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Abstract

Sophisticated machine learning models can de-001
termine the author of a given document using002
stylometric features or contextualized word em-003
beddings. In response, researchers have de-004
veloped Authorship Obfuscation methods to005
disguise these identifying characteristics. De-006
spite the growing popularity of large language007
models like GPT-4, their utility for this pur-008
pose has not been previously studied. In this009
work, we explore the application of popular010
large language models to the task of author ob-011
fuscation, and show that they can outperform012
a state-of-the-art approach. We analyze their013
behavior and suggest a personalized prompting014
technique for improving performance on more015
difficult authors. Our code and experiments016
will be made publicly available.017

1 Introduction018

Author Attribution (AA) and Author Verification019

(AV) are two classic problems in Natural Language020

Processing. AA involves predicting the author of021

a text T from a set of users. AV is a specific case022

of AA where we verify whether an author ui is023

the writer of a given T. With the abundance of024

online data and advancements in transformer-based025

language models, AA and AV have become easier026

tasks than ever. The emergent power of LLMs027

poses significant privacy threats (Staab et al., 2023),028

particularly to journalists and human rights activists029

working under authoritarian regimes who could be030

affected by successful AA and AV attacks.031

To defend against these models, authors employ032

Author obfuscation (AO) approaches to anonymize033

their writing by altering their writing style while034

retaining the meaning of the text. With the rise035

of ChatGPT and similar models, the standard for036

fluency in algorithm-generated text has increased.037

These widely accessible models are likely to be038

used for AO by vulnerable authors, making it cru-039

cial to assess their effectiveness for this purpose.040

In this study, we explore the abilities of three 041

popular LLMs: GPT-3.5 (Brown et al., 2020), 042

GPT-4 (Achiam et al., 2023), and Gemini (Team 043

et al., 2023) for author obfuscation through dif- 044

ferent prompts. We compare their obfuscation 045

performance with a state-of-the-art AO technique, 046

Avengers (Haroon et al., 2021), and evaluate the 047

methods based on the extent to which they preserve 048

semantics, readability of the output text, and their 049

success in fooling an external AV model. 050

2 Related Work 051

Early AO studies used rule-based methods for 052

sentence transformations, such as contraction re- 053

placement or synonym substitution (Castro-Castro 054

et al., 2017; Karadzhov et al., 2017; Potthast et al., 055

2016). These methods are simple and fast, but 056

reduce fluency and semantic similarity. Many re- 057

searchers treat AO as a an adversarial attack on 058

AA/AV models, aiming to minimally perturb the 059

input to ensure misclassification while maintain- 060

ing semantic similarity (Gao et al., 2018; Ebrahimi 061

et al., 2017). Adversarial perturbations are effec- 062

tive against transformer-based classifiers but often 063

degrade text quality (Crothers et al., 2022). 064

Other studies address the more realistic sce- 065

nario where the target classifier is unknown, us- 066

ing re-writing methods such as back translations 067

(Keswani et al., 2016; Altakrori et al., 2022). Al- 068

though effective, these approaches can produce 069

unnatural phrasing and semantic loss. Variational 070

auto-encoders and generative adversarial networks 071

have also been explored for obfuscation (Shetty 072

et al., 2018; Mireshghallah and Berg-Kirkpatrick, 073

2021). Mutant-X (Mahmood et al., 2019) and 074

Avengers(Haroon et al., 2021) use a genetic algo- 075

rithm to iteratively substitute words until the text 076

fools the internal classifier. Alison (Xing et al., 077

2024) is a faster syntactical AO method which re- 078

places multi-token phrases to fool an internal clas- 079

sifier trained on character and POS n-grams. 080
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3 Dataset081

The dataset that we work with in this study is082

IMDb62 (Seroussi et al., 2014) which consists of083

62,000 posts by 62 of the most prolific IMDb users.084

It contains reviews posted on IMDb about different085

movies and shows. We perform no pre-processing086

as the nature of the task requires to work with the087

raw text containing all stop-words and punctua-088

tion. We randomly select 9 users from all the users.089

There are 1000 posts for each user, of which we ran-090

domly select 900 as the training data and withhold091

the remaining 100 reviews as the test set.092

4 Method & Evaluation093

To change the writing style we use three large lan-094

guage models: GPT-3.5, GPT-4 and Gemini. For095

each review, we pass it to the models and prompt096

them to paraphrase the text. We use two different097

prompts to change the writing style and we aim098

to compare performance differences between the099

prompts. In the first prompt, P1, we ask the mod-100

els to paraphrase the review (“Rephrase the text101

below.”), whereas in the second prompt, P2, we102

explicitly mention in the prompt to paraphrase the103

review such that it seems like it was written by104

someone else (“Change the writing style of the text105

below so it seems like someone else wrote it.”). We106

hypothesize that prompting the model to conceal107

identifying characteristics in the text will direct108

its attention to specific features. We evaluate our109

experiments with three evaluation metrics:110

Semantic Similarity. To evaluate seman-111

tic preservation in our experiments, we use112

SBERT (Reimers and Gurevych, 2019) to get se-113

mantic embeddings of the reviews and compute the114

cosine similarity between the reviews. We do not115

use the common n-gram based metrics such ME-116

TEOR or BLUE (Banerjee and Lavie, 2005) as they117

often fail to robustly match paraphrased sentences.118

Obfuscation. To evaluate the extent of attribu-119

tion evasion, we measure the performance drop120

of an external AV model that we train for each au-121

thor separately. The bigger ScoreAV (Original)−122

ScoreAV (Obfuscated), the more successful is123

the Obfuscation.124

Fluency. To evaluate fluency, we use the per-125

plexity score calculated as negative log-likelihood126

by GPT-2 (Radford et al., 2019).127

5 Experiments 128

To evaluate how well the LLMs obfuscate each 129

author, we first train an AV model on the authors’ 130

training dataset and test it on the modified reviews. 131

The greater the drop in the performance of the AV 132

model, the more successful author obfuscation is 133

evading detection. We train two models as our AV 134

models: BERT (Devlin et al., 2018) and a logistic 135

regression trained on write-print features (Abbasi 136

and Chen, 2008), a set of linguistic and syntactic 137

features used to identify individuals in cyberspace. 138

The results for both models are presented in Table 1. 139

We find that, as expected, both models achieve 140

high accuracy on the AV task. While the average 141

BERT performance is higher, the logistic regres- 142

sion model with write-print features is more inter- 143

pretable and allows us to inspect which features are 144

most characteristic of each user (Section 6.3). We 145

will also see that it is more robust to obfuscation. 146

5.1 Test on Rephrased Reviews 147

To discover how well the three models obfuscate 148

each author, we prompt the models to paraphrase 149

the reviews using the two prompts described above, 150

and then we pass the modified reviews to the AV 151

model for each user. The results are in Table 1. 152

User Original Gemini P1 Gemini P2 GPT 3.5 P1 GPT 3.5 P2 GPT 4 P1 GPT 4 P2

User 562732 0.99 0.05 0.05 0.16 0.36 0.31 0.24
User 342623 0.96 0.98 0.94 0.98 0.96 0.99 0.94
User 306861 1.00 0.85 0.88 0.76 0.85 0.89 0.77
User 453228 1.00 0.11 0.01 0.41 0.51 0.22 0.20
User 819382 1.00 0.06 0.19 0.0 0.11 0.03 0.14
User 4445210 0.96 0.1 0.05 0.15 0.46 0.25 0.21
User 1406078 1.00 0.53 0.52 0.78 0.84 0.66 0.55
User 1416505 1.00 0.04 0.0 0.27 0.29 0.06 0.02
User 2020269 0.97 0.91 0.96 0.54 0.53 0.87 0.84

Average 0.98 0.40 0.40 0.45 0.54 0.47 0.43

(a) Accuracy scores of BERT on transformed reviews.
User Original Gemini P1 Gemini P2 GPT 3.5 P1 GPT 3.5 P2 GPT 4 P1 GPT 4 P2

User 562732 0.96 0.03 0.0 0.66 0.69 0.58 0.34
User 342623 0.90 0.96 0.96 0.98 0.98 0.98 0.97
User 306861 0.99 0.94 0.95 1.0 0.99 1.0 1.0
User 453228 0.99 0.61 0.30 0.95 0.94 0.79 0.65
User 819382 0.96 0.10 0.07 0.77 0.80 0.90 0.78
User 4445210 0.94 0.14 0.02 0.64 0.81 0.66 0.56
User 1406078 0.97 0.96 0.96 0.92 0.94 0.93 0.96
User 1416505 0.97 0.39 0.21 0.70 0.81 0.17 0.11
User 2020269 0.94 0.99 1.0 0.86 0.85 0.95 0.98

Average 0.95 0.56 0.49 0.83 0.86 0.77 0.70

(b) Logistic regression’s accuracy score on transformed re-
views.

Table 1: Accuracy Scores on Transformed Reviews.
P1 is the prompt just asking to rephrase and P2 is the
prompt which we ask the model to conceal the author.

We find that the average BERT AV performance 153

of 0.98 drops very significantly after obfuscation by 154

each model and prompt, to an average accuracy of 155

0.40, indicating that, in general, commercial LLMs 156

can successfully perform author obfuscation. How- 157

ever, the average obscures the strong bimodal dis- 158
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tribution of the AV performance for the nine users159

in our dataset. For some, the obfuscation works al-160

most perfectly, bringing the AV performance down161

to 0.0-0.11. Other authors are barely obfuscated,162

with an AV performance of 0.76-0.99. Gemini per-163

forms obfuscation the best against BERT, with the164

lowest AV accuracy for most of the users.165

When pitted against the Logistic Regression166

(LR) AV model, the commercial LLMs are less167

successful at obfuscation. The lowest average AV168

performance of 0.49 is achieved by Gemini under169

P2, which explicitly asks the model to conceal the170

author identity, while GPT-3.5 and 4 have unaccept-171

able average accuracies of 0.70 and up. As with172

BERT, we observe a bimodal performance distribu-173

tion, with some users successfully obfuscated and174

others barely obfuscated at all. Unlike BERT, the175

LR write-print model is sensitive to the differences176

between P1 and P2. Explicitly asking the models177

to conceal the identity of the author (P2), performs178

better than mere paraphrasing (P1).179

It is interesting to note that despite the varia-180

tion in performance across AV models, obfuscation181

models, and prompts, individual users seem consis-182

tently either easy or hard to obfuscate. It is possible183

that there is some consistency in which features are184

changed by the LLM rephrasing process, and that185

obfuscation will be successful when the features186

that are characteristic of a particular user align with187

that set. In Section 6.3, we analyze what features188

are being changed when the LLMs rephrase, and189

how this relates to the characteristics of individ-190

ual users, and the likelihood that a review will be191

successfully obfuscated.192

5.2 Comparison with Avengers193

We compare the obfuscation performance of the194

commercial LLMs with a state-of-the-art method,195

Avengers (Haroon et al., 2021). We run the compar-196

ison on a random four users out of the original set,197

as Avengers takes a longer time to generate output198

for each review. We first train the model for each199

user in the AV setting. Then we run the model on200

each user’s test set with the parameters set to their201

default values. The algorithm runs for 25 iterations202

on each input and we report the fluency and se-203

mantic preservation scores on the output of the last204

iteration. Next, we run the AV models we trained205

for each user on the obfuscated text generated by206

Avengers. The scores are in Table 2.207

The commercial LLMs produce output that is208

significantly more fluent. This is to be expected,209

Models Perplexity Score Semantic Similarity Avg Score on BERT Avg Score on LR

Avengers 153.4 0.839 0.57 0.92
GPT-3.5 - P1 27.3 0.834 0.61 0.85
GPT-3.5 - P2 28.0 0.852 0.67 0.86
GPT-4 - P1 34.4 0.871 0.70 0.86
GPT-4 - P2 32.2 0.853 0.64 0.81
Gemini - P1 25.8 0.837 0.61 0.73
Gemini - P2 23.8 0.799 0.61 0.73

Table 2: Comparison of AO methods based on Perplex-
ity Score and cosine similarity score. Lower perplexity
scores indicate higher fluency.

as the Avengers algorithm uses a genetic algorithm 210

to iteratively substitute words, which can result 211

in infelicitous phrasings. The commercial LLMs 212

also generally preserve semantic similarity better, 213

though the differences are not as large, and Gemini 214

is significantly worse under P2. 215

Avengers obfuscation is comparable with the 216

commercial LLMs. It exhibits similar patterns of 217

a bimodal distribution over users, and more diffi- 218

culty fooling the LR writeprint model. Overall, our 219

experiments show that LLM-based obfuscation has 220

competitive performance with a SOTA technique, 221

Avengers, outperforming it for some users, while 222

generating text with higher quality and fluency. 223

6 Analysis 224

The results in Section 5 show that commercial 225

LLMs can obfuscate authorship with high fluency 226

and semantic preservation, and good average per- 227

formance. However, their performance is only suc- 228

cessful for some users, and does not work at all 229

for others. In this section, we explore their perfor- 230

mance against the write-print based Logistic Re- 231

gression (LR) model, which is easier to interpret 232

than BERT, in order to try to understand what the 233

LLMs are changing about the text when they are 234

prompted to rephrase or obscure authorship, and 235

how this relates to their ability to fool an AV model. 236

6.1 Features Affected by LLM Rephrasing 237

We note in Section 5 that per-user performance is 238

quite consistent across the three LLMs and two 239

prompts. We hypothesize that all six approaches 240

are making similar changes to the original text, 241

which may or may not be aligned with the features 242

that make a particular user recognizable. 243

Table 4 in Appendix A.1 lists the number of 244

features affected by each model and prompt. We 245

see a rough correspondence between these num- 246

bers and the average performance of each experi- 247

ment. Gemini+P2 has the highest number of fea- 248

tures changed, and the highest average obfuscation 249

performance (lowest average AV performance; see 250
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Table 1). GPT-3.5 has the lowest number of fea-251

tures changed, and the lowest average performance.252

When we examine the overlaps between the sets253

of features changed by each model+prompt, our254

hypothesis regarding consistency is confirmed. Of255

the 170 write-print features, 71 are changed by256

all models, and 21 are changed by zero models,257

meaning that for over half the features, there is no258

difference between any of the models or prompts.259

When GPT-4 was prompted to modify specific260

stylometric features, while it did increase and de-261

crease two features, upper case and question mark262

frequencies, for others, it would only increase a263

feature and ignore prompts to decrease, or vice264

versa. (See Appendix A.2.) If a user is character-265

ized by features that an LLM does not “know how266

to” modify, their authorship will not be obfuscated.267

6.2 Predicting Whether a Review Will Evade268

Author Verification269

We hypothesize that the probability that a review270

will be successfully obfuscated increases linearly271

with its difference from the original review. We272

calculate the distance, D(R,R′), between the ob-273

fuscated review (R′) and the original review (R),274

over the set F of write-print features:275

D(R,R′) =
∑|F|

i=1 |fi − f ′
i |276

We measure the Pearson correlation between the277

predictions made by the LR model and the distance278

between the reviews. We find that the correlation is279

moderate and significant: r(5352) = −0.389, p <280

0.0001, confirming our hypothesis. This points to a281

potential strategy for an author who wants to know282

whether a text obfuscated by an LLM is likely to283

evade author verification.284

6.3 P3: Directly Targeting Important Features285

Having found significant between-author variation286

in obfuscation performance, we formulate a third287

prompt, P3, which targets specific features in an288

attempt at personalization. E.g., “Rephrase the text289

below and increase the average word length.”290

We focus on four users who experience con-291

sistent obfuscation failure. We identify features292

that are important for identifying each author us-293

ing Shapley values, which are commonly used to294

explain machine learning models (Hart, 1989). We295

select each user’s top two features with highest296

SHAP values and prompt GPT-4 to rephrase the297

text and specifically change those features (P3).298

We see significant improvements over GPT-4+P1299

and GPT-4+P2 with regard to the LR AV.300

This confirms that P3 can be a viable strategy 301

for author obfuscation even for authors who are 302

most difficult for the commercial LLMs to obscure. 303

However, this prompting technique based on SHAP 304

values from the LR AV does not robustly improve 305

performance on BERT, limiting its utility to cases 306

in which the author has access to the target AV. 307

USER BERT AV Logistic Regression AV
User 342623 GPT-4 P3 0.87 0.50
User 342623 GPT-4 P2 0.94 0.97

User 2020269 GPT-4 P3 0.87 0.62
User 2020269 GPT-4 P2 0.84 0.98

User 1406078 GPT-4 P3 0.73 0.48
User 1406078 GPT-4 P2 0.55 0.96

User 306861 GPT-4 P3 0.57 0.87
User 306861 GPT-4 P2 0.77 1.0

Table 3: GPT-4 + P3 obfuscation performance.

7 Conclusion 308

In this paper we present a study of the use of LLMs 309

for authorship obfuscation. We analyze the per- 310

formance of 3 commercial LLMs and demonstrate 311

that LLM-based obfuscation has competitive per- 312

formance with a SOTA technique, Avengers, out- 313

performing it for some authors while generating 314

text with higher quality and fluency. 315

Our analysis yields several key insights. We 316

observe that there is significant consistency in per- 317

user performance and feature across all three mod- 318

els, suggesting that these findings are reasonably 319

robust to details of implementation and training, 320

and to the updates that make it difficult to draw 321

concrete conclusions based on commercial LLMs. 322

To address our finding that there is significant 323

between-user variation in obfuscation performance, 324

we propose a heuristic that can indicate whether 325

a text is likely to evade author verification, and a 326

prompting technique that personalizes the rephras- 327

ing to improve performance on “difficult” users. 328

It has become common to employ commercial 329

LLMs for numerous NLP tasks, with varying re- 330

sults. We find that these models are well-suited 331

to the task of author obfuscation, outperforming 332

a SOTA approach. We also note that due to their 333

popularity and accessibility, they are quite likely 334

to be used for this purpose by vulnerable authors. 335

It is therefore important to understand their perfor- 336

mance on this task. 337
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Limitation338

Our work has several limitations. Firstly, we are339

limited by our budget for accessing Open AI’s API.340

For that reason, we only focus on the IMDB62341

dataset and only 9 users. It would be beneficial342

to also assess the model’s performance in other343

datasets like the blog authorship (Schler et al.,344

2006) and the Extended Brennan Greenstadt Cor-345

pus (Brennan et al., 2012).346

Secondly, we only focused on simple prompts347

to ask the models to paraphrase the texts, while348

there is a huge possible prompt set to select from,349

each focused on a different stylometric feature. We350

encourage future work to explore the potential of in351

context learning for author obfuscation purposes.352

Thirdly, while the first two prompts we propose353

are agnostic to which AV model is opposed, the354

third prompt relies on SHAP values from a specific355

model and does not generalize well to a different356

model. This is a common issue in adversarial ma-357

chine learning. Future work can explore other ap-358

proaches to personalization that build on this one.359

Fourthly, all research involving commercial360

LLMs is limited in the sense that the models are361

to a large extent black boxes, business logic plays362

an unknown role in their responses, and they are363

subject to updates and modifications at any point.364

However, we feel that it is worthwhile to investi-365

gate their performance for this task, since they are366

very likely to be used in the wild for this purpose,367

and do in fact perform very well.368
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two-sided t-test comparing the values of that fea- 496

ture between the original and obfuscated texts, to 497

find which features are are significantly affected 498

by that model/prompt rephrasing. We also com- 499

pare which features are affected by the difference 500

in prompts P1 and P2. Due to the large number 501

of statistical tests, we perform a Bonferroni cor- 502

rection and use a strict significance threshold of 503

p = 0.05
1700 = 0.294e− 05. 504

We present the number of significantly different 505

features between the original set and the obfuscated 506

set in Table 4. 507

Model Between original & P1 Between original & P2 Between P1 & P2

Gemini 116 129 83
GPT-3.5 109 95 54
GPT-4 119 119 42

Table 4: Significantly different features counts between
different experiments.

A.2 Feature Alteration Through Prompting 508

Our experiments with GPT-4 led us to observe 509

that many stylometric features could be changed 510

through prompting, when asked to rephrase the 511

text and change the specific feature in it. However, 512

some features tend to be aligned with the model’s 513

behavior for rephrasing text and could not be in- 514

creased or decreased through prompting. 515

Feature Prompt to Increase Prompt to Decrease
Average word length ✓ ✗

Proper noun frequency ✗ ✓

Dash frequency ✓ ✗

’&’ frequency ✓ ✗

Upper case character frequency ✓ ✓

Comma frequency ✓ ✗

Question mark frequency ✓ ✓

Period frequency ✗ ✗

Dollar sign frequency ✓ ✓

Short word frequency ✗ ✓

Total characters ✓ ✗

Coordinating conjunctions frequency ✗ ✓

Table 5: Feature changes with regard to its average value
in original test set vs obfuscated test set for different
users.

B Training BERT 516

We train Bert (base-cased) for each user separately 517

using 1 NVIDIA A100 GPU. For each user, we 518

trained the model on 900 reviews (810 for train and 519

90 for evaluation) for 3 epochs. We use Adam opti- 520

mizer (Kingma and Ba, 2014) for training and we 521

6



set the batch size to 16. The learning rate was set to522

1e− 5. Training time for all users was less than 10523

minutes. We used the model with best performance524

on validation for the rest of our experiments.525
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