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ABSTRACT

Designing an accurate and explainable reward function for many Reinforcement
Learning tasks is a cumbersome and tedious process. Instead, learning policies
directly from the feedback of human teachers naturally integrates human domain
knowledge into the policy optimization process. Different feedback modalities,
such as demonstrations and preferences, provide distinct benefits and disadvan-
tages. For example, demonstrations convey a lot of information about the task
but are often hard or costly to obtain from real experts while preferences typically
contain less information but are in most cases cheap to generate. However, exist-
ing methods centered around human feedback mostly focus on a single teaching
modality, causing them to miss out on important training data while making them
less intuitive to use. In this paper we propose a novel method for policy learning
that incorporates two different feedback types, namely demonstrations and prefer-
ences. To this end, we make use of the connection between discriminator training
and density ratio estimation to incorporate preferences into the popular Adversar-
ial Imitation Learning paradigm. This insight allows us to express loss functions
over both demonstrations and preferences in a unified framework. Besides ex-
pert demonstrations, we are also able to learn from imperfect ones and combine
them with preferences to achieve improved task performance. We experimentally
validate the effectiveness of combining both preferences and demonstrations on
common benchmarks and also show that our method can efficiently learn chal-
lenging robot manipulation tasks.

1 INTRODUCTION

This paper aims to progress research towards enabling humans without expert knowledge of machine
learning or robotics to teach robots to perform tasks using diverse feedback modalities. Enabling
human teachers to use various feedback types allows for a more natural human-robot training in-
teraction. In particular, this paper focuses on human demonstrations of the desired behaviour, and
preferences, which are pairwise comparisons of two possible robot behaviors. Both types of feed-
back have distinct benefits. Demonstrations exploit the domain knowledge of human teachers for
a given task. Yet, they are often cumbersome to generate, and present considerable cognitive load
on the human teacher, up to the point that the teacher might not be capable to demonstrate optimal
behavior on their own. In contrast, preferences are easier to evaluate, albeit less informative as they
only indicate relative quality, i.e., which option is better among two provided ones.

Both feedback types have been extensively researched in isolation. For instance, a plethora of ap-
proaches focus on learning from demonstrations, also referred to as imitation learning (Osa et al.,
2018). In recent years, preference learning has been an active research topic (Wirth et al., 2017), but
integrative work on learning from multiple feedback modalities has been much sparser and is often
limited to e.g., a theoretical analysis (Jeon et al., 2020).

In this paper, we introduce Adversarial Imitation Learning with Preferences (AILP), a novel method
for learning from a combination of demonstrations and preferences that builds upon the well-known
Adversarial Imitation Learning (AIL) framework. AIL uses a discriminator that indicates the change
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of the policy, which can be seen as a differential reward. In preference learning, typically we directly
encode the reward in a preference and require a static reward. We show that combining a differential
and static reward directly in the form of adversarial comparisons and preferences is incompatible and
leads to poor performance. To alleviate this issue, we present a preference loss that is compatible
with AIL and therefore enables AIL approaches to benefit from additional preference feedback that
is available alongside demonstrations. We provide an overview of our method in Figure 1.
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Figure 1: Schematic overview of Adversarial Imitation Learning with Preferences (AILP). Given
a policy (blue) that may be pre-trained on a self-supervised maximum entropy objective, we can
optionally query a teacher for new demonstrations (yellow) and preferences between trajectories
from the buffer B (green). Next, a discriminator ϕ(s, a) (purple) is trained to discriminate between
samples from B and teacher demonstrations (Ldem), while at the same time preferring better samples
over worse ones (Lpref). For an off-policy Reinforcement Learning (RL) algorithm, this training
makes use of the environment (grey) and a sample buffer that needs to be relabeled according to the
reward that depends on ϕ(s, a). This process is iterated over until convergence, at which point the
policy produces samples that are indistinguishable from the expert demonstrations.

The contribution of the paper are as follows: (i) we present a novel preference-learning approach
that is compatible with Adversarial Imitation Learning and achieves results comparable to the state
of the art, (ii) we extend Adversarial Imitation Learning to include learning from both preferences
and demonstrations, (iii) we present extensive evaluations of the proposed method, outperforming
various baseline methods on well-known benchmarks.

2 RELATED WORK

Teaching robots by human teachers has been an active research topic in the past years (Chernova &
Thomaz, 2014). There has been research on unifying multiple feedback types into a single frame-
work, e.g., by (Jeon et al., 2020), but the focus has been mostly on unimodal feedback. Two com-
monly researched human feedback modes are demonstrations and preferences. Besides these, there
are numerous others, such as assigning numerical values to different options by human teachers, as
in the work by Wilde et al. (2021).

Learning from Demonstrations. Recently, learning from demonstrations and Imitation Learning
(IL) (Osa et al., 2018; Argall et al., 2009) have been active research fields in robot learning in which
the robot is presented with instances of desired expert behavior. IL algorithms can generally be
classified as either Behavioral Cloning (BC) (Torabi et al., 2018; Florence et al., 2021), where a pol-
icy is directly regressed from demonstrations in a supervised fashion, or as Inverse Reinforcement
Learning (IRL) (Abbeel & Ng, 2017; Ziebart et al., 2008; Zakka et al., 2021), which recovers and
subsequently optimizes a reward function from demonstrations. In recent years, there has been a
rise in adversarial methods inspired by Generative Adversarial Networks (Goodfellow et al., 2014).
Starting with Generative Adversarial Imitation Learning (GAIL) (Ho & Ermon, 2016), these meth-
ods utilize a discriminator-based distribution matching objective for both BC (Ho & Ermon, 2016;
Torabi et al.) and IRL (Fu et al., 2018; Xiao et al., 2019). Building on this, another body of work
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utilizes the inherent connection between discriminator training and (log) density ratio estimation
for AIL with Gaussian Mixture Model (GMM) policies (Becker et al., 2020; Freymuth et al., 2021;
2022)

Learning from Preferences. Preference evaluation indicates the preferred behavior out of two pos-
sible options. Compared to demonstrations, preferences are generally easier to provide for human
teachers, but contain significantly less information. Here, early work made use of Gaussian Process
(GP) for encoding preferences for classification tasks (Chu & Ghahramani, 2005; Houlsby et al.,
2012). Biyik et al. (2020) have also used GPs to learn a reward function with a predefined set of
behaviors. Moreover, these models can be used with trajectory features to lower the dimensionality
of the problem (Sadigh et al., 2017; Myers et al., 2021; Bıyık & Sadigh, 2018). Christiano et al.
(2017) recover the full policy by using a deep RL approach. An extension of this work, named Peb-
ble (Lee et al., 2021a), combines unsupervised entropy-based pre-training with a Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) policy to optimize the learned reward function. Lee et al. (2021b)
evaluate Pebble using different teacher profiles. In this paper we compare our method with the
results presented in Lee et al. (2021a), leaving the evaluation with different teachers for future work.

Learning from Demonstrations and Preferences. Jeon et al. (2020) define a formalism that en-
ables integrating various feedback types into a unified framework. However, this work is a theo-
retical analysis and requires further empirical evaluation. Practical methods that combine demon-
strations and preferences have so far mostly been extensions of existing work for learning from
one of those feedback types. In Bıyık et al. (2021), the authors propose a Bayesian method which
infers an initial belief about the unknown reward function from demonstrations, and then uses pref-
erences (similar to Bıyık & Sadigh (2018)) to refine this function to better match the true reward.
Yet, this method requires trajectory-wise features, while AILP directly acts on state-action pairs.
Moreover, Ibarz et al. (2018) propose bootstrapping the initial policy using demonstrations and then
apply a preference learning approach (Christiano et al., 2017). In our method we integrate both
demonstrations and preferences into the learning process, without any assumptions on when and
what type of feedback is required for learning. Brown et al. (2019) extended work from Brown et al.
and introduced a method that uses suboptimal demonstrations to train model train using behavior
cloning. By using this model with different levels of noise they can self generate preferences which
they learn using the same loss function as in Lee et al. (2021a).

3 PRELIMINARIES

In this section, we present an overview of used notations in the paper, as well as preliminaries on
generative adversarial imitation learning.

Demonstrations and preferences. We define T consecutive pairs of states s and actions a as a
trajectory ξ = {s1, a1, ..., sT }. We also interchangeably use the term rollout to refer to a trajectory.
Besides full trajectories, we also consider trajectory segments, which are shorter sections of the full
trajectory with length Tseg < T . A trajectory that is generated by a teacher is also referred to as
a demonstration. Unless stated otherwise, we assume that the teacher provides optimal examples
of a given behavior. Preferences are labeled pairs of trajectories (ξ1, ξ2), such that ξ1 is preferred
over ξ2. In contrast to demonstrations, where the teacher is responsible for generating the trajectory,
trajectories in a preference pair are generated by the agent. We assume that the preferred trajectory
has higher likelihood under the expert policy π∗ (Wirth et al., 2017), i.e.,

ξ1 ≻ ξ2 ⇔ p (ξ1|π∗) > p (ξ2|π∗) ,

which also implies that the cumulative reward of trajectory ξ1 is greater than the reward of ξ2, that
is,

R(ξ1) > R(ξ2), R(ξ) =

T∑
t=0

r(st, at),

where r(s, a) is a reward function that is unknown to the agent.

In the literature, such as by Lee et al. (2021a), a common approach for defining the loss function is
based on Bradley-Terry model (Bradley & Terry, 1952) where they model

pBT (ξ1 ≻ ξ2) =
exp

∑T
t=0 r(s

1
t , a

1
t )∑2

i=1 exp
∑T

t=0 r(s
i
t, a

i
t)
.
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Based of the previous preference probability and assuming that the preferred trajectory is always
labeled as ξ1, the following loss function is used

LBT = − E
(ξ1,ξ2)∼P

[log pBT (ξ1 ≻ ξ2)] .

Preference query and labels. Preferences are obtained by sampling trajectories from the policy, or
alternatively, they can also be sampled from a buffer of existing trajectories. Lee et al. (2021b) ana-
lyze different preference querying methods in order to obtain more informative pairs. The approach
that we consider in this paper is based on cross-entropy. We select a pair of trajectories from the
buffer that has the largest cross-entropy value. After the agent generates the query, it is presented to
the teacher for evaluation. The teacher then labels one trajectory as better according to its evaluation
criteria. In simulated tasks, the teacher is often referred to as an oracle and it has access to the true
underlying reward function of the task.

Trajectory likelihood. Assuming Markovian dynamics, the likelihood of the trajectory under the
expert policy is

p(ξ|π∗) = p(s0)

T−1∏
t=0

p(st+1|at, st)π∗(at|st). (1)

Adversarial Imitation Learning. The main training loop of AIL revolves around iteratively train-
ing a discriminator D on samples, and training a generator, which is usually given as a policy π̃(a|s)
on some reward induced by this discriminator. The discriminator and the policy are updated sequen-
tially in a loop after minimizing their respective losses as described below.

At the start of iteration k, we generate a set of rollouts Mk = {ξ} following our policy π̃k(a|s).
Using Mk and expert demonstrations D = {ξd} that are provided by an expert teacher π∗(a|s),
we update the discriminator D(s, a) : A × S 7→ R such that it distinguishes between expert
demonstrations (s, a) ∈ D and samples (s, a) ∈ Mk. After training the discriminator, it can be
used to recover an intermediate reward function Rk(s, a), which is subsequently used to obtain a
new policy π̃k+1(a|s) using a regular Reinforcement Learning algorithm, such as Soft Actor-Critic
(SAC) (Haarnoja et al., 2018). The exact form of Rk(s, a) varies depending on the concrete AIL
algorithm. Popular choices include RGAIL(a, s) = − log(1 − D(a, s)) from GAIL (Ho & Ermon,
2016) and RAIRL(a, s) = log(D(a, s)) − log(1 −D(a, s)) from AIRL (Fu et al., 2018). For more
details we refer to Orsini et al. (2021). The former reward optimizes the Jensen-Shannon diver-
gence between the π̃i(a|s) and π∗(a|s), while the latter optimizes the Kullback–Leibler divergence
between the same distributions. After updating the policy, the above process is repeated. The algo-
rithm converges when the policy creates samples that are indistinguishable from that of the teacher.
At this point, the policy successfully imitates the behavior of the expert teacher.

4 ADVERSARIAL IMITATION LEARNING WITH PREFERENCES

Our approach has two main steps. In the first step, instead of a discriminator, we update a log density
ratio estimator (LDRE) using the demonstration and preference loss functions that we introduce in
Section 4.3. In the second step, we update our policy using the LDRE based reward and SAC. Every
K iterations, we add M new preferences to our preference buffer. We summarize the algorithm in
Section 4.5.

4.1 REFORMULATING AIL USING DENSITY RATIO ESTIMATION

AIL can be derived under a divergence minimization perspective such as the Jensen-Shannon Diver-
gence (Ho & Ermon, 2016; Orsini et al., 2021), KL-divergence (Fu et al., 2018; Becker et al., 2020)
or more general f-divergences (Ghasemipour et al., 2020). We will follow a KL-minimization per-
spective as it allows a clear interpretation of the learned discriminator (Arenz & Neumann, 2020).
Similar to Fu et al. (2018); Becker et al. (2020), we start by minimizing the KL-divergence between
the generator’s and the demonstrator’s trajectory distributions, i.e.

π∗ = argminπKL
(
pπ(ξ)||pq(ξ)

)
, with pπ(ξ) = p(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st). (2)
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The distribution pq(ξ) is defined similarly with unknown demonstrator policy q(a|s). As demon-
strator and generator trajectories use the same system dynamics, the KL minimization simplifies
to

KL
(
pπ(ξ)||pq(ξ)

)
=

∫
pπ(ξ)

T∑
t=1

log
π(at|st)
q(at|st)

dξ (3)

=

T∑
t=1

∫∫
pπ(st)π(at|st) log

π(at|st)
q(at|st)

dstdat, (4)

where pπ(st) is the state distribution of policy π at time step t. We can see that this objective depends
on the log density ratio log π(at|st)

q(at|st) of the generator and demonstrator action distributions. This log
density ratio can be estimated by a discriminator which is typically trained by a BCE classification
loss Becker et al. (2020); Arenz & Neumann (2020). Yet, in order to break the dependency of the
discriminator on the generation policy π and following Arenz & Neumann (2020), we introduce the
following trick

KL
(
pπ(ξ)||pq(ξ)

)
=

T∑
t=1

∫∫
pπ(st)

(
π(at|st) log

πk(at|st)
q(at|st)

+ log
π(at|st)
πk(at|st)

)
dstdat, (5)

where πk is the old generator used for sampling the data. In the following, we will replace the log
density ratio log πk(at|st) − log q(at|st) by an estimator ϕ(s, a) which is trained using the BCE
objective. We further rewrite our minimization problem into an maximization problem and arrive at

Jπ =

T∑
t=1

Epπ(st)π(at|st)

[
− ϕ(st, at) + log πk(at|st)

]
+H

(
π(·|st)

)
, (6)

where H
(
π(·|st)

)
is the conditional entropy of policy π. Note that Jπ now needs to be maximized

w.r.t π.

4.2 REWARDS IN AIL

While in standard AIL we typically use the discriminator as reward signal for updating the generator,
it is important to note that the discriminator does not constitute a reward signal in the classical
sense. It is non-stationary and heavily depends on the current generator policy πk. It provides
information which trajectories should be reinforced given the current generator, i.e., policy πk but
can not be used to evaluate the quality of trajectories independently of the currently used generator.
To illustrate this issue, consider the case that our model policy is perfectly matching our expert, and
that the discriminator has been trained accordingly. In this case, the discriminator outputs 0.5 for
every possible input, thus being incapable of providing a metric to compare different trajectories.

Yet, a different reward formulation can be extracted from our discussion on density ratio estimation
in AIL. Eq. 6 can be interpreted as average reward reinforcement learning problem with rewards

rt(st, at) = log πk(at|st)− ϕ(st, at) (7)

and an additional max-entropy objective for the policy. It is easy to see that, for a perfect density
ratio estimator, i.e. ϕ(st, at) = log πk(at|st) − log q(at|st), the reward function would reduce to
log q(at|st), breaking the dependency of the reward function definition in AIL from the generator
πk(at|st). Hence, we can now directly use our reward definition to evaluate trajectories which will
be important in Section 4.3 for introducing an additional preference loss.

4.3 COMBINING PREFERENCE AND DEMONSTRATION LOSS

Following our discussion from above, the demonstration loss for training the discriminator is speci-
fied by the BCE loss which results in reliable density ratio estimators, i.e.,

Ldem(ϕ,D,M0) = − E
(a,s)∼D

[
log σ

(
ϕ(a, s)

)]
− E

(a,s)∼M

[
log

(
1− σ(ϕ(a, s))

)]
, (8)
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where M contains samples generated by the current model policy π̃k.

Furthermore, we need to include a loss function for the available preferences to obtain a more ac-
curate discriminator. To this end, we will use our reward function defined in Eq. 7 to estimate the
trajectory return

R(ξ) =
∑
t

r(st, at) =
∑
t

log πk(at|st)− ϕ(st, at),

of the two trajectories ξ1 and ξ2 that constitute the preference pair. We now further restrict our
discriminator to also comply with the given preferences using a hinge loss per preference pair,

Lpref (R,P) = E
(ξ1,ξ2)∼P

[hinge (R (ξ1)−R (ξ2))] , (9)

i.e., there is an additional penalty if the estimated return of the preferred trajectory R(ξ1) is smaller
then the return of R(ξ2). In our experiments, we also present an ablation study testing different
loss functions for the preferences, including without addition of the log-density of the old generator
in our reward definition as well as the typically used sigmoid loss for the preference pairs. We
observed that the hinge loss resulted in the most stable results. Our interpretation is that this is due
to the property of the hinge loss that it is only active if the preference is violated while the sigmoid
loss is forcing the returns of two preference pairs to be far apart, causing instabilities.

Preference and demonstration feedback may impact the learnt policy to different degrees depend-
ing on the teacher and the task. We can compensate for this effect by increasing the influence of
one feedback type by scaling the corresponding loss function. For example, we can multiply the
preference loss Lpref with a hyperparameter α to do so. In the case when we are only considering
preferences, our method represents a novel preference-learning method.

4.4 OPTIMIZING THE GENERATOR

Although there are algorithms for solving average reward RL problems (Zhang & Ross, 2021), we
will use standard discounted RL formulations such as SAC (Haarnoja et al., 2018) for our policy
update as such off-policy methods are known to be more data efficient. While our derivations only
hold for the average reward case, we do not expect this to make a major difference for larger discount
factors. In this paper we concentrate on the addition of preferences in the discriminator loss and leave
the usage of average reward RL algorithms for AIL for future work. We use SAC to optimize the
reward, which is an off-policy method that uses a replay buffer B. However, because our reward
definition changes with ϕ(a, s) we need to also relabel the data in the buffer accordingly.

As we use Gaussian policy class, the term log πk(at|st) used in the reward definition was also too
restrictive for SAC as policy optimizer as this term quickly tends to dominate, making the value
function approximation for the first part of the reward unreliable. Hence, for policy optimization,
we directly used −ϕ(s, a) as reward signal. Note that the resulting average reward RL problem from
Eq. 6 can also be reformulated as

Jπ =

T∑
t=1

Epπ(st)π(at|st)
[
− ϕ(st, at)

]
+ Epπ(st)

[
KL

(
π(·|st)||πk(·|st)

)]
, (10)

i.e., we get an additional KL regularization term that punishes the derivation to the old policy. While
there are several on-policy RL algorithms that directly use such KL regularization terms for their
policy update (Schulman et al., 2015; 2017), we resort to off-policy actor critic methods such as
SAC. In SAC, we still have the maximum entropy formulation, but we ignored the KL term. As
the KL-term is a ’moving’ objective that prevents the policy from making too large updates, this
assumption should in theory only affect the learning speed, not the quality of the found policy.
The resulting optimization corresponds to the optimization performed by AIRL (Fu et al., 2018), as
presented in Orsini et al. (2021).

4.5 RESULTING ALGORITHM

The input to the algorithm is a set of demonstrations D and a set of preferences P , which may
be empty sets as well. In order to have more informative trajectories for preference evaluations
already at the beginning of the learning, we pretrain the policy π̃ to maximize state entropy H(s) =
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−E{log p(s)}, as in Lee et al. (2021a). Without this step the initial trajectories would be completely
random, and comparison among them is less insightful.

In each iteration of the main learning loop, we first collect additional demonstrations and request
preference queries, and update the feedback sets D and P . Note that this is an optional step, as
we can update the generator policy using only the existing sets D and P . To generate significantly
different trajectories for preference evaluation, we first sample a batch of trajectory pairs {(ξj,1 ≻
ξj,2)}j following the policy π̃. From these we select the pair that has the largest entropy H(P (ξj,1 ≻
ξj,2)), where P (ξj,1 ≻ ξj,2) = softmax(R(ξj,1), R(ξj,2)), as in Lee et al. (2021a). The R(ξ)
is an estimated reward function, described in more detail below. We present the trajectory pair
to an expert to obtain the preference feedback. The expert uses its criteria to compare and label
the two options. In simulations we use an oracle that labels preferences according to the defined
environmental reward of the trajectories. The reward values of these trajectories are never directly
provided to AILP. In the next stage we update the LDRE ϕ. We then collect the samples from the
replay buffer B and afterwards, we compute the demonstration loss Ldem and the preference loss
Lpref and optimize them w.r.t. ϕ. We use the optimized LDRE to define an expert reward RAIL

i+1
and optimize the generator π̃ using SAC. An overview of this procedure is shown in Figure 1, and
we additionally provide pseudocode in Appendix B.

5 EXPERIMENTAL EVALUATION

With our experiments we would like to answer the following questions Q1: How does AILP com-
pare with the current state of the art in preference learning? Q2: What is the influence of including
expert demonstrations on improving policy learning in addition to preferences? Q3: What is the
influence of using imperfect demonstrations on policy learning in addition to preferences?

We consider 6 different manipulation tasks from the metaworld benchmark (Yu et al., 2019), namely
button press, door open, door close, window open, window close, drawer close. For comparison with
other work we consider episodes of 250 rather than 500 steps, which is still sufficient to finish the
task successfully. For evaluating the performance we consider normalized trajectory returns as well
as task success rate. The success rate is 1 when a task-specific success criteria is achieved, and
0 otherwise. We report the average success rate over 10 rollouts. For computing the normalized
trajectory reward, we sum all the environmental rewards of individual steps and then normalize by
dividing the resulting sum with the average trajectory reward of the expert. For this metric we also
consider the same 10 rollouts and we calculate their mean and standard deviation. In all experiments
we use the same set of 10 random seeds. For each rollout from a task the position of the object in
the scene is randomly set, e.g., location of the button in the button press task. For more details about
different environments we refer to the Appendix A.
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To answer Q1, we have compared our method to the Pebble algorithm (Lee et al., 2021a). We use the
official implementation which is contained in the same code repository1 as for (Lee et al., 2021b).
For all evaluation we have used the parameters listed by (Lee et al., 2021b). In all our evaluations
and for all methods we use the same network architecture for the actor and the critic of SAC, details
are in the Appendix C. However, we use different networks for the reward function in Pebble and for
the LDRE in AILP. Namely, for Pebble we use the network size from the the paper that consists of 3
layers with 256 nodes each. For AILP we use a smaller network with 2 layers with 64 nodes which
is the best performing network architecture for AIL (Orsini et al., 2021). Pebble uses an ensemble
of 3 reward networks which is motivated by increasing the stability of reward learning. However,
we found no benefit from having an ensemble of LDRE networks in our method, and due to the
increased computation time, we decided to train only a single network.

In order to answer Q2 we add one expert demonstration to the start of learning process. Afterwards,
in our experiments we do not add any demonstrations. Additionally, we also included the case of
using our algorithm without any preference, in which AILP is practically a combination of AIRL
and SAC2. Moreover, Orsini et al. (2021) show that the optimally performing AIL algorithm is also
based on the combination of those two methods, and therefore it is the best option for AIL baseline
in our paper. We can see in Figure 2 that AILP is successful in learning every task with the combined
feedback. Using demonstrations helps us significantly in the beginning, thus increase the speed of
the whole learning process. Moreover, we also tend to learn much faster in comparison to other
baselines. Without preferences (AIRL+SAC) learning saturates early and success rates remain low.
Additionally, we compared our method with two extensions of Pebble that consider demonstrations.
In one case we used demonstrations to initialize the model policy using behavior cloning and start
with preference learning using Pebble from that point. This approach is inspired by the work of Ibarz
et al. (2018) but we also rely on the improvements provided in Pebble such as using SAC to optimize
the reward. Note that in this case we do not have the entropy-based pretraining. Moreover, we also
consider a combination of DREX and Pebble, in which we use the approach from DREX to generate
the initial set of preferences, and then we apply Pebble from that point onward. We refer to this
method as DREX+Pebble. In addition to the success rate presented in Figure 2, we report the values
of normalized trajectories returns in Appendix D.1.

Additionally, in Appendix D.4, we present similar evaluations on a more difficult metaworld task,
lever pull. Furthermore, we also evaluate the performance in a Mujoco task, HalfCheetah (Todorov
et al., 2012). Details and results are in the Appendix D.5.

After the initial pretraining of π̃ we start adding 20 preferences each 5000 environmental steps,
which equates to 20 full trajectories. In the case of Pebble the reward is updated only when we add
new preferences. However, in the case of AILP because the LDRE depends on the current policy
we need to update it more often, and we do that every 20 environmental steps. The updates are
computationally expensive, especially since we increase the amount of preferences during training.
Therefore, we limit the amount of previous preferences to 300 during training. We assume that
the remaining, more recent preferences provide relevant information to guide the learning. Con-
sidering that the early preferences are sampled from older policies their contribution to learning is
questionable if any. Moreover, given the frequent updates of the reward function training on fewer
preferences would benefit us from the point of compute time. Entropy-based pretraining is per-
formed for all baselines that are not initialized using BC and it is done once for each random seed
and then shared for all experiments. Note that the performance of the algorithm from this initial part
is not shown nor is counted in the steps shown in Figure 2. Moreover, in our comparisons we utilize
interquartile means (Agarwal et al., 2021) over the 6 aggregated metaworld tasks as a more robust
statistical measure.

For answering Q3 we use partially trained policies to generate imperfect demonstrations. None of
the policies was on average capable of successfully finishing the task. Using those demonstrations
we ran the same set of experiments as before. The results are shown in Figure 5b. AILP learns
the task successfully even in the presence of imperfect demonstrations and still benefits from the
demonstration in comparison to the case with 0 demonstrations.

1https://github.com/pokaxpoka/B_Pref
2Here, we used a standard discriminator instead of the policy dependent discriminator architecture from the

paper Fu et al. (2018). We were not successful using the original discriminator architecture together with SAC,
yielding poor performance. Note that in the AIRL original paper, TRPO was used to train the policy.
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Ablation of the Preference Loss. Finally, we present an ablation study regarding the used prefer-
ence loss. Here, we ablate the sigmoid preference loss function used by Pebble (with using the log
policy densities as additional rewards) as well as our algorithm using the hinge loss without the log
policy density as reward. The results are shown in Figure 5c. The sigmoid loss enforces that the
rewards of two trajectories in a preference pair are distinct, which causes instabilities in particular
if the quality of the trajectories is quite similar. Here, the hinge loss shows a much more robust
behavior and the agent’s performance converges gracefully. Not using the log policy densities as
additional rewards and hence treating the LDRE on its own as a reward function for preferences also
leads to a poor performance as the LDRE is not a stationary reward function.
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Figure 3: Success rates for AILP with different numbers of demonstrations and preferences for the
window open task with expert and imperfect demonstrations. Adding additional demonstrations and
preferences leads to orthogonal improvements in performance.

Evaluating the Trade-off between Number of Preferences and Demonstrations. We evaluate the
performance of AILP for different amounts of preference and demonstrations on the window open
task in Figure 3. We find that additional demonstrations generally improve performance, particularly
for the case with a low number of preference. In the aforementioned figure we indicated the the
number of preference that are added after 5 000 environmental steps. In the same figure we can
compare the cases when we have expert and imperfect demonstrations. It can be observed that if
we use more demonstrations, the number of preferences can be reduced in order to achieve a good
performance. The contribution of additional demonstrations to the algorithm performance is most
evident when we have a smaller number of preferences. Additional results over all 6 tasks with
different number of demonstrations are provided in Appendix D.2.

6 CONCLUSION AND FUTURE WORK

We introduce Adversarial Imitation Learning with Preference, a novel method for learning from
demonstrations and preferences. We modify and extend well-known Adversarial Imitation Learning
methods to also be able to learn from preferences. This is achieved by using a log density ratio
estimator, which is trained on separate losses for demonstrations and preferences. After training,
the resulting network is used to express a reward function, and then used to optimize the generator
policy. This procedure is iterated over until convergence and allows for novel teacher feedback in
each loop. We show on a suite of simulated robotic manipulation tasks that this approach to learning
from preferences benefits from multiple types of feedback, outperforming the state of the art.

A limitation of our proposed method is the number of environment steps needed when updating the
generator policy which is challenging on a real robot. In future research, we will investigate the use
of multiple trajectories and ask for rankings from the teacher (Myers et al., 2021). Additionally, we
will expand AILP to deal with preference queries where two options are too similar for teachers to
compare and we will also evaluate our approach with human-generated data.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

GN was supported by the Carl Zeiss Foundation under the project JuBot (Jung Bleiben mit
Robotern). NF was supported by the BMBF project Davis (Datengetriebene Vernetzung für die
ingenieurtechnische Simulation).

REFERENCES

Pieter Abbeel and Andrew Y. Ng. Inverse reinforcement learning. Encyclopedia of Machine Learn-
ing and Data Mining, pp. 678–682, 2017.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. volume 34, pp. 29304–29320,
2021.

Oleg Arenz and Gerhard Neumann. Non-adversarial imitation learning and its connections to ad-
versarial methods. CoRR, 2020.

Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57:469–483, 5 2009.

Philipp Becker, Oleg Arenz, and Gerhard Neumann. Expected information maximization: Using
the i-projection for mixture density estimation. International Conference on Learning Represen-
tations, 1 2020.

Erdem Biyik, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. Active preference-based
gaussian process regression for reward learning. Proceedings of Robotics: Science and Systems
(RSS), 2020.

Ralph Allan Bradley and Milton E. Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39:324, 1952.

Daniel S. Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. International Con-
ference on Machine Learning, 4 .

Daniel S. Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning via
automatically-ranked demonstrations. Conference on Robot Learning (CoRL), 2019.

Erdem Bıyık and Dorsa Sadigh. Batch active preference-based learning of reward functions. Con-
ference on Robot Learning, 2018.

Erdem Bıyık, Dylan P. Losey, Malayandi Palan, Nicholas C. Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. Learning reward functions from diverse sources of human feedback: Optimally integrat-
ing demonstrations and preferences. The International Journal of Robotics Research, 6 2021.

Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Synthesis Lectures
on Artificial Intelligence and Machine Learning, 8:1–121, 2014.

Paul F Christiano, Jan Leike, Tom B Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in Neural Information Processing
Systems, 2017.

Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. International
Conference on Machine Learning, 2005.

Pete Florence, Corey Lynch, Andy Zeng, Oscar Ramirez, Ayzaan Wahid, Laura Downs, Adrian
Wong, Johnny Lee, Igor Mordatch, and Jonathan Tompson. Implicit behavioral cloning. Confer-
ence on Robot Learning (CoRL) 2021, 2021.

Niklas Freymuth, Philipp Becker, and Gerhard Neumann. Versatile inverse reinforcement learning
via cumulative rewards. 4th Robot Learning Workshop at Neural Information Processing Systems
(NeurIPS), 2021.

10



Published as a conference paper at ICLR 2023

Niklas Freymuth, Nicolas Schreiber, Philipp Becker, Aleksander Taranovic, and Gerhard Neumann.
Inferring versatile behavior from demonstrations by matching geometric descriptors. Conference
on Robot Learning (CoRL), 2022.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning. Sixth International Conference on Learning Representations ICLR, 2018.

Seyed Kamyar Seyed Ghasemipour, Richard Zemel, and Shixiang Gu. A divergence minimization
perspective on imitation learning methods. In Conference on Robot Learning, 2020.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Advances in Neural
Information Processing Systems 27, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International Confer-
ence on Machine Learning, pp. 1861–1870. PMLR, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in Neural
Information Processing Systems 30, 6 2016.

Neil Houlsby, Jose Miguel Hernández-Lobato, Ferenc Huszár, and Zoubin Ghahramani. Collab-
orative gaussian processes for preference learning. Advances in Neural Information Processing
Systems, 3:2096–2104, 2012.

Borja Ibarz, Geoffrey Irving, Jan Leike, Shane Legg, Tobias Pohlen, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in Neural Information
Processing Systems, 2018-Decem:8011–8023, 2018.

Hong Jun Jeon, Smitha Milli, and Anca D Dragan. Reward-rational ( implicit ) choice : A unifying
formalism for reward learning. Advances in Neural Information Processing Systems 33, 2020.

Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive reinforcement
learning via relabeling experience and unsupervised pre-training. International Conference on
Machine Learning, 2021a.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. NeurIPS Datasets and Benchmarks Track, 2021b.

Vivek Myers, Erdem Bıyık, Nima Anari, and Dorsa Sadigh. Learning multimodal rewards from
rankings. Conference on Robot Learning (CoRL), 2021.
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A METAWORLD ENVIRONMENTS

All tasks in the metaworld benchmark (Yu et al., 2019) share the same observation and action space.
The observation space is 39 dimensional and consists of the of the current and previous state and a
desired position, with the last element related to the position of the goal object, such as the button
in the button press scenario. Each state has 18 dimensions and consists of the end-effector position
(3 dimensions), distance between the two fingers of the gripper (1 dimension), Euclidean position
(3 dimensions) and orientation expressed using 4 dimensional quaternions of object 1 and the same
for an object 2. Amongst considered tasks we only have environments with a single object, and
the values of the position and orientation are set to zero. This object is defined by the task, e.g., in
the button press is the button. The action space is defined by controls of the position of the end-
effector as well as the distance between gripper fingers. The orientation of the end-effector is fixed
such that it always points towards the table. Using environmental rewards and SAC we have trained
expert robot policies and the mean and standard deviation of trajectory returns over 100 rollouts are
presented in Table 1.

Task Expert Imperfect
Button press 1773.0 614.7
Door open 2015.9 769.9
Window open 1982.9 681.3
Door close 2024.0 1166.4
Drawer close 2032.2 1473
Window close 2032.2 395.5

Table 1: Mean of trajectory returns over 100 rollouts from an expert and imperfect policy.

(a) Button press (b) Door open (c) Window open

(d) Drawer close (e) Door close (f) Window close

Figure 4: Manipulation tasks from the metaworld benchmarking task set (Yu et al., 2019). (a) In the
button press task, the robot needs to reach and press the button. (b) In the door open task, the robot
needs to grab the handle of the door and move it to the green point, thus opening the door. (c) In
window open task, the robot needs to move the handle to the left edge of the window. The button,
the door, the drawer, and the window are randomly placed in front of the robot for each rollout. (d)
In the drawer close task, the robot needs to close the drawer. (e) In the door close task, the robot
needs to move the door to the green point, thus closing the door. (f) In window close task, the robot
needs to close window. The button, the door, the drawer, and the window are randomly placed in
front of the robot for each rollout.
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B FULL ALGORITHM

The AILP algorithm with all individual steps in shown in Alg.1 below.

Data: demonstrations D = {ξi}, preferences P = {ξi,1, ξi,2}
bootstrap initial policy π̃0(s) to maximize state entropy H(s)
i = 0
while i < max iterations do

Record demonstrations and preferences, update D and P
Generate samples from current policy π̃i(·|s) and add to replay buffer B
Step 1: Update LDRE ϕi

Get model samples Bi from the replay buffer B
Optimize demonstration loss Ldem(ϕi,D,Mi)
Optimize preference loss Lpref (Ri(ϕi),P)
Step 2: Update policy
Relabel buffer B using −ϕ(s, a)
Using SAC with −ϕ(s, a) as reward, update π̃i+1

i = i+1
end

Algorithm 1: Adversarial Imitation Learning with Preferences. In each iteration we generate
samples from the current policy π̃i(a|s), then we optimize the demonstration and preference
losses to update our LDRE ϕ(s, a). Optionally, depending on the iteration we generate new
preference samples or add demonstrations. After we have updated LDRE ϕ(s, a) we use it to
define a reward function R(s, a) that is then optimized using SAC. Using the updated policy we
generate new samples and reiterate over the whole process.

C SAC HYPERPARAMETERS

In all evaluated experiments in Section 5 we use the same parameters for SAC and those are listed
in Table 2.

Hyperparameter Value
Learning rate 0.0003
Optimizer Adam
Critic target update frequency 2
Discount factor γ 0.99
Batch size 512
Initial temperature 0.1
(β1, β2) (0.9,0.999)
Actor network (nodes per hidden layer) [256,256,256]
Critic network (nodes per hidden layer) [256,256,256]
Critic EMA τ 0.005

Table 2: Hyperparameters for SAC that are shared for all experiments

D ADDITIONAL EXPERIMENTS AND ABLATIONS

D.1 NORMALIZED TRAJECTORY RETURNS

In addition to the success rate that is presented in Figure 2, we have also analyzed the normalized
trajectory returns for the 6 metaworld tasks. Those results are presented in Figure 5. We observe
same trends and relative performance between our algorithm and the baselines as we see in success
rate results.
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Figure 5: Interquartile mean for aggregated normalized trajectory returns for 6 metaworld tasks.
Compared is our proposed method AILP with relative baselines and performance of AILP with
modified preference loss function.
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Figure 6: Direct comparison of AILP with more demonstrations

D.2 DIRECT COMPARISON OF USING MORE DEMONSTRATIONS

For the default setup from Section 5, we also run an ablation with additional demonstrations over all
6 tasks. Results are shown in the Figure 6:

D.3 INFLUENCE OF WEIGHTED PREFERENCE LOSS

We have evaluated our method when trained with the preference loss function Lpref (Ri(ϕi),P) that
is scaled by a hyperparameter α. In Figure 7, we show the performance of our algorithm for values
of α ∈ [0.1, 1, 10, 100]. Additionally, we include two extreme cases, AILP with no demonstrations
and AIRL+SAC that theoretically corresponds to the case of α = 0. We observe that for α = 0.1,
our method performs similar to the case without preferences (AIRL+SAC). Likewise, for α = 100,
AILP performs similar to the case when we have only preferences.

In Figure 8 we present the performance of our method with imperfect demonstrations. Similar
conclusion can be drawn about the influence of α on the performance of our method as in the case
with expert demonstrations. As we increase the value of α, we rely in the learning process more on
preference data.

D.4 LEVER-PULL METAWORLD TASK

Besides the 6 metaworld tasks in Appendix A, we additionally evaluate lever pull task. This task
is significantly harder, and our expert policy which with obtained by training an agent using SAC
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Figure 7: Comparison of different values of α when optimizing αPpref with expert demonstrations.
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Figure 8: Comparison of different values of α when optimizing αPpref with imperfect demonstra-
tions.
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Figure 9: Evaluation of the Lever-pull task

with the environmental reward, was only capable of successfully finishing the task in 22% of the
evaluated rollouts. In Figure 9 are presented the success rate and normalized trajectory returns for
our method as well as for the same baseline we evaluated in Section 5. We notice that all algorithms
struggle with this task, but after some time, our method starts to learn and noticeably improve its
performance. Still the trained policy on average has not reached the 50% success rate, and the
variance is noticeable, but on average it is performing better than the expert we used to generate the
demonstrations.

D.5 HALFCHEETAH TASK

HalfCheetah is a common reinforcement leaning benchmark locomotion task (Todorov et al., 2012).
In comparison to metaworld tasks we can claim that it is a simpler task, because for each metaworld
task, the initial position of a target object, such as the button in the button press task, is moved, but
for the HalfCheetah we don’t have such substantial changes. Additionally, it’s a nonepisodic. In
Figure 10, the normalized trajectory returns of our method and the set of baselines we evaluated in
Section 5 are shown for this task. We can notice that initially Pebble and BC+Pebble are performing
better, but our method achieves similar performance at the end of the training. Moreover, it is worth
noting that in AIL papers, tasks are usually made more difficult by sub-sampling demonstrations so
only every 20th step is considered. Under these circumstances, AIL methods perform better. How-
ever, for a completely fair comparison in this paper we have not sub-sampled expert demonstrations.
To normalize the trajectory returns we use the average return of our expert policy.
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Figure 10: Normalized trajectory return of various algorithm for the HalfCheetah task
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