmonics (e.g., [4, 59]). Almost all methods either require the lighting to be known
(e.g., for natural illumination [41]) or try to estimate it precisely via inverse rendering during the
optimization process [54, 59, 53], and many approaches rely on a set of priors to constrain the possible
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Figure 2: Training patches are cropped from synthetic images of ordinary diffuse objects, and during
training, a small diffusion model learns to denoise the normal field xu

0 for patch u from a random
sample xu

T conditioned on the patch intensities cu. During inference, the model is applied in parallel
to non-overlapping patches, with guidance from inter-patch shape-consistency constraints to minimize
the curvature smoothness loss LS and integrability loss LI .

search space. For instance, SIRFS [4] uses different lighting priors for natural versus laboratory
conditions and a surface normal prior along occluding contours. Recent deep learning approaches
like Derender3D [53] have demonstrated impressive results without being limited to Lambertian
reflectance, but they similarly rely on priors internalized from their training sets and have trouble
generalizing to new conditions.

The main challenge of shape from diffuse shading comes from the many levels of inherent ambiguity.
At a single Lambertian point, when lighting is unknown, there is a multi-dimensional manifold of
surface orientations and curvatures that are consistent with the spatial derivatives of intensity at the
point [29, 20]. Even when lighting and surface albedo are known at a point, there is a cone of possible
normal directions. At the level of a quadratic surface patch, when lighting is unknown, there is a
discrete four-way ambiguity corresponding to convex, concave, and saddle shapes [54, 29]. At a
global level, when lighting and surface albedo are known, ambiguities arise from interpreting the
Lambertian shading equation as a PDE (e.g., [6]) or as a system of polynomial equations [13]. And
when lighting and albedo are unknown, there is an additional three-parameter global ambiguity that
corresponds to flattenings and tiltings of the global shape [5]. Finally, when lighting is unknown, a
global shape has a discrete counterpart that corresponds to a global convex/concave flip.

It is important to note that all of these mathematical ambiguities are based on certain idealized
models for the image formation process, such as exact Lambertian shading, perfectly uniform albedo,
and most commonly, perfectly uniform lighting that ignores global illumination effects such as
interreflections and ambient occlusion, which in reality have substantial effects [50]. An advantage
of a stochastic, learning-based approach, like the one presented here, is the potential to capture all of
these ambiguities as well as others that have not yet been discovered or characterized.

2.2 Denoising Diffusion with Guidance

Diffusion probabilistic models [22](DDPM) generate data by iteratively denoising samples from
a Gaussian (or other) pre-determined distribution. We build on a conditional denoising diffusion
model, where the condition c is a grayscale image patch, and the model is designed to approximate
the distribution q(x0|c) on 3-channel normal maps x0 with a tractable model distribution pθ(x0|c). A
‘forward process’ adds Gaussian noise to a clean input x0 and is modeled as a Markov chain with
Gaussian transitions for timesteps t = 0, 1, · · · , T . Each step in the forward process adds noise
according to q(xt|xt−1, c) := N (

√
1− βtxt−1, βtI), where {βt} is a predetermined noise variance

schedule. The intermediate noisy input xt can be written as

xt =
√
αtx0 +

√
1− αtω, ω ∼ N (0, I), where αt :=

t∏
s=1

(1− βs) . (1)

The ‘reverse process’ q(xt−1|xt, c) is modeled by a learned Gaussian transition pθ(xt−1|xt, c) :=
N (xt−1;µθ(xt, t; c), σ

2
t I). The mean value µθ(xt, t; c) can be expressed as a combination of the

noisy image xt and a noise prediction ϵθ(xt, t; c) from a learned model. The noise prediction model
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θ can be trained by minimizing the prediction error

L(θ) := Ex0,ω∼N (0,I)

[
||ω − ϵθ(xt, t; c)||22], (2)

as shown in [22]. To sample noiseless data using the learned model, we start from an initial
random Gaussian noise seed and use the learned denoiser ϵθ to compute xt−1 = 1√

1−βt
(xt −

βt√
1−αt

ϵθ(xt, t; c)) + σtz iteratively, where z ∼ N (0, I), which is a stochastic process.

The denoising diffusion implicit model (DDIM) shows that the reverse procedure can be made
deterministic by modeling it as a non-Markovian process with the same forward marginals [48]. This
approach helps to accelerate the sampling process by using fewer steps and also provides an estimate
of the predicted x̂0 at each timestep with xt. Each denoising step combines noise and a foreseen
denoised version

xt−1 =
√
αt−1fθ(xt, t; c) +

√
1− αt−1ϵθ(xt, t; c) , (3)

where

fθ(xt, t; c) = x̂0(xt) =
xt −

√
1− αtϵθ(xt, t; c)√

αt
(4)

is the predicted x̂0 at reverse sampling step t.

The DDIM formulation provides a way to ‘guide’ the process of sampling xt−1 from xt by applying
additional constraints or losses to the predicted x̂0(xt) at intermediate sampling steps. Previous work
has used similar approaches to solve inverse problems [8, 47] or to combine outputs from multiple
diffusion models for improved perceptual similarity [32]. Guided denoising is achieved with

x′
t = xt − ηt∇xt

L(x̂0(xt)) , (5)

xt−1 =
√
αt−1x̂0(x

′
t) +

√
1− αt−1ϵθ(xt, t; c) , (6)

in each sampling subroutine from time t to t− 1, where ηt is the (possibly time-dependent) step size
of the guided gradient update. The first step (5) can be repeated multiple times before applying the
denoising step (6).

3 Multiscale Patch Diffusion with Guidance

Consider a surface represented by a differentiable height function h(x, y) over image domain (x, y)
viewed by parallel projection from above. The image plane is sampled on a square grid (pixels).
Image patches have size d× d and are indexed by u, and we denote them as cu ∈ [0, 1]d×d.

Training occurs on patches extracted from images of everyday objects, as depicted in Fig. 2a. For
each image patch cu there is a corresponding patch normal field xu

0 ∈ [−1, 1]3×d×d, whose (i, j)th
spatial element represents a surface normal vector via

xu
0 (i, j)

∥xu
0 (i, j)∥

=
(−pi,j ,−qi,j , 1)
||(−pi,j ,−qi,j , 1)||

= ni,j ∈ S2, (7)

where (p, q) = (∂h/∂x, ∂h/∂y) are the surface derivatives. Training proceeds as described in
Sec. 2.2, with a dataset of patch tuples (cu, xu

0 ) and a UNet ϵθ(xu
t , t; c

u) similar to that in [22] whose
four-channel input is the concatenation cu ⊕ xu

t . (Model and training details are in Appendix A.2.)

As depicted in Fig. 2b, inference occurs over images c of size H × W which are divided into
their collections of non-overlapping patches cu. We assume that the underlying global normal field
x0 ∈ [−1, 1]3×H×W is continuous including at most locations on the seams between the patch
normal fields xu

0 . We formulate the prediction of global field x0 as reverse conditional diffusion on
an undirected, four-connected graph G(V, E). Each patch xu

0 , u ∈ V is a node, and there are edges
{u, v} ∈ E between pairs of patches that are horizontally or vertically adjacent.

To encourage the patch fields to form a globally coherent prediction, we use guidance as described by
Eqs. 5 and 6. Our guidance includes two terms:

L(x̂0) =
1

|E|
∑

{u,v}∈E

LS(x̂
u
0 , x̂

v
0) + λ

1

|V|
∑
v∈V
LI(x̂

v
0) , (8)
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Figure 3: Top: Illustration of multiscale sampling across two scales in a fine-coarse-fine “V-cycle”,
with conditional images omitted for simplicity. In practice, our V-cycle covers more than two
scales. Left: The N&R subroutine injects noise to an earlier timestep 0 < t < T and then resumes
guided sampling (Fig. 2b) at that scale. Right: Optional intermediate guidance comes from lighting
consistency (LCG), where each patch nominates a dominant light direction and then some patches
flip in response to those nominations. Pseudocode is in the appendix.

where LI is a within-patch continuity term that encourages integrability of the normal fields over
small pixel loops, and LS is an inter-patch spatial consistency term that encourages constant curvature
across the seams between patches. Hyperparameter λ ∈ (0, 1] controls the relative weighting of the
two terms, and ηt ≥ 0 in Eq. 5 determines the overall guidance strength.

The integrability term follows Horn and Brooks [24] by penalizing deviation from a discrete
approximation to the integrability of surface normals, i.e., ∂p/∂y = ∂q/∂x, over 2 × 2 loops of
pixels. We write this as

LI(x̂
u
0 ) =

∑
i,j

(pi,j+1 − pi+1,j+1 + pi,j − pi+1,j + qi,j+1 + qi+1,j+1 − qi,j − qi+1,j)
2, (9)

where the summation is over the i, j grid-indexed pixels in patch u, and p, q are the components of
x̂u
0 implied by Eq. 7.

The spatial consistency term penalizes deviation from constant surface curvature across each seam
{u, v} ∈ E in the direction perpendicular to the seam. Consider four consecutive normals in the
perpendicular direction n1, n2,m1,m2 where ni belong to patch u and mi belong to patch v. We
penalize the absolute angular difference between m1 in v and its extrapolated estimate using normals
in u, i.e., n2 + (n2 − n1). Making this symmetric gives∥∥∥cos−1

(
m1 ·

(
n2 + (n2 − n1)

))∥∥∥+
∥∥∥cos−1

(
n2 ·

(
m1 − (m2 −m1)

))∥∥∥ , (10)

which we sum over the length of the seam to obtain LS(x̂
u
0 , x̂

v
0).

3.1 Dominant Global Lighting Constraint

Our guidance so far enforces global coherence, but even globally coherent surfaces can contain
regions that independently undergo convex/concave flips without affecting their surround [31]. The
top row of Fig. 5 provides a familiar example. One can hide any three of the bumps/dents and then
perceive the fourth as being either concave or convex. Yet, when one is allowed to examine the image
as a whole and rotate it upside down, instead of perceiving 24 = 16 interpretations, one sees only
two: the bottom-right element is a bump (or dent) and the other three are its opposite. This behavior
is explained by lighting. If one expects the dominant light direction to be similar everywhere on the
surface, the four flips become tied together.

We can incorporate this notion of dominant light consistency into our model using an additional
discrete guidance step, as depicted in the bottom right of Fig. 3. This step can be applied to any global
sample x̂0 and has three parts: (i) patches x̂u

0 independently nominate dominant light directions l̂u;
(ii) we identify a single direction l̂ that is most common among these nominations; and (iii) some
patches perform a concave/convex flip to become more consistent with l̂.

Specifically, each patch x̂u
0 that is not too close to being planar (i.e., that has non-constant x̂u

0 (i)) nom-
inates its dominant light direction by computing the least-squares estimate according to shadowless
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Lambertian shading:

l̂u = argmin
l∈R3

∑
i

(
cu(i)− ⟨x̂

u
0 (i), l⟩
∥x̂u

0 (i)∥

)2

. (11)

We create two clusters in the set {l̂u} using k-means and choose the center of the majority cluster as
the dominant global direction l̂. Each patch u in the minority cluster undergoes a concave/convex
flip (p, q)→ (−p,−q) by multiplying (−1) with the first two channels of x̂u

0 . Since the independent
flips can cause discontinuities at patch seams, we always follow this discrete lighting guidance step
by an inject Noise & Resume sampling (N&R) subroutine, where we add noise to an intermediate
timestep via Eq. 1 and resume spatially-guided denoising from that timestep. Pseudocode is provided
in Appendix A.1.

This approach to lighting consistency has several advantages. Unlike many previous computational
approaches to shape from shading, it does not assume the lighting to be known beforehand. Nor
does it require the lighting to be exactly spatially uniform across the surface, which provides some
resilience to global illumination effects. It imposes no prior on the dominant light direction (e.g.,
‘lighting from above’), but one can imagine extending it to do so. And because our patch-based
framework can be applied with or without lighting consistency guidance (see Appendix A.3), it may
provide a mechanism in the future for modeling the way in which humans selectively enforce lighting
consistency across an image [7, 40].

3.2 Multiscale Optimization

Since each local image patch can be explained by either concave or convex shapes, the terms in the
spatial guidance energy (Eq. 8) are multimodal, and finding a global minimum is computationally
difficult. Our experiments, like the one in Fig. 4, show that optimization at a single scale with random
initial noise and gradient-descent guidance often gets trapped in poor local minima. To overcome this,
and also to fully leverage shading information from various spatial frequencies and scales, we draw
inspiration from work on Markov random fields [36] and introduce a multiscale optimization scheme.
This is possible because our patch diffusion UNet and guidance can be applied to any resampled
resolution (sH)× (sW ) that is divisible by patch size d.

Our multiscale optimization occurs in a “V-cycle”, a sequence of fine-coarse-fine resolutions. We
begin by applying guided denoising at the highest image resolution. Then, we downsample the
predicted global field to a lower resolution before injecting noise and resuming reverse sampling
(N&R) at that lower resolution. As depicted in the left of Fig. 3, this has the effect of generating a
random sample at the lower resolution that is informed by a previous sample at the higher resolution.
A similar process occurs when going from coarse to fine, but with the global field being upsampled
before applying the N&R subroutine.

To further reduce discontinuities at seams, we find it helpful to store and fuse the global field estimates
from the final few resolutions of the fine-coarse-fine cycle. We do this by computing their (p, q)
fields via Eq.7, resampling them to the highest resolution and averaging them, and then converting
the average back to a normal field.

4 Experimental Results

The input to our patch UNet is the concatenation of cu and xu
t . It has 4 channels and spatial dimension

d× d with d = 16. We train it using patches of size d× d extracted from rendered images of the 3D
objects in [26] curated from Adobe Stock. We use Lambertian shading from random light directions,
with a random albedo in [0.5, 1] and without cast shadows or global illumination effects. Our dataset
contains around 8000 images (256× 256) of 400 unique objects. Some examples are shown in the
left of Fig. 2. The images contain occluding contours, and for empty background pixels i, j we set
x0(i, j) = (−1,−1,−1). We augment the training data by creating two convex/concave copies of
each patch field xu

0 that does not contain any background. At inference time, we use the DDIM
sampler [48] with 50 sampling steps and with guidance. Additional details are in the appendix.

For comparison, we consider three deterministic approaches and two stochastic models. SIRFS [4]
and Derender3D [53] are deterministic inverse-rendering models that estimate lighting and reflectance
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from four (integrated) samples from the convex mode of our full model exhibit relief-like variations
similar to those reported across human subjects. (The dashed line is the depth that was used to render
the input image.)
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Figure 5: Normals produced by our model for various synthetic test surfaces rendered with directional
light sources. For depth maps, brighter is closer. “Reference” depicts the shapes—each with a con-
vex/concave counterpart—that were used to render the input images. We find that our reconstructions
are more accurate and diverse than other methods.

together with shape. They are among the few recent models that do not rely critically on having input
occluding contour masks. Depth Anything [56] is a recent learning-based deterministic model for
monocular depth estimation. It leverages a DINOv2 encoder [39] and a DPT decoder [44] and is
trained for depth regression using 62M images. For comparisons to stochastic models, we include
Marigold [27] which is derived from Stable Diffusion [45] and is fine-tuned for depth estimation. We
also include Wonder3D [33], which likewise leverages a prior based on Stable Diffusion. Wonder3D
is trained to generate consistent multi-view normal estimates on more than 30k 3D objects, and it
achieves state-of-the-art results on 3D reconstruction benchmarks [12].

4.1 Ablation Studies

Figure 4 analyzes the key components of our model using a crop of a shape and image from the lab
of James Todd [37] (the complete image is in Appendix A.5). The left of the figure shows that when
each patch is reconstructed independently, the resulting normals are inconsistent, because each patch
may choose a different concave/convex mode as well as its various flattenings and tiltings. When
spatial consistency guidance is applied at one scale, the global field is more consistent but suffers
from discontinuous seams due to poor local minima. With multiscale sampling the seams improve,
but separate bump/dent regions can still choose different modes without being consistent with any
single dominant light direction. Finally, when lighting consistency is added, the output fields become
more concentrated around two global modes—one that is globally convex (lit primarily from below)
and another that is globally concave (lit primarily from above).

In the right of the figure, we compare samples from our model to depth profiles that were labeled by
humans on the same image [37]. (These results have appeared previously in [31].) We generate four
samples from our model’s globally-convex mode and integrate them to depth maps using [15]. Their
cross-sections exhibit variations with similar qualitative structure.
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Figure 6: t-SNE visualizations of normal field samples produced by our model and by Wonder3D.
Plots depict 100 samples from each model, along with the two mathematical possibilities (under
directional light) and the normals of a trivial frontal plane. For each model we report the Wasserstein
distance (smaller is better) between its samples and the reference distribution, which is uniform over
two possibilities. Our model is more accurate and in all cases covers both possibilities.
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Figure 7: Sampled reconstructions for real images. (a) For the ‘plates’ image from [57], regions
such as the indicated box can exhibit independent convex/concave flips when lighting consistency is
not used; but when lighting consistency is enforced, only two global modes emerge. (b) Sampled
reconstructions for some multistable images we captured with illumination from a point or area
light. (Rotate them by 180◦ to enhance the alternative experience.) Note that half of the object in
the first row was painted matte, and its other half was left glossy. Despite being trained entirely on
synthetic data under idealized lighting, the model exhibits some generalization by producing plausible
multistable outputs for these captured scenes.

4.2 Ambiguous Images

Figure 5 shows results from our full model for images and shapes that we intentionally design to
be ambiguous, using insight from [31]. Each one can be perceived as either convex or concave,
as shown in the right-most column (Reference). Samples from our model clearly demonstrate the
effectiveness of our model in terms of both coverage and accuracy of the possible shapes. In contrast,
we find that the two models derived from Stable Diffusion (Wonder3D and Marigold) provide less
accuracy on these images, and that, on average, they tend to have a ‘lighting from above’ prior baked
in. For instance, they tend to interpret the third and fourth row as concave, while Depth Anything [56]
interprets them as convex. Additional results are included in the appendix.

Figure 6 visualizes distributions of shape reconstructions as 2D t-SNE plots (with perplexity equal
to 30) by sampling 100 random seeds for our model and for Wonder3D. For reference, we also plot
the t-SNE embeddings of a frontal plane, x̂0(i, j) = (0, 0, 1) and of the two reference shapes. Our
model covers both reference shapes whereas Wonder3D either covers only one or is close to a plane.
These differences in coverage and accuracy are also apparent in terms of Wasserstein distance.

4.3 Real Images

We evaluate our model using a few different categories of captured images. In each case, we resize
the image to 256× 256 (to accommodate the restrictions of some of the previous models), and we
use the multiscale schedule described in Appendix A.10.
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Figure 8: Left: Reconstructed normals and integrated depth for an image taken from the web. Right:
Reconstructions for images in the SfS dataset of [54] with median angular error from the ground truth
normals (lower is better). Our model’s accuracy is on par with the best existing methods. Additional
quantitative results are in the appendix.

Captured ambiguous images. Inspired by the ‘plates’ image in [58], we captured a handful of
images that induce multistable perceptions for human observers. We captured these images with a
Sony α7SIII camera under lighting from area or point light sources, and Fig. 7b shows some examples.
We find that our model’s multimodality is qualitatively well aligned with perceptual multistability.

Shape from shading dataset [54]. This dataset contains diffuse objects captured with directional
light sources and a dark background, along with ground truth surface normals for measuring accuracy.
The right of Fig. 8 shows that our model produces normal maps that are on par with previous methods,
even without knowledge of light source directions. Additional quantitative results are in Appendix A.8

Internet and astronomical images. The left of Figure 8 shows that our model can produce a
detailed and plausible shape estimate for a tone-mapped sRGB image taken from the web [2].
Appendix A.6 includes two satellite images of the surface of Mars and shows that our model
reproduces the so-called crater illusion.

5 Related Work

Given the recent success of diffusion models in generating realistic images [22, 49, 28], many
works have explored the power of patch-based diffusion, including for generating high-resolution
panoramic images [3, 32]. Our method also leverages patch diffusion, but it departs from these
work in two key ways. Unlike [3, 32], we do not generate patches auto-regressively or require an
anchor patch. Instead, we simultaneously guide all patches (e.g., 100 patches for a 160× 160 image)
toward a coherent output using spatial consistency guidance. A second distinction is that we do not
provide a global condition such as text to each individual patch. Instead, each patch is conditioned
only on the corresponding crop of the input grayscale image, which is why we call it a bottom-up
architecture. It shares the same spirit as previous work on inverse lighting [14], which also uses a
bottom-up architecture to produce a variety of explanations that can then be integrated with top-down
information.

Recently, Wang et al. [52] introduced a patch-based diffusion training framework that incorporates
patch coordinates to reduce training time and storage cost. Patch-based diffusion has also been used
for other tasks. Ozdenizci et al. [42] use overlapping patch diffusion to restore images in adverse
weather, and Ding et al. [11] use it to synthesize images in higher resolution. All of these works
use fairly large patches (e.g., 64 × 64) and some of their components, such as feature-averaging
or noise-averaging, are not appropriate for our shape from shading problem because of its inherent
multi-modality. A convex sample and a concave sample cannot simply be averaged to improve the
output. These challenges motivate the novel features of our model, including global consistency
guidance and multiscale sampling.

6 Conclusion

Inspired by the multistable perception of ambiguous images, and by mathematical ambiguities in
shape from shading, we introduce a diffusion-based, bottom-up model for stochastic shape inference.
It learns exclusively from observations of everyday objects, and then it produces perceptually-aligned
multimodal shape distributions for images that are different from its training set and that appear
ambiguous to human observers. A critical component of our model is a sampling scheme that
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operates across multiple scales. Our model also provides compositional control: global lighting
consistency can be turned on or off, thereby controlling whether regional bumps/dents can each
undergo concave/convex flips independently. Our findings motivate the exploration of other multiscale
stochastic architectures, for a variety of computer vision tasks. They may also help improve the
understanding and modeling of human shape perception.

Limitations A key limitation is our restriction to textureless and shadowless Lambertian shading.
While this restriction is common in theoretical work [29, 54, 20] and useful for creating ambiguous
images, it is well-known that many ambiguities disappear in the presence of other cues such as glossy
highlights, cast shadows, and repetitive texture. Also, since our model is predominantly bottom-up,
it suffers when large regions of an image are covered by cast shadows (e.g., the shoulder region in
Fig. 8). These types of regions often require non-local context like object recognition in order to be
accurately completed. Incorporating more diverse materials (e.g., as in [14]) and top-down signals
into our model are important directions for future research.

Another limitation of our model stems from its sequential V-cycle approach to multiscale sampling.
It scales linearly with the number of resolutions, which is likely to be improved by optimization or
parallelization that increases runtime efficiency. Also, since our multiscale approach is training free,
it requires a manual search to identify a good schedule. Similar to previous work that restarts the
sampling process from intermediate timesteps [55], ours also require choosing the timestep at which
to resume sampling. Overall, further analysis is needed to better understand the structure of our
model’s latent space, and to discover more efficient and general approaches to multiscale generation.
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A Appendix / supplemental material

A.1 Algorithms pseudocode

We provide the pseudocode for the single-scale spatial consistency guided sampling (Alg. 1) and
the lighting consistency guidance (Alg. 2). Here, we have hyperparameters λ for weighting the
smoothness and integrability loss, ηt as guidance update weight and Jt as the number of noise update
steps. The results in our paper use λ = 0.5 and Jt = 3. The parameter ηt is resolution-dependent
and is included with the schedule specification in Appendix A.10.

A.2 Experimental setup details

Model Architecture. We use a conditional UNet architecture similar to [22] with input spatial
dimensions of 16 × 16 and 4 channels. The input to the UNet is a concatenation of the grayscale
shading image and a 3-channel normal map. We use a linear attention module [46] for better time
and memory efficiency. The UNet consists of 4 downsampling and upsampling stages composed of
the commonly used ResNet [19] blocks, group normalization layers, attention layers, and residual
connections.

Dataset and Training Details. We train the pixel-space conditional diffusion model on a dataset
that we build from the UniPS dataset [26]. It contains about 8000 256× 256 synthetic images of 400
unique objects from the Adobe3D Assets [1] rendered from different viewing directions. We render
the objects with the shadow-less Lambertian model using the provided ground truth normal maps
in [26], a randomly sampled directional light source within 60 degrees of the z-axis, and an albedo
value in [0.5, 1]. The surface normal values outside of the objects are set to (−1,−1,−1).
We subdivide the image into non-overlapping patches of size 16× 16 and train our model to predict
the noise at each sampled timestep using a smooth L1 loss. To train the diffusion UNet, we use the
cosine variance schedule [38] with 300 timesteps. The model is trained using the AdamW optimizer
for 500 epochs with learning rate 2e-4. It takes about 40 hours using one Nvidia A100 GPU.

Algorithm 1: Spatial Consistency Guided Sampling at a Single Scale
Data: {xu

t , c
u}u∈V ; ϵθ, {ηt, λ}

1 while t > 0 ; // Parallel guidance
do

2 for j = 1, 2, · · · , Jt ; // Gradient descent for multiple steps
do

3 x̂u
0 = Pred(xu

t ; c
u, ϵθ) ; // Predict x̂u

0 using Eq.4
4 x̂0 = Reshape({x̂u

0}) ; // Patch to global layout
5 L(x̂0) =

1
|E|LS(x̂

u
0 , x̂

v
0) + λ 1

|V|LI(x̂
v
0) ; // Eq. 8

6 xu
t ← xu

t − ηt · ∇xu
t
L(x̂0)

end
7 xu

t−1 ← Denoise(xu
t ; c

u, ϵθ) ; // Parallel denoising (Eq.3) for each patch
end
return {xu

0}u∈V ; // Denoised normal prediction

Algorithm 2: Lighting Consistency Guidance
Data: {xu

0 , c
u}u∈V

1 l̂u = Robust Infer(xu
0 , c

u) ; // Infer light source direction as in Eq. 11
2 Cluster center {L1, L2}, assignment ku = K-Means Clustering({l̂u}, # clusters = 2)
3 for u ∈ V, ku = 2 ; // Assume that |ku = 1| ≥ |ku = 2|

do
4 (xu

0 )x ← −(xu
0 )x, (x

u
0 )y ← −(xu

0 )y; // Convex/concave flip of the normals
end
return {xu

0}u∈V
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(a)

(b)

(c)

Figure 9: Sampled output normals and integrated depth maps when lighting consistency is not
enforced. In contrast to the samples in Fig. 5, regions within the same image can undergo independent
convex/concave flips.

Data Augmentation. During training, we augment the dataset with convex/concave flips of interior
patches, meaning those that do not include any occluding contour and background. In Sec. A.7, we
compare two models trained with and without such augmentation. While the augmentation leads to
a more balanced multimodal output distribution and thus smaller Wasserstein distance, our model
trained without augmentation is already capable of producing multistable outputs on test images.

Sampling. We use the DDIM sampler [48] with 50 sampling steps with guidance. Details of the
multiscale sampling schedule and guidance learning rate ηt can be found in Appendix A.10.

Visualization and Evaluation Metric. We visualize the output normal map from multiple samples
to show the multistable reconstructions. We also show depth maps by integrating the normals using
the method by Frankot & Chellappa [15].

To produce the t-SNE visualizations in Figs 6 and 13, we draw 100 samples from each model, and
then downsize the sampled normal maps to 64× 64 resolution for computational efficiency. Then we
project the samples to a 2-dimensional space using t-SNE with perplexity value of 30. To compute
the 1-Wasserstein distance, we set the ground truth distribution to be a uniform distribution over
the two reference normal maps: the one used to render the input image, and its convex/concave flip.
When computing the 1-Wasserstein distance of model outputs to the ground truth distribution, all
normal maps are first downsampled to 64× 64 resolution.

Baseline models. For testing with Wonder3D [33], we extract the frontal view prediction and use
the default setting in their online demo and code base with a crop size of 256 by 256, classifier-free
guidance scale of 3, and 50 sampling steps.

A.3 Ablation study on lighting consistency guidance

In Fig. 9, we show additional samples from our model where lighting consistency guidance is turned
off. Results show that in this case the output distribution of our model allows different regions within
a surface (e.g., each dimple, ring or mouse-shape) to undergo an independent convex/concave flip.
This is in contrast to Fig. 5 of the main paper, where we see only two global modes.
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Figure 10: Output normal maps and their t-SNE visualizations when our model is applied to a
16× 16 image of an exactly quadratic surface under directional lighting. When our model is trained
using images of spline surfaces (b), the outputs cluster around the four mathematical interpretations
from [54] (convex, concave, and two saddles). When it is trained using images of everyday objects
(a), the outputs exhibit more diversity. In both scenarios, samples are drawn independently without
guidance.

A.4 Relation to the four-way convex/concave/saddle ambiguity

Figure 10 examines the relationship between our model and the mathematical results from Xiong
et al. [54], which show that, in general, an image of an exactly quadratic surface under unknown
directional lighting can be explained by four quadratic shapes (convex, concave, and two saddles).
If our model is consistent with the theory, we would expect its output shape distributions for such
images to be concentrated around four distinct modes that match the four distinct possibilities. When
we apply our model to images of exactly-quadratic surfaces like the one in the left of Fig. 10, we
find that its output distribution is not concentrated near four modes (middle panel in the figure).
However, we find that the four-mode behavior emerges when the model is retrained on a different
dataset comprising random cubic splines (right panel), which by construction contain a much higher
proportion of exactly-quadratic surface patches.

One potential explanation for this behavior is that exactly-quadratic surface patches are too rare in
everyday scenes for a vision system to usefully exploit. This may relate to the perceptual experiments
in [51] that suggest humans also struggle to perceive the four distinct shapes for such images.

A.5 Additional results on perceptual stimuli

Figure 11 shows our model’s output for images that were used to study human perception in [31]
and [37]. Our model produces plausible shapes and multimodal output distributions, while other
models sometimes fail to recover a plausible shape or produce only one of the global concave/convex
possibilities. The bottom row is an image of several bumps (‘cobbles’) lit from below. We observe
that Wonder3D [33], Marigold [27] and SIRFS [4] interpret the bumps as concave, while Depth
Anything [56] interprets them as convex.

A.6 Additional results on astronomical images; relation to the crater illusion

Figure 12 shows results for two satellite images of the surface of Mars. In images like these, humans
often misperceive craters as mountains and vice versa, perhaps due to their bias toward lighting from
above. (This is sometimes called the crater illusion.) We tested our model, the diffusion-based models
[33, 27], and Depth Anything [56]. Our model sees both the crater and mountain possibilities, but the
other models only see one of the two.

Data acquisition is expensive in these situations, so there could be benefit to having a monocular vision
model that can automatically produce the multitude of explanations, thereby allowing all possibilities
to be examined by gathering additional context. Similar to human perception, in astronomical imaging
it is beneficial to have access to all of the possible “bottom-up” explanations, so that one can use
context or “top-down” information as effectively as possible.
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Figure 11: Inferred normal map samples from our model on ridge images taken from [31] and ‘cobble’
test image from [37].

Ours Wonder3D MarigoldImage Depth Anything

Figure 12: Shape from Martian crater images. For diffusion-based models we show two samples
that qualitatively represent all of the 25 samples that we generated for that model. For depth models
(Marigold and Depth Anything) brighter is closer. Our model outputs both possibilities, crater and
mountain, while other models only see one of the two. Outputs from Wonder3D and Marigold also
include artefacts (yellow boxes), with sharp spurious variations in normals or depth.

The two images are taken from:

(1) A triple crater in Elysium Planitia on Mars. Credit: NASA/JPL/University of Arizona. https:
//www.universetoday.com/118581/amazing-impact-crater-where-a-triple-asteroi
d-smashed-into-mars/

(2) A fresh impact crater, about 3 kilometers wide, gouged from a lava-covered plain in the Lunae
Planum region of Mars. https://skyandtelescope.org/astronomy-resources/astronomy
-questions-answers/is-it-possible-that-photos-of-lunar-or-martian-landscape
s-show-craters-as-blisters/

A.7 Ablation of dataset augmentation

To explore the effect of convex/concave data augmentation during training (see the top of Section 4),
we perform an ablation in which we train a model from the same set of patches but without the
augmentation. Since the original patches from our training set tend to be dominated by convexity, we
expect this to have an affect on the model’s response to ambiguous images. Figure 13 and Table 1
bear this out. The figure and table show the same t-SNE visualizations and Wasserstein distances
as in the main paper, but this time with without augmentation during training. The model without
augmentation exhibits some multistability, especially for the last two images, but it tends to provide
less diversity, especially for circular shapes. We hypothesize that this is caused by the existence of
predominantly convex spherical shapes in the training set.

A.8 Quantitative results on a shape from shading benchmark

Table 2 shows quantitative comparisons using photographs from the dataset in [54]. We follow
prior practice and report the median angular error of the predicted normal field, where the angular
error at each pixel i is AE(n̂i, n̂

gt
i ) =

∣∣cos−1(n̂i · n̂gt
i )

∣∣. Diffusion-based outputs are stochastic and
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Table 1: Wasserstein distance on multistable perception stimuli
Model (a) four circles (b) nested rings (c) star (d) snake

Wonder3D[33] 30.94 38.96 27.78 27.90
Ours (w/o data augmentation) 33.79 39.56 22.04 23.02
Ours 12.59 29.96 17.32 18.27

(a) (b) (c) (d)

Figure 13: t-SNE plots showing that our model trained without flip augmentation already exhibits
multistable outputs, especially on the last two images. Training with data augmentation improves the
overall diversity on those test images.

potentially multi-modal (e.g., with global convex or concave possibilities), so for these we report
the average error of the top-five predictions taken from 50 independent runs. Note that the method
from [54] requires the true light direction to be provided as input, whereas ours and others do not.

Overall, our model shows competitive performance on this benchmark compared with existing
methods. We notice that our model trained without data augmentation via per-patch concave/convex
flips (see the top of Section 4) performs better, while our model trained with data augmentation has
slightly worse performance, likely due to its larger per-patch search space. This may be related to
other quality-versus-diversity trade-offs that have been observed in previous conditional diffusion
models [10, 21]. We leave for future research questions of how to achieve better combinations of
quality and diversity, and how to incorporate other cues such as occluding contours and top-down
recognition cues.

A.9 Ablation on lighting distribution in training set

Figure 14 shows an experiment where we change the distribution of light source directions in the
training set. The two models A and B are trained on the same shapes without any data augmentation,
but Model B has 80% of the images lit from above. Model A is trained with uniformly sampled
lighting from above and from below. We test both models on an image that appears concave when
‘lit from above’. From 50 random samples and their t-SNE projections, we see that Model B’s
distribution is biased towards the concave answer while Model A shows a more balanced distribution.
This shows that lighting bias in the training set can have an effect on the output distribution.

Table 2: Shape from shading benchmark quantitative results. Errors are measured by median angular
error of normals maps. Model performance for diffusion based models is averaged over the top 5
estimates over 50 random seeds.

Model cat frog hippo lizard pig turtle scholar

Xiong et. al [54] (known lighting) 14.83 11.80 20.25 12.70 15.29 17.90 28.13

SIRFS Cross-Scale [4] 20.02 19.86 21.00 23.26 13.17 11.96 25.80
Wonder3D [33] 14.29 18.20 16.81 15.70 10.10 9.59 25.32
Ours (w/o data augmentation) 11.49 15.56 14.17 13.30 9.27 8.72 22.01
Ours 14.95 21.46 15.94 12.82 11.98 9.99 27.21

18



(a) Model A (b) Model B

Test image

Rotated version

Figure 14: Effect of lighting bias during training. Model A is trained using synthetic images with
lighting directions that are uniformly sampled within a 60◦ cone around the view direction. Model B
is trained using the same shapes but with lighting that is distributed non-uniformly within the cone,
where 80% of images are lit from above. After training, we draw 50 samples from each model for
a test image, using the same schedule and guidance hyperparameters. We project the results using
t-SNE (dots are randomly colored for visual clarity) and show representative samples. Model A
produces a balanced distribution across convex and concave explanations, whereas Model B produces
concave predictions more often. (To humans, the test image usually appears concave, and it usually
appears convex when rotated. These are both physically consistent with lighting from above.)

Table 3: Multiscale optimization schedule
Perception Stimuli Captured Photo

Resolution [160, 128, 64, 80, 96, 112, 128, 144, 160] [256, 160, 96, 128, 192, 224, 240, 256]
Guidance rate η [20, 15, 10, 10, 10, 15, 15, 20, 20] [30, 20, 12, 15, 20, 25, 28, 30]
Lighting guidance [T] × 2 + [F] × 7 [F] × 3 + [T] × 2 + [F] × 3
N&R start t [300] + [232] × 8 [300] + [238] × 7

Runtime (seconds) 105s (single Quadro RTX 8000) 125s (single Quadro RTX 8000)

A.10 Multiscale schedule specification

In Table 3 lists the scheduler hyperparameters for multiscale guided sampling. We use a notation
for lists with repeating elements, where concatenation is represented as follows: for example,
[A]× 2 + [B]× 3 denotes the list [A,A,B,B,B].

When designing the multiscale schedule for inference, we find it helpful to have consecutive resolu-
tions that are not integer multiples of the previous one, especially in the coarse to fine direction. This
leads to improved quality because pixels that are adjacent to patch seams at one resolution become
interior to a patch at another resolution.

For the initial resolution (our experiments use 160×160 or 256×256), guidance is applied only after
the 8th DDIM denoising step since the predicted x̂0 at very early stages are often not informative
enough for guidance. In terms of lighting consistency guidance, we find that it is often not necessary
to apply at every resolution for a perceptually consistent normal estimation.

We apply normal field fusion using the last three resolutions, after the spatial predictions and choices
of per-patch convex/concave modes have stabilized.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our experiments in Sec. 4 reflect the claims in abstract and introduction. We
show that the model achieves multistable outputs on various perception stimuli and also
produce veridical shape estimates for real objects.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include text in Sec. 6 dedicated for such discussions and possible future
directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This paper does not include new theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have included in the paper a detailed description of the model architecture,
and pseudo-code for our algorithms. We also provide the hyperparameter and schedulers
used in inference time in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include in the supplemental material the implementation of the main
algorithms in the paper. The data preparation instructions for our training dataset are also
included in the appendix.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have included all necessary details about the experiment settings and
training details in Appendix A.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We do not report statistical significance because the main observation in the
paper is that there are many “ground truth” shapes for this monocular shape inference
problem. They are related, for example, by convex/concave flips and bas-relief transforma-
tions. However, we use large numbers of samples to support the claims in our paper. Our
quantitative results of the Wasserstein distance on perception stimuli is computed over 100
samples, and the angular errors for shape from shading benchmark is computed from 50
samples for all diffusion-based models.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute, memory and runtime requirement for reproducing the experi-
ments are included in Appendix A.10.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work conform, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We have discussed the potential positive impact of our model: (1) our model is
compute-efficient and does not require many GPUs for training at large scale and (2) our
work can help with understanding human vision. We do not perceive immediate negative
societal impact from our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data and model used in our work do not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our dataset is based on previous work Universal Photometric Stereo Network
using Global Contexts (CVPR 2022) which uses GPL License and allows user to run, study,
modify and share the project.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our work does not include any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This work does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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