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Abstract
Vision-Language Models (VLMs) may over-rely
on visual language priors from their training data
rather than true visual reasoning. To investi-
gate this, we introduce ViLP, a benchmark fea-
turing deliberately out-of-distribution images syn-
thesized via image generation models and out-of-
distribution Q&A pairs. Each question in ViLP
is coupled with three potential answers and three
corresponding images: one that can be resolved
by text priors alone and two that demand visual
reasoning. Although humans achieve near-perfect
accuracy, modern VLMs falter; for instance, GPT-
4o achieves only 66.17% on ViLP. To alleviate
this, we propose a self-improving framework in
which models generate new VQA data and then
apply pixel-level and semantic corruptions to form
“good-bad" image pairs for self-training. Our pro-
posed training objective, Image-DPO, compels
VLMs to focus more on the actual visual inputs,
and we demonstrate its effectiveness in LLaVA-
v1.5 and Cambrian. Project Page: ViLP.

1. Introduction
Vision-Language Models (VLMs) have advanced text-image
interaction, bridging the gap between visual and textual
data (Achiam et al., 2023; Team et al., 2023). However,
a persistent challenge for learning-based models, such as
ResNets and CLIPs, lies in their reliance on learned priors
from the training data, sometimes overlooking visual cues
when answering questions (Agrawal et al., 2016; Prabhu
et al., 2023). For example, when shown a torus-shaped soc-
cer ball (Figure 1), a model might incorrectly identify it as a
sphere due to strong language priors. Simultaneously, these
models may adhere to learned visual priors (Thrush et al.,
2022; Sterz et al., 2024), which hampers their ability to
comprehend out-of-distribution visual cues, such as a zebra
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with atypical spot patterns (Figure 1), which humans would
easily discern. This raises an important question: do today’s
VLMs still over-rely on learned visual language priors, es-
pecially given that they rely on far fewer image-text pairs
than the internet-scale text corpora used for pretraining?

To investigate this, we probe the Visual Language Priors
of VLMs by constructing Question-Image-Answer (QIA)
triplets that deliberately deviate from the training data dis-
tribution. Unlike existing benchmarks that typically rely
on internet-sourced images (Goyal et al., 2017; Tong et al.,
2024), which inadvertently favor the visual language priors
embedded in VLM training data, we utilize modern image
generation models, including DALL·E-3 (Ramesh et al.,
2021) and Flux, to synthesize out-of-distribution image-
answer pairs that also feature notable variation in texture,
shape, conceptual combinations, hallucinated elements, and
proverb-based contexts.

Our benchmark, ViLP, contains 300 carefully designed ques-
tions, each paired with three distinct answers: a Prior An-
swer and two Test Answers, resulting in a total of 900 QIA
triplets. To further challenge the priors of VLMs, we am-
plify language priors in questions by introducing distractor
facts: each question is structured to present a distractor fact
followed by a question. The distractor fact directly leads
to the Prior Answer. In contrast, the two Test Answers are
crafted to challenge the priors by requiring both textual and
visual cues for accurate reasoning. While human partici-
pants achieved ∼98% accuracy easily, current VLMs exhibit
considerable difficulty, as evidenced by a significant per-
formance drop on our benchmarks, with GPT-4o (OpenAI,
2024) scoring only 66.17%.

Motivated by the results of ViLP, we propose Image-DPO, a
self-improving method for enhancing VLM visual reasoning
by increasing reliance on visual inputs. Our method employs
self-generated VQAs using image generation and editing
models (Podell et al., 2023; Ren et al., 2024; Brooks et al.,
2023a) and applies controlled corruptions to create “good-
bad" image pairs for DPO-like training (Rafailov et al.,
2024). Experiments with open-source VLMs, including
LLaVA-v1.5 (Liu et al., 2024a) and Cambrian (Tong et al.,
2024), demonstrate its effectiveness. Moreover, we theoreti-
cally prove our objective optimizes an upper bound on the
RL fine-tuning objective (Rafailov et al., 2024).
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Sphere Cube Torus

A soccer ball is typically a sphere. What is the geometric 
shape of the large soccer ball in the image?

Flamingo Tiger Penguin

Flamingos often stand on one leg. In the image, what pink 
animal is standing on one leg in the water?

One Two Five

A common phrase is "kill two birds with one stone". In the 
image, how many stones are being used to kill two birds?

Stripes Spots Checkerboard

Zebras usually have stripes. What pattern is on the zebra's 
body in the image?

Brick Pitaya Fork

Houses are usually built from bricks. What object is the 
house in the image built from?
Umbrella Plunger Blender

An umbrella keeps you dry in the rain. What does the center 
character in the picture use on his head to stay dry?

Pisa Eiffel Bigben

The Leaning Tower of Pisa is famous for it's tilt. What tower is 
leaning in the image?

Sheep Pig Chicken

Sheep usually produce wool. What farm animal in the 
middle of the image is producing wool?

Giraffe Elephant Camel

Giraffes are known for their long necks. What is the tallest 
long-necked animal shown in the image?

NewtonEinstein Tesla

Einstein created the famous equation E=mc². Which scientist 
is shown drawing this equation in the image?

Figure 1: Sample data from ViLP. For the same question, ViLP provides three distinct images and corresponding answers
(upper-left corner). All questions follow a consistent structure, combining a distractor fact with a question. The Prior Answer
(first column) can be directly inferred from the question, while Test Answers (second & third column) rely on visual cues. Our
answers are designed to be single words, and both the model and human evaluators are tasked with open-domain answering,
rather than selecting from predefined options. To support this, we have developed a robust synonym and plural detection
pipeline, ensuring that open-ended responses do not hinder the evaluation process. This approach also enables evaluation
without relying on LLMs. Please refer to Appendix B.1 for more data samples from ViLP. We investigate the impact of
image styles in Appendix B.3, where we generate more realistic images using 4o image generation. Furthermore, we include
both qualitative and quantitative comparison results with Winoground (Thrush et al., 2022), Whoops!(Bitton-Guetta et al.,
2023a), and HallusionBench(Guan et al., 2023) in Appendix B.4.
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2. Related Work
VQA Dataset: Significant efforts have produced
VQA datasets from various angles, including general
VQA (Agrawal et al., 2015; Gurari et al., 2018; Fu et al.,
2023; Liu et al., 2023d; Li et al., 2023a; Yu et al., 2023b;
Liu et al., 2024a), reading text or charts (Singh et al.,
2019a; Mathew et al., 2020; 2021; Masry et al., 2022),
complex reasoning (Lu et al., 2022; 2023), composition
probing (Hudson & Manning, 2019; Ma et al., 2022; Thrush
et al., 2022; Hsieh et al., 2023; Li et al., 2024a), hallu-
cinations (Rohrbach et al., 2018; Li et al., 2023c; Guan
et al., 2023), common-sense reasoning (Bitton-Guetta et al.,
2023b;a), and more (Majumdar et al., 2024; Sterz et al.,
2024). We propose a benchmark that tests VLMs’ visual rea-
soning when questions, answers, and images defy common
patterns. Following the balanced dataset design of (Goyal
et al., 2017), each question is accompanied by three answers:
one aligns with language priors, and two deviate, prompting
reliance on visual cues. By leveraging state-of-the-art image
generation models, our benchmark challenges these priors
more effectively than previous datasets built from internet
images (Goyal et al., 2017; Tong et al., 2024). Furthermore,
unlike the “trick” category in (Sterz et al., 2024), we first
generate question-answer pairs before synthesizing images
under specified constraints, creating more difficult visual
reasoning tasks. Comprehensive comparisons with existing
datasets appear in Appendix B.4.

Vision Language Models and Language Priors: Multi-
modal reasoning is crucial for machine intelligence, with
VLMs integrating visual perception, text reasoning, instruc-
tion following, and generation for complex tasks (Tan &
Bansal, 2019; Li et al., 2019; Kim et al., 2021; Wang et al.,
2021b;a; Alayrac et al., 2022; Li et al., 2023b; Chen et al.,
2022; Jia et al., 2021; Shen et al., 2021; Singh et al., 2021;
Liu et al., 2023c;a; Zhao et al., 2023a; Chen et al., 2023;
Zhu et al., 2024b; Li et al., 2024c; Dai et al., 2023; Li et al.,
2024c; Yu et al., 2024; Dai et al., 2024; Deitke et al., 2024).
Inspired by the success of large language models (Brown
et al., 2020; OpenAI, 2023a; Touvron et al., 2023a;b; Chi-
ang et al., 2023) and pre-trained visual encoders (Radford
et al., 2021; Desai & Johnson, 2020; Caron et al., 2021;
Chen et al., 2024), many recent methods leverage relatively
small vision-language paired datasets (Liu et al., 2024a;
Tong et al., 2024) to fine-tune connectors between LLMs
and visual backbones (Liu et al., 2024a). However, these
datasets are far smaller than the vast text corpora for LLM
pre-training (OpenAI, 2023b; Soldaini et al., 2024), and
freezing the visual encoder and LLM parameters often pre-
serves language biases, causing visual inputs to be over-
shadowed (Thrush et al., 2022; Sterz et al., 2024). This
challenge is amplified by deliberately generated images
that expose such biases, as shown in our study. Previous
works and datasets (Goyal et al., 2016; Agrawal et al., 2017;

Dancette et al., 2021; Wu et al., 2022; Ramakrishnan et al.,
2018; Gouthaman & Mittal, 2020) addressed these issues
with curated simulators (Johnson et al., 2016) or internet
imagery (Zhang et al., 2016). In this paper, we present a
novel VQA benchmark featuring carefully designed ques-
tions, fact-based distractors, rare-distribution answers, and
image generation techniques to produce realistic visuals that
challenge learned visual language priors (Figure 1).

Self-Rewarding VLM: Self-rewarding LLM (Yuan et al.,
2024) has shown that LLMs can generate and improving
themselves in the process via Directed Peference Optimiza-
tion (DPO) (Rafailov et al., 2024). This approach extends to
VLMs by generating new answers for DPO training (Zhou
et al., 2024a; Deng et al., 2024; Zhou et al., 2024b; Wang
et al., 2024c;a; Yue et al., 2024; Liu et al., 2024b; Xiao et al.,
2024). Our work aligns with these self-rewarding VLMs
but differs in two key ways: (1) our proposed Image-DPO
generates multiple images for a single question-image pair
(rather than multiple answers); (2) rather than relying solely
on existing images (Zhu et al., 2024a), Image-DPO creates
diverse new images using pre-trained generative models
(SDXL (Podell et al., 2023), GroundedSAM (Ren et al.,
2024), InstructPix2Pix (Brooks et al., 2023a)). Further-
more, Image-DPO deliberately corrupts images to produce
multiple degraded versions that serve as rejected data in
DPO training. Concurrent works (Wang et al., 2024a; Xie
et al., 2024) explore similar methods but lack a benchmark
to verify enhanced visual focus, fail to establish theoreti-
cal connections between their proposed objective and DPO,
and utilize limited image transformations (e.g., only ran-
domly cropping). In contrast, we introduce ViLP (Section 3)
to assess visual reasoning and provide theoretical founda-
tions (Appendix A), alongside multi-category image corrup-
tions (semantic editing, Gaussian blurring, pixelation).

3. ViLP Benchmark
3.1. Design Principles

“What’s the tall animal with the longest neck shown?” Hu-
mans readily guess “giraffe” based on learned priors, , yet
as shown in the bottom-right of Figure 1, it could be an ele-
phant or camel – where visual reasoning corrects the answer.
This highlights a potential shortfall in Vision-Language
Models (VLMs), which may over-rely on learned visual
language priors instead of true visual reasoning, particularly
since VLMs are typically fine-tuned on limited image-text
data, which is several orders of magnitude smaller than the
trained text corpus (Liu et al., 2024a; Tong et al., 2024).
Specifically for the scope of visual language priors in this
paper, we target (1) strong language priors that lead VLMs
to derive answers solely from text, and (2) potential visual
priors causing models to overlook critical uncommon visual
cues (e.g., unusual zebra spots in Figure 1).
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To evaluate how VLMs handle learned visual language pri-
ors, we introduce ViLP, a specialized benchmark of out-of-
distribution Question-Image-Answer (QIA) triplets guided
by two core principles. First, text-only inference ensures
that each question can be answered with high confidence
using textual clues alone. Second, visual inference requires
that the correct answer—sometimes contradicting common
sense—only emerges once an out-of-distribution image is
considered. By forcing models to integrate both textual and
visual information, ViLP reveals whether they truly engage
in visual reasoning or merely rely on memorized patterns.

Mathematically, let Q be a question, I an image, and A =
{aprior, . . . , atest, . . . } the set of possible answers. We define
P (a | Q) as the probability of answer a given Q alone
and P (a | Q, I) as the probability given both Q and I .
We consider a prior model p, which may represent either
human cognition (Phuman) or a VLM/LLM’s learned visual-
language prior (Pθ). For constructing our benchmark, we
used the following guidances:

Criterion One: The question Q alone should strongly favor
aprior, where δ1 is a high-confidence threshold. aprior usu-
ally satisfies common knowledge, such as “soccer ball is a
sphere" and “Einstein created E = mc2" (Figure 1).

P (aprior | Q) ≥ δ1 (1)

Criterion Two: With the image I , the correct answer shifts
to atest, where δ2 is another high-confidence threshold. The
image also significantly impacts the answer distribution,
where we let p = P (· | Q) and q = P (· | Q, I) denote
the answer distributions before and after seeing the image,
respectively. Here, D is a divergence measure, and δ3 is a
threshold indicating significant difference. For instance, the
image in the 1st row and the 3rd column of Figure 1 turns
the answer to torus.

P (atest | Q, I) ≥ δ2, DJS
(
p,q

)
≥ δ3 (2)

Criterion Three: The answer atest should be rare and un-
likely from Q alone, while aprior becomes clearly incorrect
when considering I . This is enforced by a low-confidence
threshold δ4 (e.g., Newton as atest inferred from the image,
contradicting Einstein, shown by the image from the 3rd
row and 2nd column of Figure 1).

P (atest | Q) ≤ δ4, P (aprior | Q, I) ≤ δ4 (3)

In designing ViLP, we leverage the human cognition prior
Phuman as our guiding principle, ensuring each QIA con-
figuration aligns with typical human expectations while
requiring visual evidence to override strong textual assump-
tions. We then compare the learned priors of VLMs and
LLMs, denoted Pθ, Phuman to evaluate whether these models
genuinely engage in visual reasoning rather than relying on
memorized patterns.

3.2. Question-Image-Answer Generation

Following Criterion Three, atest should be highly improb-
able based on Q alone yet the correct choice when paired
with I . Since such images do not exist naturally, we use
generative models like DALL·E-3 (Ramesh et al., 2021) and
Flux to blend unusual elements that override typical lan-
guage priors. We incorporate substantial human input and
leverage advanced LLMs such as OpenAI-o1 and Claude-
3.5-Sonnet to ensure alignment with all the criteria. More
details, including text prompts and average cost, are pro-
vided in Appendix B.2. Note that as more advanced image
generative models—such as the recently introduced 4o im-
age generation—become available, we anticipate generating
increasingly abundant and high-quality data for our bench-
mark, yet future updates will remain consistent with the
dataset construction criteria outlined in Section 3.1.

For each question, we design three answers: one aprior in-
ferred solely from Q, and two atest that defy language priors,
requiring visual cues for correctness. We rely on GPT-4
to generate text prompts, produce large-scale images, and
then conduct human filtering and refinement. This process
faces two main challenges: (1) producing diverse out-of-
distribution QA pairs, and (2) synthesizing images that defy
specific priors, sometimes necessitating hundreds of sam-
ples to find one that accurately matches Q and atest.

Table 1: Category Statics.
Type Frequency

Texture 16
Shape 20

Conceptual combinations 276
Hallucinated Components 151

Proverbs 17

Ultimately, we curated
300 questions, each
paired with three distinct
image-answer sets,
totaling 900 QIA triplets.
These cover a broad
range from low-level
recognition (texture,
shape) to high-level
reasoning (conceptual combinations, hallucinated com-
ponents, proverbs). Table 1 summarizes their categorical
distribution, with each question spanning an average of
1.6 categories. To reinforce text priors, we present a
distractor fact before the question. Rigorous human review
ensures that all final QIA triplets are clear and interpretable,
as reflected by our human evaluation results in Table 2.
Besides, in Appendix B.3, we investigate the impact of
image styles by generating more realistic images via 4o
image generation and comparing them to those produced
by DALL·E-3 (Ramesh et al., 2021) and Flux. We find
that realistic images can increase the difficulty of the task,
highlighting their importance for future studies.

3.3. Dataset Evaluation

All of our questions are designed to elicit single-word an-
swers, an approach that is more efficient and more reliable
than sentence-based evaluations that rely on LLM judgment.
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Image-DPO Text-DPO

1 32

(a) Image-DPO vs. Text-DPO: In the green dashed
box, we illustrate Image-DPO, which uses a single
Q&A pair paired with multiple corrupted images. In
contrast, the purple dashed box presents Text-DPO,
involving a single input image paired with multiple,
distinct Q&A pairs.

Q:What is the color scheme of the 
train？

A: The train has a blue and yellow 
color scheme, with a blue and 
yellow passenger train engine.

Good Image 𝐼! Corrupted Image 𝐼"

Semantic Corrupted Gaussian Blurred Pixelated 

VLMChosen Rejected

(b) Illustration of Image DPO. We construct chosen and rejected pairs by cor-
rupting the image with a set of perturbations while keeping the Q&A unchanged.
Perturbations include semantic editing, Gaussian blurring, and pixelation. The
mathematical formulations and implementation details are provided in Ap-
pendix A and Appendix C, respectively.

By avoiding using LLM, we reduce API fees, computational
overhead, and the risk of occasional inaccuracies due to in-
correct model reasoning. We explicitly instruct the model
to provide a single-word answer, and we evaluate the cor-
rectness of each response using a binary system. To ensure
a fair evaluation, we devote significant efforts to building
a comprehensive set of synonyms and plural for each an-
swer to detect other valid alternative answers. This ensures
that the model is only penalized for actual errors, not for
providing synonymous or alternative correct responses.

4. Image DPO
Inspired by our benchmark, we propose Image DPO, a self-
improvement method for enhancing VLMs’ visual reason-
ing, featuring a new objective and a data generation pipeline
using VLMs themselves and pre-trained image models.

4.1. Objective

Existing approaches for VLM self-improvement follow the
way used in DPO paper (Rafailov et al., 2024), where the
model is trained to distinguish between good and bad an-
swers for a fixed image and question (Figure 2a right). How-
ever, this straightforward adaptation may not the best for
vision models, as the model sometimes distinguish good
and bad answers from the text alone without needing to
analyze the image. In contrast, we propose Image DPO, a
vision-focused objective that creates good and bad question-
image-answer pairs by corrupting the image while keeping
the question and answer unchanged (Figure 2a left). An
example of our synthetic data is illustrated in Figure 2b.

Formally, given an image Iw, a question Q, and its cor-
responding answer A, we generate a corrupted image Il
via image-editing operations, including Gaussian blur, pix-
elation, or semantic modifications. The triplet (Q, Il, A)
forms a degraded question-image-answer pair compared to
(Q, Iw, A). We train the model to distinguish between good
and bad triplets using the objective 4, where πθ is the target

VLM, πref is the reference VLM (typically an earlier version
of πθ), S is the dataset of good and bad triplets, σ is the
sigmoid function, and α is a scaling factor. In Proposition 1,
we show that objective 4 optimizes an upper bound on the
RL fine-tuning objective (Eq. (3) in (Rafailov et al., 2024)).

L(πθ, πref) = −EQ,Iw,Il,A∼S

[
log σ

(
α
πθ(A | Q, Iw)

πref(A | Q, Iw)
− α

πθ(A | Q, Il)

πref(A | Q, Il)

)]
(4)

Intuitively, since the textual inputs and outputs are identical
in both good and bad cases, the gradients of this objective
push the model to rely more on the vision branch, driving
a shift in gradient direction when processing normal im-
ages Iw compared to corrupted images Il (Figure 6). This
behavior encourages the model to focus more on image
inputs rather than relying solely on text-based reasoning,
thereby enhancing its performance on visual-related tasks.
Our experiments demonstrate Image-DPO objective (Eq. 4)
outperforms varies self-improve VLM baselines on ViLP.
Proposition 1. Let LRLFT(πθ, πref ;S) be the KL-
constrained reward maximization objective used in the
RL fine-tuning phase (Appendix Eq. 7), where the dataset
S = {(Q,A, Iw, Il)} contains good images Iw and cor-
rupted images Il. Let LImageDPO(πθ, πref ;S) be the ob-
jective from Eq. 4, which compares

(
Q, Iw, A

)
against(

Q, Il, A
)
. Then for any policy πθ and reference model

πref , we have

LRLFT(πθ, πref ;S) ≤ LImageDPO(πθ, πref ;S).

Proof Sketch. Following (Rafailov et al., 2024), we express
the optimal KL-constrained policy in terms of a latent re-
ward function. Applying a Bradley–Terry preference model
to question-image-answer triplets

(
Q, Iw/Il, A

)
and using

Jensen’s inequality yields an upper bound whose minimiza-
tion is equivalent to LImageDPO(πθ, πref ;S). A full deriva-
tion appears in Appendix A.
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Flamingo Tiger Penguin

Flamingos often stand on one leg. In the image, what pink animal is 
standing on one leg in the water?

Moscow London Paris

The Red Square is in Moscow. From the image, in which city is the Red 
Square located? Please answer with a single word or abbreviation, like NYC.

Round Hexagon Dodecagon

The moon is typically depicted as round. What shape does the moon 
appear to take in this image of the night sky?

Camel Horse Tiger

Camels have humps. Which animal in the image stores fat in its 
humps?

GPT4o: Flamingo
Claude: Flamingo 
Gemini: Flamingo
LlamaV: Flamingo

GPT4o: Flamingo
Claude: Flamingo 
Gemini: Flamingo
LlamaV: Flamingo

GPT4o: Penguin
Claude: Flamingo 
Gemini: Penguin
LlamaV: Penguin

GPT4o: Hexagon
Claude: Hexagon 
Gemini: Round
LlamaV: Hexagon

GPT4o: Hexagon
Claude: Hexagon 
Gemini: Hexagon
LlamaV: Hexagon

GPT4o: Polygonal
Claude: Octagonal 
Gemini: Octagonal
LlamaV: Octagonal

GPT4o: Camel
Claude: Camel 
Gemini: Camel
LlamaV: Camel

GPT4o: Camel
Claude: Camel
Gemini: Camel
LlamaV: Camel

GPT4o: Camel 
Claude: Camel 
Gemini: Camel 
LlamaV: Camel

GPT4o: Moscow
Claude: Moscow 
Gemini: Moscow
LlamaV: Moscow

GPT4o: Moscow
Claude: Moscow
Gemini: Moscow
LlamaV: Moscow

GPT4o: Moscow 
Claude: Paris 
Gemini: Paris 
LlamaV: Moscow

Figure 3: Qualitative examples. We show the results from GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-Pro, and Llama-3.2-
Vision-90B for some challenging cases. Please refer to Appendix B.6 for categorized failure case analysis.

4.2. Data Generation

Training VLMs demands large-scale question-image-answer
(QIA) triplets, which are often scarce. To address this, we
introduce a scalable data generation pipeline (Appendix Fig-
ure 16) that repurposes existing image datasets via VLM
themselves and image generative models. Given a seed im-
age from COCO (Lin et al., 2014), Text2VQA (Singh et al.,
2019b), or Visual Genome (Krishna et al., 2017), VLMs are
tasked with simultaneously selecting appropriate functions
(e.g., image generation or editing models) and generating
corresponding instructions. These instructions are then used
to produce new images, in addition to the seed image, as
illustrated in Figure 17. The same VLMs are then employed
to generate QA pairs for these newly created images. Fol-
lowing, we apply the mentioned three types of image corrup-
tions to the generated images, constructing good bad pars
(Q, Iw, A) and (Q, Il, A). Specifically, we employ Stable
Diffusion XL (Podell et al., 2023; Rombach et al., 2022) for
image generation, and use Instruct-Pix2Pix (Brooks et al.,
2023a), and Grounded-SAM (Rombach et al., 2022; Ren
et al., 2024) for image editing. Example generated data,
prompts, and more details are included in Appendix C.

5. Experiments
We introduce ViLP, a new benchmark comprising 300 ques-
tions. Each question is paired with three unique images

and their corresponding answers—one QIAprior and two
QIAtest—for a total of 900 QIAs. The QIAprior examples
(300 in total) align with common language priors (i.e., they
can usually be answered correctly by relying on textual
cues alone). In contrast, the QIAtest examples (600 in total)
challenge these priors by requiring visual reasoning.

ViLP features two evaluation settings:

• ViLPF, where both distractor facts and the ques-
tions are provided;

• ViLPP, where only the questions themselves are
given (i.e., no distractor facts).

We report two metrics in Table 2: average accuracy on
QIAtest (noted as Score) and average accuracy on QIAprior

(noted as Prior). Our benchmark emphasizes the perfor-
mance in Score.

Is the QIA easy for humans? We begin by evaluating our
benchmark through a human study. Participants achieved
nearly perfect accuracy on ViLPF-Prior and over 98% on
ViLPF-Score and ViLPP-Score, confirming that our question-
image-answer combinations are unambiguous for human
interpretation. Notably, despite QIAtest being designed as
out-of-distribution examples, humans were still able to cor-
rectly distinguish them.
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Figure 4: Comparison of benchmark scores under different image transformations. Solid line and dotted line refer to
ViLPF-Score and ViLPF-Prior, respectively.

Table 2: Benchmarking on ViLP. Please refer to the left
text for symbol definitions. † indicates the model often fails
to follow the instructions.

Model ViLPF ViLPP

Score Prior Score Prior

Baseline
Human 98.33 99.67 98.67 96.67
GPT-4o (text only) 0.0 92.33 0.17 71.33

API call only
GPT-4o 66.17 91.00 56.00 87.67
GPT-4V 57.67 88.33 38.33 85.33
GPT-4o-Mini 57.67 89.00 46.67 84.67
Claude-3.5-Sonnet 70.00 84.33 59.33 86.67
Claude-3-Opus 59.17 74.00 43.00 82.67
Claude-3-Sonnet 48.83 83.67 40.33 81.33
Claude-3-Haiku 43.67 82.67 34.83 82.33
Gemini-1.5-Pro 60.50 79.33 48.00 83.00
Gemini-1.5-Flash 54.50 83.33 69.17 79.67

Open weights
Llama-3.2-Vision-11B 67.33 76.67 61.17 79.33
Llama-3.2-Vision-90B 64.00 91.67 63.17 83.33
MolmoE-1B 48.67 57.33 47.83 69.00
Molmo-7B-O 57.83 60.67 47.33 76.33
Molmo-7B-D 54.5 69.00 46.17 72.33
Molmo-72B 60.33 85.00 47.17 82.33
Qwen2-VL-7B 50.50 83.00 48.67 80.33
Qwen2-VL-72B 56.50 92.33 53.83 83.00
InternVL2-8B 47.00 66.67 43.00 75.00
InternVL2-76B 42.67 47.67 50.84 74.33
LLaVA-1.5-7B 29.67 71.33 37.67 65.67
LLaVA-1.5-13B 35.33 81.00 41.50 73.67
Cambrian-1-8B† 8.67 43.67 32.50 63.67
LLaVA-OneVision-7B 54.17 82.33 49.67 75.00
LLaVA-OneVision-72B † 1.67 3.00 5.22 11.67

Humans performed slightly better on ViLPF-Prior when dis-
tractor facts were provided, as they could easily identify
that these facts aligned with the correct answers. Moreover,
ViLPF-Score was marginally lower when facts were intro-
duced, as the distractor facts added some noise and caused
minor confusion, although the impact of this noise is rela-
tively small. These findings are consistent with the design
principles of our benchmark.

Narwhal Dolphin

Narwhal has long tusk. Which marine mammal 
with long tusk is depicted in the image?

GPT4o: Narwhal
LLaVA: Narwhal 
GPT4o: Narwhal
LLaVA: Narwhal

GPT4o: Dolphin
LLaVA: Narwhal 
GPT4o: Narwhal
LLaVA: Dolphin

w Fa
ct

w
/o

Fa
ct

Octagon Round

Stop signs are usually octagons. What is the 
shape of the stop sign in the image?

GPT4o: Octagon
LLaVA: Octagon 
GPT4o: Octagon
LLaVA: Octagon

GPT4o: Sphere
LLaVA: Octagon 
GPT4o: Octagon
LLaVA: Round

w Fa
ct

w
/o

Fa
ct

Figure 5: Qualitative results before and after removing
distactor facts. GPT-4o and LLaVA-1.5-13B models yield
completely opposite behaviors.

Are our QIAs aligned with the learned priors of VLMs?
We tested GPT-4o (text only) on our questions (removing
all image references). Despite no visual content, it correctly
answered 92.33% on ViLPF-Prior. The accuracy drops to
71.33% once distractor facts are removed, showing that
these facts significantly guide the answer. For QIAtest, GPT-
4o (text only) accuracy nearly falls to 0% (ViLPF-Score &
ViLPP-Score), indicating the QIAtest cannot be answered
using text alone.

How do VLMs perform on our benchmark? Although
our benchmark questions are distinguishable for humans,
they are challenging for VLMs. Even the advanced VLM
models like GPT-4o, have a clear performance gap (66.17%
v.s. 98.33%) compared to humans’ performance on ViLPF-
Score, indicating the difficulty of these questions for VLMs.
Claude-3.5-Sonnet achieved the best score 70%, while most
of the commercial VLMs are below 60%. Figure 3 high-
lights sample outputs from top commercial and open-source
models, including GPT-4o, Claude-3.5-Sonnet, Gemini-1.5-
Pro, and Llama-3.2-Vision-90B. They face significant chal-
lenges when addressing these cases in our ViLP, whereas
humans can arrive at correct answers after consideration.
Notably, it is encouraging to see that some open-source
models achieved over 60% accuracy on ViLPF-Score, with
performance nearing that of their commercial counterparts,
including Llama-3.2-Vison and Molmo-72B. Additionally,
we provide more detailed failure-case analysis in Appendix
B.6, where we group the errors into six recurring modes—(i)
shape-recognition slips, (ii) counting mistakes, (iii) prior-
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Table 3: Effectiveness of Image-DPO on General VQA benchmarks.
VLMs ViLPF

Score ViLPP
Score NBQ NBI NBG NBB MM-Vet CHAIRS ↓ CHAIRI ↓

LLaVA-1.5-7B 29.67 37.67 37.7 43.8 12.7 67.3 31.1 49.1 14.8
LLaVA-1.5-7B + Image-DPO 34.17↑ 4.5 39.33↑ 1.66 39.79↑ 2.09 45.47↑ 1.67 14.16↑ 1.46 68.45 ↑ 1.15 32.3↑ 1.2 45↑ -4.1 12.3↑ -2.5

LLaVA-1.5-13B 35.33 41.5 39.6 44.6 14.8 68.9 36.1 48.3 14.1
LLaVA-1.5-13B + Image-DPO 38.17↑ 2.84 42.5↑ 1 42.68↑ 3.08 47.37↑ 2.77 17.16↑ 2.36 70.36↑ 1.46 37.5↑ 1.4 42.6↑ -5.7 11.6↑ -2.5

Cambrian-8B 8.67 32.5 44.6 47.9 19.4 71.5 51.4 14.5 4.7
Cambrian-8B + Image-DPO 20.83 ↑ 12.16 39.3 ↑ 6.83 46.5 ↑ 1.9 50.2 ↑ 2.3 20 ↑ 0.6 72↑ 0.5 51.7↑ 0.3 11.4 ↑ -3.1 4.4 ↑ -0.3

Table 4: Benchmark Performance with More Fine-Grained Categories. We extended our evaluation system to include
three categories—Correct, Wrong, and Invalid. “Invalid” responses (not single-word) are further split into Invalid-Correct
(noted as Invalid-✓) and Invalid-Wrong (noted as Invalid-×) based on GPT assessment.

Model ViLPF ViLPP

Score Prior Score Prior
Correct Wrong Invalid-✓ Invalid-× Correct Wrong Invalid-✓ Invalid-× Correct Wrong Invalid-✓ Invalid-× Correct Wrong Invalid-✓ Invalid-×

Cambrian-8B 8.67% 28.83% 29.17% 33.33% 43.67% 2.33% 54.00% 6.00% 32.50% 37.50% 11.67% 18.33% 63.67% 8.33% 22.00% 6.00%
LLaVA-OneVision-7B 54.17% 42.83% 1.33% 1.67% 82.33% 15.33% 2.33% 0.00% 49.67% 47.00% 1.33% 2.00% 75.00% 20.33% 3.67% 1.00%
LLaVA-OneVision-72B 1.67% 1.00% 43.33% 54.00% 3.00% 0.33% 90.33% 6.33% 5.22% 5.78% 39.00% 50.00% 11.67% 1.33% 78.67% 8.33%
GPT-4o 66.17% 33.77% 0.03% 0.03% 91.00% 8.33% 0.33% 0.33% 56.00% 43.17% 0.50% 0.03% 87.67% 11.33% 1.00% 0.00%

biased rejection of counterfactual scenes, (iv) proverb-
driven hallucinations, (v) misclassification of creative con-
cepts, and (vi) text-over-vision errors on blended images.

Do distractor facts really distract? In ViLPF setting,
we add a distractor fact before the question. Since these
facts implicitly suggest incorrect answers for QIAtest, we
expected this change to make the questions more suggestive
and lower the ViLPF-Score, as the distractors would mislead
the VLMs. Surprisingly, GPT-4o benefits from distractor
facts, improving accuracy on QIAtest. We hypothesize these
facts highlight question focus, narrowing the search space.
However, weaker models like LLaVA-1.5-13B (Liu et al.,
2023b) often get misled by the distractors, hurting their
Score but boosting Prior. For instance, as shown in Figure 5,
with including distractor facts, LLaVA-1.5-13B consistently
predicts the distractor fact as the answer. However, once the
distractors are removed, it can then predict correctly.

For bad instruction-following models like Cambrian-
8B (Tong et al., 2024), distractor facts significantly hin-
der adherence to explicit instructions, such as providing
single-word answers. With facts, Cambrian-8B fails to fol-
low instructions in 62% of cases, compared to 30% with-
out (a nearly 2x increase). Manual review shows 59%
of these failures are contextually correct, yielding an ad-
justed accuracy of 47.92%. Similarly, LLaVA-OneVision-
72B (Li et al., 2024b) often generates detailed analyses
despite explicit single-word prompts. This trend highlights
a concerning trend: focusing on improving performance
on well-established benchmarks may come at the cost of
basic instruction-following abilities, ultimately limiting the
practical utility of these models in real-world applications.

How image transformations affect the results? We also
investigate how image transformations, including resizing,

Gaussian blur, and pixelation, affect ViLP performance.
The results, shown in Figure 4, reveal that the ViLPF-Score
rapidly decreases as the severity of the transformations (x-
axis) increases, while the ViLPF-Prior score remains around
50%. Interestingly, GPT-4o, when using degraded images,
performs worse in ViLPF-Prior than when no images are
used, i.e., GPT-4o (text only) in Table 2.

Comparison of ViLP with other VQA datasets: To
highlight the distinctions between ViLP and existing
benchmarks, including Winoground (Thrush et al., 2022),
Whoops! (Bitton-Guetta et al., 2023a), and Hallusion-
Bench (Guan et al., 2023), we conduct a comparative analy-
sis of both their high-level design principles and low-level
data formats. This comparison incorporates qualitative and
quantitative insights as detailed in Appendix B.4.

Finer-Grained Evaluation Currently, we explicitly ask
VLMs to produce a single-word response for evaluation,
and penalize responses that include long sentences, as we
believe instruction-following is a foundation capability of
VLMs—thus, failure to comply warrants a penalty. Al-
though this evaluation protocol is cost-efficient without call-
ing LLM, fast, and reliable, it may conflate semantic errors
with instruction-following failures.

To address this, we introduce an optional finer-grained eval-
uation protocol with three categories: Correct, Wrong, and
Invalid. Correct and Wrong denote semantically accurate or
inaccurate answers that comply with the single-word con-
straint. Invalid captures responses that violate the format.
For these, we further offer an optional GPT-based classi-
fication into Invalid-Correct or Invalid-Wrong, providing
greater granularity at the cost of increased evaluation over-
head. We show these evaluation results in Table 4.
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Commercial models such as GPT-4o follow instructions reli-
ably. In contrast, LLaVA-OneVision-72B matches other
models in reasoning ability (Correct + Invalid-Correct)
yet ignores the single-word instruction in most instances.
Cambrian-8B similarly yields a significant number of In-
valid cases. Counterintuitively, LLaVA-OneVision-72B
performs markedly worse at instruction following than its
smaller counterpart, LLaVA-OneVision-7B, and shows a
stronger bias toward learned priors—reflected in its lower
ViLP Score and higher ViLP Prior. We hypothesize that
instruction following offers an additional lens for probing
prior reliance: models dominated by priors tend to gener-
ate verbose, prior-driven answers (i.e., long responses) that
disregard explicit single-word directives.

5.1. Image DPO

In this section, we evaluate Image-DPO (Section 4.1) on
both ViLP and general VQA benchmarks. As an ablation
baseline, we introduce Text-DPO, which uses the same
Question-Image-Answe (QIA) generation process as we
used in Image-DPO but applies LLM self-rewarding objec-
tive (Yuan et al., 2024) (the standard DPO objective). In
Text-DPO, good and bad pairs stem from VLM-generated
positive and negative answers, while the question and image
remain fixed. As shown in the right of Figure 2a, the green
box depicts Image-DPO, generating corrupted images via
semantic edits, Gaussian blur, and pixelation while keeping
the question and answer constant; the purple box illustrates
Text-DPO, which fixes the image and varies the answers
with associated ratings. This setup parallels other VLM
self-rewarding work (Zhou et al., 2024a; Deng et al., 2024;
Zhou et al., 2024b; Wang et al., 2024c;a).

For baselines, we compare with VLM self-improvement
methods, including SIMA (Wang et al., 2024c),
HADPO (Zhao et al., 2023a), and EOS (Yue et al.,
2024), by using their publicly available checkpoints.
Additionally, we train models using the dataset and code
provided in RLHF-V (Yu et al., 2023a) and V-DPO (Xie
et al., 2024). All models use LLaVA-7B for a compre-
hensive comparisons as many paper only release 7B
checkpoints. Table 5 shows that Image-DPO achieves the
highest across all the metrics.

Besides, we evaluate the proposed Image-DPO algorithm
across three VLM models—Cambrian-8B, LLaVA-1.5-7B,
and LLaVA-1.5-13B—using several popular VLM bench-
marks that focus on different aspects, including composi-
tionality & biases (NaturalBench (Li et al., 2024a)), general
visual reasoning (MM-Vet (Yu et al., 2023c)), and hallu-
cinations (CHAIR (Rohrbach et al., 2018)). The results,
presented in Table 3, show consistent performance improve-
ments across both datasets and models, further demonstrat-
ing the effectiveness of our Image DPO method.

Table 5: Comparisons of Image-DPO on ViLP.

Model ViLP F ViLP P

Score Prior Score Prior

LLaVA-1.5-7B 29.67 71.33 37.67 65.67
+HADPO (Zhao et al., 2023b) 33.00 74.33 38.50 65.00
+RLHF-V (Yu et al., 2023a) 29.50 75.00 36.33 65.33
+EOS (Yue et al., 2024) 31.33 67.00 38.67 65.67
+SIMA (Wang et al., 2024b) 27.83 68.67 36.17 66.00
+V-DPO (Xie et al., 2024) 29.50 72.67 37.83 67.67
+Text-DPO 31.34 71.67 37.83 65.67
+Image-DPO 34.17 75.00 39.33 68.00

TextDPO on Corrupted Images. Does Image-DPO’s im-
provement stem from the objective itself, or is it merely
due to training on more perturbed data? To investigate this,
we conduct an ablation where we train TextDPO with cor-
rupted images. Specifically, for each pair of (Q, I,Aw) and
(Q, I,Al) used in Text-DPO, we apply the same corruptions
as Image-DPO to I to form (Q, I ′, Aw) and (Q, I ′, Al). Re-
sults show that LLaVA-v1.5-7B trained with this TextDPO
variant achieves a ViLPF-Score of 31, a ViLPP-Score of
37.5, and 30.3 on MMVET. In contrast, ImageDPO out-
performs it across all metrics, achieving a ViLPF-Score of
34.17, a ViLPP-Score of 39.33, and 32.3 on MMVET.

Impact of Synthetic Image Augmentation. When we
remove the image-generation stage and fine-tune ImageDPO
only on QIA pairs drawn from the seed datasets (COCO,
VG, Text2VQA), performance slips across every metric:
ViLPFScore declines from 34.17 to 31.17 and ViLPPScore
from 39.33 to 38.00; the four novel-bias scores (NBQ, NBI,
NBG, NBB) each lose roughly one point; MM-Vet drops
from 32.3 to 31.4; and hallucination rates rise (CHAIRS↓:
45 → 47, CHAIRI↓: 12.3 → 13.6). These uniform declines
confirm that synthetic images by image generative models
broaden the visual distribution, inject the priors of powerful
generative models, and are crucial for achieving the full
gains of ImageDPO.

6. Conclusion
In conclusion, we present the ViLP benchmark to probe
the challenge of visual language bias in Vision-Language
Models (VLMs). By utilizing advanced image generation
models and designing questions that demand visual cues
for accurate responses, our benchmark includes images that
defy language priors, revealing the limitations of current
VLMs. Our method, Image-DPO, which incorporates self-
generated VQA pairs and image corruption for training, has
demonstrated promising improvements in enhancing visual
reliance, as evidenced by performance gains on open-source
VLMs, such as LLaVA-v1.5 and Cambrian.
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Figure 6: Gradients difference between Image-DPO and Text-DPO. For Text-DPO (Rafailov et al., 2024), the model
receives positive gradients (green arrows) for the preferred answer Aw and negative gradients Al (red arrows) for the
dispreferred answer. In contrast, our proposed Image-DPO approach applies positive gradients when the preferred image Iw
is input and negative gradients for the dispreferred image Il, both based on the same output answer.

A. Image-DPO Mathematical Details
In this section, we give the complete proof of Image DPO. Simlarly to DPO, we start from the RL fine-tuning objective and
then derive its variant for image dpo.

A.1. RL Fine-tuning for VLM

SFT Given question Q, answer A and image I , we can train a SFT model πSFT with supervised learning on high-quality
data. As the SFT model is a language generation model, it is still a model modeling the text outputs with question and image.
πSFT (A|Q, I)

Reward Modeling Phase In this stage, we construct a static dataset of comparisons S = {Ai, Qi, Iiw, I
i
l }, and we present

the QIA pairs (Q, Iw, A), (Q, Il, A) to human for preference.

Following the idea of RL fine-tuning, the preference are assumed to be obtained from a a latent reward function r∗(Q, I,A)
which are not tractable, and we we use BT model to represent the preference distribution p∗ as:

p∗((Q, Iw, A) ≻ (Q, Il, A)) =
exp (r∗ (Q, Iw, A))

exp(r∗(Q, Iw, A) + exp(r∗(Q, Il, A))
(5)

Now given the human labeled preference, we can try to optimize a reward model rϕ to estimate r∗ by using maximum
likelihood. Framing this as a binary classification, we can have this negative log-likelihood loss:

LR(rϕ,S) = −E(A,Q,Iw,Il)∼S [log σ(rϕ(Q, Iw, A)− rϕ(Q, Il, A))] (6)

Here σ is a logistic function. Basically, this reward function gives score jointly considering image, question and image
quality.

RL Fine-Tuning Phrase

During the RL phase, the learned reward function is used to provide feeback to the VLM model. Following DPO
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paper (Rafailov et al., 2024), the optimization is formulated as :

max
πθ

E(Q,I)∼S,A∼πθ(A|Q,I) [rϕ(Q, I,A)]− βDKL [πθ(A|Q, I)∥πref(A|Q, I)] , (7)

where β is a parameter controlling the deviation from the base reference policy πref, namely the initial SFT model πSFT.
Due to the discrete nature of language generation, this object is also not differentiable and is typically optimized with
reinforcement learning (Jaques et al., 2017; 2020).

A.2. Image DPO and RL Fine-Tuning

According to the DPO paper, a straightforward optimal solution to the KL-constrainted reward function maximization object
in Eq. 6 is:

πr(A|Q, I) =
1

Z(Q, I)
πref(A|Q, I) exp(

1

β
r(Q, I,A)) (8)

where Z(Q, I) =
∑

A πref(A|Q, I) exp( 1β r(Q, I,A) is a partition function. Here r should be any reward function, which
makes Z hard to tract. We provide the proof of this step in A.3.

Taking the logarithm of both side, and with some algebra, we get

r(Q, I,A) = β
πr(A|Q, I)

πref(A|Q, I)
+ β logZ(Q, I) (9)

This parametrization could be applied to ground-truth reward r∗ and the corresponding optimal model π∗.

The BT model with the optimal policy is

p∗((Q, I1, A) ≻ (Q, I2, A)) =
exp (r∗(Q, Iw, A))

exp (r∗(Q, Iw, A)) + exp (r∗(Q, Il, A))
(10)

We plug Eq. 9 into the BT model, we have:

p∗((Q, I1, A) ≻ (Q, I2, A)) =
exp

(
β log π∗(A|Q,Iw)

πref(A|Q,Iw) + β logZ(Q, Iw)
)

(
β log π∗(A|Q,Iw)

πref(A|Q,Iw) + β logZ(Q, Iw)
)
+

(
β log π∗(A|Q,Il)

πref(A|Q,Il)
+ β logZ(Q, Il)

)
=

1

1 + exp(β log π∗(A|Il,Q)
πref(A|Il,Q) − β log π∗(A|Iw,Q)

πref(A|Iw,Q) + β logZ(Il, Q)− β logZ(Iw, Q))

= σ

(
exp(β log

π∗(A|Il, Q)

πref(A|Il, Q)
− β log

π∗(A|Iw, Q)

πref(A|Iw, Q)
+ β logZ(Il, Q)− β logZ(Iw, Q))

)
Now we have the probability of human preference data in terms of the optimal policy rather than the reward model, we can
formulate a maximum likelihood objective for a policy πθ. Our policy objective is :

L(πθ;πref) = E(Q,A,Iw,Il)∼S

[
− log σ

(
β log

πθ(A|Iw, Q)

πref(A|Iw, Q)
− β log

πθ(A|Il, Q)

πref(A|Il, Q)
+ β logZ(Iw, Q)− β logZ(Il, Q)

)]
(11)

As f(x) = − log σ(x) is a convex function (σ is the sigmoid function), we can apply Jensen’s inequality f( 12x+ 1
2y) ≤

1
2f(x) +

1
2f(y):

L(πθ;πref) ≤ E
[
−1

2
log σ

(
2β log

πθ(A|Iw, Q)

πref(A|Iw, Q)
− 2β log

πθ(A|Il, Q)

πref(A|Il, Q)

)
− 1

2
log σ (2β logZ(Iw, Q)− 2β logZ(Il, Q))

]
(12)
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As log σ (Z(I,Q)) is not a function of πθ, the above objective is equivalent to the below Eq.13, where α = 2β. It is the
same as our objective listed in Eq.4 of the main paper.

L(πθ;πref) ≤ −E(Q,Iw,Il,A)∼S

[
log σ(α

πθ(A | Q, Iw)

πref(A | Q, Iw)
− α

πθ(A | Q, Il)

πref(A | Q, Il)
)

]
(13)

In this sense, our optimization objective Eq.4 in main paper are optimizing the upper bound on the RL fine-tuning objective,
i.e., Eq.7.

A.3. Deriving the Optimum of the KL-Constrained Reward Maximization Objective

In this appendix, we will derive Eq.8. Similarly to Eq.7, we optimize the following objective:

max
π

E(Q,I)∼S,A∼π [r(Q, I,A)]− βDKL [π(A|Q, I)∥πref(A|Q, I)] (14)

under any reward function r(Q, I,A), reference model πref , and a general non-parametric policy class. We now have:

max
π

E(Q,I)∼S,A∼π [r(Q, I,A)]− βDKL [π(A|Q, I)∥πref(A|Q, I)]

= max
π

E(Q,I)∼SEA∼π(A|Q,I)

[
r(Q, I,A)− β log

π(A|Q, I)

πref(A|Q, I)

]
= min

π
E(Q,I)∼SEA∼π(A|Q,I)

[
log

π(A|Q, I)

πref(A|Q, I)
− 1

β
r(Q, I,A)

]

= min
π

E(Q,I)∼SEA∼π(A|Q,I)

log π(A|Q, I)

1
Z(Q,I)πref(A|Q, I) exp

(
1
β r(Q, I,A)

) − logZ(Q, I)


(15)

where we have the partition function:

Z(Q, I) =
∑
A

πref(A|Q, I) exp

(
1

β
r(Q, I,A)

)
(16)

Observe that the partition function depends solely on (Q, I) and the reference policy πref , and is independent of the policy
π. We can now define the Equation 8.

π∗(A|Q, I) =
1

Z(Q, I)
πref(A|Q, I) exp

(
1

β
r(Q, I,A)

)
, (17)
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B. More details and comparisons of our
benchmarks

B.1. More data samples of ViLP

Paper

Four Six Eight

Modern drones typically have four propellers. How many propellers 
does the drone in the picture have?

Zebra Whale Seal

Zebra has black stripes. Which animal with black stripes shown in the 
image?

1000 200 100

A kilometer equals to 1000 meters. How many meters are in a 
kilometer, as indicated in the image?

Round Square Diamond

Apple has round shape. What is the shape of the apple shown in the 
image?
Two One Five

Bike usually have two wheels. How many wheels does the bike in the 
center of the picture have?

Kangaroo Koala Wombat

The kangaroo is known for its excellent jumping. Which animal native to 
Australia is shown in the image demonstrating a jump?

Person Cat Eraser

People usually use mop to clean the floor. Who is using this mop to 
clean the floor in the picture?

Soil Cloud Desert

Orange trees grow on soil. Based on the picture, where is this orange 
tree growing?

Fabric Wood

Umbrellas are usually made of fabric. What material is used to make 
the umbrella in the image?

Cow Whale Seal

Cows could produce milk. Which animal does the image show 
produces milk for dairy products?

Seattle Rome Paris

The Space Needle is situated in Seattle. Based on the image, what city is 
the Space Needle in? Respond with one word or abbreviation, like NYC.

Horse Rabbit Seal

Horse is often used for riding. Which animal in the image is ridden by 
humans?

Sunglasses Blender Wallet

Sunglasses are worn to protect eyes from bright light. What accessory 
in the image shields the eyes from UV rays?

Round Hexagon Octagon

The moon is typically round. What shape is the moon in the image?

Figure 7: Randomly sampled data from ViLP.
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Lion Elephant Pig

The lion is known as the king of the savannah. Can you identify the 
largest animal in the image wearing a crown?

Map Pizza Pineapple

A map shows oceans without water and lands without buildings. Which 
object in the picture have these characteristics?

Ocean Toilet Sink

Ships typically sail on the ocean. Based on the image, what is the ship 
sailing on?

Worm Cat Book

A common phrase is “the early bird catches the worm”. What does the 
early bird catch in the image?

Seismograph Blender Umbrella

A seismograph is used to measure earthquake intensity. Which 
instrument in the picture records ground vibrations?

Gavel Drill Wrench

A gavel is used by judges in court. From the image, which object 
symbolizes judicial authority?

Parachute Guitar Umbrella

A parachute slows descent through the air. Which equipment in the 
image is used for safe skydiving?

Butterfly Moth Bee

A caterpillar becomes a butterfly. What does the caterpillar become in 
the image?

Anchor Spoon Toothbrush

An anchor keeps a ship steady in the water. From the image, which 
item prevents boats from drifting?

Triangle Square Round

A pyramid consists of triangular faces. What shape are on the faces of 
the pyramid shown in the image?

Key Crayon Carrot

Pianos usually have black and white keys. What object in this picture is 
covering the keys on the piano?

One Two Three

There is only one moon orbiting the Earth. How many moons are 
orbiting the planet in this picture?

Platypus Kangaroo Bear

The platypus is a mammal that lays eggs. Which mammal in the image 
is shown an egg-layer?

Leonardo Vincent Claude

Leonardo da Vinci painted the Mona Lisa. Who is painting the Mona 
Lisa in the image? Please answer his/her first name.

Figure 8: Randomly sampled data from ViLP.
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B.2. More details in ViLPbenchmark data generation

Our proposed dataset introduces Question-Image-Answer
(QIA) triplets designed to challenge state-of-the-art Vision-
Language Models (VLMs) against visual language priors.
The construction process combines human-guided and auto-
mated efforts to ensure quality and alignment.

Question-Answer (QA) Generation: Most QA pairs are
authored by humans following the design principles in Sec-
tion 3.1. Additionally, candidate QA pairs are generated
using models like OpenAI-O1 and Claude-3.5-Sonnet with
carefully crafted prompts. One example prompts shown in
Figure 10. These candidates undergo human review, where
they are refined or removed to meet our quality standards.

Image Generation: For each QA pair, we use GPT-4 to
generate multiple descriptive image prompts (see Figure 9).
These prompts are provided to image generation models,
such as FLUX and DALL-E 3, to produce candidate images.
Human reviewers then select the most suitable image or
request re-generation as needed to maintain consistency
with the QA context.

Human Review and Testing: At every stage, human re-
viewers rigorously evaluate the generated outputs to ensure
quality, clarity, and challenge level. In addition to filtering
out low-quality or insufficiently challenging triplets, we dy-
namically test the QIAs to confirm that they remain intuitive
for humans while being difficult for VLMs.

Cost: The complexity of our data creation process leads to
a significant average cost of approximately $2.50 per QIA
triplet in ViLP, excluding human labor costs.

Task: Using the provided question and possible image-based
answers, generate detailed text prompts for image generation.
Each image prompt should reflect the question’s context and
incorporate one of the image-based answers.
Question: Question
Image-based Answer:[Answer1, Answer2, Answer3]
For each possible image-based answer, create an image
prompt that describes what the image might look like based
on the question.
Please be creativity. For example, if the question asks who
is using this mop to clean the floor in the picture? and the
answer is eraser. The image prompt should really describe
the image of an eraser uses a mop to clean the floor.
Format the output strictly as a JSON list, like this example:
[
"prompt1": "Image Generation Prompt text here",
"prompt2": "Image Generation Prompt text here",
"prompt3": "Image Generation Prompt text here",
]

Figure 9: The prompt we used for generating text-prompt
for image generation.

In the below, I try to propose questions along with three
answers where the first answer is corresponding to the ques-
tion text directly, while the other two are usual and counter-
intuitive, which could lead to wrongs of VLMs. Please
help me generate more Question-3 answer pairs, which are
different from what I have provided.
- All the potential answers should a single world.
- Help me generate a format where I can direct copy paste
into Goole Sheet. Also, please a ; between question and
each answers.
- Please be very creative and different from my provided
examples - the answer 2 & 3 should be very diverse and
different compared to answer 1.
- Every question contains a statement at the beginning which
consists of the answer1 as part of it.
- Please understand the principles and generate the QA very
different from my provided examples
Some Examples:
- A screwdriver is used for tightening screws. From the im-
age, which tool is used to turn screws? Screwdriver Hammer
Scissors
- A pen is a tool used for writing. Which object in the image
is used to write on paper? Pen Hammer Shoe
- Clocks are used to measure time. Can you identify the item
in the image that is used to measure time? Clock Spoon
Candle
- A violin has four strings and is played using a bow. Accord-
ing to the image, which musical instrument is being played
with a bow? Violin Guitar Saxophone
- Camels have humps. Which animal in the image stores fat
in its humps? Camel Horse Tiger
- Honey is made by bees. Which insect in the image produces
honey? Bee Ant Dragonfly
- An anvil is a tool used by blacksmiths. What object in the
image is used by blacksmiths to forge metal? Anvil Fork
Wrench
- A gavel is used by judges in court. From the image,
which object symbolizes judicial authority? Gavel Ham-
mer Wrench
- A syringe is used to inject medicine. From the image,
which tool is used for administering injections? Syringe
Scissor Drill
- An anchor keeps a ship steady in the water. From the
image, which item prevents boats from drifting? Anchor
Spoon Toothbrush
- A chainsaw is a power tool for cutting wood. What de-
vice shown is typically used by lumberjacks to fell trees?
Chainsaw Blender Stapler

Figure 10: One prompt we used for potential QAs designs
of ViLP

B.3. Ablation studies: realistic images

Our benchmark data are currently generated by DALL·E-
3 (Ramesh et al., 2021) and Flux, both of which produce
cartoon-like, synthetic images rather than photorealistic
ones. To assess the impact of image style, we regener-
ated a subset of 45 QIA pairs using GPT-4o’s latest image
generation model to enhance realism, as illustrated in Fig-
ure 11. We then measured changes in model correctness
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Figure 11: Realistic image comparison. Each image pair shows our original benchmark data on the left and a corresponding
realistic example generated by GPT-4o on the right.

when these more realistic images were used, with negative
values indicating performance degradation. For definitions
of these metrics, please refer to the beginning of Section 5.
The results in Table 6 show that increased realism slightly
reduces performance for the “Score” metric in most cases,
while its effects on “Prior” are generally negligible. These
ablation findings suggest that introducing more realistic
images may increase the task’s difficulty, highlighting an
important direction for future research.

V iLPF
Prior V iLPF

Score V iLPP
Prior V iLPP

Score

GPT-4o 0 -2.2% 0 0
GPT-4o-mini 0 -1.1% 0 -2.2%
Claude-Sonnet-3.5 -2.2% -4.4% 0 -3.3%
Claude-Opus-3 2.2% -1.1% -2.2% -1.1%

Table 6: Impacts of Realistic Styles. Each value repre-
sents the change in correctness when replacing the original
images with realistic ones (Realistic - Original). Negative
values indicate a drop in performance, suggesting increased
task difficulty. The metric definitions are provided in the
beginning of Section 5.

B.4. Comparisons to other datasets

In this section, we compare our benchmark to other
benchmarks, including Winoground (Thrush et al., 2022),
Whoops!(Bitton-Guetta et al., 2023a), and Hallusion-

Bench(Guan et al., 2023). While these datasets are impact-
ful, their evaluation perspectives differ from ours, covering a
range from high-level design principles to low-level formats.

B.4.1. COMPARE TO WINOGROUND (THRUSH ET AL.,
2022)

Winoground centers on vision-linguistic compositional rea-
soning by presenting models with two images and two cap-
tions that contain the same words arranged differently. The
goal is to match each image to its correct caption based on
the text’s compositional structures and the visual content
(as detailed in the Introduction and Sec. 3.1 of (Thrush
et al., 2022)). However, Winoground’s captions do not chal-
lenge language priors or introduce out-of-distribution visual
information. Both captions adhere to common linguistic
expectations, and there is no explicit misleading information
provided to test resistance to language biases. Additionally,
most of their images are typical internet images, featuring
common visual patterns.

Qualitative Comparison: As shown in Figure 12 consist-
ing of Winoground examples, both captions and images are
normal and satisfy common linguistic expectations and com-
mon sense. The evaluation focuses on whether the model
can discern the compositional differences between the two
images and two captions, then match them correctly. Com-
paring Figure 12 and Figure 1, 7, 8, You can discern the
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Figure 12: Winoground Data Example. Our benchmark is different from Winoground, as Winoground focuses on
vision-linguistic compositional reasoning. Both captions and images are normal and satisfy common linguistic expectations
and common sense.

significant differences among the tested images.

Quantitative Comparison: Both ViLP; and Winoground
benchmarks include paired textual information in their se-
tups. In our benchmark, ViLP; Prior QAs and ViLP; Score
QAs share the same question but differ in their answers. In
Winoground, each example has two captions, and the task
is to match each caption to its correct image.

Setting. To demonstrate the differences, we use GPT to eval-
uate the commonness of these paired textual components.
Specifically, GPT-4o rates the oddity of scenarios described
in texts on a scale from 1 (very rare) to 10 (very common).
The resulting scores are then compared.

Results. In our benchmark, Prior QAs scored 9.37, indicat-
ing that these answers are designed to align with language
priors and are highly common. Score QAs scored 1.65,
showing that these QA pairs are rare, making them diffi-
cult to infer without the corresponding visual information.
Notably, Prior and Score QAs share the same question but
differ in their answers, and this significant contrast in scores
showcases how we inject strong language priors to test a
model’s vulnerability to linguistic distractions.

By comparison, Winoground’s two captions scored 8.05
and 8.08, indicating two primary observations: (1) both
captions align well with language priors, which means

Winoground does not challenge language priors or eval-
uate out-of-distribution scenarios; (2) the minimal score
difference between the two captions confirms there is no
significant variance in language priors, as examining how
VLM models react to different language priors is beyond the
scope of Winoground. In contrast, that aspect is precisely
our focus.

B.4.2. COMPARE TO WHOOPS! (BITTON-GUETTA
ET AL., 2023A)

Whoops! is designed to evaluate a model’s ability to de-
tect weirdness in images, emphasizing tasks where images
depict unusual or nonsensical scenarios. It heavily relies
on common sense reasoning, requiring models to recog-
nize visual elements and then identify subtle inconsistencies
among them. For example, for the lit candle inside a tightly
sealed glass jar on the homepage, models must realize that
“a candle needs a constant oxygen supply to burn, which
would not exist in a sealed jar", making a burning candle
inside a sealed jar unlikely. This benchmark thus focuses
on common-sense reasoning rather than challenging visual
language priors.

Qualitative Comparison

Although Whoops! also includes creative, out-of-
distribution images, it does not focus on using language
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Figure 13: Example of Whoops! Dataset.Whoops! also has creative images. While unlike ours, its questions are common
questions without strong language priors.

priors to test a model’s susceptibility to linguistic distrac-
tion, as our benchmark does. In its QA mode (comparable to
our task), the questions are straightforward and lack strong
language priors. Some examples can be found in Figure 13.
Additionally, Whoops! uses open-ended questions, offer-
ing greater freedom in answers while introducing potential
ambiguity or divergence in responses.

Quantitative Comparison

Setting. Unlike Winoground and our benchmark, Whoops!
does not provide control groups or textual components for
comparison. To measure language priors, we analyze the
suggestiveness of questions by evaluating GPT-4o’s cer-
tainty when answering them without any visual context. A
more suggestive question typically yields more determined

and confident responses, whereas a less suggestive question
produces more varied answers. We calculate how many
unique answers GPT-4o provides over five attempts at tem-
perature 1.0 to promote randomness. Semantic differences
are normalized to exclude synonyms.

Results. We find that Whoops! questions produce an average
of 2.58 unique answers (out of five attempts) with a standard
deviation of 1.48. For our benchmark, without facts, GPT-
4o provides an average of 1.53 unique answers (std 0.94),
and with facts, 1.10 unique answers (std 0.42).

Although both benchmarks use creative images, these re-
sults indicate that Whoops! questions remain more general
and do not push GPT-4o toward stereotypical responses. In
contrast, our benchmark deliberately uses suggestive ques-
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Figure 14: Example of HallusionBench. HallusionBench also has questions which can be answered without images. While
it is based on facts instead of stereotypes like ours. Moreover, its images are limited to Chart, Map, OCR and Table.

tions to elicit stereotype-consistent answers, reflecting our
emphasis on testing language priors.

B.4.3. COMPARE TO HALLUSIONBENCH (GUAN ET AL.,
2023)

HallusionBench has two components: Visual Dependent,
which focuses on testing models’ general visual reasoning
skills, and Visual Supplement, which examines a model’s
visual reasoning in tandem with its parametric memory.

The Visual Supplement part is related to our benchmark,
as its questions, like ours, can be answered without visual
information. However, the key difference lies in their design.
HallusionBench questions rely on parametric memory and
strict factual knowledge (e.g., “Which country has the most
gold medals in the 2024 Olympics?”), whereas our bench-
mark questions are based on common stereotypes (e.g., “A
soccer ball is round.”). This distinction significantly con-
strains the diversity of HallusionBench’s questions—its of-
ficial release contains only 50 question pairs—while our
approach allows for a broader range of scenarios, includ-
ing texture, shape, conceptual combinations, hallucinated
elements, and proverb-based contexts.

Moreover, HallusionBench focuses on a narrow set of image
types (charts, tables, maps, and OCR). It tests reasoning

through subtle modifications (like changing one digit in a
chart), which is fundamentally different from our approach
of creating diverse visual contexts. Figure 14 showcases
typical HallusionBench examples, illustrating the limited
scope of both images and QAs, whereas our benchmark
includes a variety of out-of-distribution images and more
suggestive QAs (see Figure 1, 7, 8).

B.5. Human Study

For human evaluation, we hired Ph.D.-level candidates to
participate in testing. They were asked to answer questions
with a single image provided each time, and the QIAs were
randomly shuffled to avoid any sequential context. To ensure
efficiency, we conducted an oral test instead of a written
one, recording their responses. After the test, we updated
the synonym sets for the QIAs based on their answers.

B.6. More failure cases analysis

This subsection provides several typical failure cases ob-
served in the inferred results of VLMs on ViLP. We iden-
tified several consistent failure patterns, illustrated in Fig-
ure 15. For deeper analysis, we also prompted the VLMs to
output their reasoning before finalizing answers, allowing
us to better understand how these errors arise. Below, we
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Question: The moon is typically depicted as round. 
What shape is the moon in this night sky image?

Reasoning: clear white edges surrounding the moon 
suggest augmented artistic aspects, possibly to emphasize 
the brightness or create a specific visual effect the main 
body of the moon retains its typical roundness, but the 
overall image is more dramatic and highlighted than a 
standard photograph of the moon

Single word Answer: Round
Correct Single word Answer: Octagon

Question: Microscopes are used to view tiny 
organisms. In the image, what piece of equipment 
is viewing tiny organisms?

Reasoning:  based on the description and visual cues in the image, the 
main focus is on the object resembling a microscope, which is typically 
used to view tiny organisms this particular microscope is 
anthropomorphized with \"eyes\" and \"hands,\" creatively designed to 
look like a character but retaining the essential parts of a microscope 
(lenses and a stage)  the context indicates that it is equipped to observe 
or interact with tiny specimens

Single word Answer: Microscope
Correct Single word Answer: Stapler

Question: The Eiffel Tower is situated in Paris. From the image, 
can you identify the city where the Eiffel Tower is located?Please 
respond with a single word or abbreviation, like NYC for New York 
City.",

Reasoning: first, examine the distinct landmarks in the 
image the eiffel tower is depicted, which is a globally 
recognized symbol of paris, france there are also 
architectural elements that resemble those found in beijing's 
tiananmen square however, since the question specifically 
asks about the eiffel tower, and it is exclusively located in 
paris, this can lead us to the conclusion
Single word Answer: Paris
Correct Single word Answer: Beijing

Question: An umbrella could have a saxophone as 
its handle. Which object in this image represents the 
handle of the umbrella?

Reasoning: observing the image, there is an object that 
uniquely resembles a musical instrument and is connected 
to the main structure of the umbrella, fulfilling the typical 
location and function of an umbrella handle

Single word Answer: Saxophone
Correct Single word Answer: Banana

Question: Violin usually has 4 strings. How many 
strings does the violin have, as shown in the image?

Reasoning: first, let us examine the image the object in 
question is a violin, and we need to count its strings typically, 
a violin has 4 strings. upon looking closely at the image 
provided, the violin depicted in the picture also has 4 strings

Single word Answer: Four
Correct Single word Answer: Three

Question: A common phrase is “the early bird 
catches the worm”. What does the early bird catch 
in the image?

Reasoning:  the early bird catches a worm in the image

Single word Answer: Worm
Correct Single word Answer: Cat

Figure 15: Failure cases analysis. We list six typical failure cases generated by VLMs on ViLP.

summarize the failure patterns in the same order as they
appear in the figure, from left to right and top to bottom.

- Shape recognition can fail in VLMs, causing them to revert
to priors rather than accurately interpreting visual input.

- Models sometimes struggle to count accurately. Instead
of performing an actual count, they default to relying on
learned priors to estimate quantities.

- Models may refuse to accept visual information that contra-
dicts their learned priors, whereas humans can comprehend
hypothetical scenarios. For instance, the model recognizes
the city as Beijing but rejects the correct answer because it
expects the Eiffel Tower to be in Paris.

- Sometimes the model overly relies on memorized proverbs,
resulting in predictions that align with these proverbs rather
than the actual content of the input image.

- For images with creative concepts, the model may overly
rely on its learned priors. As illustrated, a common prior is
that microscopes are used to view organisms, leading the
model to answer “microscope” rather than identifying the
creatively depicted stapler.

- For images with blended features, the model may rely
mostly on text input while overlooking the visual cues. As
illustrated, the VLM heavily depends on textual input lead-
ing to saxophone as the answer.
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C. Details in Image-DPO data generation and training
Our image-DPO data generation pipeline consists of two stages. In the first stage, we leverage the VLM we aim to enhance to
perform self-guided data generation with the aid of pre-trained image generative models. This stage produces a large number
of new question-image-answer (QIA) triplets. In the second stage, we apply three types of image corruptions—Gaussian
blurring, pixelation, and semantic editing—to generate good-bad QIA pairs, denoted as Iw (good) and Il (bad).

Details of the hyperparameters used in the experiments are provided at the end of this section.

C.1. VLM self-guided data generation

VLM
Seed Image Pre-trained Model

VLM

Generated Image

VLM
Tool : Stable Diffusion,
Prompt : Generate a new 
image inspired by the 
green truck driving on the 
dirt road. The image 
should feature a futuristic 
cityscape with the truck 
driving through the 
streets. The truck should 
be the central focus.

Instructions

Justify: The response provides relevant information …, addressing key aspects of the monster 
truck and its purpose. … It demonstrates an accurate understanding of the image's details ....
Score: 4

Rating of QA

Q: What is the purpose of the green 
truck in the image?
A: The green truck is a monster truck, …, 
the truck's green color and its presence 
on a city street … suggest that it could 
be participating in a promotional event 
or a show for the public.

Generated QA

GroundingDINO
Instruct Pix2Pix

Stable-Diffusion XL

Figure 16: Overview of our data generation pipeline. We begin with an image only, from which instructions are derived
using a VLM. These instructions guide the creation of a new image or the modification of the existing one. The generated
image is then processed by the VLM to generate QA pairs. Both the QA pair and the image are subsequently input back into
the VLM to assess the quality of the answers. No human-written in-context examples are used throughout this process.

As illustrated in Figure 16, our data generation process begins by utilizing VLMs to suggest modifications or draw
inspiration for input images without relying on any in-context examples. The used text prompt is shown in Figure 18.
Subsequently, pre-trained models such as Stable Diffusion XL (Podell et al., 2023), Instruct-Pix2Pix (Brooks et al., 2023b),
and Grounded-SAM (Ren et al., 2024) are employed to either modify existing images or generate entirely new ones.

The altered or newly created images, along with the instructions that guided their generation, are then used by the same
VLMs to produce corresponding question-answer pairs (QAs) based on the text prompt shown in Figure 19. An example of
this process is provided in Figure 17. Importantly, all instructions, tool selections, and QA generation are autonomously
handled by the same VLM we aimed to improve.

In particular, Grounded-SAM requires the VLM to specify the object to be modified before generating images. To facilitate
this, we use an additional text prompt (Figure 20) after the VLM generates the initial instructions (the pink region of
Figure 17).

To provide a better understanding of our generated QIAs, we randomly sampled and listed some examples of the generated
QIA data, as shown in Figures 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, and 35.
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Seed Image

Tool : Stable Diffusion,
Prompt : Generate an image of a snowy night in a 
city, with the train as the main subject. Include a 
few people walking around, some benches, and a 
few trees. Make the scene more artistic and 
visually engaging by adding a hint of surrealism.

Instructions

Tool : Instruct-Pix2Pix,
Prompt : Transform the image to show a snowy 
landscape with a few people walking around and 
benches nearby. Adjust the colors to make the 
scene more vivid.

Instructions

Tool : Grounded-SAM,
Prompt : Replace the people near the train with a 
robot or a humanoid figure. 

Instructions

Q: How does the image convey the atmosphere of a winter night in the city?
A: The image conveys the atmosphere of a winter night in the city through the 
combination of the yellow train on the tracks, the snow-covered ground, and 
the presence of benches …

Generated QA

Q: How did the modification affect the color palette and overall visual appeal 
of the image?
A: The modification enhanced the color palette and visual appeal of the image 
by adjusting the colors to create a more vivid and engaging scene…

Generated QA

Q: What elements were added or removed in the transition from the original 
image to the new image, and why might these changes have been made?
A: In the transition …, people were removed, and a humanoid figure or robot 
were added. The removal of people and the addition of humanoid figures 
suggest that the creator wanted to shift the focus of the image from the human 
element to the technological or mechanical aspect. …

Generated QA

Figure 17: Randomly sampled generation examples. Our proposed data generation pipeline utilizes pretrained model to
generate diverse new images from existing seed image datasets.

Given this image, please suggest a range of creative edits, tasks, or transformations that could be applied using advanced image
processing tools. These tasks may include artistic transformations, vivid color adjustments, object detection and modification, or
completely creating a new image inspired by the original. Specify which tool would be best suited for each task, choosing from
Stable Diffusion for image generation, InstructPix2Pix for image modification, or GroundingDINO for object modification. Your
recommendations should help in understanding the potential of the image and exploring creative possibilities.

Expected Response Format:
Item Number: 1
Tool Used: [Specify the tool - Stable Diffusion or InstructPix2Pix or GroundingDINO]
Text Prompt for Processing: [Detailed description of the task or transformation to be performed. For image generation, please
provide complete description based on the understanding of the provided images, since we only feed text prompt for this task.]
Item Number: 2
Tool Used: [Specify the tool - Stable Diffusion or InstructPix2Pix or GroundingDINO]
Text Prompt for Processing: [Detailed description of the task or transformation to be performed. For image generation, please
provide complete description based on the understanding of the provided images, since we only feed text prompt for this task.]
Item Number: 3
Tool Used: [Specify the tool - Stable Diffusion or InstructPix2Pix or GroundingDINO]
Text Prompt for Processing: [Detailed description of the task or transformation to be performed. For image generation, please
provide complete description based on the understanding of the provided images, since we only feed text prompt for this task.]

Figure 18: The prompt for instruction generation. We ask the VLM to generate instructions for using pre-trained image
models.
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Given this image, could you please generate a series of insightful and diverse question-answer pairs based on the image and its
descriptions? We are interested in exploring various facets of the image, including:
- Holistic styles and layouts: Questions that analyze the overall design, style, and layout of the image.
- Object-specific details: Questions that delve into particular elements or objects within the image, discussing their characteristics
or functions.
- Background context: Questions that speculate about the background story or the setting of the image.
- Overall themes: Questions that interpret the thematic elements and messages portrayed in the image.
We encourage creative and thought-provoking questions that extend beyond the basics. Please generate questions that cover a
broader range of observations and insights drawn from the image. Each question should be followed by a comprehensive answer,
providing depth and context.

Expected Multiple Response Format:
Item Number: 1
Question: [Propose a unique and insightful question based on the descriptions and the images.]
Answer: [Provide a comprehensive answer to the proposed question.]
Item Number: 2
Question: [Propose a unique and insightful question based on the descriptions and the images.]
Answer: [Provide a comprehensive answer to the proposed question.]
Please ensure each question-answer pair is well-defined and informative.
Please provide at least 5 question-answer pairs based on the input provided.

Figure 19: The prompt for single-image QAs. We ask the VLM itself to generate single-image QAs based on the generated
images by pre-trained models.

Analyze the provided image and its accompanying modification instruction to identify the removed object description, the new
object description, and the new image description.
Modification Instructions: <Text Prompt for Processing>
Expected Multiple Response Format:
Item Number: 1
Removed Object Description: [Brief description of the object to be detected and removed]
New Object Description: [Description of a new, different object to replace the removed one]
New Image Description: [Description of the image after each object’s removal, focusing on changes and remaining elements]

Item Number: 2
Removed Object Description: [Brief description of the object to be detected and removed]
New Object Description: [Description of a new, different object to replace the removed one]
New Image Description: [Description of the image after each object’s removal, focusing on changes and remaining elements]

Figure 20: The prompt for instruction generation of Grounded-SAM. We ask the VLM to generate designated instructions
to use Grounded-SAM.

C.2. Image DPO data preparation and training details

This section details the construction of good-bad question-image-answer (QIA) pairs (Iw, Il) based on the QIAs generated
by the pipeline described in Appendix C.1. In brief, the data generation pipeline outlined in Appendix C.1 utilizes VLMs in
conjunction with pre-trained image models to generate or modify images and create corresponding question-answer pairs.
This process results in a collection of QIA triplets, as illustrated in the Figures 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, and 35.

After generating the QIA triplets, we apply three image corruption methods—Gaussian blurring, pixelation, and semantic
editing—to create good-bad QIA pairs for ImageDPO training (Section 4.1), while keeping the QA components unchanged.

For Gaussian blur, we use a kernel size of 40 for Cambrian and 80 for LLaVA, as the larger kernel size showed better
performance for LLaVA. For pixelation, we apply block sizes of 32 for Cambrian and 64 for LLaVA. For these two
types of corruption, we utilize data generated by all three pre-trained models: Stable Diffusion, Instruct-Pix2Pix, and
Grounded-SAM.
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However, for semantic editing, we rely solely on data from Grounded-SAM, which modifies a single object in the image
while leaving the rest unchanged. The object to be altered and the type of modification are determined by the VLMs
based on the text prompt (Figure 20). For instance, the VLM decides to add a headset to the chef, as shown in Figure 21.
Grounded-SAM then modifies the image accordingly by adding the headset, after which the VLM generates a single QA
pair based on the text prompt (Figure 19). Note that, we retain only images where the altered region covers more than 10%
of the image size, as this ensures a significant and distinct change.

For model training, we constructed datasets comprising 800k and 400k DPO pairs to fine-tune LLaVA (7B and 13B)
and Cambrian-8B, respectively. Batch sizes are set to 112 for LLaVA-7B, 80 for LLaVA-13B, and 8 (with 4 gradient
accumulation steps) for Cambrian-8B. We employ LoRA with a rank of 128, an alpha of 256, and a learning rate of 5e-7,
training each model for 2 epochs. The GPUs we used are 8-L40S.

Q: What is the significance of the headset in the man's work environment?
A: The headset is likely used for communication purposes, such as 
coordinating with other kitchen staff, receiving instructions from a manager or 
client, or listening to music to create a more enjoyable working atmosphere. 
In a busy kitchen environment, clear communication and efficient 
coordination are essential to ensure smooth operations and maintain high 
standards of food quality and safety.

Q: What are the potential benefits of the man wearing a headset while 
working in the kitchen?
A: Wearing a headset while working in the kitchen can provide several 
benefits. First, it can help the man communicate more effectively with his 
colleagues or clients, ensuring that everyone is on the same page and any 
issues are addressed promptly. Second, it can help him focus on his tasks by 
minimizing distractions and external noise, allowing him to concentrate on his 
work. Finally, if the headset plays music, it can create a more pleasant and 
up

Figure 21: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: What is the purpose of the futuristic train depicted in 
the image?
A: The futuristic train in the image serves as a mode of 
transportation, likely designed for high-speed travel and 
efficiency. The sleek, modern appearance of the train 
suggests that it is built for the future, with advanced 
technology and features to enhance the travel experience 
for passengers.

Q: What message does the image of the futuristic train 
convey about the city's progress and development?
A: The image of the futuristic train conveys a message of 
progress and development in the city. The sleek and 
modern design of the train suggests that the city is 
constantly evolving and improving its infrastructure to meet 
the needs and expectations of its residents and visitors. 
The train's presence also indicates that the city is investing 
in advanced transportation systems to enhance the quality

Figure 22: Randomly sampled single-image QA generated by our data generation pipeline.

Q: What is the purpose of the fence in the image?
A: The fence in the image serves as a barrier between the sheep and 
the viewer, creating a sense of separation and emphasizing the 
boundary between the animals and the human observer. The fence 
may also serve a practical purpose, such as keeping the sheep 
contained within a specific area or protecting them from potential 
threats. Furthermore, the fence could be seen as a symbol of the 
relationship between humans and animals, with the fence acting as a 
physical representation of the distance that can exist between the two.

Q: What is the significance of the sheep standing next to the fence in 
the image?
A: The sheep standing next to the fence in the image could be 
interpreted as a representation of the boundary between nature and 
human-made structures. The fence may symbolize the barrier that 
separates the animals from their natural habitat, while the sheep 
represent the resilience of nature and the animals' ability to adapt to 
their environment. Additionally, the sheep's presence near the fence 
may also signify the potential for interaction between humans and 
nature, as well as the importance of maintaining a balance between 
the two.

Figure 23: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: What is the tablecloth's design and how does it 
complement the colorful bowls and plates?
A: The tablecloth has a multicolored, patterned, and floral 
design. This design complements the colorful bowls and 
plates set atop the table, as they are visually appealing and 
create a harmonious aesthetic. The vibrant colors within the 
colorful bowls and plates, as well as the lively tablecloth, 
offer a lively and inviting ambiance, making the dining table 
appear more vibrant and engaging. This can contribute to 
creating a lighthearted and cheerful atmosphere for diners 
enjoying their meal at the table.

Q: What is the purpose of the potted plants in the image?
A: The potted plants in the image serve as decorative 
elements, adding a touch of greenery and natural beauty to 
the setting. They can also help create a more relaxed and 
welcoming atmosphere, making the dining experience more 
enjoyable for guests.

Figure 24: Randomly sampled single-image QA generated by our data generation pipeline.

Q: What design elements can be observed in the kitchen that 
contribute to its modern and futuristic appearance?
A: The kitchen features a sleek and minimalist design, with white 
appliances and surfaces that create a clean and uncluttered look. 
The presence of a large island in the middle of the kitchen adds 
functionality and creates a focal point for the space. The lighting, 
particularly the presence of a light on the ceiling, enhances the 
futuristic atmosphere of the kitchen. The overall layout and design 
choices reflect a contemporary aesthetic, making the kitchen feel 
both stylish and efficient.

Q: What is the significance of the presence of fruits in the kitchen?
A: The presence of fruits in the kitchen suggests that the 
homeowner values healthy eating and incorporates fresh 
ingredients into their meals. Fruits are an excellent source of 
vitamins, minerals, and fiber, and their inclusion in the kitchen 
indicates a commitment to maintaining a balanced and nutritious 
diet. Additionally, the fruits add a touch of color and natural beauty 
to the kitchen, enhancing its overall aesthetic appeal.

Figure 25: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: How does the arrangement of the clocks and figures contribute 
to the overall design of the space?
A: The arrangement of the clocks and figures in the image creates 
a visually striking and cohesive design. The clocks, with their 
different shapes and styles, are placed in a way that draws attention 
to each one, while the figures surrounding them add an element of 
balance and harmony to the composition. The overall effect is a 
space that is both functional and aesthetically pleasing, inviting 
viewers to appreciate the artistry and craftsmanship of the clocks 
and figures.

Q: What is the context or setting of the image?
A: Based on the image, it is difficult to determine the exact context 
or setting in which the clocks and figures are displayed. However, it 
can be inferred that the space is likely a public or semi-public area, 
such as a lobby, gallery, or museum, where art and design are 
showcased. The presence of multiple clocks and figures suggests 
that the space may be used to convey a message or theme related 
to time or human experience, or simply to provide an aesthetically 
pleasing and functional display.

Figure 26: Randomly sampled single-image QA generated by our data generation pipeline.

Q: What is the significance of the green-themed bathroom and the 
choice of plants used for decoration?
A: The green-themed bathroom with green plants on the walls and 
a green bathtub suggests a connection to nature and a focus on 
creating a relaxing and calming atmosphere. The choice of 
greenery as decoration adds a touch of freshness and tranquility to 
the space, making it an ideal environment for unwinding and 
rejuvenation. Green plants are also known for their air-purifying 
properties, which can contribute to a healthier and more 
comfortable indoor environment.

Q: How does the green color scheme and the use of plants affect 
the overall ambiance of the bathroom?
A: The green color scheme and the use of plants in the bathroom 
contribute to a serene, soothing, and natural atmosphere. The 
green hue is often associated with tranquility, relaxation, and 
freshness, which are all essential elements in a bathroom setting. 
The incorporation of green plants adds a touch of nature and life to 
the space, making it feel more inviting and comfortable. Additionally, 
the plants can help create a more balanced and harmonious 
environment, promoting a sense of well-being and relaxation.

Figure 27: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: What is the purpose of the giraffes being in a line?
A: The giraffes are lined up in the image, possibly for a variety of 
reasons. One possibility is that they are waiting for a treat or a meal, 
as giraffes often gather around food sources in the wild. Another 
possibility is that they are standing in a line as part of a social 
behavior or a natural formation that occurs within their herd. This 
line formation could also be a result of the giraffes being trained or 
directed by a zookeeper or wildlife caretaker.

Q: What is the color palette used in this painting, and how does it 
contribute to the overall mood or atmosphere?
A: The painting features a green and orange color palette, which is 
commonly associated with natural environments such as forests or 
grasslands. These colors evoke a sense of tranquility, warmth, and 
vitality, creating a vibrant and lively atmosphere that complements 
the giraffes' natural habitat. The use of these colors in the painting 
also helps to create a sense of depth and dimension, making the 
image more engaging and visually striking.

Figure 28: Randomly sampled single-image QA generated by our data generation pipeline.

Q: What is the significance of the teddy bear holding a 
cheerleader's baton?
A: The image of the teddy bear holding a cheerleader's baton is 
likely symbolic or playful in nature. It could represent a celebration 
of team spirit, friendship, or support for a sports team or a school 
event. The combination of the stuffed animal and the baton might 
evoke feelings of nostalgia, innocence, and youthful enthusiasm.

Q: How does the image of the teddy bear holding a cheerleader's 
baton relate to the theme of cheerleading?
A: The image of the teddy bear holding a cheerleader's baton 
relates to the theme of cheerleading by incorporating a symbol of 
team spirit, support, and enthusiasm. The presence of the baton 
suggests that the teddy bear is a cheerleader, while the stuffed 
animal represents a more innocent, youthful, and friendly aspect of 
the cheerleading experience. The combination of these elements 
creates a visually appealing and emotionally evocative image that 
highlights the positive and uplifting aspects of cheerleading.

Figure 29: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: How is the man's eating experience different from a regular 
meal?
A: The man's eating experience is different from a regular meal 
because the sandwich he is eating is significantly larger than what 
one would typically consume. This unusual size could make the 
eating experience more challenging and time-consuming, as he 
would have to consume the sandwich in smaller bites or even take it 
apart to eat it. It could also be a novelty or a fun experience for the 
man, as he attempts to eat the giant sandwich.

Q: What is the significance of the man eating a giant sandwich in 
the image?
A: The image of the man eating a giant sandwich could signify 
various things, such as the enjoyment of food, indulgence, or even 
a metaphor for taking on challenges or overcoming obstacles. The 
sandwich might also represent a cultural or personal preference for 
the individual. The image could be used for advertising or promoting 
a restaurant or food establishment, or it could be a piece of artwork 
meant to evoke a particular emotion or message.

Figure 30: Randomly sampled single-image QA generated by our data generation pipeline.

Q: How does the color of the grass in the image contribute to the 
overall mood and atmosphere?
A: The lush green grass in the image creates a serene and 
peaceful atmosphere. The vibrant green color symbolizes growth, 
renewal, and harmony with nature. The presence of elephants 
walking across the grassy field adds to the tranquil and natural 
setting, evoking a sense of wonder and appreciation for the beauty 
of the natural world.

Q: How does the image of elephants in a field relate to the broader 
topic of conservation and wildlife preservation?
A: The image of elephants in a field serves as a reminder of the 
importance of conservation and wildlife preservation efforts. 
Elephants are considered vulnerable species, with their populations 
facing threats such as habitat loss, poaching, and human-wildlife 
conflict. The image highlights the need to protect and conserve 
these majestic creatures and their habitats, ensuring their survival 
and well-being for future generations.

Figure 31: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: What is the purpose of the motorcycle's kickstand?
A: The kickstand is used to keep the motorcycle stable and upright 
when it is parked.

Q: What is the overall design and style of the motorcycle?
A: The motorcycle has a sleek, modern design, and it appears to 
be well-maintained and ready for use.

Q: What is the significance of the motorcycle's location on the 
street?
A: The motorcycle's location on the street suggests that it is either 
parked or waiting to be ridden, and it is likely that the owner is 
nearby. The motorcycle's position on the street could also indicate 
that the owner is taking a break from riding or has stopped for a 
specific purpose, such as visiting a nearby business or meeting 
someone.

Figure 32: Randomly sampled single-image QA generated by our data generation pipeline.

Q: What architectural style is the building with the clock tower?
A: The building with the clock tower appears to be a church, 
featuring a clock tower and a cross. This suggests that the 
architectural style is likely influenced by Christian or Gothic styles, 
which are commonly found in churches. These styles often include 
pointed arches, ribbed vaults, flying buttresses, and intricate stained 
glass windows.

Q: What is the color scheme of the church's clock tower and 
cross?
A: The church's clock tower and cross are predominantly white, 
which is a common color choice in religious architecture to 
symbolize purity, innocence, and divinity. The white color may also 
serve to emphasize the contrast between the clock tower and the 
cross, highlighting the them.

Figure 33: Randomly sampled single-image QA generated by our data generation pipeline.
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Q: What is the primary ingredient in the dish being cooked in the 
pot?
A: The primary ingredient in the dish being cooked in the pot is 
broccoli.

Q: What is the role of the wooden spoon in the cooking process?
A: The wooden spoon is being used to stir the broccoli and other 
ingredients in the pot, ensuring even cooking and a well-mixed dish.

Q: What is the dish being prepared in the pot?
A: The dish being prepared in the pot is a stir-fry, which is a popular 
and quick cooking method that involves frying ingredients in a small 
amount of oil over high heat.

Figure 34: Randomly sampled single-image QA generated by our data generation pipeline.

Q: How does the image capture the essence of a typical day at a ski resort?
A: The image captures the essence of a typical day at a ski resort by 
showcasing the various activities and elements that one would expect to see 
during a winter sports trip. There are people skiing and snowboarding down 
the slopes, which indicates that the resort offers different types of winter 
sports for visitors to enjoy. The presence of snow-covered pine trees in the 
background adds to the picturesque winter landscape, creating a serene and 
inviting atmosphere for guests. Additionally, the fact that the resort is bustling 
with activity suggests that it is a popular destination for winter sports 
enthusiasts, further emphasizing the essence of a typical day at a ski resort.

Q: What is the significance of the snow-covered pine trees in the image?
A: The snow-covered pine trees in the image serve as a beautiful and 
natural backdrop for the ski resort. They add to the overall wintery 
atmosphere and enhance the picturesque quality of the scene. Additionally, 
the presence of pine trees is indicative of the type of environment that ski 
resorts are typically located in, which is a mountainous region with a 
significant amount of snowfall during the winter months. The snow-covered 
pine trees also provide a sense of tranquility and harmony with nature, which 
can be appealing to visitors seeking a peaceful and serene winter 
experience.

Figure 35: Randomly sampled single-image QA generated by our data generation pipeline.
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