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Abstract

Tackling unfairness is a challenging task with extensive difficulties in the context of graph
learning models. One of the major issues is posed by the absence of node attributes, due to
missing data or privacy concerns. A recent work by Guo et al. (2023) titled "Fair attribute
completion on a graph with missing attributes", tackles this problem by introducing FairAC.
The framework’s main components adopt state-of-the-art approaches, including a sensitive
discriminator and an attention mechanism to provide a solution to both the unfairness and
attribute completion problem. Supported by an experimental analysis, FairAC claims to
exhibit superior fairness performance while achieving similar node classification performance
compared to other baseline methods. In our work, we try to reproduce the results provided
by the authors along with validating their main claims. On top of that, this analysis
highlights FairAC’s ability to handle graphs with varying sparsity and fill missing attributes,
even in cases of limited neighbouring data.

1 Introduction

Graph neural networks (GNNs) have been actively used in the bibliography (Scarselli et al., 2008; Wu et al.,
2020; Jiang et al., 2019; Zhu et al., 2021; Chu et al., 2021) and have proven to reveal excellent results
in classification tasks e.g. node classification or link prediction in social networks (Bhagat et al., 2011;
Zhang & Chen, 2018). However, GNNs among other machine learning models are prone to exhibiting unfair
classification with regard to sensitive attributes (Dwork et al., 2012). Tackling the problem of ensuring
fairness in graph neural networks remains a non-trivial task. FairGNN (Dai & Wang, 2021) is a framework
that minimizes unfairness while maintaining similar performance using a novel method called adversarial
debiasing. This approach involves training a classifier as a constraint to filter out sensitive information from
original data.

Current approaches in fair graph-learning assume a complete graph, lacking nodes with missing attributes.
Since, GNNs do not work on nodes that have missing attributes. HGNN-AC, a framework proposed by
Jin et al. (2021) presents a new approach to solve the missing attributes problem in heterogeneous GNNs.
FairAC, the framework of the paper subject to this reproducibility study, broadens the scope of FairGNN
by enabling node classification in graphs containing nodes with completely missing attributes (Guo et al.,
2023). This paper aims to reproduce the claims made in the work of Guo et al. (2023). In summary, our
contributions are:

1. [Reproducibility study] Reproduce the findings of the original paper, by using the documentated
implementation details, baseline methods, and the provided code and datasets. Notably, we address
the challenges faced in this process including: the absence of explicit training code, lack of adaptation
of the baseline models (FairGNN & GCN) and insufficient documentation on hyperparameters.

2. [Extended work] Improvement of the original code: The original code doesn’t contain the
complete set of models, scripts and training functionality to generate the experimental results dis-
played in the original paper. We complement the existing open-source implementation with the
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missing parts and provide the trained models along with an evaluation code, to facilitate the repro-
ducibility process.

3. [Extended work] Ablation study: Sparsity varying graph evaluation. To evaluate the robustness
of the fairness in FairAC vs. FairGNN, we increase the sparsity of graphs. The results indicate that
the attention based attribute completion method performs better than completion by averaging the
neighbouring nodes.

2 Scope of reproducibility

The work by (Guo et al., 2023) addresses the problem of establishing fairness in graph-based machine
learning. Ensuring fairness in tasks e.g. node classification needs to be tackled with regards to two distinct
sources of unfairness. Addressing the first issue, coined feature unfairness, involves minimizing the unfairness
within node attributes. Social networks like Facebook are based on a network of profiles, that have different
attributes. Excluding sensitive attributes (e.g. race) from nodes in the network doesn’t guarantee fair
treatment in node classification, unfairness can still arise from race-specific attributes (Ma et al., 2022).
Secondly, topological unfairness is observed when neighbouring nodes in the network exhibit similar features
(Chen et al., 2020) (Mehrabi et al., 2021). Graph preprocessing methods, such as Deepwalk, are used to
extract topological embeddings that reflect can reflect the relationship between nodes’ attributes and those
of their neighbors (Perozzi et al., 2014). As a result, they are able to expose sensitive-attributes in the
generated representations.

While the topic of tackling unfairness in graph-based machine learning, has been investigated extensively (Dai
& Wang, 2021) (Rahman et al., 2019) (Bose & Hamilton, 2019) (Hardt et al., 2016), broader applicability
can still be obtained. Many graphs contain nodes with missing attributes, e.g. new Instagram users might
have incomplete profiles. This issue, still poses a challenge for many of the existing frameworks (Jin et al.,
2021)(Chen et al., 2020). FairAC employs attention to complete the presence of missing attributes (Vaswani
et al., 2017). Specifically, attention is combined with a sensitive discriminator to solve the joint problem of
graph attribution completion and graph unfairness. Notably, the subject study claims to have achieved the
following:

• Claim 1: The FairAC framework achieves comparable classification performance, compared to
state-of-the-art methods for fair graph learning.

• Claim 2: The FairAC framework considerably increases the fairness performance, compared to
state-of-the-art methods for fair graph learning.

• Claim 3: The FairAC framework addresses attribute completion in graphs with largely missing
attributes in their nodes.

• Claim 4: The adversarial learning part in FairAC is crucial for removing sensitive information,
mitigating feature and topological unfairness.

• Claim 5: The FairAC framework is a generic approach that can be used to generate fair embeddings
for different homogeneous graphs, making it useful for several graph-based downstream tasks.

3 Methodology

The code, datasets, and experiments for training and evaluating the FairAC model are publicly available on
their GitHub repository 1. However, the provided repository doesn’t serve as a complete implementation to
reproduce all experimental evaluations from the original paper. Notably, the results depicted in the original
paper compare FairAC to several baseline methods: FairGNN, GCN (Kipf & Welling, 2016), ALFR (Edwards
& Storkey, 2015), ALFR-e, Debias (Zhang et al., 2018), Debias-e, FCGE (Bose & Hamilton, 2019), BaseAC
(Guo et al., 2023). Of these baseline methods, the authors only evaluated FairGNN and GCN to produce

1Original FairAC repository: https://github.com/donglgcn/FairAC
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the results. The rest of the models’ evaluation originates from the work of Dai & Wang (2021), and have
been provided with complete attribute graphs. To reproduce FairGNN and GCN, we had to consult the
code from the original FairGNN paper 2 Dai & Wang (2021). In FairAC, graphs are augmented to split
the nodes into V− and V+, respectively representing the nodes with missing and complete attributes. This
split is controlled by the α ratio. However, multiple augmentations for FairGNN and GCN were needed to
introduce the α-hyperparameter. Since these baseline models don’t support graphs with missing attributes,
an average-attribute completion method is implemented. Along with these augmentations, the codebase was
complemented with the functionality to generate models and evaluate them in separate steps.

3.1 Model descriptions

Throughout the experimental evaluation, there are a total of four models that were tested: GCN, FairGNN,
BaseAC, and FairAC. This subsection addresses the high-level workings of the different models.

3.1.1 FairAC

FairAC is a framework that tackles fairness aware attribute completion for graph machine learning tasks.
Formally the framework works in the following manner:

Formal description Let G = (V, E , X ) denote an undirected graph G with N nodes vi ∈ V and correspond-
ing attributes X and labels Y, connected by edges E . The attributes of the graph are preprocessed by the
topological embedding method: Deepwalk. It is an innovative method for acquiring latent representations of
vertices and their relations within a graph (Perozzi et al., 2014). Let S = {s1, s2, ..., sN } represent the set of
sensitive attributes with s ∈ {0, 1}. Note that in this FairAC framework, we consider a binary-classification
task, so y ∈ {0, 1}. The missing attributes are represented by dividing the nodes of the graph into two parts:
V = {V−, V+}. Where V+ consists of the nodes that have complete attributes, and V− consists of nodes
with missing attributes. Furthermore, V+ is divided into two parts V+ = {Vkeep, Vdrop}. The α-parameter
controls the attribute missing rate within the graph G by ensuring that:

α = |V−|
|V|

= |Vdrop|
|V+|

(1)

Generating fair embeddings To tackle feature unfairness, an autoencoder composed of encoder fE and
decoder fD creates embeddings Hi = fE(Xi). To ensure the fair generation of feature embeddings, a sensitive
classifier Cs is introduced. The goal of the sensitive classifier is to predict the sensitive attribute ŝi = Cs(Hi)
for an embedding Hi. The feature unfairness mitigation loss function can be summarized as follows:

LF = LAE − βLCs (2)

By minimizing the feature unfairness, we will need to minimize the loss of the autoencoder LAE and simul-
taneously maximize the loss of the sensitive classifier LCs

.

Attribute completion An attention mechanism is employed to aggregate the features of the neighbours
of a node with missing attributes. Let (u, v) denote two nodes that are neighbours that have topological
embeddings (Tu, Tv), the weight of this pair is calculated using the attention attu,v = σ (TuWTv), with W a
trainable weight matrix. The weight cu,v is computed by calculating the softmax of these neighbours of u
(Nu):

cu,v = exp(attu,v)∑
s∈Nu

exp(attu,s) (3)

2FairGNN repository: https://github.com/EnyanDai/FairGNN
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Then, the feature embedding Ĥu is obtained by calculating the weighted aggregation with multi-head atten-
tion:

Ĥu = 1
K

K∑
k=1

∑
s∈Nu

cu,sHs (4)

After, the attribute completion loss is calculated as follows:

LC = 1
|Vdrop|

∑
i∈Vdrop

√
(Ĥi − Hi)2 (5)

To mitigate the topological unfairness that can arise from completing attributes, we use the same sensitive
classifier Cs to predict the sensitive attributes. Consequently, we want to maximize this loss LCs to minimize
the overall loss of FairAC, which can be calculated by:

L = LF + LC + βLT (6)

3.1.2 BaseAC

BaseAC is a simplified version of FairAC. It contains the attribute completion module, but lacks the feature-
and topoligical unfairness mitigation modules. The purpose of BaseAC is to show the contribution of
adversarial learning in FairAC. Therefore training the BaseAC is achieved by setting the β-parameter of the
FairAC model to 0. This disables the adversarial learning loss terms, thus the model will not counteract
unfair embeddings.

3.1.3 GCN

The model for GCN was adapted from FairGNN. The GCN is the only model that lacks a fairness mitigation
technique. Since a default GCN is unable to handle missing attributes, the graph was preprocessed by
averaging the neighbour’s attributes to fill the empty nodes. Additionally, this model was augmented with
an α parameter, representing the attribute missing rate, which the provided code did not implement.

3.1.4 FairGNN

The FairGNN model was adapted from the FairGNN original implementation 3. Similar to FairAC, it uses
a sensitive discriminator which is used to create fair embeddings. Furthermore, the same preprocessing step
is taken, which averages all neighboring nodes to fill the nodes in the graph with missing attributes.

3.2 Datasets

Three public graph datasets are used in the experiments: NBA (Dai & Wang, 2021), Pokec-z, and Pokec-n
(Takac & Zabovsky, 2012). With the NBA dataset being the smallest, it contains data on 403 basketball
players, with as sensitive attribute whether the player has a U.S. nationality (Dai & Wang, 2021). The
target is to predict whether the salary of the player is over the median or not. Secondly, the Pokec dataset
is composed of anonymized data of users, originating from a Slovakian social network. The suffix of the
Pokec-n and Pokec-z datasets represents the region from where the users are from and is subsequently the
sensitive attribute. The target of these datasets is to classify the working field. More details on the datasets
can be consulted in the Appendix A section.

3.3 Hyperparameters

In replicating the experimental evaluation, we adhered to the hyperparameters explicitly stated in the original
paper. The implementation details covered the β parameter, the attribute missing rate α, and several

3FairGNN repository: https://github.com/EnyanDai/FairGNN
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standard hyperparameters that remained unaltered throughout all experiments (e.g. epochs, learning rate...).
Additionally, for the accuracy and ROC thresholds, we referred to the existing scripts available in the GitHub
repository. Furthermore, in the original study, the seeds (40, 41, and 42) were used in training the methods.

Hyperparameters summary:

• alpha : a weight parameter from the FairGNN implementation that controls the covariance con-
straint in the loss function (Dai & Wang, 2021).

• β: a weight parameter that controls the fairness in the general loss functions of FairAC and FairGNN.

• acc: represents the threshold accuracy needed to evaluate the model. This follows the widely used
evaluation protocol in fair graph learning.

• ROC: represents the threshold ROC needed to evaluate the model.

• α: feature drop rate. It controls the proportion of nodes in the graph that have completely missing
attributes (equation: 1).

3.4 Experimental setup and code

This subsection discusses the complete reproducible implementation of the experimental results gathered in
FairAC of the four models discussed in 3.1.

3.4.1 Modifications to the code

Since the original FairAC repository lacked the implementation of the GCN and FairGNN models, these
were adapted from the FairGNN repository, along with code to train and evaluate the models. Moreover,
this code was also extended in order to take into account α (attribute missing rate). Furthermore, while the
provided code could only run in an Ubuntu operating system, we implemented the following enhancements:
modified variable precision to int64 to ensure compatibility with Windows systems and introduced a new
environment that is compatible with both macOS and Windows operating systems.

3.4.2 Experiments

For the training of each model, we set 3000 epochs. The hyperparameters used for Table 1 and Table 2 can
be found in Tables 6 and 7 in the Appendix A section.

To evaluate the classification performance of the models, accuracy and AUC metrics are used. To evaluate
the fairness performance of the different models, statistical parity (SP) (equation: 7) and equal opportunity
(EO) (equation: 8) metrics are used. These metrics are computed in the following way:

• Statistical parity: the probability of classifying ŷ as positive, is equal for both values of the sensitive
attribute (s ∈ {0, 1} and ŷ ∈ {0, 1}) (Dwork et al., 2012).

P (ŷ|s = 0) = P (ŷ|s = 1) (7)

• Equal opportunity: the probability of classifying ŷ as positive, given that label y = 1, is equal for
both values of the sensitive attribute (s ∈ {0, 1} and ŷ ∈ {0, 1}) (Hardt et al., 2016).

P (ŷ = 1|y = 1, s = 0) = P (ŷ = 1|y = 1, s = 1) (8)

All the scripts to evaluate the models are provided in the code which can be found in the Github repository.
4.

4Github repository for reproducing results: https://anonymous.4open.science/r/FACT-64F6/README.md
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3.5 Computational requirements

All experiments were conducted on a NVIDIA A100 GPU with 40 GB HBM2. The experiments involving the
Pokec datasets were significantly more computationally expensive than those of the NBA dataset. Specifi-
cally, the Pokec datasets needed about 45 mins for the training of 3000 epochs to end, while NBA needed 1
min approximately. The use of GPU resources across all experiments resulted in a total expenditure of 30
GPU hours.

4 Results

In this section, we present the reproduced results. As indicated by the original paper, FairAC is expected
to exhibit superior performance compared to other baseline methods, particularly in terms of fairness. In
the following tables, we observe that while this behavior is confirmed in some cases, it is not consistently
observed in others.

4.1 Results reproducing original paper

Table 1 presents the reproduced results for FairAC, FairGNN, GCN, and other baseline models with an
attribute missing rate of 0.3. The results for the baseline models (ALFR, ALFR-e, Debias, Debias-e, FCGE)
where obtained from Dai & Wang (2021). Optimal outcomes are highlighted in bold. Although the numerical
values show slight differences compared to those reported in the original paper, they generally align with
the trends specified in the original findings, particularly for the Pokec-z and Pokec-n datasets. In these
datasets, FairAC outperforms in fairness metrics, specifically ∆SP, ∆EO, and ∆SP+∆EO, surpassing the
other models, while maintaining comparable classification performance. This supports the fulfillment of both
Claim 1 and Claim 2. However, in the NBA dataset, the results deviate from those reported in the original
paper. One contributing factor is a misselection of hyperparameters during the training process.

Figure 1: Accuracy and ∆SP + ∆EO of FairAC when
varying β on Pokec-z dataset with α = 0.3

Table 2 showcases our attempt to replicate the
original results, focusing on the comparison be-
tween FairAC and baseline methods across various
attribute missing rates α. Notably, FairAC ex-
hibits superior performance in the fairness metric
∆SP+∆EO, having the lowest values across all four
levels of missing rates when compared to other mod-
els. Even in comparison to BaseAC, FairAC stands
out due to its dedicated modules addressing feature
unfairness and topological unfairness, thereby show-
casing enhanced performance.

While some variations in metric values compared to
the original paper are observed in both tables, these
differences may be attributed to disparities in hy-
perparameter setups that are not explicitly stated
in the original paper. Another potential factor con-
tributing to the variations could be the split between
keep and drop sets specifically, the selection of dif-
ferent nodes for these sets, which may impact the

results. It is essential to note the sensitivity of the results to the selection of hyperparameters, particularly
acc and ROC. Slight adjustments to these values can significantly impact the outcomes.

In Figure 1, we try to replicate the analysis across various values of the hyperparameter β. The accuracy
metric values fall within the same range as those in the original figure. Interestingly, as β increases, there is
a slight decline in the accuracy of node classification. Conversely, the fairness metric values exhibit lower-
than-expected results. Nonetheless, the observed trend aligns with the original paper, where the fairness
metric decreases with an increase in β.
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Table 1: Comparisons of FairAC and baselines for the studied datasets with α = 0.3
Dataset Method Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP + ∆EO ↓

NBA
GCN 70,58 ± 0,27 77,27 ± 0,17 1,03 ± 0,92 0,59 ± 0,76 1,61 ± 1,12
ALFR 64,30 ± 1,30 71,50 ± 0,30 2,30 ± 0,90 3,20 ± 1,50 6,16 ± 3,10
ALFR-e 66,00 ± 0,40 72,90 ± 1,00 4,70 ± 1,80 4,70 ± 1,70 9,4 ± 3,40
Debias 63,10 ± 1,10 71,30 ± 0,70 2,50 ± 1,50 3,10 ± 1,90 5,6 ± 3,40
Debias-e 65,60 ± 2,40 72,90 ± 1,20 5,30 ± 0,90 3,10 ± 1,30 8,4 ± 2,20
FCGE 66,00 ± 1,50 73,60 ± 1,50 2,90 ± 1,00 3,00 ± 1,20 5,9 ± 2,20
FairGNN 71,36 ± 0,81 78,60 ± 0,23 1,54 ± 0,71 3,59 ± 3,73 5,12 ± 4,41
FairAC 70.73 ± 0.27 75.98 ± 2.30 1.22 ± 1.71 1.07 ± 1.56 2.29 ± 3.27

Pokec-z
GCN 65,74 ± 0,64 68,98 ± 0,22 1,38 ± 0,67 0,94 ± 0,83 2,32 ± 1,50
ALFR 65,40 ± 0,30 71,30 ± 0,30 2,80 ± 0,50 1,10 ± 0,40 3,90 ± 0,90
ALFR-e 68,00 ± 0,60 74,00 ± 0,70 5,80 ± 0,40 2,80 ± 0,80 8,6 ± 1,20
Debias 65,20 ± 0,70 71,40 ± 0,60 1,90 ± 0,60 1,90 ± 0,40 3,8 ± 1,00
Debias-e 67,50 ± 0,70 74,20 ± 0,70 4,70 ± 1,00 3,00 ± 1,40 7,7 ± 2,40
FCGE 65,90 ± 0,20 71,00 ± 0,20 3,10 ± 0,50 1,70 ± 0,60 4,8 ± 1,10
FairGNN 64,98 ± 0,90 68,42 ± 1,12 1,90 ± 2,12 2,35 ± 2,36 4,25 ± 4,48
FairAC 65,29 ± 0,32 71,59 ± 0,26 0,25 ± 0,22 0,07 ± 0,04 0,32 ± 0,24

Pokec-n
GCN 68,83 ± 0,91 73,88 ± 0,71 3,11 ± 2,72 5,90 ± 1,01 9,02 ± 3,62
ALFR 63,10 ± 0,60 67,70 ± 0,50 3,05 ± 0,50 3,90 ± 0,60 3,95 ± 1,10
ALFR-e 66,20 ± 0,40 71,90 ± 1,00 4,10 ± 1,80 4,60 ± 1,70 8,7 ± 3,50
Debias 62,60 ± 1,10 67,90 ± 0,70 2,40 ± 1,50 2,60 ± 1,90 5,0 ± 3,40
Debias-e 65,60 ± 2,40 71,70 ± 1,20 3,60 ± 0,90 4,40 ± 1,30 8,0 ± 2,20
FCGE 64,80 ± 1,50 69,50 ± 1,50 4,10 ± 1,00 5,50 ± 1,20 9,6 ± 2,20
FairGNN 69,05 ± 0,62 71,18 ±0,54 0,76 ± 0,91 2,08 ± 1,41 2,83 ± 0,51
FairAC 67,11 ± 0,75 72,27 ± 0,69 0,32 ± 0,20 0,60 ± 0,21 0,91 ± 0,12

Table 2: Comparisons of FairAC models with FairGNN and GCN for the studied datasets with four levels
of attribute missing rates α

α Method Acc ↑ AUC ↑ ∆SP ↓ ∆EO ↓ ∆SP + ∆EO ↓

0.1
GCN 65.63 68.85 0.50 0.38 0.88
FairGNN 65.26 68.78 1.09 1.09 2.19
BaseAC 65.99 69.21 0.31 0.28 0.58
FairAC 65.99 71.24 0.10 0.43 0.53

0.3
GCN 65.74 68.98 1,38 0.94 2.32
FairGNN 64.98 68.42 1,90 2.35 4.25
BaseAC 65.62 70.44 0.31 0.96 1.28
FairAC 65.29 71.59 0.25 0.07 0,32

0.5
GCN 65.99 68.84 0.63 0.54 1.18
FairGNN 65,65 68,92 0,83 0,81 1,64
BaseAC 65.22 69.80 0.15 1.32 1.47
FairAC 65.34 71.34 0.16 0.65 0.81

0.8
GCN 64.89 68.74 1.15 0.94 2.09
FairGNN 65.54 68.79 1.14 0.91 2.06
BaseAC 65.54 71.64 0.47 0.56 1.03
FairAC 65.66 71.95 0.01 0.09 0.10
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Table 3: Graph sparsity effect in missing attribute completion, using subsets of the NBA dataset with a
feature drop rate equal to 0.5

Median neighbor amount Method Acc AUC ∆SP ↓ ∆EO ↓ ∆SP + ∆EO ↓

68 FairGNN 79.23 80.37 2.34 0.0 2.34
FairAC 75.84 78.92 0.62 0.0 0.62

32 FairGNN 72.55 74.82 4.57 0.0 4.57
FairAC 72.55 73.04 0.65 0.0 0.65

4.2 Results beyond original paper

4.2.1 Missing attribute completion methods on sparse and dense graphs

One of the main claims of the paper is that it can deal better with nodes having missing attributes by
utilizing an attention mechanism, to carefully interpolate information from neighbors. On the other hand,
FairGNN (Dai & Wang, 2021) employs an average completion mechanism, when there are missing attributes.
This series of experiments investigates further the association between graph density and the ability to fairly
complete missing attributes.

In order to perform this experiment, we separate the NBA dataset into 2 train and test sets. Firstly, we
calculate the median amount of neighbors for each node of the dataset. For a sparser setting, we will use
as train and test sets the subset of the graph that has a number of neighbors lower than the median level.
Accordingly, for the denser setting, we will use as train and test, the nodes with a neighbor amount over
the median level. This will ensure for both experiments, that the information propagated between direct
neighbors when filling missing attributes will vary.

The results presented in Table 3, show a clear superiority of FairAC for sparse graphs in terms of fairness
since averaging between a few neighbors (FairGNN and GCN) can introduce a bias that the attention module
of FairAC mitigates. Thus, as Dai & Wang (2021) argues, when having fewer neighbors a high bias from
a neighbor can be transferred to the filled missing attributes when averaging; an issue that the proposed
attention module can mitigate.

4.2.2 Generalization for other graph datasets

Training on different graph datasets provides the foundation to support further the claims of the original
authors. It is necessary to use a graph dataset that incorporates sensitive information about the users. For
this reason, we used the German Credit Risk dataset from Wang et al. (2022). This dataset can be
originally found on Kaggle 5, containing information for users and their credit scores. Even though it is not
originally a graph dataset, Wang et al. (2022) suggested a method to create edges between people based on
credit similarity. In the context of our work, we used code from FairVGNN GitHub repository 6 and adapted
it to our task.

Table 4: Comparison between methods for German Credit dataset, having as median 2 neighbors per node,
and using 0.3 as the feature drop rate.

Dataset Method Acc AUC ∆SP ↓ ∆EO ↓ ∆SP + ∆EO ↓

German Credit
GCN 72.13 65.12 1.53 1.04 2.57
FairGNN 72.40 63.44 1.98 0.76 2.74
FairAC 72.27 62.37 0.32 0.05 0.37

Table 4 shows the fairness overperformance of FairAC in comparison to other methods. German credit
dataset is sparse, with a median amount of 2 neighbors per node. This means that the attention module

5German Credit Dataset Kaggle https://www.kaggle.com/datasets/uciml/german-credit
6FairVGNN Repository https://github.com/YuWVandy/FairVGNN

8

https://www.kaggle.com/datasets/uciml/german-credit
https://github.com/YuWVandy/FairVGNN


Under review as submission to TMLR

of FairAC can mitigate biases from neighboring nodes in comparison to FairGNN which averages all direct
neighbors. Results from the German dataset, further support results from our previous experiment in Table
3, as well as the original authors’ claims.

5 Discussion

Throughout this work, many experiments were made in order for results to be reproduced. Even though we
had to extend the existing code and make several assumptions in terms of parameters, most of the results
in the original work were feasible to reproduce.

In particular, the first claim states that FairAC achieves comparable classification performance with FairGNN
and GCN. Our findings indeed show that FairAC doesn’t affect classification performance in a major way.
The second claim states that FairAC outperforms all baselines regarding fairness metrics. In our work, we
verify that this holds true for both parity and equality metrics. The third claim, which states that the
FairAC framework handles attribute completion in graphs with largely missing attributes in their nodes,
was found to be supported since performance remained in good levels even when increasing the attribute
missing rate. Furthermore, the fourth claim was validated by reproducing results and capturing the same
impact of adversarial learning within the FairAC framework. This impact is noticeable by comparing FairAC
with BaseAC. Regarding the fifth claim, the statement was validated to a large extent, by introducing the
German Credit Risk dataset which is a sparse homogeneous graph of different types. It was noticed that
FairAC performed well in this dataset both in terms of classification performance and fairness.

The original work was also extended, by providing insights regarding the impact of the FairAC framework
when handling sparse graphs. It was noticeable that in such settings FairAC has superior performance
compared to existing methods.

A major limitation of this work is that results are quite dependent on the selection of nodes with removed
attributes. In this context, utilizing a pre-trained model could lead to different results in different test sets

5.1 What was easy

The original paper and repository provided essential information about the code for FairAC, making it
straightforward to comprehend the fundamental concepts behind their work. Additionally, there was docu-
mentation on how to run the code, adding to its usability and accessibility.

5.2 What was difficult

The challenge arises from the absence of a proper code structure, posing a barrier to both the reproducibility
and extension of the provided code. In particular, The paper didn’t contain the necessary code neither
hyperparameters for reproducing GCN and FairGNN models. The code was not clean and included many
unnecessary classes that were not used throughout the paper. Additionally, some missing parameters required
us to make assumptions for training the baseline methods. Finally, the incompatibility of the original
environment with macOS and Windows posed another issue, contributing to difficulties in our work.

5.3 Communication with original authors

The authors promptly provided valuable feedback in response to our questions regarding the architecture of
the models, hyperparameters, and implementation details.

Broader Impact Statement

The user of this work should be aware that results are quite related to the selection of nodes of which we
dropped attributes while training. In this context, it should be expected that a trained model could lead to
different results for the same test set in case the attributes of different nodes are dropped.
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A Appendix

A.1 Datasets’ statistics

In Table 5, we present the statistics of the three primary datasets used in reproducing the results of the
original paper’s experiments. Additionally, we provide the statistics of the new dataset, German Credit Risk.

A.2 Experiments setup

In this section, we present the hyperparameter configurations utilized in our experiments to replicate the
results of the original paper. The hyperparameters have been tailored to each dataset individually, as
recommended by the original paper. In Table 6, we present the hyperparameters corresponding to the
experiments outlined in Table 1. Similarly, in Table 7, we provide the hyperparameters for the experiments
referenced in Table 2.

Table 5: Statistics of three graph datasets (Guo et al., 2023)
Dataset NBA Pokec-z Pokec-n German Credit Risk
# nodes 403 67,797 66,569 1,000
# edges 16,570 882,765 729,129 1,843
Density 0.10228 0.00019 0.00016 0.00184

Median Neighbors per node 47 9 9 2
Sensitive attribute U.S. nationality region region gender

Target median salary working field working field good customer
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Table 6: Hyperparameters for Table 1 from original paper
Dataset Method alpha β acc ROC α

NBA
GCN - - 0.70 0.72 0.3
FairGNN 10 1 0.70 0.72 0.3
FairAC - 1 0.70 0.72 0.3

Pokec-z
GCN - - 0.65 0.69 0.3
FairGNN 100 1 0.65 0.69 0.3
FairAC - 1 0.65 0.69 0.3

Pokec-n
GCN - - 0.66 0.69 0.3
FairGNN 100 1 0.66 0.69 0.3
FairAC - 0.5 0.66 0.69 0.3

German Credit Risk
GCN - - 0.71 0.61 0.3
FairGNN 10 1 0.71 0.61 0.3
FairAC - 1 0.71 0.61 0.3

Table 7: Hyperparameters for Table 2 from original paper
Dataset Method alpha β acc ROC α

Pokec-z
GCN - - 0.65 0.69 {0.1, 0.3, 0.5, 0.8}
FairGNN 100 1 0.65 0.69 {0.1, 0.3, 0.5, 0.8}
BaseAC - 0 0.65 0.69 {0.1, 0.3, 0.5, 0.8}
FairAC - 1 0.65 0.69 {0.1, 0.3, 0.5, 0.8}
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