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Personalized Federated Recommendation for Cold-Start Users
via Adaptive Knowledge Fusion

Anonymous Author(s)

Abstract
Federated Recommendation System (FRS) usually offers recom-
mendation services for users while keeping their data locally to
ensure privacy. Currently, most FRS literature assumes that fixed
users participate in federated training with personal IoT devices (e.g.,
mobile phones and PC). However, users may join incrementally, and
retraining the entire FRS for each new participating user is unfeasi-
ble due to the high training costs and the limited global knowledge
contribution from a small number of new users. To guarantee the
quality service for these new users, we take a dive into the federated
recommendation for cold-start users, a novel scenario where the new
participating users can directly obtain a promising recommendation
without comprehensive training with all participating users by lever-
aging both transferred knowledge from the converged warm clients
and the knowledge learned from the local data.

Nevertheless, the efficient transfer of knowledge from warm
clients remains controversial. On the one hand, cold clients may
introduce new sparse items, resulting in a shift in the item embed-
ding distribution compared to that converged on warm clients. On the
other hand, cold-start users need to match similar user information
from warm clients for a collaborative recommendation, but directly
sharing user information is a violation of privacy and unacceptable.
To tackle these challenges, we propose an efficient and privacy-
enhanced federated recommendation for cold-start users (FR-CSU)
that each client can adaptively transfer both user and item knowledge
separately from warm clients and implement recommendations with
local and transferred knowledge fusion. Specifically, each cold client
will train a mapping function locally to transfer the aligned item
embedding. Meanwhile, warm clients will maintain a user prototype
network collaboratively that provides privacy-friendly yet effective
user information for cold-start users. Then, a linear function system
will integrate the transferred and local knowledge to improve rec-
ommendations. Extensive experiments show that FR-CSU achieves
superior performance compared to state-of-the-art methods.

CCS Concepts
• Computing methodologies→Multi-agent systems; Knowledge
representation and reasoning.

Keywords
Federated Learning, Recommendation System, Cold-Start User.
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1 Introduction
Recommendation systems have become essential tools and products,
profoundly influencing daily lives by providing personalized sug-
gestions for items that may interest users. These systems primarily
depend on centralized servers to gather user characteristics, item
features, and preferences to train models for accurate recommenda-
tions [11, 35, 39]. However, transmitting local user information to
central servers raises significant privacy and security issues. Addi-
tionally, recent strict government regulations on privacy protection,
such as GDPR, emphasize the importance of storing user data locally
on devices instead of uploading it to a central server. To address
this challenge, federated learning (FL) has emerged as a promising
solution, facilitating data localization and enabling the distributed
training of a globally shared model [14, 23, 30, 31]. FL alternates be-
tween local model training on client devices and aggregation of these
models on the server. This framework has achieved great success
and has been applied in various domains, including recommendation
systems [10, 25, 27, 41] and smart healthcare [5, 6].

In recent years, researchers have focused on federated recommen-
dation systems (FRS) that provide optimal recommendations for
users without compromising data privacy. The first FL-based collab-
orative filtering method, FCF, introduced in [1], uses the stochastic
gradient approach to update the global model with the FedAvg al-
gorithm. The study in [3] adapts distributed matrix factorization
to the FL environment, incorporating homomorphic encryption on
gradients before uploading to the server. FedNCF [12] applies neu-
ral collaborative filtering in a federated context, leveraging neural
networks to learn user-item interactions and enhance model learn-
ing. To strengthen user privacy protection, [21] proposes a dual
personalization mechanism for personalized recommendations by
keeping user embeddings local. Building on this, FedRAP [15] dis-
tinguishes the differences between different clients through additive
personalization techniques.

While these methods achieve remarkable success in the federated
recommendation, they assume that the number of participating users
in the system is fixed and static. However, in a realistic federated
recommendation application, new users may emerge and request
model updates from the server to obtain satisfactory recommen-
dations. The illustration of this scenario can be found in a simple
example in Figure 1. In traditional federated learning scenarios, this
is often defined as a federated continual learning task, where the
system needs to incorporate new tasks into the original ones and
retrain an optimal global model. However, such a training mode is
impractical for a federated recommendation for four reasons: (1)
Clients in the federated recommendation are typically IoT devices
of different users, and the number of clients is often significant. Re-
training the entire federated recommendation system would incur
significant training and communication costs. (2) Retraining may
affect the already converged global model, degrading the recommen-
dation performance for previous users. (3) Previous users may not be
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Figure 1: The illustration of the federated recommendation for
cold-start users. During the training phase of warm clients, all
clients train on their local data and exchange knowledge through
federated aggregation on the server. When cold-start users ar-
rive, they will no longer participate in federated training and
can only improve their local recommendation performance by
utilizing their local knowledge and partially transferring knowl-
edge from the warm clients.

willing to participate in retraining, as the number of new incremental
users is relatively small compared to the previous users, resulting
in negligible recommendation performance gains. (4) If the server
accumulates sufficient new users for retraining, these new users may
face uncertain latency, which is a fatal blow to the benefits of the
federated recommendation system.

Given the above scenario, we will consider the direction of feder-
ated cold-start recommendation to ensure recommendation services
for new users. The authors in [43] have pioneered the exploration
of the federated recommendation for cold-start items, where the
number of users remains unchanged, but each user has new items
to be recommended. However, this method does not apply to the
federated recommendation for cold-start users due to the following
additional challenges. Firstly, cold-start users need to match similar
user information with warm clients, but user information is private
and cannot be directly shared. Secondly, cold-start users may intro-
duce new items, but it is challenging to identify which specific ones
are new, thus aligning local items with items previously involved in
federated training is not feasible. Lastly, cold-start users have not
participated in federated training, and relying solely on transferred
or local knowledge can lead to bias and fall short of achieving the
expected performance.

To address these challenges, we in this paper investigate both a
privacy-friendly and efficient federated recommendation framework
for cold-start users dubbed FR-CSU that allows each cold-start user
to gain improved recommendation with the adaptive fusion of trans-
ferred and local knowledge. More specifically, we first follow the
hypothesis of sharing item embedding across all clients in a FedAvg
manner while directly sharing user embedding with other clients is
unacceptable due to privacy leakage. Inspired by [22], most cross-
domain recommendation research transfers the common knowledge
in the latent space between source and target domains to enhance
recommendation performance. To transfer the aligned item knowl-
edge in FR-CSU, we train a mapping function for each cold client to
map the item embedding from the warm clients onto the cold clients.
Since user information is private and cannot be easily transferred like

item information, warm clients in our method need to maintain a pro-
totype network locally during training to generate privacy-friendly
and transferable user information. This network will be aggregated
using the FedAvg approach and backed up on the server after train-
ing. When cold-start users arrive, they can request this prototype
network from the server to generate transferred user knowledge to
assist in local recommendation tasks. Furthermore, we propose an
adaptive knowledge fusion mechanism that initially integrates the
transferred user and item knowledge using a linear function system
and subsequently integrates the transferred knowledge with local
knowledge to enhance local recommendations.

Through extensive experiments on various datasets with rating
prediction and click-through rate, we show that FR-CSU signif-
icantly improves the recommendation performance compared to
state-of-the-art approaches. The major contributions of this paper
are summarized as follows:

• We are the first to study the problem of the federated rec-
ommendation for cold-start users. Different from the tradi-
tional federated recommendation, new users may emerge
and require a better recommendation service. The balance
between expense training overheads and ensuring the rec-
ommendation for all warm and cold users does matter in
such a scenario.

• Then, to address this problem, we propose a novel federated
recommendation framework for cold-start users named FR-
CSU that can adaptively fuse transferred and local knowl-
edge. To better transfer user and item knowledge separately,
each cold-start user will train a local mapping function to
transfer item knowledge. All warm clients maintain a user
prototype network to provide privacy-friendly user infor-
mation for cold-start users. An adaptive knowledge fusion
mechanism is proposed to improve recommendations.

• Finally, extensive experiments are conducted on various
datasets. Experimental results illustrate that our proposed
model outperforms the state-of-the-art methods on both
rating prediction and click-through rate tasks.

2 Related Work
Cold-Start Recommendation. Cold-start recommendation research
focuses on providing high-quality recommendations for newly in-
troduced items [13, 19, 28, 38, 45]. To tackle this challenge, several
strategies have been devised. These include collaborative filtering
[33, 36], content-based methods [8], and hybrid models [29]. Col-
laborative filtering analyzes past user interactions to find item simi-
larities and common consumption patterns. Content-based methods,
on the other hand, rely on item attributes to understand their features,
allowing the system to assess correlations between new and existing
items for more accurate recommendations. Hybrid models integrate
both approaches by extracting relevant features from item attributes
and incorporating them into the collaborative filtering framework,
thus leveraging both methods’ strengths to capture user interactions
better. The authors in [43] recently combined the cold-start problem
with the federated recommendation. In this work, each user will
receive cold-start recommendations for newly added items, and our
focus is on the federated recommendation for cold-start users.
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Figure 2: The framework of FR-CSU. During the federated training for warm clients, each client trains both the local embedding model
and user prototype network with three alignment loss functions, which undergo global aggregation on the server. Upon completion,
the server retains global item embeddings and the user prototype network as transferable knowledge. During the inference for cold
clients, users initially download item embeddings and user prototype networks from established clients on the server. They then input
local user attributes to derive transferred user representations. Ultimately, a linear function system (FFN) and collaborative filtering
algorithms blend local and transferred knowledge, ensuring optimal recommendation performance.

Federated Recommendation System. Federated recommendation
systems have recently attracted considerable attention due to in-
creasing privacy concerns [16–18, 40]. Recent efforts have mainly
focused on utilizing the interaction matrix, which is fundamental in
basic recommendation scenarios [2, 44]. FCF [1], a pioneering col-
laborative filtering method under federated learning (FL), employs
stochastic gradients for local model updates and FedAvg for global
model aggregation. To safeguard user privacy, FedMF [3] integrates
distributed matrix factorization into the FL framework, encrypting
gradients before sending them to the server. Another distributed fac-
torization approach, MetaMF [20], uses a meta-network to generate
rating predictions and private item embeddings. FedPerGNN [37]
allows users to maintain their graph neural network models, captur-
ing high-order user-item relationships. However, in MetaMF and
FedPerGNN, the server retains full model parameters, potentially
revealing user interaction data and compromising privacy. FedNCF
[12] adapts neural collaborative filtering to the federated setting,
leveraging neural networks to learn complex user-item interactions,
thereby enhancing model capabilities. Additionally, federated rec-
ommendation methods using diverse data sources have emerged,

considering multiple information streams. FedFast [24] enhances Fe-
dAvg with an active aggregation strategy to accelerate convergence,
while Efficient-FedRec partitions the model into a server-side news
model and a client-side user model, minimizing computational and
communication overheads. Both approaches transcend the interac-
tion matrix, incorporating user features and new attributes. pFedRec
[21] offers a bipartite personalization mechanism for personalized
recommendations. Building on this, FedRAP [15] balances global
knowledge sharing and local personalization by applying an additive
model to item embeddings and reduces communication costs through
sparsity. Existing research primarily focuses on the traditional fed-
erated recommendation where the number of participating users is
fixed. In this paper, we extend this scenario to a novel federated
recommendation framework for cold-start users, effectively fusing
transferable and local knowledge to improve recommendations.

3 Preliminary
Traditional Federated Recommendation. Before cold-start rec-
ommendation, it is necessary for all previous warm clients to col-
lectively engage in federated recommendation training in order to

3
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provide transferable knowledge for cold-start users. Here, we for-
mulate the most general paradigm. Now we aim to collaboratively
train a global model for 𝐾 total warm clients in FRS. We consider
each client as a user 𝑘 with user information 𝑢𝑘 . Each client 𝑘 has
exclusive access to their private dataset 𝐷𝑘 = {𝑢𝑘 ,𝑉𝑘 , 𝑅𝑘 }, where
𝑉𝑘 = {𝑣1

𝑘
, 𝑣2
𝑘
, . . . , 𝑣

𝑗

𝑘
} contains 𝑗 items and 𝑅𝑘 = {𝑟1, 𝑟2, . . . , 𝑟 𝑗 } with

𝑟 𝑗 ∈ R representing user 𝑘’s interaction with item 𝑣 𝑗 . During the
forward process, the original local data {𝑢𝑘 ,𝑉𝑘 , 𝑅𝑘 } undergoes ma-
trix factorization, transforming into (u𝑘 ,V𝑘 ) via the embedding E.
The global dataset comprises the aggregation of all local datasets:
𝐷 = {𝐷1, 𝐷2, . . . , 𝐷𝐾 } =

∑𝐾
𝑘=1 𝐷𝑘 . The framework operates through

the following steps:

(1) The central server initializes and distributes an untrained
model to each client.

(2) Upon receiving the model, participating clients train it using
their respective local data.

(3) These clients then upload their model parameters to the
central server.

(4) The server consolidates the local models to update the global
model, which is then dispatched to the clients for the next
communication round.

Steps (2) to (4) form a complete communication cycle. This process
repeats iteratively, with clients and the central server continuously
exchanging information until the global model converges. The ulti-
mate goal of the framework is to develop a global embedding model
E that minimizes the cumulative empirical loss across the entire
dataset 𝐷:

min
E
L(E) :=

𝐾∑︁
𝑘=1

|𝐷𝑘 |
|𝐷 | L𝑘 (E) . (1)

L𝑘 (E) =
{∑

𝑟 𝑗 ∈𝑅𝑘
1
𝐷𝑘
(𝑟 𝑗 − 𝑟 𝑗 )2, 𝑟 𝑗 = [u𝑘 ]𝑇V

𝑗

𝑘
. 1○∑

𝑟 𝑗 ∈𝑅𝑘
1
𝐷𝑘
− (𝑟 𝑗 log 𝑟 𝑗 + (1 − 𝑟 𝑗 ) log(1 − 𝑟 𝑗 )) . 2○

where L𝑘 (E) is the loss in the 𝑘-th client. Here we define two loss
functions for 1○ rating prediction and 2○ click-through rate tasks.

Local Differential Privacy. Local Differential Privacy (LDP) adds
noise to gradients before sharing, thereby restricting the inferable
information. The (𝜖, 𝛿)-LDP definition is as follows:
Definition 3.1. A perturbation algorithm 𝑀 satisfies (𝜖, 𝛿)-Local
Differential Privacy if, for any adjacent datasets 𝐷 and 𝐷′, and for
all possible output subsets 𝑆 , the inequality below holds:

𝑃𝑟 [M(𝐷) ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [M(𝐷′) ∈ 𝑆] + 𝛿 (2)

Here, 𝜖 represents the privacy budget of 𝑀 , indicating the level of
privacy protection, and 𝛿 is the probability of violating the privacy
guarantee. A lower 𝜖 value signifies a narrower probability gap,
hence stronger privacy.

4 Federated Recommendation for Cold-Start Users
In this section, we first outline the proposed method’s overall frame-
work and workflow algorithm. Next, we showcase the application
of the inference phase for cold-start users. Lastly, we provide the
privacy analysis for our method.

4.1 Framework and Workflow of FR-CSU
The key idea of FR-CSU is to adaptively transfer privacy-friendly
user knowledge and item knowledge from warm clients to improve
recommendation services for cold-start users with knowledge fusion.
Our approach involves two main stages: distilling transferable knowl-
edge from warm clients and fusing transferred and local knowledge
to predict items for cold-start users. During the learning stage
for warm clients, in addition to training local embedding models,
each client needs to train a user prototype network and conduct
global aggregation on the server. After training, the server retains the
global item embeddings and user prototype network as transferable
knowledge. During the inference phase for cold-start users, each
user first downloads item embeddings and user prototype networks
from the server and inputs local user information to generate trans-
ferred user representations. Finally, a linear function system and
collaborative filtering algorithms are employed to integrate local and
transferred knowledge to ensure recommendation performance. The
workflow of the proposed framework is shown in Algorithm 1 and
Figure 2 illustrates the FR-CSU framework.

4.2 Learning on the Warm Clients
To ensure that cold-start users can obtain effective transferred knowl-
edge from the server, we first investigate federated recommendation
training on warm clients. Previously, we have described the tradi-
tional federated recommendation training model in Section 3, where
each client exchanges local knowledge by uploading embedding
parameters. However, given that uploading user embeddings may
leak user privacy, existing methods often choose to upload only item
embeddings while keeping the user embeddings locally. Based on
this, existing federated training methods with warm clients cannot
provide relevant user information for cold-start users.

Inspired by [43], many cold-start recommendation tasks leverage
additional item attribute information to assist in recommendations.
In contrast, traditional recommendation tasks typically only require
user-item interactions, utilizing collaborative filtering algorithms to
achieve promising results. Without additional user attribute infor-
mation, user information is learned solely through user embeddings.
In cases where user embedding parameters are not uploaded, the
server cannot obtain user information from the embedding. There-
fore, we use user information from the user attribute as transferable
user knowledge. To better learn and share user attribute information
while protecting user privacy, we deploy a user prototype network
for each user to learn a mapping from user attribute information to
user representations. Supposed that the warm client 𝑘 possesses the
user attribute information 𝑈𝑘 and the user prototype network P, the
local user representation R𝑢

𝑘
can be obtained by:

R𝑢
𝑘
:= P(𝑈𝑘 ), where {R𝑢

𝑘
, u𝑘 } ∈ R1×𝑑 . (3)

where 𝑑 represents the size of user embedding. Here, we utilize a
user prototype network to map user attribute information into a user
representation the same size as the user embedding to facilitate fed-
erated training and knowledge transfer. This user prototype network
will achieve global aggregation to enable the communication of local

4
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Algorithm 1: FR-CSU
Input :𝑇 : communication round; 𝐾 : client number; 𝐷𝑘 :

local dataset for the client 𝑘; u𝑘 : local user
embedding; V𝑘 : local item embedding; R𝑢

𝑘
: local

user representation;𝑈𝑘 : local user attribute
information; P𝑘 : user prototype network; M𝑘 : local
mapping function.

Output :{V𝑘 , u𝑘 }: embeddings of the cold-start user.
1 Federated Training for Warm Clients:
2 for 𝑐 = 1 to 𝑇 do // communication round
3 Server randomly selects a subset of devices 𝑆𝑡 ;
4 for each selected client 𝑘 ∈ 𝑆𝑡 in parallel do
5 Generate the user representation R𝑢

𝑘
with (3);

6 Train the local embedding V𝑘 and user prototype
network P𝑘 locally with (5);

7 Send the item embedding V𝑘 and user prototype
network P𝑘 back to the server.

8 end
9 V, P← ServerAggregation({v𝑘 , P𝑘 }𝑘∈𝑆𝑡 )

10 end
11 Inference on Cold Clients:
12 Train the local embedding {u𝑖 ,V𝑖 } in a new format with (6);
13 Download the item embedding V and user prototype network

P from the server;
14 Train the mapping function M𝑖 with (7);
15 Obtain the final prediction 𝑟 𝑗 by (8).

user knowledge:

R𝑢 :=
1
𝐾

𝐾∑︁
𝑛=1

R𝑢𝑛 . (4)

To better train the user prototype network and embedding model,
we propose to achieve it by representation alignment. On the one
hand, we need to align user embeddings with user representations to
ensure more user information can be transferred. On the other hand,
to align the consistency of transferred user knowledge between the
inference stage and the learning stage (we will introduce the infer-
ence process for cold-start users in the next section), we additionally
use a local linear layer 𝑓𝑘 to concatenate user representations and
item embeddings for recommendation prediction. To ensure this, we
employ the following alignment loss function for all warm clients:

min
E,P

𝐾∑︁
𝑛=1

[
L𝑛 (E) + 𝛼L(𝑓𝑛 (P(𝑈𝑛),V𝑛), 𝑅𝑛) + 𝛽 | |u𝑛 − P(𝑈𝑛) | |

]
. (5)

where 𝛼 and 𝛽 are hyper-parameters. The first loss term is the stan-
dard loss defined in (3). During training, each client only commu-
nicates the item embedding and user prototype network parameters
with the server. After the training process, the server saves the final
global item embedding V and the user prototype network P as the
transferable knowledge.

4.3 Inference on the Cold Clients
After the federated training on warm clients is completed, cold-start
users emerge and request high-quality recommendation services

from the server. Since cold-start users have not participated in feder-
ated training, we decided to integrate the knowledge migrated from
warm clients with locally learned knowledge to enhance recommen-
dations. Firstly, the cold client needs to train on its local dataset.
To better transfer the knowledge from warm clients, we have also
adjusted the local training process. Suppose the cold client 𝑖 needs
to train its embedding model E𝑖 and a linear function system on the
local client, including two simple linear layers 𝑓𝑖,1 and 𝑓𝑖,2. The loss
function is defined as follows:

min
E𝑖 ,𝑓𝑖,1,𝑓𝑖,2

L(𝑓𝑖,2 ( [u𝑖 ]𝑇V𝑖 + 𝛾 𝑓𝑖,1 (u𝑖 ,V𝑖 )), 𝑅𝑖 ) . (6)

where 𝛾 is a hyperparameter. Motivated by the authors in [12] who
repeatedly utilized embeddings for knowledge enhancement, we
employ an additional pair of user embedding and item embedding.
These embeddings are concatenated and fed into a linear layer. The
output from this layer is then concatenated with the results from a
collaborative filtering algorithm and input into the next linear layer
to obtain the final recommendation prediction. Furthermore, this
hyperparameter 𝛾 can be determined by cold-start users to control
the proportion of local knowledge and transferred knowledge. When
𝛾 approaches 0, it indicates that cold-start users believe their local
data is sufficient and high-quality, sufficient to achieve satisfactory
recommendation results. Conversely, cold-start users will choose to
utilize as much transferred knowledge as possible for local recom-
mendations.

After local training, cold clients download the user prototype
network P and item embeddings V from the server. Here, users
can directly input their local user attribute information into the user
prototype network P to obtain transferred user information. However,
the transfer method for item embeddings remains to be considered.
Cold-start users not only bring new user information but may also
introduce new items not seen in federated training. Therefore, we
first need to align the transferred item embeddings with local item
information. To this end, we introduce a linear mapping function
M𝑖 , commonly used in cross-domain recommendation to align item
information between the source domain and the target domain [22].
We treat the transferred item embeddings as the input from the source
domain and the local item embeddings as the target domain, aligning
the item information accordingly:

min
M𝑖

L(M𝑖 (V),Vi) . (7)

Then, we incorporate the transferred knowledge with the local knowl-
edge to enhance the recommendation:

𝑟 𝑗 = 𝑓𝑖,2

(
[u𝑖 ]𝑇V𝑗𝑖 + 𝛾 𝑓𝑖,1 (P(u𝑖 ),M𝑖 (V𝑗𝑖 ))

)
. (8)

where 𝑟𝑟 denotes the prediction result of the item 𝑗 for the user
𝑖. Thus, the cold-start user can enhance the local recommendation
service by fusing the transferred and local knowledge by adjusting
the 𝛾 value.

4.4 Privacy Analysis
In our proposed FR-CSU framework, user embedding never leaves
the local client. The only transferred knowledge is the user prototype
network and item embedding, of which the item embedding is nec-
essary and will not leak the user privacy alone. Compared to directly
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transmitting user embeddings, the user prototype network in our
method may also be attacked using gradient inversion or statistical
correlation methods to obtain user representations. In recommenda-
tion systems, attackers often aim to get users’ ground-truth ratings of
items, which are calculated based on both user and item embeddings
obtained through the attack. Assuming the attacker can access our
user representations and item embeddings, it should be noted that
our local loss function is not optimized through a simple collabo-
rative filtering algorithm. As shown in Eq. (5), our loss function
consists of three terms, including a local linear layer network and the
utilization of user embeddings. Therefore, attackers cannot obtain
users’ rating preferences solely through user representations and
item embeddings.

On this basis, we can further provide a Local Differential Privacy
(LDP) [34] algorithm to protect our user prototype network from
attacks. However, due to the relatively small number of parameters
in the embedding, the recommendation performance decreases sig-
nificantly when perturbation is applied to the model parameters to
effectively protect user information. Considering that balancing pri-
vacy and recommendation performance is challenging, we abandon
using the LDP algorithm in FR-CSU. The experiments regarding
LDP will be analyzed in detail in Section 5. Moreover, embedding
architectures are typically simple and vulnerable to attacks. The
network architecture of the user prototype network is flexible and
accessible, allowing us to adopt complex network structures, includ-
ing attention mechanisms, to increase the difficulty of attacks and
thereby enhance privacy protection.

5 Experiments
5.1 Datasets
A thorough experimental study has been conducted to assess the
performance of the introduced FR-CSU in two popular scenarios
with three recommendation datasets: (1) Rating Prediction(RP):
MovieLens-100K (ML-100K1)[9] and MovieLens-1M (ML-1M1)[9].
(2) Click-Through Rate(CTR): QB-article2[42]. These datasets
are commonly employed for evaluating recommendation systems.
Specifically, two MovieLens datasets sourced from the MovieLens
platform feature movie ratings spanning 1 to 5, with each user con-
tributing at least 20 ratings. When MovieLens datasets are used for
the CTR task, we follow the setting in [15, 21] and make any rating
higher than 0 in these datasets assigned 1. QB-article, an implicit
feedback dataset, is derived from user interaction logs. The specific
attributes of these datasets are outlined in Table 1.

5.2 Baselines
For a fair comparison with other works, we follow the protocols
proposed by [23] to stimulate FL settings. We evaluate our method
with the following baselines.

1. Federated Recommendation:
FedMF [3]: This method uses matrix factorization in a federated
setting to reduce information leakage by encrypting user and item
embedding gradients.
FedNCF [12]: This is the federated adaptation of NCF. It allows

1https://grouplens.org/datasets/movielens/
2https://github.com/yuangh-x/2022-NIPS-Tenrec

Table 1: Experimental Details. Analysis of various considered
settings of different datasets in the experiments section.

Attributes
Rating Prediction Click-Through Rate

ML-100K ML-1M QB-article

Ratings 100,000 1,000,209 134,990

Users 943 6,040 3,000

Items 1,682 3,952 5,144

Sparsity 𝑠 = 93.70% 𝑠 = 95.81% 𝑠 = 99.16%

For Warm Clients:

Total Users 800 5000 2500

Total Items 1188 2584 4341

Local training epoch 𝐸 = 5 𝐸 = 5 𝐸 = 5

Communication Round 𝑇 = 200 𝑇 = 200 𝑇 = 200

For Cold Clients:

Total Users 143 1040 500

Total Items 1297 3364 2357

Local training epoch 𝐸 = 5 𝐸 = 5 𝐸 = 5

local updates of user embeddings on each client while synchronizing
item embeddings on the server for global aggregation.
FedMVMF [7]: This is the federated version of matrix-vector multi-
plication matrix factorization. It enables local updates of user and
matrix-vector features on each client while synchronizing the item
embeddings and global parameters on the server.
FedDCN [32]: This is the federated adaptation of deep and cross
networks. It allows local training of user-specific network layers
on each client while synchronizing the shared cross-network and
embedding layers on the server.
FedWDR [4]: This federated adaptation of wide and deep learning
is tailored for recommendations. Clients train their wide and deep
components to learn user-item patterns and relationships, leveraging
the strengths of both wide and deep models while ensuring privacy.

2. Federated Recommendation -w/Cold-Start:
FedPPR [26]: This method allows clients to locally perform pairwise
preference regression to estimate user preferences. The server then
aggregates these local models for new users or items with limited
interaction history.
IFedNCF & IPFedRec [43]: This method deploys a meta attribute
network on the server to represent item attributes using raw item
attributes and devises an item representation alignment mechanism
for cold-start items.

5.3 Configurations
Unless otherwise mentioned, We set the number of clients to equal
the number of users in the dataset. However, the notation "MovieLens-
1M-3000" indicates that we randomly selected 3000 users from the
original dataset for experimentation. During the training process
for warm clients, we assume that 10% of clients will participate in
each round of communication. In our main experiments, we used
a three-layer linear network for the user prototype network in our
method and a single-layer linear network for the mapping function.
The hyperparameters are set as 𝛼 = 𝛽 = 𝛾 = 1. Here, we report the
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Table 2: Performance comparison of various methods for the click-through rate (CTR) task. The best results are bold.

Categories Methods Metrics
MovieLens-100K MovieLens-1M QB-article-3000

@10 @20 @50 @10 @20 @50 @10 @20 @50

FedRec

FedMF
HR 0.1933 0.3249 0.5756 0.1686 0.3168 0.6169 0.1925 0.3282 0.5970

NDCG 0.0890 0.1221 0.1715 0.0744 0.1116 0.1706 0.0858 0.1198 0.1728

FedNCF
HR 0.4264 0.6183 0.8678 0.4146 0.6258 0.7386 0.5757 0.6552 0.8317

NDCG 0.2046 0.2723 0.3187 0.1943 0.2205 0.3216 0.2869 0.3304 0.5543

FedMVMF
HR 0.4213 0.6046 0.8174 0.2720 0.4273 0.6338 0.3051 0.4389 0.6896

NDCG 0.2015 0.2670 0.3119 0.1298 0.1667 0.2063 0.1785 0.2083 0.2567

FedDCN
HR 0.5203 0.5955 0.7680 0.3907 0.5909 0.7315 0.6523 0.7497 0.8781

NDCG 0.1823 0.2103 0.5310 0.1804 0.2110 0.2912 0.3008 0.3356 0.4410

FedWDR
HR 0.4253 0.6219 0.8777 0.3408 0.5178 0.7345 0.6118 0.7650 0.8993

NDCG 0.1931 0.2629 0.3240 0.1689 0.2135 0.2682 0.2950 0.3263 0.4493

FedRec
-w/Cold-Start

FedPPR
HR 0.4148 0.6099 0.8895 0.4145 0.6131 0.7477 0.6073 0.7198 0.8782

NDCG 0.2043 0.2730 0.3251 0.1890 0.2192 0.2975 0.3091 0.3377 0.4291

IFedNCF
HR 0.1469 0.2852 0.6386 0.1641 0.2931 0.6404 0.1729 0.2819 0.5514

NDCG 0.0668 0.0998 0.1678 0.0704 0.1022 0.1699 0.1077 0.1347 0.1992

IPFedRec
HR 0.1352 0.3062 0.6827 0.1419 0.2700 0.5961 0.1852 0.3053 0.5739

NDCG 0.0616 0.0991 0.1733 0.0631 0.0953 0.1567 0.0958 0.1233 0.1775

FR-CSU
(Ours)

HR 0.6078 0.9223 0.9712 0.5430 0.7043 0.7552 0.6918 0.7749 0.9144
NDCG 0.2194 0.2868 0.6019 0.1976 0.2281 0.4971 0.3274 0.3466 0.6117

Table 3: Performance comparison of various methods for rating prediction (RP). The best results are bold.

Task Dataset Metrics
FedRec FedRec -w/Cold-Start

FedMF FedNCF FedMVMF FedDCN FedWDR FedPPR IFedNCF IPFedRec FR-CSU

Rating Prediction

MovieLens-100K
MAE 2.9142 1.3686 3.2312 1.2202 1.1609 1.4702 1.1556 2.6735 0.9965

RMSE 3.2209 1.6734 3.4125 1.5337 1.4601 1.8606 1.4880 2.9488 1.3456

MovieLens-1M-3000
MAE 3.4450 1.7097 3.2268 1.3362 1.2680 1.5221 1.2810 3.2806 1.0853

RMSE 3.6462 2.0393 3.4370 1.6059 1.5815 1.8856 1.6327 3.5102 1.4744

MovieLens-1M
MAE 3.3460 1.2593 3.2682 1.1684 1.2350 1.3393 1.1545 3.5514 0.9709

RMSE 3.5367 1.5519 3.4551 1.4923 1.4690 1.7042 1.5251 3.7277 1.3218

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)
as the metrics for the rating perdition [22] and Hit Rate (HR@K)
and Normalized Discounted Cumulative Gain (NDCG@K) for the
click-through rate [15, 21]. We illustrate all the settings with all the
benchmark parameters in Table 1. Each experiment set is run twice,
and we take each run’s final ten rounds’ accuracy and calculate the
average value for all cold-start users. We use Adam as an optimizer
with a linear learning rate schedule. We set the remaining parameters
according to the values in the original open-source code.

5.4 Performance Overview
Main Results. Table 2 and 3 comprehensively showcase the effi-
cacy of various methods when tasked with rating prediction and
click-through rate estimation. Notably, our proposed method, FR-
CSU, demonstrates superior performance across multiple datasets
and metrics. For the CTR task, when examining the HR@10 met-
ric, FR-CSU outperforms other methods by significant margins. As

the evaluation metrics extend to higher positions (e.g., @20, @50),
FR-CSU continues to exhibit robust performance, indicating its abil-
ity to provide relevant recommendations even when considering a
larger pool of candidates. For the rating prediction task, FR-CSU
also performs well, but we observe that the methods designed for
the cold-start problems can achieve a much better result than those
for the CTR task. Overall, the experimental results demonstrate the
effectiveness and robustness of our proposed method, FR-CSU, in
both the CTR task and rating prediction task. FR-CSU’s superior
performance across multiple datasets and metrics, as well as its abil-
ity to handle the cold-start problem, make it a promising approach
for federated recommender systems.

Ablation Study. As shown in Table 4, we evaluate the effects of
each module in our model via ablation studies. -w/o mapping item
and -w/o user representation denote the performance of cold-start
users without using the transferred user knowledge or aligned item
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Table 4: Ablation study of FR-CSU two federated recommenda-
tion tasks on MovieLens-100K.

Dataset Method
MovieLens-100K

HR@10 NDCG@10 MAE RMSE

ML-100K
FR-CSU 0.6220 0.2239 0.9965 1.3456

-w/o mapping item 0.6066 0.2175 1.1881 1.4793
-w/o user representation 0.5326 0.2125 1.2022 1.4947

embedding for inference. Compared with FR-CSU, the performance
of FR-CSU -w/o user representation degrades evidently. Specifically,
the relatively less prominent role of the mapping function module
may be constrained by issues related to the dataset, specifically that
our new users did not introduce many new items or items that are
sparse among warm clients. Experiment results verify the effective-
ness of all modules, confirming all modules are essential to train a
robust federated recommendation model for cold-start users.
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Communication Rounds

1
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FedMF FedDCN FedWDR IPFedRec FR-CSU

Figure 3: Convergence and efficiency comparison of various
methods on the ML-100K dataset.

Communication Efficiency. Fig. 3 presents a comprehensive evalu-
ation of various methods, focusing on both convergence and commu-
nication efficiency. In this assessment, we record the performance
of these methods every two iterations. Even though the training
methodology employed by FR-CSU diverges from other established
baselines, it maintains a commendable convergence rate. This is
a testament to the robustness and adaptability of the FR-CSU ap-
proach. Furthermore, the incorporation of additional user attribute
information catalyzes faster convergence. This enhancement not
only underscores the significance of leveraging rich, supplementary
data but also highlights the innovative approach taken by FR-CSU
in integrating such information seamlessly into its training process.

Parameter Sensitivity Analysis. Fig. 4 provides the two metrics
under different ratios between warm and cold clients. In this figure,
FR-CSU performs best with different ratios, and the lower MAE and
RMSE loss is achieved by raising the ratio 𝛽, which means more
warm clients and fewer cold-start users. It has been proven that when
there are sufficient warm clients that can provide richer transferable
knowledge, cold-start users indeed do not need to undergo federated
training to achieve promising performance. Conversely, the server
can consider incremental learning methods to address recommenda-
tion scenarios involving many new users. Since this paper focuses
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Figure 4: Performance comparison of various methods w.r.t.
ratio 𝑟 between warm clients and cold clients.

Table 5: Evaluation of differential privacy with the user embed-
ding and prototype network on MovieLens-100K.

Dataset Method Metric
Privacy Budget 𝜖

𝜖 = 0.1 𝜖 = 0.2 𝜖 = 0.3 𝜖 = 0.4 𝜖 ≥ 0.5

ML-100K
-w/user embedding

MAE 2.1165 1.9703 1.7456 1.5473 1.4527
RMSE 2.6750 2.3495 2.1435 1.9717 1.8000

FR-CSU
MAE 3.3757 3.0541 2.6976 2.3714 2.1350

RMSE 3.5980 3.2512 2.9122 2.6066 2.3820

on federated recommendation scenarios where warm clients are the
majority, related work on incremental learning can be carried out in
our future research.

Privacy Analysis. We will explore the feasibility of the classic
privacy protection method, the LDP algorithm. Here, we consider
two scenarios: (1) Directly transferring user embeddings protected
by LDP without using a user prototype network; (2) Adding LDP
protection to the user prototype network in FR-CSU. We use the
Laplacian noise and set the strength from 0.1 to 0.5 with an interval
of 0.1. As shown in Table 5, the model performance degrades as the
noise strength increases. However, when we add noise to the em-
bedding, it directly interferes with the transferred user information,
resulting in a significant drop in model performance. On the other
hand, adding noise to the user prototype network would also cause
a relatively slighter decline in model performance. Nevertheless,
considering the challenges in setting noise strength and balancing
recommendation performance and user privacy in the LDP method,
we do not incorporate LDP as part of the FR-CSU method.

6 Conclusion
In this paper, we delve into the challenges of developing a feder-
ated recommendation system tailored for cold-start users where new
users ask for a better recommendation service for local items with
the transferred knowledge from converged warm clients. We propose
a privacy-friendly yet effective framework, FR-CSU, which trans-
fers both user and item knowledge from warm clients and allows
cold-start users to fuse the transferred knowledge with the local
knowledge adaptively to provide a personalized recommendation.
Extensive experiments conducted on various settings and baselines
show that FR-CSU significantly improves recommendations.
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