
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SENSEFLOW: SCALING DISTRIBUTION MATCHING
FOR FLOW-BASED TEXT-TO-IMAGE DISTILLATION
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Figure 1: 1024×1024 samples produced by our 4-step generator distilled from FLUX.1-dev. Please
zoom in for details.

ABSTRACT

The Distribution Matching Distillation (DMD) has been successfully applied to
text-to-image diffusion models such as Stable Diffusion (SD) 1.5. However,
vanilla DMD suffers from convergence difficulties on large-scale flow-based text-
to-image models, such as SD 3.5 and FLUX. In this paper, we first analyze the
issues when applying vanilla DMD on large-scale models. Then, to overcome the
scalability challenge, we propose implicit distribution alignment (IDA) to con-
strain the divergence between the generator and the fake distribution. Further-
more, we propose intra-segment guidance (ISG) to relocate the timestep denois-
ing importance from the teacher model. With IDA alone, DMD converges for
SD 3.5; employing both IDA and ISG, DMD converges for SD 3.5 and FLUX.1
dev. Together with a scaled VFM-based discriminator, our final model, dubbed
SenseFlow, achieves superior performance in distillation for both diffusion based
text-to-image models such as SDXL, and flow-matching models such as SD 3.5
Large and FLUX.1 dev. The source code will be released.

1 INTRODUCTION

Significant advancements have been made on diffusion models (Ho et al., 2020; Rombach et al.,
2022; Podell et al., 2024; Esser et al., 2024; Labs, 2024) for text-to-image generation over recent
years. However, these models typically require multiple denoising steps to generate high-quality
images. As models continue to scale up in terms of the parameter size, the computational cost
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and inference time for image generation increase substantially, making the process slower and more
resource-intensive. To address this issue, various diffusion distillation methods have been developed
to distill a diffusion model into a few-step generator, including consistency models (Song et al.,
2023; Luo et al., 2023a; Wang et al., 2024a), progressive distillation (Salimans & Ho, 2022; Ren
et al., 2024), adversarial distillation (Wang et al., 2023a; Sauer et al., 2024b; Chadebec et al.),
and score distillation (Yin et al., 2024b;a; Luo et al., 2023b). Currently, the Distribution Matching
Distillation (DMD) series (Yin et al., 2024a) have demonstrated superior results in distilling standard
diffusion models such as SD 1.5 (Rombach et al., 2022) and SDXL (Podell et al., 2024).

However, few of these methods have successfully demonstrated effective distillation performance
across a broader range of models, particularly in flow-based diffusion models with larger parameter
sizes, such as SD3.5 Large (8B) (Esser et al., 2024) and FLUX.1 dev (12B) (Labs, 2024). As models
increase in architecture complexity, parameter size, and training complexity, it becomes significantly
more challenging to distill these models into efficient few-step generators (e.g., a 4-step generator).

In this paper, we introduce SenseFlow, which selects the framework of DMD2 (Yin et al., 2024a)
as a touchstone, and scales it up for larger flow-based text-to-image models, including SD3.5 Large
and FLUX.1 dev. Specifically, vanilla DMD2 has difficulty in converging and faces significant
training instability on large models, even with the time-consuming two time-scale update rule
(TTUR) (Heusel et al., 2017) applied. Viewing DMD as a min–max game, the inner best response
requires the fake distribution model to track and predict the data distribution determined by gener-
ator samples effectively, which is brittle and expensive to realize. We therefore introduce implicit
distribution alignment (IDA): a lightweight proximal update applied after each generator step that
nudges the fake model toward the generator, maintaining pf (xt) ≈ pg(xt)—an ε-best response.
This simple alignment markedly improves stability and enables convergence on large backbones.

Further, DMD2 and most existing diffusion distillation methods still use uniformly of handcrafted
sampled timesteps for training and inference. However, due to the complex strategies employed dur-
ing training of teacher diffusion models, different timesteps exert varying denoising effects through-
out the entire process, which is also discussed in RayFlow (Shao et al., 2025). To avoid the in-
efficiency of naive timestep sampling strategy in distillation, we propose to relocate the teacher’s
timestep-wise denoising importance into a small set of selected coarse timesteps. For each coarse
timestep τi, we construct an intra-segment guidance (ISG) by sampling an intermediate timestep
tmid ∈ (τi−1, τi), and construct a guidance trajectory: the teacher denoises from τi to tmid, then the
generator continues from tmid to τi−1. We then guide the generator to align its direct prediction from
τi to τi−1 with this trajectory. This guidance mechanism effectively aggregates the teacher’s fine-
grained behavior within each segment, improving the generator’s ability to approximate complex
transitions across fixed sparse timesteps.

For further enhancement, we incorporate a more general and powerful discriminator built upon
vision foundation models (e.g., DINOv2 (Oquab et al., 2023), CLIP (Radford et al., 2021)), which
operates in the image domain and can provide stronger semantic guidance. The use of pretrained
vision backbones introduces rich semantic priors, enabling the discriminator to better capture image-
level quality and fine-grained structures. By aggregating timestep-aware adversarial signals, this
design yields stable and efficient training with superior visual qualities.

To summarize, we dive into the distribution matching distillation (DMD) and scale it up for a wide
range of large-size flow-based text-to-image models. Our contributions are as follows:

• We discover that vanilla DMD2 suffers from the convergence issue on large-scale text-to-
image models, even with TTUR applied. To tackle this challenge, we propose implicit dis-
tribution alignment to constrain the divergence between the generator and the fake model.

• To mitigate the problem of suboptimal sampling in DMD2, we propose intra-segment guid-
ance to relocate the teacher’s timestep-wise denoising importance, improving the genera-
tor’s ability to approximate complex transitions across sparse timesteps.

• By incorporating a more powerful discriminator built upon vision foundation models with
timestep-aware adversarial signals, we achieve stable training with superior performance.

• Experimental results show that our final model, dubbed SenseFlow, achieves state-of-the-
art performance in distilling large-scale flow-matching models ( e.g., SD 3.5, FLUX.1 dev)
and diffusion-based models (e.g., SDXL).
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2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models are a family of generative models, with the forward process perturbing the data
X0 ∼ p(X0) to Gaussian noise p(XT ) = N (0, I) with a series distributions p(Xt) defined by a
forward stochastic differential equation (SDE):

dXt = f(Xt, t)dt+ g(t)dBt, t ∈ [0, T ] (1)
where f(Xt, t) is drifting parameter, g(t) is diffusion parameter and Bt is standard Brownian mo-
tion. The diffusion model learns the score function s(Xt, t) = ∇Xt

log p(Xt) using neural network.
And the sampling of diffusion process is to solve the probability flow ordinary differential equation:

dXt = (f(Xt, t)−
1

2
g(t)2s(Xt, t))dt,XT ∼ N (0, I). (2)

The two widely adopted diffusion models in text-to-image, namely denoising diffusion probabilistic
model (DDPM) and flow matching optimal transport (FM-OT), fit in above framework by setting
f(Xt, t) = − 1

2βtXt, g(t) =
√
βt and f(Xt, t) = − 1

1−tXt,
1
2g(t)

2 = t
1−t respectively, where βt is

hyper-parameter of DDPM. The forward SDE of DDPM and FM-OT can be directly solved:

DDPM: q(Xt | X0) = N
(
e−

1
2

∫ t
0
βsdsX0, (1− e−

1
2

∫ t
0
βsds)I

)
, (3)

FM-OT: q(Xt | X0) = N
(
(1− t)X0, t

2I
)
. (4)

However, the backward equation in Eq. 2 is intractable as s(Xt, t) is neural network. Usually we
need time-consuming multi-step solvers. In this paper, we focus on distilling the solution of back-
ward equations into another neural network.

2.2 DISTRIBUTION MATCHING DISTILLATION

From now on we assume a pre-trained diffusion model is available, with learned score function
sr(Xt, t) and distribution pr(Xt). The Distribution Matching Distillation (DMD) (Yin et al.,
2024b;a) distills the diffusion model by a technique named score distillation (Poole et al., 2022).
More specifically, DMD learns the generator distribution pg(Xt) to match the diffusion distribution
pr(Xt):

min
pg

DKL(pg(Xt)||pr(Xt)) = Et∼[0,T ],pg
[log pg(Xt)− log pr(Xt)]. (5)

Directly distillation from above target produces suboptimal results. Therefore, DMD introduces
an intermediate fake distribution pf (Xt, t), and optimizes the generator distribution pg and fake
distribution pf in an interleaved way:

Generator:min
pg

Et∼[0,T ],pg
[log pf (Xt)− log pr(Xt)],

Fake:max
pf

Et∼[0,T ],pg
[log pf (Xt)]. (6)

In practice, the fake distribution is parameterized as the score function sϕ(Xt, t) = ∇ log pf (Xt).
On the other hand, the generator is parameterized with a clean image generating network Gθ(ϵ), ϵ ∼
N (0, I) and forward diffusion process q(Xt|X0), such that pg(Xt) = Eϵ∼N (0,I)[q(Xt|Gθ(ϵ))]. To
this end, the DMD updates are achieved by gradient descent and score matching (Vincent, 2011):

Generator: ∇θLg = Et∼[0,T ],ϵ∼N (0,I),Xt∼q(Xt|Gθ(ϵ))[(sϕ(Xt, t)− sr(Xt, t))
∂Xt

∂θ
],

Fake:∇ϕLf = ∇ϕEt∼[0,T ],ϵ∼N (0,I),Xt∼q(Xt|Gθ(ϵ))[||sϕ(Xt, t)−∇Xt log q(Xt|Gθ(ϵ))||]. (7)

3 METHOD: SCALING DISTRIBUTION MATCHING FOR GENERAL
DISTILLATION

3.1 BOTTLENECKS IN VANILLA DMD: STABILITY, SAMPLING, AND NAIVE DISCRIMINATOR

While Distribution Matching Distillation (DMD) has shown promising results in aligning genera-
tive distributions, its vanilla formulation exhibits several fundamental limitations when applied to

3
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Implicit Distribution Alignment
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Figure 2: Left: The generator G receives a text prompt and xτi to produce one-step output xg , which
is diffused to xt and processed by sϕ and sr for computing DMD gradient. ISG guides G using an
sampled intermediate tmid, and IDA aligns G with sϕ after generator update. Training Algorithm is
shown in Appendix. B.3. Right: The discriminator extracts semantic features from generated and
real images using CLIP and DINOv2, which are processed by head blocks hθi to predict real/fake
logits for adversarial training. Trainable modules are shown in pink, while frozen (pretrained) ones
are shown in grey.
large-scale models. First, scalability remains a challenge—the two time-scale update rule (TTUR),
effective in SD 1.5 (0.8B) and SDXL (2.6B), fails to converge stably when scaled to larger models
such as SD 3.5 Large (8B) or FLUX (12B). Second, sampling efficiency is limited as the generator
does not incorporate the varying importance of timesteps in the denoising trajectory, which slows
convergence and reduces expressiveness. Third, the discriminator lacks generality, with a relatively
naive design that struggles to adapt across diverse model scales and architectures. These issues
motivate us to propose architectural and algorithmic improvements in this work.

3.2 IMPLICIT DISTRIBUTION ALIGNMENT (IDA) FOR FLOW-BASED MODELS

Recall that the DMD can be viewed as a min-max optimization:

min
θ

max
ϕ

V (θ, ϕ) ≜ Et∼[0,T ],pg
[log pf (Xt)− log pr(Xt)]. (8)

It is obvious that the inner best response is attained at pf (Xt) = pg(Xt). Furthermore, following
Proposition 2 of GAN (Goodfellow et al., 2014), if the inner best response is achieved at every round
of generator optimization, then generator converges.

5 10 15 20 25 30
Training Hours 

100

200

300

400

FI
D

The FID Score Across Training Hours.
TTUR(5)
IDA+TTUR(5)
TTUR(10)
IDA+TTUR(10)
TTUR(20)

Figure 3: “Training Hours-FID” curves on
COCO-5K dataset. When distilling the 8B
SD 3.5 Large, IDA improves training sta-
bility across TTUR ratios.

However, the inner best response is brittle. DMD2
uses two time-scale update rule (TTUR) (Heusel et al.,
2017), which increases the update frequency of fake
model. However, at large-scale models such as SD 3.5
Large (8B), simply increasing TTUR ratio is expensive
and can still oscillate, as shown in Fig. 3. To tackle the
difficulty to achieve inner best response, we introduce
a proximal alignment step after each generator update,
called Implicit Distribution Alignment (IDA):

ϕ← λϕ+ (1− λ)θ, (9)

where λ ∈ (0, 1] and close to 1. We claim that IDA
maintains pf (Xt) ≈ pg(Xt), and thus help DMD con-
verges. More formally, we have the following:
Proposition 3.1. Under mild assumptions (Assump-
tions A.1 and A.6), IDA maintains an ϵ-best inner re-
sponse. More specifically, after k round of min max optimization in Eq. 8, we have

Et DKL

(
pg(Xt) ∥ pf (Xt)

)
≤ ε, i.e., pf (Xt) ≈ pg(Xt) (ε-best response). (10)

In practice, this strategy ensures that the fake distribution remains closely aligned with the genera-
tor’s distributional trajectory. We observe that combining IDA with even a relatively small TTUR
(e.g., 5:1) leads to significantly more stable convergence. An example of this effect is shown in
Fig. 3, where we compare FID curves under different TTUR settings with and without IDA. As the
figure illustrates, IDA consistently reduces FID variance and improves overall performance.
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Figure 4: Left: Normalized reconstruction loss ξ(t) over timesteps in [0, 1]. Right: Illustration of
the Intra-Segment Guidance.

Intuitively, the generator is trained on a small set of anchor timesteps (e.g., four fixed t’s), while the
fake model is trained on a much denser grid. The IDA transfers the generator’s progress on those
anchor t’s to the fake model, improving its predictions at those t’s. On the other hand, on a SD
3.5 Medium generator, we also observe that DMD training produces generators whose samples are
consistent across 4/8/16 Euler steps, indicating that Gθ remains close to a smooth continuous-flow
integrator. This observation supports using generator parameters to softly anchor the fake model.
Proofs, discussion, and visualization results are provided in Appendix §A.

3.3 INTRA-SEGMENT GUIDANCE: RELOCATING TIMESTEP IMPORTANCE

The distillation performance of vanilla DMD2 is constrained by supervision at a few handcrafted,
coarse timesteps (e.g., τ ∈ {249, 499, 749, 999}). This design has two drawbacks: (i) the gener-
ator receives no signal over the rest of the trajectory, hurting generalization; and (ii) the utility of
each supervised timestep is highly position-dependent—neighboring timesteps can differ markedly
in prediction error. To quantify this local reliability, we visualize the normalized one-step recon-
struction loss

ξ(t) := Ex0, ϵ∼N (0,I)

[
∥x̂0(xt, t)− x0∥22

]
, (11)

where x0 is sampled from the teacher (SD 3.5 or FLUX.1-dev) and xt is obtained by the forward
diffusion process in Eq. 4. As shown in Fig. 4 (Left), ξ(t) is not monotonic in t and exhibits
pronounced local oscillations—especially for t ∈ [0.8, 1.0]. Hence, treating nearby timesteps as
equally informative can anchor training to suboptimal points.

To address this, we introduce Intra-Segment Guidance (ISG), which relocates the teacher’s denoising
importance from within each segment (τi−1, τi] to its supervised anchor. For every coarse timestep
τi, we sample an intermediate timestep tmid ∈ (τi−1, τi). The teacher denoises from τi to tmid to
produce xtmid . The generator then continues from tmid to τi−1, yielding the target xtar. In paral-
lel, the generator directly denoises from τi to τi−1 to produce xτi−1 . We optimize an ℓ2 loss that
backpropagates only through the generator path:

L(i)
ISG = Eϵ, tmid

[∥∥xτi−1 − stop grad(xtar)
∥∥2
2

]
, (12)

where stop grad(·) prevents gradients from flowing through the target. By letting each anchor
absorb information from its surrounding segment, ISG makes the anchors more representative of
local denoising behavior, improving sample quality and training stability.

3.4 GENERAL AND POWERFUL DISCRIMINATOR BUILT UPON VISION FOUNDATION MODELS

As shown in Fig. 2, the discriminator D is built by combining a frozen Vision Foundation Model
(VFM) backbone fVFM with trainable discriminator heads h. Given an input image x and its text
prompt, the VFM backbone extracts multi-level semantic features z = fVFM(x). In addition, we
encode the text with CLIP, c = fCLIP(text), and use VFM features from real images as reference,
r = fVFM(xreal), to inject text–image alignment and realism priors. The discriminator is thus

D(x, c, r) = h
(
fVFM(x), c, r

)
. (13)

These signals allow D to judge both realism and semantic consistency.

5
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Hinge loss for the discriminator. We adopt the standard hinge loss:

Ld = EX∼pdata [max(0, 1−D(X, c, r))] + EX̂0∼pg

[
max(0, 1 +D(X̂0, c, r))

]
, (14)

where pdata is the empirical distribution of real images and pg is the generator distribution.

Adversarial objective for the generator. During the training process of generator, predictions of
X̂0 at large timesteps can be less reliable. To avoid overpowering the DMD signal under high noise,
we introduce a weighting mechanism. Specifically, we scale the adversarial term by the signal
power of the current timestep. Let the forward process be xt = αtx0 + σtϵ (see Sec. 2). We define
ω(t) = (1− σt)

2, which decreases as noise increases, and optimize

Lg = −ω(t) · EX̂0∼pg

[
D(X̂0, c, r)

]
= −α2

t · EX̂0∼pg

[
D(X̂0, c, r)

]
. (15)

This weighting emphasizes the DMD gradient at noisy, high-t steps while leveraging GAN feed-
back more strongly at cleaner, low-noise steps, improving stability and overall quality in practice.
Implementation details of the discriminator are provided in Appendix B.2.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL SETUP

Datasets and Benchmarks. Following DMD2 (Yin et al., 2024a), our experiments are conducted
using a filtered set of the LAION-5B (Schuhmann et al., 2022) dataset, which provides high-quality
image-text pairs for training. We select images with a minimum aesthetic score (aes score) of 5.0
and a shorter dimension of at least 1024 pixels, ensuring the dataset comprises visually appealing,
high-resolution images suitable for our model’s requirements.

For evaluation, we construct a validation set using the COCO 2017 (Lin et al., 2014) validation set,
which contains 5,000 images. Each image in this set is paired with the text annotation that yields the
highest CLIP Score (ViT-B/32), thus forming a robust text-image validation set. To assess compo-
sitional generalization, we further evaluate on GenEval (Ghosh et al., 2023)—which programmati-
cally checks object presence, attributes, relations, and counting-and T2I-CompBench (Huang et al.,
2023)—which covers attribute binding, inter-object relations, and complex multi-object composi-
tions; we follow the official protocols and report both overall and per-category scores.

Text-to-Image Models. We conduct extensive experiments on three representative large-scale text-
to-image models: FLUX.1 dev (12B) (Labs, 2024), Stable Diffusion 3.5 Large (8B) (Esser et al.,
2024), and SDXL (2.6B) (Podell et al., 2024), which span different model sizes and generative
paradigms. Results demonstrate the generality and effectiveness of our method across both flow-
based and conventional diffusion architectures.

Evaluation Metrics. Following (Wang et al., 2024a; Lin et al., 2024; Yin et al., 2024a), we re-
port FID and Patch FID of all baselines and the generated images of original teacher models to
assess distillation performance and high-resolution details, dubbed FID-T and Patch FID-T. For se-
mantic faithfulness, image quality and human preference, we additionally report CLIP Score (ViT-
B/32) (Radford et al., 2021), HPS v2 (Wu et al., 2023) (a human-preference predictor), ImageRe-
ward (Xu et al., 2023) (a learned reward approximating human judgments), and PickScore (Kirstain
et al., 2023) (trained on pairwise human choices), which complement FID by focusing on perceived
quality and semantic alignment.

4.2 TEXT TO IMAGE GENERATION

Comparison Baselines. For SDXL distillation, we compare against LCM (Luo et al., 2023a),
PCM (Wang et al., 2024a), Flash Diffusion (Chadebec et al.), SDXL-Lightning (Lin et al., 2024),
Hyper-SD (Ren et al., 2024), and DMD2 (Yin et al., 2024a). For SD 3.5 Large, we use SD 3.5
Large Turbo as the best baseline (Sauer et al., 2024b). For FLUX.1 dev, we compare with Hyper-
FLUX (Ren et al., 2024), FLUX.1 schnell (Labs, 2024), and FLUX-Turbo-Alpha (Team, 2024). All
baselines are evaluated under their official 4-step configurations.

6
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Table 1: Quantitative Results on COCO-5K and GenEval Benchmarks. Bold/Underline: best/second
best in distilling the same teacher. Our method achieves superior performance on 4-step generation.

Method #NFE↓ Patch FID-T↓ CLIP↑ HPSv2↑ Pick↑ IR↑ GenEval↑
Stable Diffusion XL Comparison

SDXL (Podell et al., 2024) 80 – 0.3293 0.2930 22.67 0.8719 0.5461
LCM-SDXL (Luo et al., 2023a) 4 30.63 0.3230 0.2824 22.22 0.5693 0.5036
PCM-SDXL (Wang et al., 2024a) 4 17.77 0.3242 0.2920 22.54 0.6926 0.4944
Flash-SDXL (Chadebec et al.) 4 23.24 0.3216 0.2830 22.17 0.4295 0.4715
SDXL-Lightning (Lin et al., 2024) 4 16.57 0.3214 0.2931 22.80 0.7799 0.5332
Hyper-SDXL (Ren et al., 2024) 4 17.49 0.3254 0.3000 22.98 0.9777 0.5398
DMD2-SDXL (Yin et al., 2024a) 4 18.72 0.3277 0.2963 22.98 0.9324 0.5779
Ours-SDXL 4 21.01 0.3248 0.3010 23.17 0.9951 0.5784

Stable Diffusion 3.5 Large Comparison

SD 3.5 (Esser et al., 2024) 80 – 0.3310 0.2993 22.98 1.1629 0.7140
SD 3.5 Turbo (Sauer et al., 2024b) 4 22.88 0.3262 0.2909 22.89 1.0116 0.6877
Ours-SD 3.5 4 17.48 0.3286 0.3016 23.01 1.1713 0.6955
Ours-SD 3.5 (Euler) 4 20.26 0.3287 0.3008 22.90 1.2062 0.7098

FLUX Comparison

FLUX.1 dev (Labs, 2024) 50 – 0.3202 0.3000 23.18 1.1170 0.6699
25 – 0.3207 0.2986 23.14 1.1063 0.6733

FLUX.1-schnell (Labs, 2024) 4 – 0.3264 0.2962 22.77 1.0755 0.6807
Hyper-FLUX (Ren et al., 2024) 4 23.47 0.3238 0.2963 23.09 1.0983 0.6193
FLUX-Turbo-Alpha (Team, 2024) 4 24.52 0.3218 0.2907 22.89 1.0106 0.4724
Ours-FLUX 4 19.60 0.3167 0.2997 23.13 1.0921 0.6471
Ours-FLUX (Euler) 4 20.29 0.3171 0.3008 23.26 1.1424 0.6420

Quantitative Comparison. We evaluate 4-step models on COCO-5K and GenEval (Table 1) and
report T2I-CompBench results (Table 5). For flow-matching models (SD 3.5 Large and FLUX.1
dev) we include both stochastic and deterministic solvers, denoted as “Ours” and “Ours (Euler)”.

On COCO-5K & GenEval, across all teachers, our 4-step distillation performs strongly on mod-
ern, human-correlated metrics. On SD 3.5, “Ours-SD 3.5” and “Ours-SD 3.5 (Euler)” achieve the
best and second-best scores on all metrics, even surpassing the teacher model in HPSv2, PickScore,
and ImageReward. The Euler variant achieves the highest GenEval (0.7098), approaching the 80-
NFE teacher (0.7140). On SDXL, our distilled model ranks first on most metrics, including HPSv2,
PickScore, ImageReward and GenEval, with CLIP close to prior art and competitive Patch FID-T.
On FLUX.1 dev, our models again deliver best and second-best performance across five of six met-
rics. The Euler variant further surpasses the teacher model in HPSv2, PickScore, and ImageReward.
As for T2I-CompBench, our SD 3.5 (Euler) model is best in five of six categories and second on
“Spatial” category, establishing overall state-of-the-art performance. For SDXL, our model is best
or second-best in all six categories, giving the strongest overall SDXL distillation on this benchmark.
For FLUX, the Euler variant is best or second in three of six categories, achieving the overall second
best performance. Detailed results of GenEval and T2I-CompBench are shown in Appendix B.5.

Overall results indicate that our method preserves fidelity while improving semantic alignment and
compositional correctness, as reflected by GenEval and T2I-CompBench across diverse models.

Qualitative Comparison. Fig 5 presents qualitative comparisons across a set of prompts. Our
method generates images with sharper details, better limb structure, and more coherent lighting
dynamics, compared to teacher models and baselines. Notably, “Ours-SD3.5” and “Ours-FLUX”
produce more faithful and photorealistic generations under challenging prompts involving fine tex-
tures, human faces, and scene lighting. Additional visualization results are provided in the appendix.

4.3 ABLATION STUDIES

Effectiveness of Implicit Distribution Alignment. To assess the effectiveness of our proposed
IDA, we conduct experiments on SD 3.5 Large with various TTUR ratios. As shown in Fig. 3, we
compare FID curves across different settings, both with and without IDA. Without IDA, the curves
corresponding to “TTUR(5)”, “TTUR(10)”, and “TTUR(20)” exhibit severe oscillations, indicating
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FLUX.1 schnell Ours-FLUXOurs-SD3.5SD3.5 SD3.5 Turbo

a high-resolution photo of an orange Porsche under sunshine

An owl perches quietly on a twisted branch deep within an ancient forest. Its sharp yellow eyes are keen and watchful

A close-up of a woman’s face, lit by the soft glow of a neon sign in a dimly lit, retro diner, hinting at a narrative of longing and nostalgia

wise old man with a white beard in the enchanted and magical forest 

Figure 5: Qualitative comparisons on challenging prompts across methods. Our method shows
superior fidelity, especially in rendering human faces, scene composition, and fine-grained textures.

unstable training dynamics and unreliable optimization of the fake distribution—even at a high ratio
of 20:1. This instability leads to inaccurate DMD gradients and poor convergence. In contrast, the
settings that incorporate IDA (i.e., “IDA+TTUR(5)” and “IDA+TTUR(10)”) demonstrate signifi-
cantly smoother and more stable FID reductions, highlighting IDA’s ability to stabilize training and
improve convergence, even at a relatively small TTUR ratio (5:1).

In addition to the FID analysis, we report quantitative comparisons in Tab. 9 between “w/o ISG”
and “w/o ISG, w/o IDA” using five metrics: FID-T, HPSv2, PickScore, ImageReward, and AESv2.
Across all metrics, adding IDA leads to consistent improvements, further confirming that IDA plays
a key role in enhancing training stability and distillation quality. More observation results in Ap-
pendix A.5 also serve as evidences for IDA as the proposition of ε-best inner response.

Table 2: Ablation Study Results of IDA, ISG,
and VFM Discriminator.

Method FID-T↓ HPSv2↑ Pick↑ IR↑ AESv2↑
Stable Diffusion 3.5 Large

Ours 13.38 0.3015 23.03 1.1713 5.482
w/o ISG 17.00 0.2971 22.75 1.0186 5.453
w/o ISG, w/o IDA 43.84 0.2555 20.60 0.3828 5.102

Stable Diffusion XL

DMD2-SDXL 15.04 0.2964 22.98 0.9324 5.530
DMD2 w VFM 18.55 0.2995 23.00 0.9744 5.625

Without ISG (3K Training Iters) Ours (3K Training Iters)

Figure 6: The ISG improves training consis-
tency, especially in early stage of training.

Effectiveness of Intra-Segment Guidance. To evaluate the effectiveness of the Intra-Segment
Guidance (ISG) module during distillation, we conduct an ablation study on Stable Diffusion 3.5
Large. As shown in Tab. 9, we compare our model with and without ISG (denoted as “Ours” and
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“w/o ISG”, respectively) on the COCO-5K dataset. The results indicate that incorporating ISG leads
to significant improvements across all aspects, including image quality, text-image alignment, and
human preference quality.

Fig. 6 shows a qualitative snapshot at 3k training iterations (generator updated for 300 steps with
a 10:1 TTUR). With ISG, generations are visibly more consistent and semantically accurate, while
the model without ISG exhibits color shifts and degraded details. This supports our interpretation of
ISG as a segment-aware supervision that stabilizes early optimization and accelerates convergence.

Training-time overhead. We evaluate the running time of our introduced IDA and ISG. In our
TTUR setting (f=5), ISG and IDA run only on generator steps, amortizing their cost. Across three
backbones, enabling ISG increases per-iteration time by +4.44% (SDXL), +3.23% (FLUX), and
+6.16% (SD 3.5). Adding IDA on top of an ISG-free baseline adds only +3.97% (FLUX) and
+0.57% (SD 3.5). These overheads are modest compared to the gains in convergence stability and
sample quality; full timing statistics are in Appendix. B.4, Tab. 3.

VFM-based Discriminator. We ablate the discriminator on the SDXL backbone by replacing the
diffusion-based discriminator in DMD2-SDXL with our VFM-based design (“DMD2 w VFM”). As
reported in Tab. 9, the VFM discriminator improves human-centric metrics and aesthetics—HPSv2,
PickScore, ImageReward, and AESv2—while showing a trade-off on FID-T. These results suggest
that leveraging VFM features provides stronger semantic and stylistic priors for adversarial feed-
back, demonstrating better generalization and alignment with human preferences.

FID-T vs. human-preference trade-off. Adding the VFM discriminator raises FID-T, as shown
in Tab. 9. However, We suggest that human-preference metrics (HPSv2, PickScore, etc) mainly
capture perceived quality and semantic faithfulness, whereas FID-T is sensitive to both quality and
diversity relative to the teacher. The VFM discriminator imposes a semantic prior, nudging the
generator toward VFM-preferred modes: this improves alignment with human-preferred semantics
but may reduce sample variance of less-favored regions, hence the modest rise in FID-T. In few-
step distillation context, we prioritize high-quality, semantically meaningful modes over exhaustive
distribution coverage; We view this quality–diversity trade-off acceptable in practical use.

5 RELATED WORK

Diffusion Distillation methods mainly fall into two categories: trajectory-based and distribution-
based approaches. Trajectory-based methods, such as Direct Distillation (Luhman & Luhman, 2021)
and Progressive Distillation (Salimans & Ho, 2022; Ren et al., 2024; Lin et al., 2024; Chadebec
et al.), learn to replicate the denoising trajectory, while Consistency Models (Song et al., 2023;
Luo et al., 2023a; Kim et al., 2024; Wang et al., 2024a; Lu & Song, 2024; Chen et al., 2025) en-
force self-consistency across steps. Distribution-based methods aim to match the generative distri-
bution, including GAN-based distillation (Wang et al., 2023a; 2024b; Luo et al., 2024) and VSD
variants (Wang et al., 2023b; Yin et al., 2024b;a). ADD (Sauer et al., 2024b) and LADD (Sauer
et al., 2024a) explored distilling diffusion models using adversarial training with pretrained feature
extractors. RayFlow (Shao et al., 2025) explored sampling important timesteps for better distilla-
tion. Among these, DMD2 (Yin et al., 2024a) has shown strong results on standard diffusion models
(e.g., SDXL), but its stability degrades on large-scale models. Our work builds upon DMD2 and ad-
dresses these limitations by introducing SenseFlow, which scales distribution matching distillation
to SD 3.5 and FLUX.1 dev through improved alignment and regularization strategies.

6 DISCUSSION & CONCLUSION

We scale up distribution-matching distillation for large flow-based models via implicit distribution
alignment and intra-segment guidance; together with a VFM-based discriminator, these yield our
SenseFlow, which achieves stable and effective few-step generation across both diffusion and flow-
matching backbones. Across three teachers—SDXL, SD 3.5 Large, and FLUX.1 dev—SenseFlow
attains superior overall 4-step results on modern human-preference and compositional benchmarks.
Looking ahead, we aim to push to more aggressive sampling regimes (2-step and 1-step) and to
study alternative vision backbones for the discriminator/guidance modules (Oquab et al., 2023; Ravi
et al., 2025; Ranzinger et al., 2024; He et al., 2022).
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A THEORY PROOFS, DISCUSSION, AND ADDITIONAL RESULTS FOR IDA

Symbol Definitions. We provide explicit symbol definitions and clarifications for our IDA
method, which is primarily applied to flow matching-based text-to-image models such as SD 3.5
Medium/Large and FLUX.1 dev. Since these models operate within the flow matching framework,
we formalize the relevant notation used throughout the analysis and proof.

Let the generator be Gθ, which maps a random noise ϵ ∼ N (0, I) to a generated sample Gθ(ϵ). The
fake/teacher models predict velocity fields vϕ(x, t) and vr(x, t), corresponding to the fake model
and the teacher model, respectively.

Given the forward kernel q(Xt | X0) as described in Eq. 4, the generator induces t-marginals:

pg(Xt) = Eϵ∼N (0,I)[q(Xt | Gθ(ϵ))], (16)

where pg(Xt) is the distribution induced by the generator samples at timestep t. Similarly, the
teacher and fake models define pr(Xt) and pf (Xt), respectively.

Generator-induced FM target field and tracking objective (inner loop of Eq. 8). Let
(X0, Xt, X1) denote the random FM path induced by the forward kernel q(Xt | X0), where
X0 ∼ pg and X1 ∼ N (0, I) is the Gaussian noise endpoint. We define the generator-induced
FM target field as

v̂θ(x, t) := E[X1 −X0 | Xt = x]. (17)

Using this target, we define the tracking error at the k-th round of min–max optimization:

d̄k = Et,Xt
∥vϕk

(Xt, t)− v̂θk(Xt, t)∥. (18)

This is the quantity directly optimized by the inner loop: a smaller d̄k indicates that the fake model
(and thus pf ) better tracks the generator-induced path distribution pg .

In our setup, the generator shares the same network architecture as the teacher model and is also
implemented as a time-conditional velocity network, with output defined for any t ∈ [0, 1]. Here, we
define the generator-parameterized velocity field vθ(x, t) as the output of the generator’s network
at timestep t:

vθ(x, t) := fθ(x, t), t ∈ [0, 1], (19)
Notation. We abuse notation slightly and write vθ(Xt, t) to denote evaluating the deterministic field
vθ(·, ·) at the random input (Xt, t). In addition, during DMD training, supervision is applied only at
a sparse set of anchor timesteps for the generator, making it a few-step generator that can produce
clean samples in a small number of steps (e.g., 4). However, this sparsity does not restrict the
definition of vθ(x, t) to the anchors: since the generator is time-conditional, we can still evaluate its
output for any t ∈ [0, 1]; anchors only specify where gradients are applied during training.

Self-consistent error. We further define the self-consistent error at round k as

β̄k = Et,Xt
∥vθk(Xt, t)− v̂θk(Xt, t)∥. (20)

The self-consistent error quantifies how well the generator’s own velocity prediction agrees with its
pathwise FM target along the generator sample-induced trajectory. Our analysis assumes supk β̄k <
∞, which is supported empirically by step consistency results in Appendix A.5.
Assumption A.1 (Local regularity). There exists a neighborhood U ⊂ Rd of the parameter trajec-
tory and constants L,Cv, Cv̂ > 0 such that:

(Param→field Lipschitz) Et,Xt∼pg

∥∥ vω′(Xt, t)− vω(Xt, t)
∥∥ ≤ L ∥ω′ − ω∥, ∀ω, ω′ ∈ U ,

(21)

(Generator smoothness) Et,Xt∼pg

∥∥ vθk+1
(Xt, t)− vθk(Xt, t)

∥∥ ≤ Cv ∥θk+1 − θk∥,

(Target smoothness) Et,Xt∼pg

∥∥ v̂θk+1
(Xt, t)− v̂θk(Xt, t)

∥∥ ≤ Cv̂ ∥θk+1 − θk∥.

In particular, the param→field Lipschitz condition applies to both the fake and generator parameters,
e.g., to the pair (ω′, ω) = (ϕk+1, θk). We also assume the min–max optimization steps satisfy
∥θk+1 − θk∥ → 0, since the generator will gradually converge as the training process.
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A.1 DECOMPOSITION AND INNER BEST RESPONSE

Proposition A.2 (Cross-entropy decomposition and best response). With V (θ, ϕ) defined in Eq. 8,
for fixed θ,

V (θ, ϕ) = Et DKL

(
pg(Xt) ∥ pr(Xt)

)
− Et DKL

(
pg(Xt) ∥ pf (Xt)

)
. (22)

Hence maxϕ V (θ, ϕ) = Et DKL(pg∥pr), attained if pf (Xt) = pg(Xt) for a.e. t.

Proof. Use the cross-entropy identity Epg
[log pf ] = −DKL(pg∥pf )−H(pg) and the fact that H(pg)

cancels. Non-negativity of KL yields the claim.

A.2 BOUNDING THE TRACKING ERROR UNDER IDA UPDATE

Firstly, we define the parameter tracking error ek := ∥ϕk − θk∥, and the field gap ∆k :=
Et,Xt

∥∥vϕk
(Xt, t) − vθk(Xt, t)

∥∥. Meanwhile, as defined in Eq. 18 and Eq. 20, we have the tar-
get field tracking and self-consistent errors d̄k and β̄k. In this subsection, we use the IDA update
ϕk+1 = λϕk + (1− λ)θk+1 (Eq. 9) to control the parameter tracking error and the field gap.

What we prove. With the IDA update, we (i) bound the next-step field gap in terms of the parameter
tracking error ek and the outer step ∥θk+1−θk∥, (ii) derive a coupled one-step recursion for (ek, d̄k),
and (iii) obtain the asymptotic bound lim supk→∞ d̄k ≤ β̄⋆.
Lemma A.3 (Field-gap bound under IDA using ek). Under Assumption A.1,

∆k+1 ≤ Lλ ek +
[
L(1− λ) + Cv

]
∥θk+1 − θk∥. (23)

Proof. Insert and subtract vθk and apply generator smoothness and the param→field Lipschitz:

∆k+1 ≤ E∥vϕk+1
− vθk∥+ E∥vθk − vθk+1

∥
≤ L∥ϕk+1 − θk∥+ Cv∥θk+1 − θk∥.

Using the IDA update, ϕk+1− θk = λ(ϕk − θk)+ (1−λ)(θk+1− θk), so by the triangle inequality

∥ϕk+1 − θk∥ ≤ λ∥ϕk − θk∥+ (1− λ)∥θk+1 − θk∥ = λek + (1− λ)∥θk+1 − θk∥.
Plug this into the previous display to obtain Eq. 23.

Lemma A.4 (Coupled one-step recursion for tracking). Under Assumption A.1 and Eq. 9, the fol-
lowing coupled recursions hold:

ek+1 ≤ λ ek + λ ∥θk+1 − θk∥, (24)

d̄k+1 ≤ Lλek + β̄k +
[
L(1− λ) + 2Cv + Cv̂

]︸ ︷︷ ︸
=:K

∥θk+1 − θk∥. (25)

Proof. For Eq. 24, from ϕk+1 = λϕk + (1 − λ)θk+1 we have ek+1 = ∥λ(ϕk − θk+1)∥ ≤ λek +
λ∥θk+1 − θk∥.
For Eq. 25, by the triangle inequality,

d̄k+1 = E∥vϕk+1
− v̂θk+1

∥ ≤ E∥vϕk+1
− vθk+1

∥︸ ︷︷ ︸
∆k+1

+ E∥vθk+1
− v̂θk+1

∥︸ ︷︷ ︸
β̄k+1

.

Apply Lemma A.3 to ∆k+1 and the generator/target smoothness to β̄k+1:

β̄k+1 ≤ β̄k + (Cv + Cv̂)∥θk+1 − θk∥.
Combining the bounds and using ∆k+1 ≤ Lλek + [L(1− λ) + Cv]∥θk+1 − θk∥ gives Eq. 25.

Proposition A.5 (Asymptotic bound for the tracking error). If supk β̄k ≤ β̄⋆ for some finite β̄⋆ <∞
and ∥θk+1 − θk∥ → 0, then

lim sup
k→∞

d̄k ≤ β̄⋆.
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Proof. From Eq. 24, (1 − λ) lim sup ek ≤ λ lim sup ∥θk+1 − θk∥ = 0, so lim sup ek = 0. Taking
lim sup in Eq. 25 and using lim sup ∥θk+1 − θk∥ = 0 together with lim sup β̄k ≤ β̄⋆ yields the
claim.

A.3 FROM VELOCITY FIELD ERROR TO KL GAP ALONG THE FM PATH

In this subsection, given pairs of velocity fields (vϕk
, vθk) at round k, we relate their discrepancy to

the pathwise KL divergence between pg(Xt) and pf (Xt).
Assumption A.6 (Fisher→KL control and score–velocity relation). For each t ∈ [0, 1], there exists
a constant Ct > 0 such that

DKL

(
pg(Xt) ∥ pf (Xt)

)
≤ Ct EXt∼pg

∥ sf (Xt, t)− sg(Xt, t) ∥22 , (26)

where s•(·, t) = ∇x log p•(·, t) denotes the score. Moreover, along the (linear–Gaussian) flow-
matching path, the score and velocity differences are related by a scalar factor a(t) > 0 that depends
only on the time schedule:

sf (Xt, t)− sg(Xt, t) = a(t)
(
vϕ(Xt, t)− vθ(Xt, t)

)
. (27)

Assume t 7→ Ct and t 7→ a(t) are measurable and that

C := Et

[
Ct a(t)

2
]
< ∞. (28)

The constants Ct and a(t) are independent of (ϕ, θ).

Immediate consequence. Combining Eq. 26–Eq. 27 and averaging over t yields

Et DKL

(
pg(Xt) ∥ pf (Xt)

)
≤ C E∥ vϕ(Xt, t)− vθ(Xt, t) ∥22 . (29)

Proposition A.7 (From field error to ε-best response). Under Assumptions A.1 and A.6, define the
L2 versions of the tracking and self-consistent errors

d̃k :=
(
E∥vϕk

(Xt, t)− v̂θk(Xt, t)∥22
)1/2

, β̃k :=
(
E∥vθk(Xt, t)− v̂θk(Xt, t)∥22

)1/2
.

Then for each iterate k there exists

εk = 2C
(
d̃2k + β̃2

k

)
such that

Et DKL

(
pg(Xt) ∥ pf (Xt)

)
≤ εk.

It controls the inner KL gap, and thus induces an εk-best-response bound.

Proof. By Assumption A.6, EtDKL(pg∥pf ) ≤ C E∥vϕ− vθ∥22. Decompose vϕ− vθ = (vϕ− v̂θ)+
(vθ − v̂θ) and apply ∥u+ v∥22 ≤ 2∥u∥22 + 2∥v∥22:

E∥vϕ − vθ∥22 ≤ 2E∥vϕ − v̂θ∥22 + 2E∥vθ − v̂θ∥22 = 2(d̃2k + β̃2
k).

Combine with A.6 to obtain the claim.

A.4 COMBINING THEM TOGETHER

Combining the IDA-specific bound on the field tracking error (Proposition A.5) with the KL control
in Proposition A.7, we obtain an ε-best-response guarantee for the inner loop under IDA. Finally,
invoking the decomposition in Proposition A.2, we have

V (θ, ϕ) = EtDKL(pg ∥ pr)− EtDKL(pg ∥ pf ).

With Et DKL(pg∥pf ) ≤ ε from Proposition A.7, we obtain

Et DKL

(
pg∥pr

)
− ε ≤ V (θ, ϕIDA) ≤ Et DKL

(
pg∥pr

)
. (30)

In words, under IDA the inner loop delivers an ε-best response, so the outer loop approxi-
mately minimizes EtDKL(pg∥pr) within ε.

15
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Figure 7: Step consistency (DMD + VFM, TTUR 5:1). Each column shares prompt/seed; rows use
4/8/16 Euler steps. Despite being trained on four anchor timesteps, the 4-step generator remains
visually close when re-evaluated under 8 or 16 steps, suggesting a smooth underlying velocity field
along the FM path.

A.5 OBSERVATIONS OF STEP CONSISTENCY AND EMPIRICAL BOUNDEDNESS OF THE
SELF-CONSISTENCY ERROR

This subsection provides empirical evidence that the student generator exhibits step consistency
(similar outputs under 4/8/16 FM integration steps), which in turn indicates that the self-consistent
error β̄k = Et,Xt

∥vθk(Xt, t)−v̂θk(Xt, t)∥ remains bounded during training—supporting the ε-best-
response analysis in §3.2 and A.4.

Setup. We distill an SD 3.5 Medium (2B) teacher into a 4-step student Gθ. Unless otherwise
noted, we use Euler integration and keep prompts and latent seeds fixed across step counts. For each
column we show three rows: top = 4 steps, middle = 8 steps, bottom = 16 steps. Fig. 7 reports DMD
+ VFM discriminator at TTUR 5:1; Fig. 8 reports DMD + IDA + VFM discriminator at the same
TTUR.

Observation A (Step consistency ⇒ bounded self-consistent error). Across all columns in
Fig. 7 and Fig. 8, the 4/8/16-step samples remain close. This indicates that the distilled student fol-
lows a smooth velocity field along the FM schedule. In our notation (Eq. 20), this is consistent with
(and provides empirical support for) the generator’s self-consistent error β̄k being bounded through-
out training (i.e., the learned field does not exhibit unstable behavior between anchor timesteps). As
a sanity check, if the learned field were highly inconsistent between anchors (e.g., large/drifting
mismatch to its pathwise FM target), then refining the Euler discretization (4→16) would typically
induce noticeable trajectory drift and different endpoints, which is not observed here. Consequently,
the non-divergent ε in Proposition A.7 is empirically supported.

Observation B (IDA improves image quality while retaining consistency). Comparing Fig. 7
(no IDA) with Fig. 8 (with IDA), IDA consistently enhances image quality at all step counts—fewer
artifacts, more faithful textures, and more coherent structures—while maintaining the same level of
step consistency. This matches the theory: IDA reduces inner-loop drift by keeping the fake model
close to the generator (thereby stabilizing tracking, i.e., reducing d̃k), and together with bounded
self-consistency (i.e., controlled β̃k as supported above), yields a stable ε-best-response guarantee.
Substituting Et DKL(pg∥pf ) ≤ ε into Proposition A.2 yields the sandwich bound in Eq. 30, imply-
ing that the outer loop approximately minimizes Et KL(pg∥pr) within ε.
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Figure 8: Effect of IDA. Adding IDA improves global fidelity and reduces artifacts across all step
counts while preserving step consistency: sharper textures, cleaner edges, and more coherent object
geometry are observed at 4/8/16 steps.

B IMPLEMENTATION DETAILS AND MORE EXPERIMENTAL RESULTS

B.1 IMPLEMENTATION DETAILS

Our entire framework is implemented in PyTorch with CUDA acceleration and is trained using 8
A100 GPUs with a total batch size of 8. We adopt the AdamW optimizer (Loshchilov, 2017) with
hyperparameters β1 = 0.9 and β2 = 0.999. The learning rate is set to 1e − 6 for the distillation of
SDXL and SD 3.5 Large, and 1e−5 for FLUX.1 dev. To efficiently support large-scale model train-
ing, we utilize Fully Sharded Data Parallel (FSDP), which enables memory-efficient and scalable
training of large models.

Text 
Prompt

....

....

Figure 9: Design of the VFM-based discriminator.

Timestep settings. We adopt different coarse
timestep schedules depending on the model
architecture. For SDXL, we follow the
1000-step discrete DDPM schedule used in
DMD2 (Yin et al., 2024a), selecting step
indices {249, 499, 749, 999}. For SD 3.5
Large, we switch to continuous timestep values
{0.25, 0.5, 0.75, 1.0} , which are more suitable
for flow-based models. In the case of FLUX.1
dev, which adopts a shifted σ inference strat-
egy, we directly use the corresponding sigmas
{0.512, 0.759, 0.904, 1.0} as coarse anchors.

Training details. We set the default TTUR
(Two Time-Scale Update Rule) ratio to 5 in our
main experiments on SDXL, SD 3.5 Large, and
FLUX.1 dev. For large flow-based models such
as SD 3.5 Large and FLUX.1 dev, we apply
all proposed improvements, including Implicit
Distribution Alignment (IDA), Intra-Segment
Guidance (ISG), and the VFM-based Discriminator. For the diffusion-based SDXL model, we em-
ploy ISG and the VFM-based Discriminator while omitting IDA.
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B.2 DETAILED VFM-BASED DISCRIMINATOR DESIGN

As shown in Fig. 9, the discriminator integrates pretrained vision (DINOv2) and language (CLIP)
encoders to provide semantically rich and spatially aligned supervision. Given an input image x, we
apply normalization (from [−1, 1] to [0, 1]) and differentiable data augmentation (including color
jitter, translation, and cutout). The augmented image is processed by a frozen DINOv2 vision trans-
former to extract multi-level semantic features. Each selected layer output is reshaped into a 2D
spatial map (e.g., [B,C,H,W ]) and passed through a lightweight convolutional head composed of
spectral-normalized residual blocks.

A reference image xref is processed through the same DINOv2 pathway (without augmentation) to
extract corresponding semantic features. Meanwhile, the text prompt is encoded by a CLIP (ViT-
L/14) text encoder into a condition feature c, which is projected to a spatial map. Each discriminator
head fuses the image feature, reference feature, and prompt condition via element-wise multipli-
cation and spatial summation to compute the final logits. (Note: In Section 3.4, we described the
reference features r as extracted by the CLIP encoder. In practice, r = fVFM(xref) is obtained using
the same DINOv2 backbone as the input image. The Fig. 2 should also be corrected.)

B.3 TRAINING ALGORITHM

To more clearly illustrate our training process, we provide the full algorithmic details in Algorithm 1.
We adopt model-specific hyperparameter settings for better distillation performance. In particular,
we set the hyperparameter λIDA of implicit distribution alignment to 0.97 by default. For the intra-
segment guidance loss, λISG is set to 0.2 for SDXL, and 1.0 for both SD 3.5 and FLUX.1 dev.

B.4 TRAINING-TIME OVERHEAD OF ISG AND IDA

Under TTUR with frequency f=5, both components are applied only on generator updates (every f
iterations), which amortizes their cost.

We measure wall-clock time (minutes) at multiple checkpoints and report the average per-iteration
time (seconds/iter). All runs use 8×A100. Total training steps and times: SDXL 18k (32 hours),
SD 3.5 27k (56.3 hours), FLUX 12k (23.4 hours). We report relative overhead as

%Overhead =
twith − tbase

tbase
× 100%.

Table 3: Training-time overhead of ISG and IDA.

Method / Time (min) 3k 6k 9k 12k 15k Avg. time (s)/iter % Overhead

Ours SDXL 313 638 968 1284 1600 6.400 +4.44%
Ours SDXL w/o ISG 310 621 925 1228 1835 6.128 –

Ours FLUX 352 705 1056 1407 1757 7.028 +3.23%
Ours FLUX w/o ISG 337 680 1022 1364 1702 6.808 +3.97%†

Ours FLUX w/o ISG, w/o IDA 323 648 975 1306 1637 6.548 –

Ours SD 3.5 375 750 1126 1503 1878 7.512 +6.16%
Ours SD 3.5 w/o ISG 355 720 1064 1417 1769 7.076 +0.57%†

Ours SD 3.5 w/o ISG, w/o IDA 354 706 1059 1410 1759 7.036 –

Under TTUR (f=5), both ISG and IDA run only on generator steps. Across backbones, enabling
ISG increases per-iteration time by +4.44% on SDXL, +3.23% on FLUX, and +6.16% on SD 3.5.
Adding IDA on top of an ISG-free baseline adds +3.97% on FLUX and +0.57% on SD 3.5. These
overheads of ISG (3–6%) and IDA (0.6–4%) are minor and manageable in practice, especially be-
cause both are executed only on generator steps under TTUR. In return, they bring consistent gains
in convergence stability and sample quality.
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Algorithm 1 SenseFlow Training Algorithm

Require: pretrained teacher model µreal, real dataset Dreal, generator update frequency f , coarse
timestep set S = {τ0, τ1, τ2, τ3}

Ensure: trained few-step generator G
1: G← copyWeights(µreal) ▷ Initialize generator
2: µfake ← copyWeights(µreal) ▷ Initialize fake distribution network
3: D ← initializeDiscriminator() ▷ Initialize VFM-based discriminator
4: for iteration = 1 to max iters do
5: z ∼ N (0, I)
6: Sample τi from S ▷ Pick timestep for current iteration
7: Sample xreal ∼ Dreal
8: if random() < 0.5 then ▷ With 50% probability, use backward simulation
9: xτi ← multiStepSampling(z, τ3 → τi))

10: else
11: xτi ← forwardDiffusion(xreal, τi)
12: end if
13: x← G(xτi)
14: if iteration mod f = 0 then
15: LDMD ← distributionMatching(µreal, µfake, x)
16: LG ← −σ2

τi · E[D(x)] ▷ Eq. 15
▷ Intra-segment guidance (ISG)

17: tmid ∼ U(τi, τi−1)
18: xmid ← µreal(xτi , τi → tmid)
19: xtar ← G(xmid, tmid → τi−1)
20: xτi−1 ← G(xτi , τi → τi−1)
21: LISG ← MSE(xτi−1 , stopgrad(xtar))
22: LG ← LDMD + λG · LG + λISG · LISG ▷ Final loss function for generator
23: G← update(G,LG)

▷ Implicit distribution alignment (IDA), as in Eq. 9
24: µfake ← IDA(G,µfake, λIDA)
25: end if

▷ Update fake score network µfake
26: t ∼ LogitNormalSampling(0, 1) ▷ Using logit-normal density, as in (Esser et al., 2024)
27: xt ← forwardDiffusion(stopgrad(x), t)
28: Ldenoise ← denoisingLoss(µfake(xt, t), stopgrad(x))
29: µfake ← update(µfake,Ldenoise)

▷ Update discriminator D
30: LD ← E[max(0, 1−D(xreal)] + E[max(0, 1 +D(x)] ▷ Eq. 14
31: D ← update(D,LD)
32: end for

B.5 DETAILED RESULTS AND DISCUSSION OF GENEVAL AND T2I-COMPBENCH

Tables 4 and 5 report detailed compositional results. On SD 3.5, our 4-step models (same distilled
weights, different samplers) achieve the strongest overall performance: the Euler variant attains
the highest GenEval among 4-step methods (Tab. 4) and is best on five of the six T2I-CompBench
categories while ranking second on Spatial (Tab. 5). This shows that our distillation preserves fidelity
while improving fine-grained attribute binding and multi-object reasoning.

On SDXL, our distilled model leads GenEval among SDXL distillation methods and is best on
Color/Shape/Texture in T2I-CompBench, while remaining competitive on Spatial, Non-spatial and
Complex-3-in-1. These gains, together with strong human-preference metrics in the main text, indi-
cate better semantic faithfulness at the same 4-step budget.

On FLUX, using the same distilled weights, the two solvers present a complementary trade-off: the
stochastic sampler attains the highest GenEval among 4-step baselines, whereas the Euler variant
is best on Shape and second on Texture/Spatial/Complex-3-in-1 in T2I-CompBench. Overall, the
two compositional suites corroborate our COCO-5K findings: the proposed distillation improves
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semantic alignment and compositional correctness across diverse teachers without increasing the
sampling cost.

Table 4: GenEval benchmark results. We report overall score and per-attribute pass rates (%).
Bold/Underline: best/second best in distilling the same teacher.

Method Steps/NFE GenEval↑ Single Obj. Two Obj. Counting Colors Position Color-Attr.

SDXL Distillation

LCM–SDXL 4 0.5036 99.06% 55.56% 39.69% 85.37% 7.00% 15.50%
PCM–SDXL 4 0.4944 97.50% 56.06% 39.69% 81.65% 7.50% 14.25%
SDXL–Lightning 4 0.5332 98.44% 60.35% 45.31% 84.57% 10.50% 20.75%
Hyper–SDXL 4 0.5398 98.44% 65.40% 38.75% 88.83% 12.50% 20.00%
DMD2–SDXL 4 0.5779 99.69% 75.76% 47.81% 87.50% 10.50% 25.50%
Ours–SDXL 4 0.5784 99.69% 73.74% 47.81% 88.83% 10.00% 27.00%

SD 3.5 Large Distillation

SD 3.5 Large Turbo 4 0.6877 99.06% 88.89% 68.75% 77.93% 23.00% 55.00%
Ours–SD 3.5 4 0.6955 99.06% 92.93% 63.44% 81.12% 22.00% 58.75%
Ours–SD 3.5 (Euler) 4 0.7098 100.00% 91.67% 67.81% 81.38% 24.50% 60.50%

FLUX Distillation

FLUX.1 schnell 4 0.6807 99.38% 89.39% 60.00% 77.93% 29.00% 52.75%
Hyper–FLUX 4 0.6193 98.12% 69.95% 67.50% 75.53% 16.75% 43.75%
FLUX–Turbo–Alpha 4 0.4724 88.12% 44.70% 52.50% 64.63% 13.25% 20.25%
Ours–FLUX 4 0.6471 98.75% 70.71% 82.50% 80.05% 14.00% 42.25%
Ours–FLUX (Euler) 4 0.6420 99.06% 71.91% 80.00% 78.72% 16.50% 40.50%

Teachers

SDXL 80 0.5461 96.88% 69.70% 41.88% 87.23% 10.25% 21.75%
SD 3.5 Large 80 0.7140 100.00% 90.66% 69.38% 81.38% 26.50% 60.50%
FLUX.1 Dev 50 0.6689 99.38% 82.83% 74.06% 77.66% 22.00% 46.00%
FLUX.1 Dev 25 0.6733 99.69% 84.34% 75.31% 81.12% 20.75% 42.75%

B.6 ANALYSIS OF DIVERSITY

Figure 10: Qualitative diversity under the VFM discriminator. Left: DMD2-SDXL. Right: Ours-
SDXL.

Setup. To quantify the impact of the VFM discriminator on sample diversity, we construct a prompt
validation set and, for each prompt, generate 16 samples per model. On this set, we compute two
diversity metrics across all image pairs: (i) LPIPS-diversity, defined as the average pairwise LPIPS
distance between samples; and (ii) CLIP-diversity, obtained by feeding all images through a pre-
trained CLIP image encoder, ℓ2-normalizing the features, and averaging 1 − cosine-similarity over
all pairs. Both metrics are averaged over prompts, and higher values indicate higher sample diversity.
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Table 5: 4-Step Results on T2I-CompBench. Bold/Underline: best/second best in distilling the same
teacher. Our distilled SD 3.5 model approaches overall state-of-the-art distillation performance.

Method Color Shape Texture Spatial Non-spatial Complex-3-in-1

LCM-SDXL 0.5997 0.4015 0.4958 0.1672 0.3010 0.3364
SDXL-Lightning 0.5758 0.4492 0.5154 0.2124 0.3098 0.3517
Hyper-SDXL 0.6435 0.4732 0.5581 0.2213 0.3104 0.3301
PCM-SDXL 0.5591 0.4142 0.4693 0.2013 0.3099 0.3234
DMD2-SDXL 0.6531 0.4816 0.5967 0.2231 0.3100 0.3597
Ours-SDXL 0.6867 0.4828 0.5989 0.2224 0.3100 0.3594
SD 3.5 Large Turbo 0.7050 0.5443 0.6512 0.2839 0.3130 0.3520
Ours-SD 3.5 0.7657 0.6069 0.7427 0.2970 0.3177 0.3916
Ours-SD 3.5 (Euler) 0.7711 0.6149 0.7543 0.2857 0.3182 0.3968
FLUX.1 schnell 0.7317 0.5649 0.6919 0.2626 0.3122 0.3669
Hyper-FLUX 0.7465 0.5023 0.6153 0.2945 0.3116 0.3766
FLUX-Turbo-Alpha 0.7406 0.4873 0.6024 0.2501 0.3094 0.3688
Ours-FLUX 0.7284 0.5055 0.6031 0.2451 0.3028 0.3652
Ours-FLUX (Euler) 0.7363 0.5120 0.6112 0.2521 0.3028 0.3697

Table 6: Diversity comparison. LPIPS-diversity (average pairwise LPIPS distance) and CLIP-
diversity (variance in CLIP image embeddings) on a 23-prompt validation set with 16 samples per
prompt. Higher is better.

Method LPIPS-Diversity ↑ CLIP-Diversity ↑
DMD2-SDXL 0.5960 0.0985
Ours-SDXL 0.6002 0.0802

SD 3.5 Large Turbo 0.5659 0.0879
Ours SD 3.5 Large 0.5664 0.0900

Results. The quantitative results are shown in Tab. 6. For SDXL, Ours-SDXL achieves LPIPS-
diversity 0.6002 vs. 0.5960 for the DMD2-SDXL baseline, and CLIP-diversity 0.0802 vs. 0.0985.
For SD 3.5 Large, our method obtains LPIPS-diversity 0.5664 vs. 0.5659 for the SD 3.5-Turbo
baseline and CLIP-diversity 0.0900 vs. 0.0879. Overall, LPIPS-based diversity remains essentially
unchanged (all methods within about 1-2%), while CLIP-diversity changes mildly: it decreases
slightly for SDXL (0.0985→0.0802). This supports our original claim that the VFM discrimina-
tor slightly reshapes the distilled generator toward human-preferred semantic modes; and diversity
change is small compared to the gains in human-preference-aligned metrics.

Qualitative visualization. To further illustrate this effect, in Fig. 10, we visualize 16 samples for
the prompt “a teddy bear on a skateboard in Times Square” for DMD2-SDXL (left) and Ours-SDXL
(right). Both models exhibit clear variation in pose, background, and apparel. DMD2-SDXL shows
slightly more variation in viewpoint (e.g., more side-angle shots of the bear), while our model tends
to produce more centered, compositionally consistent bears—matching the mild CLIP-diversity dif-
ference and the improved human-preference performance reported in Tab. 9.

In summary, the VFM discriminator gently reshapes the distilled generator toward human-preferred,
semantically meaningful modes, while inducing only a mild change in standard diversity measures.

B.7 1–2-STEP GENERATION

To assess the behavior of SenseFlow beyond the 4-step regime, we further evaluate 2-step and 1-step
generation across SDXL, SD 3.5 Large, and FLUX. The results are summarized in Tab. 7.

For 2-step sampling, SenseFlow naturally extends without any architectural modification and con-
sistently outperforms strong baselines under the same setup and evaluation protocol. On SDXL, the
2-step model surpasses DMD2-SDXL on all human-preference metrics (HPSv2, AESv2, PickScore,
ImageReward). On SD 3.5 Large, the improvement is particularly pronounced: at 2 steps, the model
achieves an ImageReward of 1.2022 and a PickScore of 22.88, clearly exceeding SD 3.5-Large-
Turbo. For FLUX, the 2-step SenseFlow student also improves over Hyper-FLUX on all metrics.
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Table 7: SenseFlow in the low-NFE regime (2-step and 1-step). We compare the distilled students
with corresponding baselines on SDXL, SD 3.5, and FLUX.

Method NFE CLIP ↑ HPSv2 ↑ AESv2 ↑ PickScore ↑ ImageReward ↑
DMD2-SDXL 2 0.3295 0.2813 5.432 22.57 0.8666
Ours-SDXL 2 0.3263 0.2827 5.710 22.89 0.9192
Ours-SDXL 1 0.3298 0.2818 5.584 22.24 0.8570

SD3.5-Large-Turbo 2 0.3248 0.2745 5.394 22.16 0.7188
Ours-SD3.5 Large 2 0.3326 0.2889 5.537 22.88 1.2022
Ours-SD3.5 Large 1 0.3332 0.2803 5.421 22.32 1.0651

Hyper-FLUX 2 0.3176 0.2682 5.541 21.63 0.3636
Ours-FLUX 2 0.3207 0.2866 5.926 22.38 0.9296

Figure 11: 1-step 1024×1024 samples produced by our SenseFlow on SDXL (Left) and SD 3.5
Large (Right).

For 1-step generation, we start from the pretrained 4-step SenseFlow students and apply a short fine-
tuning schedule (6000 iterations) for the single-step setting. This yields competitive performance
with only a modest drop relative to the 2-step case; for example, the 1-step SD 3.5 Large model
attains an ImageReward of 1.0651 and a CLIP score of 0.3332. Qualitative comparisons for 2-step
and 1-step sampling are provided in the Fig. 16 and Fig. 11. In particular, for SD 3.5 Large, the
visual degradation from 4 steps to 2 steps is very small (from columns 3 to 5 of Fig. 16), indicating
that SenseFlow remains robust even in aggressive low-NFE regimes.

Overall, these results demonstrate that SenseFlow delivers strong generation quality at 2 steps with-
out architectural changes and exhibits promising single-step performance after light tuning. This
highlights its potential to further advance 1–2-step distillation for large (8B+) text-to-image models,
a setting where existing open-source solutions remain limited.

B.8 IMPACT OF ISG ON TRAINING DYNAMICS

We study the effect of Intra-Segment Guidance (ISG) on training stability and convergence speed for
SD 3.5 Large. Fig. 12 visualizes the evolution of FID and FID-T on COCO-5k as a function of train-
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Table 8: Effect of ISG on training dynamics (SD 3.5 Large). FID-T on COCO-5k at different
training iterations for the full method (with ISG) and an ablation without ISG. Lower is better.

Method 1.5k 3k 4.5k 6k 9k 12k

Ours (w/ ISG) 14.48 22.32 17.65 18.11 16.18 15.20
Ours w/o ISG 138.2 24.99 19.43 19.12 18.07 19.06
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Figure 12: FID-T and FID scores across training iterations on COCO-5k for SD 3.5 Large, compar-
ing the full method with ISG and an ablation without ISG.

ing iterations for the full method (with ISG) and an ablation without ISG, while the corresponding
FID-T values at selected checkpoints are summarized in Tab. 8.

Stability and convergence speed. ISG mainly improves the stability and convergence speed of
training. At 1.5k iterations, the model trained without ISG still exhibits extremely poor alignment
to the teacher (FID-T ≈ 138), whereas the model with ISG has already reached a reasonable regime
(FID-T ≈ 14.48). As training proceeds, both variants become more stable, but the ISG model
consistently attains lower FID-T throughout training (e.g., 16.18 vs. 18.07 at 9k iterations, and
15.20 vs. 19.06 at 12k iterations). A similar gap is observed on the FID curves in Fig. 12. These
results indicate that ISG effectively redistributes timestep importance within each segment, making
the student updates less sensitive to under-trained timesteps and leading to faster and more stable
convergence.

B.9 COMPARISON TO DMD2 AND DETAILED COMPONENT ABLATIONS

On DMD2 for SD 3.5 Large. For SDXL, we directly use the official DMD2-SDXL model as a
strong baseline in the main table. For SD 3.5 Large, however, there is currently no public DMD2
implementation. We therefore implement a faithful DMD2-style latent discriminator on top of the
DiT backbone and attempt to train a “DMD2-SD 3.5 Large” student under the same settings. De-
spite extensive tuning (e.g., increasing the TTUR up to 20), this model fails to converge in practice
and collapses to almost all-black samples. Only after replacing the vanilla discriminator with the
proposed VFM-based discriminator does training start to produce meaningful images, albeit still
with noticeable instability. Adding IDA and ISG on top of VFM then gradually improves the quality
and stability, eventually yielding the performance reported for SenseFlow.

Because the DMD2-SD 3.5 Large variant does not reach a meaningful operating regime (i.e., it
collapses), we do not include it as a baseline in Tab. 1. Instead, the we provide qualitative vi-
sualizations of this progression in Fig. 13: from DMD2 (black images) to DMD2+VFM, then
DMD2+VFM+IDA (Ours w/o ISG), Ours (full), and DMD2+VFM+ISG (Ours w/o IDA). This vi-
sual sequence illustrates why a direct DMD2 baseline is difficult to scale to SD 3.5 Large and how
the proposed modifications mitigate its failure modes.

More comprehensive ablations. To analyze the contribution of individual components, we include
an expanded ablation in Tab. 9. For SD 3.5 Large, the table reports: (a) the full SenseFlow model,
(b) a variant without ISG (w/o ISG), (c) a variant without IDA (w/o IDA), and (d) a variant without
both ISG and IDA (w/o ISG, w/o IDA). Performance degrades steadily along this path: removing
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ISG already causes a noticeable drop across FID-T and human-preference metrics, removing IDA
leads to further degradation, and removing both ISG and IDA results in a clear collapse (FID-T
increases from 13.38 to 43.84, with large drops in HPSv2, PickScore, and ImageReward). This
pattern confirms that both IDA and ISG contribute substantially to the final performance and that
they interact synergistically.

For SDXL, the same table compares DMD2-SDXL, DMD2 equipped with the VFM discriminator
(DMD2 w VFM), and the full Ours-SDXL model. This isolates the effect of the VFM discrim-
inator (DMD2 vs. DMD2 w VFM) and then the additional gains obtained by integrating ISG on
top (DMD2 w VFM vs. Ours-SDXL). In particular, equipping DMD2 with VFM improves most
human-preference metrics, and adding the full SenseFlow pipeline yields further consistent gains.

Overall, Tab. 9 and the accompanying qualitative grid in Fig. 13 together provide a step-by-step
view of how the three components—VFM discriminator, IDA, and ISG—each improve the model
and how their combination yields the strongest overall performance, while also clarifying why a
direct DMD2 baseline is not informative for SD 3.5 Large.

Table 9: Ablation study of IDA, ISG, and the VFM discriminator. Results on SD 3.5 Large and
SDXL.

Method FID-T↓ HPSv2↑ Pick↑ ImageReward↑ AESv2↑
Stable Diffusion 3.5 Large

Ours 13.38 0.3015 23.03 1.1713 5.482
w/o ISG 17.00 0.2971 22.75 1.0186 5.453
w/o IDA 17.83 0.2800 22.47 0.9365 5.407
w/o ISG, w/o IDA 43.84 0.2555 20.60 0.3828 5.102

Stable Diffusion XL

DMD2-SDXL 15.04 0.2964 22.98 0.9324 5.530
DMD2 w VFM 18.55 0.2995 23.00 0.9744 5.625
Ours-SDXL 17.76 0.3010 23.17 0.9951 5.703

B.10 HUMAN EVALUATION

Additionly, we conduct a human preference study covering three model families: SDXL, SD 3.5,
and FLUX. We recruit approximately 20 participants and evaluate SenseFlow against strong base-
lines in each family: SDXL (vs. DMD2 and Hyper-SD), SD 3.5 (vs. SD 3.5-Large-Turbo and
SD 3.5-Large), and FLUX (vs. Hyper-FLUX and FLUX-Turbo-Alpha). We used ∼80 diverse
prompts (from prior distillation works plus GPT-generated prompts). For each prompt and model
family, participants saw three anonymized images (SenseFlow and two baselines) in random order
and ranked them by overall preference, image quality, and text–image alignment.

From these rankings we derived pairwise preference rates (detailed in Fig. 14 in the appendix).
SenseFlow is preferred in roughly 60–72% of comparisons on SDXL, 58–68% on SD 3.5, and 64–
72% on FLUX across the three criteria, consistently outperforming strong baselines. These results
corroborate our reported metrics in the main paper.

B.11 QUALITATIVE COMPARISONS

We further provide qualitative side-by-side comparisons for SDXL, SD 3.5 Large, and FLUX. For
each model family, we show samples from SenseFlow and strong baselines under the same prompts.
As illustrated in Figures 15–17, SenseFlow tends to produce images with sharper details, cleaner
structure, and more faithful overall quality.

B.12 MORE ABLATION STUDY RESULTS AND VISUALIZATION SAMPLES

Effect of Different Adversarial Loss Weights. In our main experiments, the hyperparameter λG
in Algorithm 1, Line 22, is set to 0.5, 0.1, and 2.0 for SDXL, SD 3.5 Large, and FLUX.1 dev,
respectively. To further investigate the impact of this hyperparameter, we conduct an ablation study
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OursDMD+VFM+IDA
(Ours w/o ISG)

DMD2 DMD+VFM

A girl with a hairband performing a song with her guitar on a warm evening at a local market, children's story book

a shiba inu wearing a beret and black turtleneck

An owl perches quietly on a twisted branch deep within an ancient forest. Its sharp yellow eyes are keen and watchful

an old man, by Wes Anderson

DMD+VFM+ISG
(Ours w/o IDA)

a high-resolution photo of an orange Porsche under sunshine

Figure 13: Qualitative ablation on SD 3.5 Large under shared prompts. Plain DMD2 collapses to
all-black samples; adding VFM recovers basic structure, while introducing IDA and ISG progres-
sively improves fidelity and text–image alignment, with the full SenseFlow model yielding the most
visually pleasing and semantically faithful results..

using SDXL as an example, decreasing λG to 0.25. The results are presented in Tab. 10. We
observe that setting λG = 0.5 leads to improved performance across most metrics, including CLIP
Score, HPSv2, PickScore, and ImageReward. Notably, this configuration achieves the best scores
on HPSv2, PickScore, and ImageReward among all methods in Tab. 1. These results highlight the
strong semantic and visual supervision capabilities of our VFM-based discriminator.

Results of Different Backbone Scales. We evaluate the impact of different VFM backbone scales
(ViT-S, B, and L) in the discriminator on SDXL distillation. Interestingly, the results (Tab.1) do
not follow a monotonic trend with respect to model size. ViT-B achieves the best FID-T, while
ViT-S yields higher CLIP Score and ImageReward. ViT-L slightly outperforms others on HPSv2
and PickScore. These findings suggest that different backbone scales offer different trade-offs in
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vs DMD2

vs Hyper-SD

SDXL

60.1% 39.9%

68.7% 31.3%

Overall Preference

SenseFlow
Baseline

59.3% 40.7%

71.6% 28.4%

Image Quality

55.5% 44.5%

63.1% 36.9%

Text-Image Alignment

vs SD 3.5 Large Turbo

vs SD 3.5 Large

SD3.5 Large

65.7% 34.3%

57.8% 42.2%

67.9% 32.1%

59.2% 40.8%

65.7% 34.3%

59.2% 40.8%

0 20 40 60 80 100
Preference Rate (%)

vs Hyper-FLUX

vs FLUX-Turbo-Alpha

FLUX

69.2% 30.8%

70.7% 29.3%

0 20 40 60 80 100
Preference Rate (%)

69.9% 30.1%

72.2% 27.8%

0 20 40 60 80 100
Preference Rate (%)

63.7% 36.3%

66.0% 34.0%

Figure 14: Human evaluation results across SDXL, SD 3.5, and FLUX, comparing SenseFlow with
strong baselines in each model family.

Table 10: Quantitative Results of different backbone scales.

Method FID-T ↓ CLIP Score ↑ HPSv2 ↑ PickScore ↑ ImageReward ↑
Hyper-SDXL 13.71 0.3254 0.3000 22.98 0.9777
Ours (λG = 0.25) 17.53 0.3234 0.3003 23.15 0.9326
Ours (λG = 0.5) 17.76 0.3248 0.3010 23.17 0.9951

semantic alignment versus visual fidelity, and that larger backbones do not necessarily guarantee
consistent improvements across all metrics. This observation is partially consistent with findings in
the ADD(Sauer et al., 2024b) paper, which also noted diminishing returns when scaling the discrim-
inator. In our main paper, we adopt ViT-L as the default backbone for the VFM-based discriminator.

More visualization results of our methods on SD 3.5 Large and SDXL. As shown in Fig. 18 and
Fig. 19, we present more samples produced by out 4-step generator distilled from SD 3.5 Large and
SDXL, separately. The prompts of these samples are listed later in our appendix.

Examples from T2I-CompBench. As shown in Fig. 20, we present visual comparisons of dif-
ferent methods on SDXL using the T2I-CompBench benchmark. These qualitative results clearly
highlight the superiority of our approach across multiple aspects, including color fidelity (rows 1
and 2), shape consistency (row 3), material and texture (row 4), and complex spatial arrangements
(row 5).

B.13 PROMPTS FOR FIG. 1, FIG. 18, AND FIG. 19

We use the following prompts for Fig. 1. From left to right, top to bottom:

• A red fox standing alert in a snow-covered pine forest
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Table 11: Quantitative Results of different backbone scales.

Method FID-T ↓ CLIP Score ↑ HPSv2 ↑ PickScore ↑ ImageReward ↑
Ours w ViT-S 17.26 0.3262 0.2983 23.12 0.9635
Ours w ViT-B 16.58 0.3234 0.2991 23.07 0.9218
Ours w ViT-L 17.53 0.3239 0.3003 23.15 0.9326

• A girl with a hairband performing a song with her guitar on a warm evening at a local
market, children’s story book

• Astronaut on a camel on mars

• A cat sleeping on a windowsill with white curtains fluttering in the breeze

• A stylized digital art poster with the word ”SenseFlow” written in flowing smoke from a
stage spotlight

• A surreal landscape inspired by The Dark Side of the Moon, with floating clocks and rain-
bow beams

• a hot air balloon in shape of a heart. Grand Canyon

• A young man with a leather jacket and messy hair playing a cherry-red electric guitar on a
rooftop at sunset

• A young woman wearing a denim jacket and headphones, walking past a graffiti wall

• A photographer holding a camera, squatting by a lake, capturing the reflection of the moun-
tains in an early morning

• a young girl playing piano

• A close-up of a woman’s face, lit by the soft glow of a neon sign in a dimly lit, retro diner,
hinting at a narrative of longing and nostalgia

Besides, we use the following prompts for Fig. 18. From left to right, top to bottom:

• A quiet room with Oasis album covers framed on the wall, acoustic guitar resting on a stool

• An astronaut lying in the middle of white ROSES, in the style of Unsplash photography.

• cartoon dog sits at a table, coffee mug on hand, as a room goes up in flames. ”Help” the
dog is yelling

• Art illustration, sports minimalism style, fuzzy form, black cat and white cat, solid color
background, close-up, pure flat illustration, extreme high-definition picture, cat’s eyes de-
pict clear and meticulous, high aesthetic feeling, graphic, fuzzy, felt, minimalism, blank
space, artistic conception, advanced, masterpiece, minimalism, fuzzy fur texture.

• Close-up of the top peak of Aconcagua, a snow-covered mountain in the Himalayas at
sunrise during the golden hour. Award-winning photography, shot on a Canon EOS R5 in
the style of Ansel Adams.

• A curvy timber house near a sea, designed by Zaha Hadid, represents the image of a cold,
modern architecture, at night, white lighting, highly detailed

• a teddy bear on a skateboard in times square

• a black and white picture of a woman looking through the window, in the style of Duffy
Sheridan, Anna Razumovskaya, smooth and shiny, wavy, Patrick Demarchelier, album cov-
ers, lush and detailed

As for Fig. 19, we use following prompts from left to right, top to bottom:

• Astronaut in a jungle, cold color palette, muted colors, detailed, 8k

• A bookshelf filled with colorful books, a potted plant, and a small table lamp

• A dreamy beachside bar at dusk serving mojitos and old fashioneds, guitars hanging on the
wall
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• A portrait of a human growing colorful flowers from her hair. Hyperrealistic oil painting.
Intricate details.

• Peach-faced lovebird with a slick pompadour.
• a stunning and luxurious bedroom carved into a rocky mountainside seamlessly blending

nature with modern design with a plush earth-toned bed textured stone walls circular fire-
place massive uniquely shaped window framing snow-capped mountains dense forests

• An acoustic jam session in a small café, handwritten setlist on the wall, cocktails on every
table

• a blue Porsche 356 parked in front of a yellow brick wall.
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DMD2-SDXLHyper-SDXLLCM-SDXL

Digital art of a young girl reading in an enchanted forest, inspired by Arthur Rackham's whimsical style. Warm sunlight filters 
through lush greenery (soft greens, browns, golden yellows). A 35mm medium shot centers her, book in hand, surrounded by 

fairies, glowing fireflies, and curious foxes. Delicate glitter accents add magic—perfect for a child’s dreamy escape.

Aerial shot of stunning greek fantasy palace with lots of towers and spires, large windows and airy quality and feel, palace is in 
the center of a sprawling city full of libraries, shops, and bustling activity, background is a rolling mountain range, large fluffy 
clouds in the skyUse ethereal lighting and light colors to create an idyllic atmosphere, Epic sky, Otherworldly, Hyper realistic

Bokeh, Electric Colors, Accent Lighting, Lightning, Inferno, insanely detailed and intricate, hypermaximalist, elegant, ornate, 
hyper realistic, super detailed, phoenix with wings of flame,front view,magical atmosphere.

A towering jellyfish queen glides gracefully through an underwater kingdom, her translucent tendrils trailing behind her like an
elegant gown. Bioluminescent patterns ripple across her ethereal body, pulsing in sync with the deep ocean currents. Tiny fish 

swim in mesmerizing formations around her, drawn to the soft, hypnotic glow that follows her every movement.

A sketchbook page filled with clothing designs, with the brand name “SENSEFLOW” written in the top corner

Ours-SDXL

In the heart of an ancient cathedral, Excalibur rests upon an altar of marble, encased in shimmering, ethereal light. The stained-glass 
windows cast multicolored beams across the blade, illuminating the intricate runes carved into its steel. A quiet reverence fills the 

chamber for legends say that only the true king may grasp its hilt without being turned to dust.

SDXL

Figure 15: Qualitative SDXL comparisons under shared prompts. Each row corresponds to one
prompt, showing SenseFlow and strong SDXL baselines side by side.
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SD 3.5 L Turbo (2)Ours-SD 3.5 L (4)SD 3.5 L Turbo (4)

A giant, four-armed baker made entirely of gingerbread hums a deep, rumbling tune as he kneads dough in a cozy, fire-lit 
kitchen. His icing-swirl eyebrows lift in delight as he pulls a tray of enchanted pastries from the oven—each one shaped like a tiny, 

dancing creature. The warm scent of cinnamon and sugar fills the air as his candy-button eyes twinkle with pride.

A mischievous minion transformed into a dark side warrior, inspired by Darth Vader, stands menacingly in a dimly lit chamber. Its yellow, 
cylindrical body is painted matte black, with glossy red accents glowing faintly. It wears a flowing black cape, a custom helmet with sharp edges 

and a single menacing goggle-eye glowing red. In its hand, a tiny yet powerful red lightsaber hums with energy. The minion’s expression is a 
mix of determination and its usual playful mischief, as if ready to wreak havoc while still being adorably chaotic. The dark background is 

illuminated by faint red and blue lights, evoking the ominous atmosphere of a Sith lair.

Japanese style tuna sushi restaurant cartoon with soft and funny contours with 3d with white background

A dramatic black-and-white portrait of a retired footballer holding his boots in one hand and a guitar in the other

Ours-SD 3.5 L (2)

A baker pulling fresh croissants from a brick oven in a rustic bakery

SD 3.5 L

A stylized digital art poster with the word "SenseFlow" written in flowing smoke from a stage spotlight

Figure 16: Qualitative SD 3.5 Large comparisons under shared prompts. SenseFlow produces visu-
ally appealing images with improved composition and text–image consistency compared to SD 3.5-
Large-Turbo and SD 3.5-Large.
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FLUX-Schnell FLUX-Turbo-Alpha Hyper-FLUX

A mischievous minion transformed into a dark side warrior, inspired by Darth Vader, stands menacingly in a dimly lit chamber. Its yellow, 
cylindrical body is painted matte black, with glossy red accents glowing faintly. It wears a flowing black cape, a custom helmet with sharp edges 

and a single menacing goggle-eye glowing red. In its hand, a tiny yet powerful red lightsaber hums with energy. The minion’s expression is a 
mix of determination and its usual playful mischief, as if ready to wreak havoc while still being adorably chaotic. The dark background is 

illuminated by faint red and blue lights, evoking the ominous atmosphere of a Sith lair.

Inside the FC Barcelona locker room, a No.10 jersey with the name “SenseFlow” hangs under the spotlight, surrounded by red 
and blue walls and team gear

Ours-FLUX

A celestial bard with flowing, star-speckled robes strums a crystalline harp that hums with the music of the cosmos. Their silver hair 
drifts as if caught in an eternal breeze, and their eyes shine like twin galaxies. As they play, glowing constellations dance around them, 

weaving stories of forgotten legends. The air vibrates with an ethereal melody, bending reality itself to their song.

FLUX

A baker pulling fresh croissants from a brick oven in a rustic bakery

A stylish bartender preparing a “Catalan Sunset” cocktail, with a small Barça logo etched on the glass

A surreal landscape inspired by The Dark Side of the Moon, with floating clocks and rainbow beams

Figure 17: Qualitative FLUX comparisons under shared prompts. SenseFlow provides clearer struc-
tures and better alignment with the textual descriptions than Hyper-FLUX and FLUX-Turbo-Alpha.
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Figure 18: 1024×1024 samples produced by our 4-step generator distilled from SD 3.5 Large.
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Figure 19: 1024×1024 samples produced by our 4-step generator distilled from SDXL.
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Figure 20: Examples from T2I-CompBench.
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