
Under review as a conference paper at ICLR 2021

ADAPTIVE N-STEP BOOTSTRAPPING WITH OFF-
POLICY DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

The definition of the update target is a crucial design choice in reinforcement
learning. Due to the low computation cost and empirical high performance, n-
step returns with off-policy data is a widely used update target to bootstrap from
scratch. A critical issue of applying n-step returns is to identify the optimal value
of n. In practice, n is often set to a fixed value, which is either determined by
an empirical guess or by some hyper-parameter search. In this work, we point
out that the optimal value of n actually differs on each data point, while the fixed
value n is a rough average of them. The estimation error can be decomposed into
two sources, off-policy bias and approximation error, and the fixed value of n is
a trade-off between them. Based on that observation, we introduce a new met-
ric, policy age, to quantify the off-policyness of each data point. We propose the
Adaptive N-step Bootstrapping, which calculates the value of n for each data
point by its policy age instead of the empirical guess. We conduct experiments on
both MuJoCo and Atari games. The results show that adaptive n-step bootstrap-
ping achieves state-of-the-art performance in terms of both final reward and data
efficiency.

1 INTRODUCTION

The goal of reinforcement learning (RL) is to find an optimal policy by interacting with the en-
vironment. In order to do that, a RL algorithm needs to define a target, e.g., Q function or value
function, and update it iteratively to bootstrap from scratch. The challenge of designing an efficient
update target manifests both on the sample complexity and computation complexity. Ideally, the
target should only be updated by the data generated by the corresponding policy to obtain an unbi-
ased estimate (Sutton & Barto, 2018), while the amount of the data needs to reach a certain scale to
control the variance (Schulman et al., 2015). These two requirements limit the update frequency and
lead to a high sample complexity finally. On the computational part, the consideration is to make a
trade-off between the computation cost of each step and the number of total steps. Monte-Carlo re-
turns has advantages on generalization (behave well with function approximation) and exploration (a
quick propagation of new findings) at the cost of computing the whole trajectory on each step (Sut-
ton & Barto, 2018). Bootstrapping methods apply readily on off-policy data and control the trace
length (Sutton & Barto, 2018). However, they require more update steps to converge comparing with
Monte-Carlo returns. Those design concerns are nested together, which makes it hard to achieve a
good balance.

N-step returns (Sutton & Barto, 2018) serves as the basis of various update targets, due to its flexi-
bility and simple implementation. Together with off-policy learning (Sutton & Barto, 2018) and the
replay buffer (Mnih et al., 2015), n-step returns is able to update the target frequently while ensures
that the variance is in a controllable range. However, a systematical study (Fedus et al., 2020) reveals
that the performance of n-step returns highly relies on the exact value of n. Since the underlying
working mechanism is unclear, previous research can only give some vague suggestion based on
empirical results, that simply increases the value from one to a larger number, e.g. 3 or 4.

In this paper, we illustrate that the estimation error of n-step returns can be decomposed into off-
policy bias (under-estimation part) and approximation error (over-estimation part), and the selection
of n controls the balance between them. Data stored in the replay buffer are generated by previous
policies. Thus, adopting them for update introduces the off-policy bias. Since the current policy

1

Under review as a conference paper at ICLR 2021

is better than previous policies, the off-policy bias is an underestimation. Replay buffer is not the
only source of the off-policy bias, epsilon-greedy exploration also introduces the off-policy issue.
On the other hand, n-step returns adopts a max operator explicitly (on Q-learning based algorithms)
or implicitly (on actor-critic algorithms) on an existing function to approximate the real target. The
max operator brings the approximation error, which is an overestimation. Sec 4 gives the formal
definition of the decomposition and verifies the conclusion by experiments. According to our anal-
ysis, the quantity of the off-policy bias and approximation error varies a lot on different data points.
Thus, a fixed value of n is just a rough average, and there is plenty of room for improvement.

We introduce a new metric, policy age, to quantify the off-policyness of each data point. As the
policy age grows, the off-policy bias increases linearly, while the approximation error decreases
exponentially. Based on this observation, we propose a novel algorithm, named adaptive n-step
bootstrapping. Given the policy age of each data point, adaptive n-step calculates the optimal n
by an exponential function. Hyperparameter of the function is determined by the tree-structured
parzen estimator (Bergstra et al., 2011). We conduct extensive experiments on both MuJoCo and
Atari games. Adaptive n-step bootstrapping outperforms all fixed-value n settings with a large mar-
gin, in terms of both data efficiency and final reward. For the other update target definitions, we
select Retrace (Munos et al., 2016) as a representative. Compared with Retrace, our method main-
tains the performance advantage under the premise of low computational complexity and simple
implementation.

2 RELATED WORKS

2.1 RESEARCH ON N-STEP RETURNS

The recent works on n-step returns focus on finding the optimal value of n. In Ape-X (Horgan et al.,
2018) and R2D2 (Kapturowski et al., 2019), the value of n is fixed, which is set by manual tuning
or hyper-parameter search. Rainbow (Hessel et al., 2018) figures out that the final performance is
sensitive to the value of n, and n = 3 achieves the best score in most cases on Atari games. Fedus
et al. (2020) verifies that setting n to 3 is a good choice, and further reveals that the replay buffer
must also be large enough to gain performance benefits. Those researches give some heuristic rules
of setting the value of n, but the underlying mechanism of why n = 3 performs better than one-step
temporal difference is still unclear.

2.2 OTHER UPDATE TARGETS

To improve the performance of the vanilla n-step returns, there are many other update target defini-
tions in the literature (Hernandez-Garcia & Sutton, 2019). Importance sampling (IS) (Precup et al.,
2000) provides a simple way to correct the off-policy bias. It can be seen as a weighted average
of multiple one-step TD(0) target. However, IS brings large (and possibly infinite) variance, which
makes it impractical on large-scale problems.

Retrace (Munos et al., 2016) clips the IS ratio to a maximum value of 1 to reduce the large variance
of IS targets. It has many applications in recent reinforcement learning agents, like distributed off-
policy learning agent Reactor (Gruslys et al., 2017). The most serious disadvantage of Retrace is
its high computation cost. Retrace needs to calculate O(n) times of Q and O(n) times of π in each
time, compared with only O(1) from n-step returns (n is trace length). In large-scale problems,
evaluating Q and π requires a forward pass in the neural network, which is slow and expensive.
Reactor (Gruslys et al., 2017) calculates the Retrace target as a linear combination of many n-step
targets and dispatches those calculation workloads into different nodes for acceleration. Since the
computation complexity is still high, reactor can not work under limited resources. Furthermore,
even without considering the calculation cost, the application scope of Retrace is not as good as
n-step returns, as reported in Hernandez-Garcia & Sutton (2019).

3 PRELIMINARIES

Reinforcement learning’s goal is to find an optimal policy π∗ with maximal discounted returns
Rπ = Eπ[

∑
t γ

t−1rt] given the Markov Decision Process (MDP). To achieve this, agents often

2

Under review as a conference paper at ICLR 2021

estimate the state-action value function qπ(s, a) = Eπ[
∑
t γ

t−1rt|s0 = s, a0 = a]. Let Qπ(s, a)
denote the estimation of qπ(s, a). In tabular settings, Qπ can be represented by a table of all state-
action pairs 〈s, a〉, while in large-scale settings, Qπ is often approximated by a deep neural network
(DNN) with parameter θ, written as Qπ;θ.

During the training process,Qπ is continuously updated by the update target Ĝπ , which is calculated
from data points (s, a, r, s′). In tabular settings (Watkins & Dayan, 1992), the update equation can
be written as: Qπ(s, a) ← Qπ(s, a) + α[Ĝπ(s, a) − Qπ(s, a)], where α is the learning rate. In
large-scale settings (Mnih et al., 2015; Lillicrap et al., 2016),Qπ;θ is updated by mini-batch gradient
descent on the neural network parameter θ as: θ ← θ − α 1

N

∑N
i=1∇θL(Qπ;θ(si, ai), Ĝπ(si, ai)),

where L is the loss function.

Off-policy learning adopts two policies, the behavior policy µ for generating data points and the
target policy π for learning from the data points. Replay buffer (Fedus et al., 2020) is often used
together with the off-policy to handle the increasing sample complexity brought by large-scale prob-
lems. Agents draw data points from the replay buffer to update the estimator Qπ . This enables
agents to learn from past experiences, thus yields higher sample efficiency. In the sequel, the term
off-policy learning refers to adopt off-policy learning together with the replay buffer, as used by
most recent off-policy algorithms.

N-step returns (Sutton & Barto, 2018) together with off-policy learning have strong empirical per-
formance (Hessel et al., 2018), as well as being easy to calculate. It calculates the Ĝnπ as:

Ĝnπ(s, a) = r0 + γr1 + · · ·+ γn−1rn−1 + γnEan∼π(sn)[Qπ(sn, an)]. (1)

It can be seen as a mix of Monte-Carlo (MC) estimation of qπ ≈
∑
t γ

t−1rt (n → ∞ case) and
one-step TD(0) estimation r0 + γEa∼π(s1)[Qπ(s1, a)] (n = 1 case). In off-policy learning, to
calculate n-step returns Ĝnπ(s0, a0) for data point (s0, a0, r0, s

′
0), we draw consecutive transitions

(st, at, rt, s
′
t)t=0,1,2,... in the same trajectory τ as current data point (s0, a0, r0, s

′
0) from replay

buffer. As n-step returns estimates qπ using trajectory τ generated by behavior policy µ, the discrep-
ancy between π and µ makes it biased. We define this off-policy induced bias as off-policy bias,
and difference between π and µ as off-policyness.

4 UNDERLYING WORKING MECHANISM OF N-STEP BOOTSTRAPPING

N-step returns lays in the center of designing the update target. It not only unifies the Monte-Carlo
returns and one-step temporal difference but also lays the foundation of the eligibility traces (Singh
& Sutton, 1996). Together with off-policy learning, n-step bootstrapping works well because it
achieves a good balance between the bias (TD) and variance (MC). Considering its importance and
wide application, the underlying mechanism of n-step returns has not been studied in detail. In this
section, we give a careful analysis of why n-step bootstrapping works and what property the optimal
selection of n should satisfy.

4.1 DECOMPOSITION OF THE ESTIMATION ERROR

To understand how n-step bootstrapping works, we conduct a systematical analysis of the estimation
error. We formalize the estimation error of an update target Ĝπ as its difference with ground truth
qπ for every (s, a) pair that the agent experienced:

E(Ĝπ) = Eµ[Ĝπ(s, a)− qπ(s, a)]. (2)

As shown in Eq. 1, the estimation error consists of two parts — the off-policy bias and approxima-
tion error. The off-policy bias is introduced by the difference of π and µ, as we mentioned before,
while the approximation error comes as agent’s estimation of Qπ is not perfect, e.g. Qπ 6= qπ . Note
that, the behavior policy µ is an older version of the target policy π.

We split these two types of error by defining two intermediate targets, Ĝnπ,qπ ;τ and Ĝnπ,Qπ ;τ̃ , to
eliminate the other type of error.

3

Under review as a conference paper at ICLR 2021

Ĝnπ,qπ ;τ adopts the ground truth qπ instead of the estimated Qπ to eliminate approximation error:

Ĝnπ,qπ ;τ (s, a) = r0 + γr1 + · · ·+ γn−1rn−1 + γnEan∼π(sn)[qπ(sn, an)].

Ĝnπ,Qπ ;τ̃ uses the trajectory τ̃ = (s̃t, ãt, r̃t, s̃
′
t)t=0,1,2,... which is generated by the current policy π

instead of the old trajectory τ to remove the off-policy bias:

Ĝnπ,Qπ ;τ̃ (s, a) = r̃0 + γr̃1 + · · ·+ γn−1r̃n−1 + γnEãn∼π(s̃n)[Qπ(s̃n, ãn)].

Then we can quantify the off-policy bias Eoffpolicy and the approximation error Eapprox indepen-
dently as:

Eoffpolicy(Ĝ
n
π) = E(Ĝnπ,qπ ;τ), Eapprox(Ĝ

n
π) = E(Ĝnπ,Qπ ;τ̃).

Now, we can decompose the total error E(Ĝnπ) into the sum of off-policy bias and approximation
error, plus a negligible small residual term Eresidual(Ĝ

n
π):

Eresidual(Ĝ
n
π) = E(Ĝnπ)− Eoffpolicy(Ĝ

n
π)− Eapprox(Ĝ

n
π)

= γn(Ea∼π(sn)[Qπ(sn, a)− qπ(sn, a)]− Eã∼π(s̃n)[Qπ(s̃n, ã)− qπ(s̃n, ã)]).

The residual term Eresidual(Ĝ
n
π) is a difference of the discounted error γnEa∼π(s)[Qπ(s, a) −

qπ(s, a)] on terminal states sn and s̃n. If n is small, the difference between Qπ and qπ on sn
will be close to the difference between Qπ and qπ on s̃n. Otherwise, the discount factor γn will
shrink exponentially, making the residual term very small.

The experimental results in Sec 4.2 show that the residual term is an order of magnitude smaller than
the two main sources in practice. Thus, it can be ignored and we get an approximate decomposition:

E(Ĝnπ) ≈ Eoffpolicy(Ĝ
n
π) + Eapprox(Ĝ

n
π). (3)

4.2 VERIFICATION BY EXPERIMENTS

In this section, we perform tabular Q-Learning and Soft Actor Critic (Haarnoja et al., 2018a) on
the Pendulum-v0 task (Brockman et al., 2016) to verify the decomposition quantitatively. For tab-
ular Q-learning, we added replay buffer (Mnih et al., 2015) as recent off-policy learning does, and
discretization to deal with continuous observation space and action space.

The approximation error is an overestimation, which means Eapprox ≥ 0, while the off-policy bias
is an underestimation, Eoffpolicy ≤ 0. Single-step temporal difference target (n = 1) will have
a large approximation error, while too many steps (n is large) leads to too much underestimation
that cannot be balanced out. N-step returns works because a suitable selection of n makes the
overestimation and underestimation cancel each other.

0 5000 10000

0
100
200

er
ro

r v
al

ue
 (T

ab
ul

ar
) total error

1-steps
8-steps
16-steps
32-steps

0 5000 10000

75
50
25

0
offpolicy error

0 5000 10000
0

100

200

approx error

0 5000 10000
0

10

residual error

0 1000 2000 3000 4000

0

200

er
ro

r v
al

ue
 (S

AC
)

0 1000 2000 3000 4000

100

50

0

0 1000 2000 3000 4000
0

100

200

0 1000 2000 3000 4000
0

10

20

off-policyness

Figure 1: N-step target errors. Top row is tabular settings, bottom is SAC. X-axis is off-policyness,
quantified by policy age that is described in the beginning of Sec 5.

4

Under review as a conference paper at ICLR 2021

Overestimation of Eapprox is a well-studied issue. The greedy policy π acts as a max operator
in Q-learning targets. Gradient ascent on π in actor-critic architectures is also an implicit max
operator (Fujimoto et al., 2018). The max operator is one main cause of overestimation, as reported
in (Hasselt, 2010). Usage of function approximation (Thrun & Schwartz, 1999; Van Hasselt et al.,
2015) in large-scale settings also boosts this issue. Off-policy learning with replay buffer is the root
cause of the underestimation of Eoffpolicy. With less learning update iterations, µ often has worse
performance than π. Estimating qπ using µ leads to underestimating, as we are accumulating µ’s
reward in Ĝnπ .

As shown in Figure 1, on per-datapoint perspective, off-policy bias Eoffpolicy grows with off-
policyness. Older data points take a large proportion in replay buffer, but data points from current
policy π have only a few, so Qπ has been updated with much more older data points. That makes
approximation error Eapprox decrease with off-policyness.

On value of n perspective, larger n leads to less approximation error, as weight γn of estimated Qπ
shrinks exponentially. But larger n also leads target Ĝnπ accumulating more rewards from µ, thus
enlarges off-policy bias.

5 IDENTIFY THE OPTIMAL VALUE OF N

The magnitude of off-policy bias is closely related to off-policyness. To analyze the error of n-
step returns, we need a precise measurement of the off-policyness. Evaluating real off-policyness
directly, e.g. calculating the real difference between π and µ is hard, as calculating the difference
of two policies is non-trivial and computational heavy, especially for complicated environments. So
we introduce a new metric policy age, which is simple to evaluate and also predicts well of real
off-policyness. For every data point (st, at, rt, s′t), policy age is defined as number of update steps
between π and µ. As we show in Figure 2, policy age predicts accurately of the difference between
π and µ, e.g. Eµ[| log π(a|s)− logµ(a|s)|] for every (s, a) pair that agent experienced. We will use
policy age as an indicator of off-policyness in the paper.

5.1 ADAPTIVE N-STEP BOOTSTRAPPING

As we pointed out in Sec 4.2, the optimal value of n achieves a balance between overestimation and
underestimation. Since the optimal value of n varies by policy age, a fixed n value is only a coarse
approximation. For each data point, the selection of n should be calculated individually to achieve
the best performance.

We propose a novel algorithm, Adaptive N-step Bootstrapping, to select the optimal n which
achieves minimal error for every data point. We define error for policy age p as:

Ep(Ĝπ) = Eµp [Ĝπ(s, a)− qπ(s, a)], (4)

where µp refers to behavior policy that is p updates away from π. Then, the optimal n∗ for every
data point is calculated as:

n∗(p) = argmin
n
|Ep(Ĝnπ)|. (5)

0 1000 2000 3000 4000
policy age

0
1
2
3
4

di
ffe

re
nc

e

SAC on Pendulum-v0

Figure 2: The x axis is the policy age, and the y axis is the difference between µ and π, which
grows approximately linearly as the policy age grows.

5

Under review as a conference paper at ICLR 2021

0 2000 4000 6000 80001000012000
20

40

60

80

100

120

140

va
lu

e
of

 n

Tabular on Pendulum-v0
exponential fit
optimal n

0 1000 2000 3000 4000
0

20
40
60
80

100
120
140
160

SAC on Pendulum-v0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1e5

0
20
40
60
80

100
120
140

SAC on Swimmer-v3

policy age

Figure 3: n∗ and exponential fitting. Note that we only evaluate error for 128 steps, so the value of
n∗ may be clipped to a maximum of 128.

As calculating error Ep(Ĝnπ) requires the ground truth qπ , directly solving Eq 5 on every data point
is very expensive on large-scale environments. We start by solving n∗ for a small number of data
points. As shown in Figure 3, these data points reveal that n∗(p) is an exponential form in a wide
variety of settings, both tabular and large-scale.

This exponential pattern is rooted in the management of replay buffer and mini-batch gradient de-
scent. In replay buffer, the larger the policy age of a data point, the more times that it will be
sampled into the mini-batch. This difference on sample times inflects both the off-policy bias and
the approximation error. The off-policy bias part is simple, it increases linearly as the policy age
grows. The approximation error is a little bit more complicated because the sample data update the
parameter through a gradient descent. Bhandari et al. (2018) describes a similar condition, and it
concludes that the rate of convergence is exponential. In summary, as the policy age grows, the
off-policy bias increases linearly while the approximation error decreases exponentially. Thus, we
use an exponential approximation for n∗ as follows:

n∗(p) = argmin
n
|Ep(Ĝnπ)| (6)

≈ round(nmax ∗ e− log(n)·min(1, pd)), (7)

where p is the policy age for the data point. The maximum factor nmax and decay rate d are hyper-
parameters.

Adaptive n-step returns can also be seen as a form of off-policy correction, cutting trace when the
difference between π and µ is large. It is simpler and more stable than IS and Retrace because it
does not rely on the metric like IS ratio, which may have infinite variance. Algorithm 5.1 describes
how adaptive n-step bootstrapping works.

Algorithm 1 Adaptive N-step Bootstrapping
Hyperparameter: Maximum steps nmax, decay rate d
for each bootstrapping iteration do

sample a batch (si, ai, ri, s
′
i) from replay buffer

for each data point i in batch do
calculate policy age p for data point i
n← round(nmax ∗ e− log(nmax)·min(1, pd))

gi ← Ĝni (si, ai)
end for
update Qπ using batch (si, ai, ri, s

′
i) with target gi

end for

5.2 HYPERPARAMETER SELECTION

As we show in Sec 5.1, solving Eq 5 on limited data points is enough to reveal the exponential form.
n∗ of complicated Swimmer-v3 environment is also successfully reconstructed.

6

Under review as a conference paper at ICLR 2021

We also adopt the same setting to solve the optimal value of nmax and d. The exact solution on
Swimmer-v3 give us nmax = 755. On near-onpolicy case, adaptive n-step behaves like MC target,
which is unbiased for on-policy case (Sutton & Barto, 2018). However, MC target also has a large
variance, which leads to performance degradation. So we need variance control measurements, like
the λ factor in Retrace (Munos et al., 2016). Vanilla n-step returns sets n to a small value to do
variance control (Sutton & Barto, 2018). We clip nmax to reduce the variance in our method.

The notorious bias-variance trade-off makes it non-trivial to solve optimal nmax. However, the
solved d = 122952 is very close to d = 100000 that works for all MuJoCo tasks, hinting the best
hyperparameter range. We found that the best hyperparameter varies little with different environ-
ments. With this assumption, we use the tree-structured parzen estimator (Bergstra et al., 2011)
to optimize hyperparameter on one environment and use this single set of hyperparameter for the
whole benchmark.

6 EXPERIMENTAL RESULTS

Q-learning and Actor-Critic methods span the whole space of model-free reinforcement learning
algorithms. Q-learning updates the state-action value function Qπ and select action with maximum
Qπ in ε-greedy manner. Actor-Critic has an explicit representation of π, and update Qπ and π
simultaneously. We conduct experiments on two representatives of both worlds, DQN (Mnih et al.,
2015) for Q-learning methods, and SAC (Haarnoja et al., 2018a) for actor-critic, to test the generality
of our method.

6.1 ACTOR CRITIC METHODS

Soft Actor-Critic (SAC) is the state-of-the-art algorithm in off-policy actor-critic domain. It fo-
cuses on stability and data-efficiency, and even can be applied to challenging real-world robot con-
trol (Haarnoja et al., 2018b).

We compare adaptive n-step with fixed n-step and Retrace on the SAC algorithm. For each update
target, we use it in place of single-step TD target in original SAC implementation and evaluate on
Gym MuJoCo (Brockman et al., 2016) benchmark.

0.0 1.0 2.0 3.0
0

1000
2000
3000
4000
5000

av
er

ag
e

re
tu

rn

Ant-v3

1-step
2-steps
4-steps
Adaptive
Retrace

0.0 1.0 2.0 3.0
0

2000

4000

6000

8000

10000
HalfCheetah-v3

0.0 1.0 2.0 3.0
million steps

75000
100000
125000
150000
175000
200000
225000
250000
275000

av
er

ag
e

re
tu

rn

HumanoidStandup-v2

0.0 1.0
million steps

20
40
60
80

100
120
140

Swimmer-v3

Figure 4: Training curve on continuous control benchmark. We report top 4 in a total 8 runs.

7

Under review as a conference paper at ICLR 2021

The result shows that adaptive n-step returns outperforms all fixed n-step returns consistently across
all tasks. Adaptive n-step also has the lowest variance across different runs, being more stable. It
is worth to note that different environments have different best performing fixed n, while adaptive
n-step perform well with only one set of nmax and d across all environments. This suggests that
optimal n varies with different data points, while a fixed n is only a coarse approximation.

Adaptive n-step also outperforms the Retrace method, both in terms of average return and compu-
tational cost. The calculation of Retrace target requires 2n Qπ and 3n π evaluations per step (n is
trace length, n = 32 for our MuJoCo experiment), and each evaluation is a network forward pass. In
contrast, adaptive n-step target inheritsO(1) complexity of the vanilla n-step method, only evaluates
1 Qπ and 1 π for arbitrary n, thus makes it much faster than Retrace.

6.2 Q-LEARNING

DQN (Hessel et al., 2018) sets the foundation of combining Q-Learning with deep neural networks,
we pick it as the representation of Q-learning methods. We conduct our experiment on a subset of
Atari 2600 games. We compare the adaptive n-step with fixed n-step with n = 3, which is the best
n on Atari games recommended by Hessel et al. (2018) and Fedus et al. (2020).

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
50

100
150
200
250
300
350

av
er

ag
e

re
tu

rn

BreakoutNoFrameskip-v4

3-step
adaptive

0.0 0.2 0.4 0.6 0.8 1.0
1e7

400
600
800

1000
1200
1400

AsteroidsNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
1e7

1000

2000

3000

4000

BeamRiderNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
1000
2000
3000
4000
5000
6000
7000

av
er

ag
e

re
tu

rn

AsterixNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0
200
400
600
800

1000
BankHeistNoFrameskip-v4

0.0 0.2 0.4 0.6 0.8 1.0
1e7

1000
1500
2000
2500
3000
3500
4000
4500
5000 CentipedeNoFrameskip-v4

of training frames

Figure 5: Comparison on Atari 2600 games. For both fixed 3-step and adaptive n-step, we report the
agent that obtained highest reward during training. The figure is smoothed by moving average with
length 10 to improve readability.

As shown in Figure 5, adaptive n-step outperforms the fixed value n-step returns in all games. And
in most of them, the performance benefit brings by the adaptive n-step method exceeds 20%.

7 CONCLUSION

Generally, n-step bootstrapping is simply viewed as a unification between Monte-Carlo returns and
one-step temporal difference. However, with the introduction of replay buffer to apply reinforcement
learning on large-scale problems, we figure out that n-step bootstrapping actually serves as a control
factor to reduce the estimation error. Thus, the selection of n should differ on each data point instead
of a fixed value.

Based on this observation, we propose the adaptive n-step bootstrapping algorithm to select the value
of n for each data point individually. Experimental results show that adaptive n-step outperforms
all fixed value n settings with a large margin. Comparing with other update target definitions, e.g.
Retrace, adaptive n-step bootstrapping only introduces negligible computation cost and is easy to
implement. Those characters make it be easily embedded into other algorithms.

8

Under review as a conference paper at ICLR 2021

REFERENCES

James S Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. In Advances in neural information processing systems, pp. 2546–2554, 2011.

Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. arXiv preprint arXiv:1806.02450, 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. arXiv preprint
arXiv:2007.06700, 2020.

Scott Fujimoto, Herke Van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

A. Gruslys, Mohammad Gheshlaghi Azar, Marc G. Bellemare, and R. Munos. The reactor: A
sample-efficient actor-critic architecture. ArXiv, abs/1704.04651, 2017.

T. Haarnoja, Aurick Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In ICML, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018b.

Hado V. Hasselt. Double q-learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. S. Zemel, and A. Culotta (eds.), Advances in Neural Information Processing Systems 23,
pp. 2613–2621. Curran Associates, Inc., 2010. URL http://papers.nips.cc/paper/
3964-double-q-learning.pdf.

J Fernando Hernandez-Garcia and Richard S Sutton. Understanding multi-step deep reinforcement
learning: A systematic study of the dqn target. arXiv preprint arXiv:1901.07510, 2019.

Matteo Hessel, Joseph Modayil, H. V. Hasselt, T. Schaul, Georg Ostrovski, W. Dabney, Dan Horgan,
B. Piot, Mohammad Gheshlaghi Azar, and D. Silver. Rainbow: Combining improvements in deep
reinforcement learning. ArXiv, abs/1710.02298, 2018.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado Van Hasselt,
and David Silver. Distributed prioritized experience replay. arXiv preprint arXiv:1803.00933,
2018.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent expe-
rience replay in distributed reinforcement learning. 05 2019.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and Daan Wierstra. Continuous
control with deep reinforcement learning. CoRR, abs/1509.02971, 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature,
518:529–33, 02 2015. doi: 10.1038/nature14236.

R. Munos, Tom Stepleton, A. Harutyunyan, and Marc G. Bellemare. Safe and efficient off-policy
reinforcement learning. In NIPS, 2016.

Doina Precup, R. Sutton, and Satinder Singh. Eligibility traces for off-policy policy evaluation. In
ICML, 2000.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

9

http://papers.nips.cc/paper/3964-double-q-learning.pdf
http://papers.nips.cc/paper/3964-double-q-learning.pdf

Under review as a conference paper at ICLR 2021

Satinder P Singh and Richard S Sutton. Reinforcement learning with replacing eligibility traces.
Machine learning, 22(1-3):123–158, 1996.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

S. Thrun and A. Schwartz. Issues in using function approximation for reinforcement learning. 1999.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. arXiv preprint arXiv:1509.06461, 2015.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

10

	Introduction
	Related works
	Research on n-step returns
	Other update targets

	Preliminaries
	Underlying working mechanism of n-step bootstrapping
	Decomposition of the estimation error
	Verification by experiments

	Identify the optimal value of n
	Adaptive N-step Bootstrapping
	Hyperparameter Selection

	Experimental Results
	Actor Critic Methods
	Q-Learning

	Conclusion

