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Self-guided Robust Graph Structure Refinement
Anonymous Author(s)

ABSTRACT
Recent studies have revealed that GNNs are vulnerable to adversar-
ial attacks. To defend against such attacks, robust graph structure
refinement (GSR) methods aim at minimizing the effect of adver-
sarial edges based on node features, graph structure, or external
information. However, we have discovered that existing GSR meth-
ods are limited by narrow assumptions, such as assuming clean node
features, moderate structural attacks, and the availability of external
clean graphs, resulting in the restricted applicability in real-world
scenarios. In this paper, we propose a self-guided GSR framework
(SG-GSR), which utilizes a clean sub-graph found within the given
attacked graph itself. Furthermore, we propose a novel graph aug-
mentation and a group-training strategy to handle the two technical
challenges in the clean sub-graph extraction: 1) loss of structural
information, and 2) imbalanced node degree distribution. Exten-
sive experiments demonstrate the effectiveness of SG-GSR under
various scenarios including non-targeted attacks, targeted attacks,
feature attacks, e-commerce fraud, and noisy node labels. Our code
is available at https://anonymous.4open.science/r/torch-SG-GSR-
97CC.

1 INTRODUCTION
A graph is a widely-used data structure in many domains. Graph
neural networks (GNNs) have shown success in learning node rep-
resentations in graphs [13, 14, 32] and have been applied to various
tasks, such as node classification [42], link prediction [43], and rec-
ommender systems [36]. Despite the advancement of GNNs, recent
research has found that GNNs are vulnerable to adversarial attacks
[5, 38, 41, 50, 51]. Adversarial attack on a graph aims at injecting
small and imperceptible changes to the graph structure and node
features that easily fool a GNN to yield wrong predictions. In other
words, even slight changes in the graph (e.g., adding a few edges
[51] or injecting noise to the node features [22]) can significantly
deteriorate the predictive power of GNN models, which raises con-
cerns about their use in various real-world applications. For exam-
ple, given a product co-reivew graph in a real-world e-commerce
platform, attackers would write fake product reviews on arbitrary
products, aiming to manipulate the structure of the product graph
and the node (i.e., product) features, thereby fooling the models
into predicting the wrong co-review links or product categories.

Graph structure refinement (GSR)methods [4, 8, 12, 17, 20, 30, 35]
have been recently demonstrated to improve the robustness of
GNNs by minimizing the impact of adversarial edges during mes-
sage passing. These methods can be categorized based on the type
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Figure 1: Performance of (a) existing feature-based andmulti-
faceted GSR methods over structure (Meta 25%) and feature
attacks (Random Gaussian noise 50%), (b) existing multi-
faceted methods under different perturbation ratios. Cora is
used. Meta: metattack [51].

of information used to refine the graph structure. The first line
of research utilizes the node feature information [4, 8, 12], whose
main idea is to encourage the nodes with similar features to be con-
nected, i.e., feature smoothness assumption [12]. However, these
approaches cannot be applied when the node features are not avail-
able, and more importantly, their performance drops significantly
when the node features are noisy or attacked [20, 29]. Fig. 1(a)
demonstrates that the performance of two recent feature-based GSR
methods, RSGNN [4] and SLAPS [8], drops significantly when the
node features are noisy or attacked (i.e., add Feat. Attack). In other
words, relying heavily on the node features unavoidably results in
a performance drop when the node features are noisy or attacked.

To address the limitation of feature-based GSR methods, another
line of research utilizes the multi-faceted information [20, 29, 35],
i.e., both the node features and the graph structural information.
Their main idea is to exploit the high-order structural similarity
in addition to the node feature similarity to refine the attacked
graph structure. However, we argue that additionally utilizing the
graph structural information is helpful only when the amount of
the attack on the given graph is moderate. Fig. 1(b) demonstrates
that the performance of two recent multi-faceted methods, GEN
[35] and CoGSL [20], drops notably as the perturbation ratio of
structure attack increases (i.e., from Meta 5% to Meta 25%). In other
words, when the given graph is heavily attacked, utilizing the graph
structural information is sub-optimal as the structure of the given
graph itself contains a lot of adversarial edges. A possible solution
to this issue would be to replace the attacked graph structure with a
clean proxy structure. PA-GNN [30] employs external clean graphs
obtained from similar domains to which the target attacked graph
belongs as the proxy structure. However, we emphasize that it
is not practical, hence not applicable in reality due to its strong
assumption on the existence of external clean graphs. In summary,
existing GSR methods are limited by narrow assumptions, such
as assuming clean node features, moderate structural attacks, and
the availability of external clean graphs, resulting in the restricted
applicability in real-world scenarios.

To mitigate the aforementioned problems, we propose a self-
guided GSR framework (SG-GSR), which is a multi-faceted GSR
method that utilizes a clean proxy structure in addition to the node
feature information. The proposed method consists of three steps:
(Step 1) extracting a confidently clean sub-graph from the target
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attacked graph , (Step 2) training a robust GSR module based on the
sub-graph that is considered as the clean proxy structure, and (Step
3) using the knowledge obtained from the clean proxy structure to
refine the target attacked graph and learn a robust node classifier.

However, there exist two technical challenges when extracting
the clean sub-graph from an attacked graph. The first challenge
is the loss of structural information. When extracting a clean sub-
graph by removing edges that are predicted to be adversarial, we
observe that a considerable amount of the removed edges are indeed
clean edges, thereby limiting the robustness of the GSR module.
The second challenge is the imbalanced node degree distribution of
the clean sub-graph, which inhibits the generalization ability of the
GSR module to low-degree nodes. More precisely, since the average
number of edges incident to a low-degree node in the imbalanced
sub-graph is greatly smaller than that of a high-degree node, the
GSR module trained on the imbalanced sub-graph would be biased
towards high-degree nodes. Note that even though the ability is
of great importance to the overall performance since a majority of
nodes are of low-degree in real-world graphs, there are few existing
works dealing with the low-degree nodes in the context of robust
GSR.

To further handle the above two challenges of the clean sub-
graph extraction, we propose 1) a novel graph augmentation strat-
egy to supplement the loss of structural information of the extracted
sub-graph, thereby enhancing the robustness of the GSR module to
attacks in the target graph, and 2) a group-training strategy that
independently trains the GSR module for each node group, where
the node groups are constructed based on the node degree distribu-
tion in a balanced manner, thereby enhancing the generalization
ability of the GSR module to low-degree nodes.

In summary, the main contributions of this paper are three-fold:
• We discover the narrow assumptions of existing GSR methods

limit their applicability in the real-world (Fig. 1), and present a
novel self-guided GSR framework, called SG-GSR, that achieves
adversarial robustness by extracting the clean sub-graph while
addressing its two technical challenges: 1) loss of structural
information and 2) imbalanced node degree distribution.

• SG-GSR outperforms state-of-the-art baselines in node classi-
fication, and we show its effectiveness under various scenarios
including non-targeted attacks, targeted attacks, feature attacks,
e-commerce fraud, and noisy node labels.

• We introduce novel graph benchmark datasets that simulate
real-world fraudsters’ attacks on e-commerce systems, as an
alternative to artificially attacked graph datasets, which is ex-
pected to foster practical research in adversarial attacks on
GNNs.

2 RELATEDWORKS
2.1 Robust GNNs
Robust GNN methods include approaches based on graph structure
refinement [4, 12], adversarial training [15], Gaussian distribution-
based node representation learning [47], new message passing
scheme [16, 22, 23], leveraging low-rank components of the graph
[7], and etc. Among these methods, one representative approach
is graph structure refinement (GSR), which aims to learn a better
graph structure from a given graph, and it has recently been adopted
to mitigate the impact of adversarial edges in attacked graphs. In
the following, we briefly introduce existing GSR methods.

Feature-based GSR. The first line of research utilizes node fea-
tures under the feature smoothness assumption [4, 8, 12]. ProGNN
[12] refines the attacked graph structure by satisfying numerous
real-world graph properties, e.g., feature-smoothness, sparsity, and
low-rankness. SLAPS [8] trains an MLP encoder to produce a new
graph structure where edges connect nodes with similar embed-
dings. RSGNN [4] uses an MLP encoder and a regularizer that
encourages similar nodes to be close in the representation space.
However, we demonstrate that relying heavily on the node features
unavoidably results in a performance drop when the node features
are noisy or attacked as shown in Fig. 1(a).
Multi-faceted GSR. To handle the weakness of feature-based
approaches, another line of research leverages multi-faceted in-
formation that considers the structural information in addition
to the node features. GEN [35] estimates a new graph structure
via Bayesian inference from node features and high-order neigh-
borhood information. CoGSL [20] aims to learn an optimal graph
structure in a principled way from the node features and struc-
tural information. However, we demonstrate that using additional
structural information is sub-optimal when the graph structure is
heavily attacked as shown in Fig. 1(b). To address this issue, PA-
GNN transfers knowledge from clean external graphs to improve
inference on attacked graphs. However, it assumes the existence
of external clean graphs, which is not practical and realistic as real-
world graphs contain inherent noise. Moreover, STABLE [17] is a
contrastive-learningmethod that maximizes mutual information be-
tween representations from the graph views generated by randomly
removing easily detectable adversarial edges. However, a significant
number of the removed edges are indeed clean edges, which causes
a severe loss of vital structural information, thereby limiting the
robustness of GSR (Refer to Appendix C.1 for more details).

Different from the aforementioned methods, we aim to refine
the attacked graph structure based on multi-faceted information by
utilizing the clean sub-graph instead of the attacked structure. In
doing so, we handle the two technical challenges of extracting the
sub-graph that hinder the robustness of GSR, i.e., loss of structural
information and imbalanced node degree distribution.

2.2 Imbalanced Learning on Node Degree
The node degrees of many real-world graphs follow a power-law
(i.e., a majority of nodes are of low-degree). However, GNNs heavily
rely on structural information for their performance, which can re-
sult in underrepresentation of low-degree nodes [24, 25]. To tackle
the issues regarding low-degree nodes, Meta-tail2vec [25] and Tail-
GNN [24] propose ways to refine the representation of low-degree
nodes by transferring information from high-degree nodes to low-
degree nodes. Despite their effectiveness, they do not consider the
problem in the context of adversarial attacks, but they simply as-
sume that the given graph is clean. Although recent studies [17, 51]
demonstrate that low-degree nodes are more vulnerable to adversar-
ial attacks than high-degree nodes, existing GSRmethods do not pay
enough attention to low-degree nodes. One straightforward solu-
tion would be to mainly use the node features that are independent
of the node degree, such as in SLAPS [8] and RSGNN [4]. However,
as shown in Fig. 1(a), their performance deteriorates when the node
features are noisy or attacked. In this work, we propose a novel
GSR method that directly focuses on enhancing the robustness of
GSR with respect to low-degree nodes by balancing the node degree
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distribution. Moreover, by utilizing the clean proxy structure (i.e.,
clean sub-graph) in addition to the node features, our proposed
method is more robust even when the node features are attacked.

3 PROBLEM STATEMENT
We use G = ⟨V, E,X⟩ to denote an attacked graph, where V =

{𝑣1, ..., 𝑣𝑁 } is the set of nodes, E ∈ V × V is the set of edges,
and X ∈ R𝑁×𝐹 is the node feature matrix, where 𝑁 is the number
of nodes, and 𝐹 is the number of features for each node. We use
A ∈ R𝑁×𝑁 to denote the adjacency matrix whereA𝑖 𝑗 = 1 if an edge
exists between nodes 𝑖 and 𝑗 , otherwise A𝑖 𝑗 = 0. We assume the
semi-supervised setting, where only a portion of nodes are labeled.
The class label of a labeled node 𝑖 is defined as Y𝑖 ∈ {0, 1}𝐶 , where
𝐶 indicates the number of classes. Our goal is to learn a robust node
classifier based on the refined graph structure.

4 PROPOSED METHOD
We propose a self-guided GSR framework (SG-GSR), whose main
idea is to train a robust GSR module (Sec 4.1) based on a confidently
clean sub-graph extracted from the given attacked graph (Sec 4.2).
We further explore and deal with the two technical challenges of
extracting a clean sub-graph, i.e., loss of structural information
(Sec 4.3.1) and imbalanced node degree distribution (Sec 4.3.2),
by introducing two strategies, a graph augmentation (Sec 4.4.1)
and group-training (Sec 4.4.2), respectively. Finally, we use the
knowledge obtained from training the GSR module with two strate-
gies in order to refine the target attacked graph and learn a robust
node classifier. (Sec 4.5). Appendix A shows the overall architecture
of SG-GSR.

4.1 Graph Structure Refinement (GSR) Module
We adopt SuperGAT [13] as the backbone network for refining the
attacked graph G. In SuperGAT with 𝐿 layers, the model trans-
forms the representation of node 𝑖 for layer 𝑙 , i.e., h𝑙

𝑖
∈ R𝐹 𝑙 , using

a weight matrix W𝑙+1 ∈ R𝐹 𝑙+1×𝐹 𝑙 , and the updated node repre-
sentation h𝑙+1

𝑖
∈ R𝐹 𝑙+1 is obtained by linearly combining the rep-

resentations of node 𝑖 and its first-order neighbors 𝑗 ∈ N𝑖 using
attention coefficients, i.e., 𝛼𝑙+1

𝑖 𝑗
, which is followed by non-linear

activation 𝜌 as: h𝑙+1
𝑖

= 𝜌

(∑
𝑗∈N𝑖∪{𝑖 } 𝛼

𝑙+1
𝑖 𝑗

W𝑙+1h𝑙
𝑗

)
, where 𝛼𝑙+1

𝑖 𝑗
=

softmax𝑗∈N𝑖∪{𝑖 } (𝜌 (𝑒𝑙+1𝑖 𝑗
)). Note that 𝐹𝐿 is set to 𝐶 , which is the

number of classes. Among various ways to compute 𝑒𝑙+1
𝑖 𝑗

, we adopt

the dot-product attention [31]: 𝑒𝑙+1
𝑖 𝑗

= [(W𝑙+1h𝑙
𝑖
)⊤ ·W𝑙+1h𝑙

𝑗
]/
√
𝐹 𝑙+1.

We pass the output of the final layer, i.e., h𝐿
𝑖
, through a softmax

function to generate the prediction of node labels, i.e., Ŷ𝑖 , which is
then used to compute the cross-entropy loss as follows:

𝐿V = −
∑︁

𝑖∈V𝐿

𝐶∑︁
𝑐=1

Y𝑖𝑐 log Ŷ𝑖𝑐 (1)

whereV𝐿 indicates the labeled node set. In each layer 𝑙 , to learn
W𝑙 that makes 𝑒𝑙

𝑖 𝑗
large for clean edges, and small for adversarial

edges, we optimize the following link prediction loss 𝐿𝑙E in addition
to the cross-entropy loss 𝐿V :

𝐿𝑙E = − ©« 1
| E |

∑︁
(𝑖,𝑗 ) ∈E

· log𝜙𝑙𝑖 𝑗 +
1

| E− |
∑︁

(𝑖,𝑗 ) ∈E−
· log

(
1 − 𝜙𝑙𝑖 𝑗

)ª®¬ (2)

where 𝜙𝑙
𝑖 𝑗

= 𝜎 (𝑒𝑙
𝑖 𝑗
) indicates the probability that there exists an

edge between two nodes 𝑖 and 𝑗 , which is computed in each layer
𝑙 , and 𝜎 is the sigmoid function. E is the set of observed edges,
which are considered as clean edges (i.e., positive samples), and E−

is the set of unobserved edges considered as adversarial edges (i.e.,
negative samples), which is sampled uniformly at random from the
complement set of E. By minimizing 𝐿𝑙E , we expect that a large
𝑒𝑙
𝑖 𝑗

is assigned to clean edges, whereas a small 𝑒𝑙
𝑖 𝑗

is assigned to
adversarial edges, therebyminimizing the effect of adversarial edges.
However, since E may contain unknown adversarial edges due to
structural attacks, the positive samples in Eqn. 2 may contain false
positives, which leads to a sub-optimal solution under structural
attacks. Appendix B.1 clearly shows the negative impact of the false
positive edges.

4.2 Extraction of Clean Sub-graph (Phase 1)
To alleviate false positive edges , we propose a clean sub-graph
extraction method that obtains a clean proxy structure from the
target attacked graph, which consists of the following two steps:
(1) Similarity computation:We compute the structural proxim-

ity 𝑆
sp
𝑖 𝑗

and node feature similarity 𝑆 fs
𝑖 𝑗

for all existing edges
(𝑖, 𝑗) ∈ E. To compute 𝑆

sp
𝑖 𝑗
, we use node2vec [9] pretrained

node embeddings Hsp ∈ R𝑁×𝐷sp
, which captures the structural

information. To compute 𝑆 fs
𝑖 𝑗
, we use the node feature matrix

X, and cosine similarity.
(2) Sub-graph extraction: Having computed 𝑆sp

𝑖 𝑗
and 𝑆 fs

𝑖 𝑗
for all

existing edges (𝑖, 𝑗) ∈ E, we extract the edges with high struc-
tural proximity, i.e., Ẽsp, and the edges with high feature simi-
larity, i.e., Ẽfs, from the target attacked graph E, where |Ẽ∗ | =
⌊|E | · 𝜆∗⌋ and 𝜆∗ ∈ [0, 1], where ∗ ∈ {sp,fs}. For example,
𝜆sp = 0.2 means edges whose 𝑆sp

𝑖 𝑗
value is among top-20% are

extracted. Note that 𝜆sp and 𝜆fs are hyperparameters. Lastly,
we obtain a clean sub-graph Ẽ by jointly considering Ẽsp and
Ẽfs, i.e., Ẽ = Ẽsp ∩ Ẽfs, thereby capturing both the structural
proximity and the feature similarity.

It is important to note that we constrain the sub-graph size, i.e.,
|Ẽ |, to prevent it from becoming too small, ensuring that the sub-
graph always includes labeled nodes. We argue that considering
both feature similarity and structural proximity is significant when
node features are noisy or attacked. It is also important to note that
Phase 1 is done before the model training, and the time complexity
of training node2vec is acceptable as it scales linearly with the
number of nodes. The supporting results and detailed explanations
can be found in Appendix B.2. In Phase 2, we train our proposed
GSR module based on the sub-graph extracted in Phase 1, which
however poses two challenges.

4.3 Challenges on the Extracted Sub-graph
In this subsection, we analyze the two technical challenges of ex-
tracting the clean sub-graph that limit the robustness of the pro-
posed GSR method: 1) loss of structural information (Section 4.3.1),
and 2) imbalanced node degree distribution (Section 4.3.2).
4.3.1 Loss of Structural Information. Recall that when extracting
the clean sub-graph, we only extract a small fraction of confidently
clean edges. In other words, we remove a large number of edges
from the graph, and these edges may contain numerous clean edges
as well as adversarial edges. In Fig. 2(a), we indeed observe that as
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the ratio of extracted edges gets smaller, i.e., as the ratio of removed
edges gets larger, most of the extracted edges are clean (blue line),
but at the same time the remaining edges include a lot of clean edges
as well (orange line), which incurs the loss of vital structural infor-
mation. We argue that the limited structural information hinders
the predictive power of GNNs on node classification [21, 44] and
moreover, restricts the generalization ability of the link predictor
in the GSR module (Eqn. 2). As a result, in Fig. 2(b), we observe that
although the extracted sub-graph is clean enough (e.g., clean rate is
around 0.95 when |Ẽ |/|E | = 0.4), the node classification accuracy is
far lower than the clean case, which implies that a naive adoption of
the GSR module is not sufficient. Hence, it is crucial to supplement
the extracted sub-graph with additional structural information.
4.3.2 Imbalanced Node Degree Distribution. We identify another
challenge, i.e., imbalanced node degree distribution of the clean
sub-graph, that further deteriorates the generalization ability of
the link predictor in the GSR module to low-degree nodes. That
is, since the average number of edges incident to a low-degree
node in the imbalanced sub-graph is greatly smaller than that of a
high-degree node, high-degree nodes would dominate the edge set
of sub-graph, i.e., Ẽ, thereby hindering the generalization ability
of the link predictor trained using Eqn. 2 to other nodes (i.e., low-
degree nodes). In Fig. 2(c), while both the original graph and the
extracted sub-graph are imbalanced, we find that the sub-graph is
more severely imbalanced. In Fig. 2(d), we clearly see that when a
node is connected to adversarial edges, the accuracy drop in terms
of node classification of low-degree nodes compared with the clean
case is larger than that of high-degree nodes, which implies that
the imbalanced degree distribution of the sub-graph leads to the
poor generalization of link predictors to low-degree nodes. This
challenge is crucial in many real-world applications since a majority
of nodes are of low-degree in real-world graphs.

4.4 Dealing with the Challenges of Sub-graph
Extraction (Phase 2)

In this subsection, we endeavor to tackle the above challenges that
hinder the robustness of the proposed GSR method. Based on the
analyses in the previous subsection, we propose 1) a novel graph
structure augmentation strategy to supplement the loss of structural
information (Sec 4.4.1), and 2) a group-training strategy to balance
the node degree distribution of the sub-graph (Sec 4.4.2).
4.4.1 Graph Augmentation (Phase 2-1). To address the first chal-
lenge, we propose a novel graph structure augmentation strategy
that supplements the structural information of the extracted sub-
graph. More specifically, we add edges that are considered to be
important for predicting node labels, but currently non-existent in
the extracted sub-graph Ẽ. We measure the importance of each edge
based on three real-world graph properties, i.e., class homophily,
feature smoothness, and structural proximity.
Property 1: Class homophily. An edge is considered to be class
homophilic if the two end nodes share the same label, and it is
well-known that increasing the class homophily ratio yields better
prediction of node labels [3, 45]. Hence, our strategy is to find class
homophilic edges and inject them into the sub-graph. However, as
only a small portion of nodes are labeled under semi-supervised
settings, we need to infer the labels of unlabeled nodes to determine
class homophilic edges. To this end, we leverage the class prediction

probability matrix for the set of nodes Ṽ in the extracted sub-graph
Ẽ, i.e., P ∈ R | Ṽ |×𝐶 , as the pseudo-label, and compute the distance
between all pairs of nodes based on P. Our intuition is that nodes
with a small distance in terms of the class prediction are likely to
form a class homophilic edge. Specifically, we adopt the Jensen-
Shannon Divergence (JSD) as the distance metric to compute the
distance between the class prediction probability of two nodes 𝑖
and 𝑗 as follows:

JSD𝑖 𝑗 =
1
2
KLD(P𝑖 | |M𝑖 𝑗 ) +

1
2
KLD(P𝑗 | |M𝑖 𝑗 ), for all 𝑖, 𝑗 ∈ Ṽ (3)

where KLD(·| |·) is the KL-divergence, and M𝑖 𝑗 = (P𝑖 + P𝑗 )/2. In
short, we consider an edge in {(𝑖, 𝑗) |𝑖 ∈ Ṽ, 𝑗 ∈ Ṽ} to be class
homophilic if the JSD value is small, and thus we add edges with
small JSD values (i.e., ẼJSD) to the sub-graph to satisfy the class
homophily property.
Property 2: Feature smoothness. Feature smoothness indicates
that the neighboring (or adjacent) nodes share similar node fea-
tures, which is widely used to inject more structural information
for improving node classification accuracy [8, 12]. Hence, based on
the node feature matrix X̃ ∈ R | Ṽ |×𝐹 of the extracted sub-graph Ẽ,
we compute the cosine similarity between all node pairs in the sub-
graph. Then, we add edges with high node feature similarity (i.e.,
ẼFS) to the sub-graph to satisfy the feature smoothness property.
Property 3: Structural proximity. Structural proximity indicates
that structurally similar nodes in a graph tend to be adjacent or close
to each other [9, 18, 33, 46]. Although conventional metrics such as
Jaccard Coefficient, Common Neighbors [19], and Adamic-Adar [2]
are widely used to measure the structural proximity between nodes,
they mainly focus on the local neighborhood structures, and thus
fail to capture high-order structural similarity. Hence, to capture
the high-order structural proximity, we use the pre-trained node
embeddings Hsp obtained by node2vec [9]. node2vec is a random-
walk based node embedding method that is known to capture the
high-order structure proximity, which is already obtained in Phase
1. We compute the cosine similarity between all node pairs in the
extracted sub-graph Ẽ and add the edges with the highest structural
proximity values (i.e., ẼSP) into the sub-graph.

In summary, we perform augmentations on the extracted sub-
graph (i.e., Ẽ) as: Ẽaug = Ẽ ∪ ẼJSD∪ẼFS∪ẼSP . However, obtaining
ẼJSD requires computing the similarity between all node pairs in Ṽ
in every training epoch, which is time-consuming (𝑂 ( |Ṽ |2)), and
discovering the smallest values among them also requires additional
computation. To alleviate such a complexity issue, we construct
𝑘-NN graphs [11, 37] of nodes in Ṽ based on the node feature
similarity and structural proximity, and denote them as ẼFS

𝑘
and

ẼSP
𝑘
, respectively. Then, we compute the JSD values of the edges

in ẼFS
𝑘

and ẼSP
𝑘

to obtain ẼFS-JSD
𝑘

and ẼSP-JSD
𝑘

, instead of all edges
in {(𝑖, 𝑗) |𝑖 ∈ Ṽ, 𝑗 ∈ Ṽ} as in Eqn. 3, which notably alleviates the
computation complexity from 𝑂 ( |Ṽ |2) to 𝑂 ( |Ẽ∗

𝑘 |), where |Ṽ |2 ≫
|Ẽ∗
𝑘 | for ∗ ∈ {SP, FS}. That is, the graph aumgentation is performed

as: Ẽaug = Ẽ ∪ ẼFS-JSD
𝑘

∪ ẼSP-JSD
𝑘

. For the implementation details,
please refer to Appendix B.3.

Our proposed augmentation strategy is superior to existing
works that utilize the graph properties [8, 12, 45] in terms of robust-
ness and scalability. Detailed explanations and supporting results
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Figure 2: (a) Clean rate of the extracted edges and remaining edges over the ratio of extracted edges. (b) Node classification
accuracy under structure attack and clean rate of extracted edges over the ratio of extracted edges. (c) Node degree distribution
of original graph and extracted sub-graph. (d) Accuracy drop in node classification under attacks for high/low-degree nodes.
(e) Imbalance ratio of Ẽaug, Ẽaug

LL , Ẽaug
HL , and Ẽaug

HH . Cora dataset is used. Struc. Attack indicatesmetattack 25% and Feat. Attack
indicates Random Gaussian noise 50%.

can be found in Sec 5.3.3 and Appendix B.3. Furthermore, it is im-
portant to note that the sub-graph extraction process (Phase 1)
including obtaining Ẽ*

𝑘
is done offline before proceeding to Phase 2,

which is described in Section 4.4, and thus Phase 1 does not increase
the computation burden of Phase 2.

4.4.2 Group-training Strategy (Phase 2-2). To alleviate the imbal-
anced node degree distribution of the sub-graph, we balance the
node degree distribution by splitting Ẽaug into three groups, i.e.,
Ẽaug
LL , Ẽaug

HL , and Ẽaug
HH , and independently train the link predictor

in the GSR module on each set. More precisely, Ẽaug
HH and Ẽaug

LL de-
note the set of edges incident to two high-degree nodes and two
low-degree nodes, respectively, and Ẽaug

HL denotes the set of edges
between a high-degree node and a low-degree node. Note that a
node with its degree less than the median in the node degrees is
considered as low-degree. To verify whether the splitting strategy
balances the node degree distribution, we measure the imbalance
ratio of the node degree distribution of edge set, which is defined as
𝐼ratio =

degmax
degmin

, where degmax and degmin denote the maximum and
minimum degrees in the node degree distribution, respectively [40].
Note that a large 𝐼ratio implies that the set is highly imbalanced. In
Fig. 2(e), we observe that the imbalance ratios of Ẽaug

LL , Ẽaug
HL , and

Ẽaug
HH are lower than that of Ẽaug, which shows that the splitting

strategy indeed balances the node degree distribution. We define
the balanced link prediction loss by combining the link prediction
loss in Eqn. 2 for each group, i.e., 𝐿𝑙

Ẽaug
LL

, 𝐿𝑙
Ẽaug
HL

, and 𝐿𝑙
Ẽaug
HH

, as fol-

lows: 𝐿𝑙E = 𝐿𝑙
Ẽaug
LL

+ 𝐿𝑙
Ẽaug
HL

+ 𝐿𝑙
Ẽaug
HH

. We argue that the link predictor

in the GSR module is learned in a balanced manner in terms of
the node degree distribution, which leads to the improvement of
the generalization ability of the GSR module to low-degree nodes.
Specifically, since the number of edges incident to each node is
more evenly distributed in Ẽaug

LL and Ẽaug
HL than Ẽaug, low-degree

nodes are far more involved in computing 𝐿Ẽaug
LL

and 𝐿Ẽaug
HL

than

𝐿Ẽaug . Consequently, the combined loss, i.e., 𝐿𝑙E , is computed with
more emphasis on low-degree nodes. Lastly, it is important to note
that the message passing of the GSR module is performed on the
whole edge sets, i.e., Ẽaug, rather than the split sets. It is important
to note that the above loss does not increase the complexity of the
model training nor the number of parameters, because the number of
samples used for training remains the same, and the parameters for
the link predictor are shared among the groups. Moreover, we can

further split the edge set in a more fine-grained manner to obtain a
more balanced edge sets, which will be later demonstrated in 5.3.4.

4.5 Training and Inference
Training. SG-GSR is trained to minimize the objective function:
𝐿final = 𝐿Ṽ + 𝜆E

∑𝐿
𝑙=1 𝐿

𝑙
E , where 𝐿Ṽ indicates the node classifica-

tion loss on the set of labeled nodes in Ṽ as in Eqn. 1. Moreover,
𝐿𝑙E and 𝜆E indicate the grouped link prediction loss for the 𝑙-th
layer as in Eqn. 2 and the combination coefficient, respectively.
During training, the parameters {W𝑙 }𝐿

𝑙=1 of SG-GSR are updated
to accurately predict labels of the nodes in Ṽ and clean links for
each group, i.e., Ẽaug

HH , Ẽ
aug
HL , and Ẽaug

LL .
Inference. In the inference phase, we use the knowledge obtained
during training to refine the target attacked graph structure. More
precisely, based on the learned model parameters {W𝑙 }𝐿

𝑙=1, we com-
pute the attention coefficients {𝛼𝑙

𝑖 𝑗
}𝐿
𝑙=1 of the existing edges in the

target attacked graph E followed by the message passing proce-
dure as described in Section 4.1. In other words, we minimize the
effect of adversarial edges during the message passing procedure,
thereby achieving robustness against adversarial attacks on the
graph structure.

5 EXPERIMENT
5.1 Experimental Settings
5.1.1 Datasets. We evaluate SG-GSR and baselines on five exist-
ing datasets (i.e., Cora [12], Citeseer [12], Pubmed [12], Polblogs
[12], and Amazon [28]) and two newly introduced datasets (i.e.,
Garden and Pet) that are proposed in this work based on Amazon
review data [10, 26] to mimic e-commerce fraud (Refer to Appen-
dix D.2 for details). For each graph, we use a random 1:1:8 split
for training, validation, and testing. The details of the datasets are
given in Appendix D.1.

5.1.2 Experimental Details. We compare SG-GSR with a wide
range of robust GNN baselines including GSR methods under poi-
soning structure and feature attacks, following existing robust GNN
works [4, 12, 16, 17, 20, 22]. We consider three attack scenarios, i.e.,
structure attacks, structure-feature attacks, and e-commerce fraud.
Note that in this work we mainly focus on graph modification
attacks (i.e., modifying existing topology or node features). A dis-
cussion of robustness under graph injection attacks and adaptive
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Table 1: Node classification performance under non-targeted attack (i.e.,metattack) and feature attack. OOM indicates out of
memory on 12GB TITAN Xp. OOT indicates out of time (24h for each run is allowed).

Dataset Setting SuperGAT RGCN ProGNN GEN ELASTIC AirGNN SLAPS RSGNN CoGSL STABLE EvenNet SE-GSL SG-GSR

Cora
Clean 85.4±0.3 84.0±0.1 82.9±0.3 83.9±0.8 85.5±0.4 83.6±0.3 75.1±0.2 85.1±0.3 80.2±0.3 85.1±0.3 85.5±0.4 85.5±0.3 85.5±0.1

+ Meta 25% 62.6±1.7 53.4±0.3 70.7±0.2 67.4±1.2 67.5±0.8 63.0±0.7 75.0±0.5 81.8±0.3 63.6±0.3 79.0±0.4 75.0±0.3 70.2±0.4 83.1±0.5
+ Feat attack 56.5±0.6 49.4±0.9 47.7±0.5 45.2±2.4 55.9±1.6 50.4±0.6 49.2±0.1 65.7±2.1 49.6±1.5 52.2±0.1 56.5±0.5 51.8±0.5 67.6±1.4

Citeseer
Clean 75.1±0.2 73.0±0.4 72.5±0.5 75.5±0.3 74.7±0.4 73.2±0.3 73.6±0.1 74.4±1.1 76.2±0.1 75.5±0.7 74.2±0.2 76.1±0.5 75.4±0.2

+ Meta 25% 64.5±0.6 58.6±0.9 68.4±0.6 71.9±0.8 66.3±1.0 62.2±0.6 73.1±0.6 73.9±0.7 71.6±0.7 73.4±0.3 71.6±0.3 70.3±0.8 75.2±0.1
+ Feat attack 57.1±0.9 50.3±0.6 52.6±0.2 50.4±1.1 60.8±1.3 58.1±1.1 52.3±0.4 64.0±0.3 57.4±1.5 58.4±0.4 59.7±0.4 59.0±0.9 66.8±1

Pubmed
Clean 84.0±0.5 86.9±0.1 OOM 86.5±0.5 88.1±0.1 87.0±0.1 83.4±0.3 84.8±0.4 OOM 85.5±0.2 87.5±0.2 OOT 87.6±0.2

+ Meta 25% 74.4±1.8 82.0±0.3 OOM 80.1±0.3 85.4±0.1 84.2±0.0 83.1±0.1 84.7±0.5 OOM 81.6±0.6 87.2±0.2 OOT 87.3±0.2
+ Feat attack 58.4±0.3 44.9±0.8 OOM 52.6±0.2 55.3±0.6 62.3±0.1 53.3±0.8 64.7±0.3 OOM 54.7±0.7 64.6±3.9 OOT 65.5±0.5

Polblogs Clean 96.0±0.3 95.4±0.1 93.2±0.6 96.1±0.4 95.7±0.3 95.0±0.7 54.1±1.3 93.0±1.8 95.2±0.1 95.6±0.4 95.6±0.4 95.2±0.6 96.2±0.1
+ Meta 25% 79.6±2.0 66.9±2.2 63.2±4.4 79.3±7.7 63.6±1.5 57.3±4.4 52.2±0.1 65.0±1.9 51.9±0.2 75.2±3.4 59.1±6.1 68.3±1.2 87.8±0.7

Amazon
Clean 82.5±1.1 82.2±1.3 OOM 90.2±0.2 89.6±0.1 87.6±0.8 79.6±0.8 89.6±1.2 OOM 88.8±0.4 88.8±0.5 OOT 91.1±0.2

+ Meta 25% 76.0±1.6 73.2±0.7 OOM 85.6±0.9 86.7±0.2 85.6±0.4 79.0±0.3 86.9±1.6 OOM 81.7±0.3 85.4±1.5 OOT 89.2±0.2
+ Feat attack 75.2±0.5 71.1±2.3 OOM 85.1±0.6 85.4±0.3 83.3±0.2 71.8±0.6 85.0±1.5 OOM 79.5±0.8 85.3±0.8 OOT 87.2±0.4

Table 2: Node classification performance under targeted attack (i.e., nettack) and feature attack.
Dataset Setting SuperGAT RGCN ProGNN GEN ELASTIC AirGNN SLAPS RSGNN CoGSL STABLE EvenNet SE-GSL SG-GSR

Cora
Clean 83.1±1.0 81.5±1.1 85.5±0.0 82.7±3.5 86.4±2.1 79.9±1.1 70.7±2.3 84.3±1.0 76.3±0.6 85.5±1.0 85.1±1.6 85.5 ±1.0 86.4±1.1
+ Net 5 60.6±2.8 55.8±0.6 67.5±0.0 61.5±3.9 67.5±2.1 61.0±2.5 68.7±2.6 73.1±1.5 61.9±0.6 76.3±0.6 66.3±1.2 68.7±0.6 77.1±1.7

+ Feat attack 59.4±2.5 52.6±0.6 57.8±0.0 47.0±2.0 63.1±1.8 54.2±1.0 39.0±3.0 71.9±0.6 46.6±0.6 64.7±1.5 60.6±2.0 59.0±0.5 72.7±1.1

Citeseer
Clean 82.5±0.0 81.0±0.0 82.5±0.0 82.5±0.0 82.5±0.0 82.5±1.3 81.5±0.8 84.1±0.0 81.5±0.8 82.5±0.0 82.5±0.0 82.5±0.0 85.7±2.2
+ Net 5 54.5±4.9 50.3±3.7 71.5±0.0 77.3±1.5 79.9±0.9 70.4±2.0 81.0±1.3 78.8±2.0 79.9±0.8 82.5±0.0 79.9±2.1 82.5±0.0 83.1±0.8

+ Feat attack 49.2±1.3 47.1±3.3 68.3±0.0 40.2±4.6 57.7±4.0 52.9±3.0 70.9±2.7 74.6±2.6 46.0±2.6 65.1±3.4 63.5±4.8 77.8±1.5 83.1±2.7

Pubmed
Clean 87.6±0.4 89.8±0.0 OOM 89.8±0.0 90.5±0.3 90.9±0.2 80.5±1.5 88.4±0.5 OOM 89.3±0.5 90.9±0.5 OOT 90.9±1.9
+ Net 5 70.6±0.7 70.1±0.3 OOM 72.0±0.0 85.8±0.3 83.0±0.9 80.5±1.5 87.8±1.3 OOM 83.3±0.3 72.2±0.7 OOT 88.0±0.3

+ Feat attack 70.4±1.2 61.5±1.3 OOM 61.8±0.0 78.1±0.8 77.1±0.9 56.6±2.0 76.5±0.7 OOM 73.1±0.7 67.9±0.9 OOT 75.8±2.0

Polblogs Clean 97.7±0.4 97.4±0.2 97.1±0.3 97.8±0.2 97.8±0.3 97.3±0.2 54.1±1.3 96.4±0.7 96.9±0.2 97.5±0.2 97.9±0.4 97.0±0.4 97.9±0.2
+ Net 5 95.9±0.2 93.6±0.5 96.1±0.6 94.8±1.2 96.2±0.3 90.0±0.9 51.4±3.4 93.4±0.7 89.6±0.6 96.1±0.4 94.2±1.1 95.1±0.3 96.5±0.2

attacks are included in Appendix C.5 and C.6. We describe the base-
lines, evaluation protocol, and implementation details in Appendix
D.3, D.4, and D.5, respectively.

5.2 Evaluation of Adversarial Robustness
5.2.1 Against non-targeted and targeted attacks. We first evalu-
ate the robustness of SG-GSR under metattack, a non-targeted
attack. In Table 1, we have the following two observations: 1) SG-
GSR consistently outperforms all baselines under structure attack
(i.e., + Meta 25%). We attribute the superiority of SG-GSR over
multi-faceted methods to utilizing the clean sub-graph instead of
the given attacked graph. Moreover, SG-GSR also surpasses all
feature-based methods since the clean sub-graph and the graph
augmentation strategy enrich the structural information, while also
utilizing the given node features. 2) SG-GSR consistently performs
the best under structure-feature attacks (i.e., + Feat. Attack). We
argue that leveraging the structural information (i.e., clean sub-
graph) in addition to the node features alleviates the weakness of
feature-based approaches. Moreover, we observe similar results
against the targeted attack (i.e., nettack) in Table 2.

5.2.2 Against e-commerce fraud. We newly design two new bench-
mark graph datasets, i.e., Garden and Pet, where the node label is the
product category, the node feature is bag-of-words representation of
product reviews, and the edges indicate the co-review relationship
between two products reviewed by the same user. While existing
works primarily focus on artificially generated attack datasets, to
the best of our knowledge, this is the first work proposing new
datasets for evaluating the robustness of GNNs under adversar-
ial attacks that closely imitate a real-world e-commerce system
containing malicious fraudsters. Appendix D.2 provides a compre-
hensive description of the data generation process. In Table 3, we

Table 3: Node classification performance under e-commerce
fraud.

Garden Pet

Methods Clean + Fraud Clean + Fraud

SuperGAT 86.0±0.4 81.8±0.3 87.3±0.1 80.6±0.3
RGCN 87.1±0.5 81.5±0.3 86.6±0.1 78.5±0.2
ProGNN OOT OOT OOT OOT
GEN 87.1±0.6 82.2±0.0 88.5±0.6 81.1±0.3

ELASTIC 88.4±0.1 82.9±0.1 88.9±0.1 81.3±0.2
AirGNN 87.1±0.2 80.9±0.4 88.5±0.1 79.3±0.3
SLAPS 79.3±0.8 74.6±0.2 81.4±0.2 75.8±0.2
RSGNN 81.8±0.6 76.3±0.0 81.6±0.4 74.2±0.0
CoGSL OOM OOM OOM OOM
STABLE 84.3±0.3 81.0±0.3 87.9±0.2 80.8±0.2
EvenNet 86.3±0.2 81.3±0.4 88.5±0.2 81.0±0.1
SE-GSL 82.0±0.4 77.3±0.6 87.9±0.4 77.5±0.7

SG-GSR 88.3±0.1 83.3±0.2 89.4±0.1 81.9±0.1

observe that SG-GSR outperforms the baselines under the mali-
cious actions of fraudsters, which indicates that SG-GSR works
well not only under artificially generated adversarial attacks, but
also under attacks that are plausible in the real-world e-commerce
systems.

5.3 Model Analyses
5.3.1 Ablation studies on each component of SG-GSR. To evaluate
the importance of each component of SG-GSR, i.e., clean sub-graph
extraction (SE), graph augmentation (GA), and the group-training
strategy (GT ), we add them one by one to a baseline model, i.e., Su-
perGAT. In Table 4, we have the following observations: 1) Adding
clean sub-graph extraction (SE) to SuperGAT is considerably help-
ful for defending against adversarial attacks, which indicates that
the false positive issue when minimizing Eqn. 2 is alleviated by suc-
cessfully extracting the clean sub-graph. 2) Randomly adding edges
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Table 4: Ablation studies. SE, GA, and GT denote the sub-
graph extraction, graph augmentation, and group-training,
respectively. Rand, C, F, and S indicate whether GA considers
random edge addition, class homophily, feature smoothness,
and structural proximity, respectively.

Component Cora Citeseer

SE GA GT Clean + Meta 25% + Feat. Attack Clean + Meta 25% + Feat. Attack

✗ ✗ ✗ 84.3±0.5 62.6±1.7 56.5±0.6 74.2±0.2 64.5±0.6 57.1±0.9
✓ ✗ ✗ 84.4±0.5 80.6±0.7 58.6±1.1 74.6±0.2 74.4±0.4 60.9±0.5
✓ Rand ✗ 83.6±0.4 78.0±1.4 49.9±1.2 74.9±0.6 73.6±0.4 48.7±1.7
✓ C ✗ 84.6±0.3 81.0±0.3 60.1±0.8 74.6±0.2 74.3±0.6 59.0±0.6
✓ C, F ✗ 84.9±0.3 81.7±0.1 64.1±0.9 74.5±0.1 74.6±0.6 62.2±0.6
✓ C, F, S ✗ 84.6±0.1 82.1±0.3 64.3±0.7 74.8±0.2 74.7±0.4 62.6±0.6

✓ C, F, S ✓ 85.5±0.1 83.4±0.5 67.6±1.4 75.4±0.2 75.2±0.1 66.8±1.0

Table 5: Ablation study on SE. Feat. Attack indicates Random
Gaussian noise 50%.

Pubmed Amazon

Setting Clean + Meta 25% + Feat. Attack Clean + Meta 25% + Feat. Attack

SE w/o Ẽst 87.6±0.2 87.2±0.1 64.4±0.3 90.6±0.1 88.5±0.4 86.6±0.6
SE w/o Ẽfeat 87.6±0.2 83.8±0.2 66.0±0.4 91.1±0.2 89.2±0.2 86.8±0.6

SE 87.6±0.2 87.3±0.2 66.0±0.4 91.1±0.2 89.2±0.2 87.2±0.4

(Rand) to augment the extracted sub-graph performs worse than
not performing any augmentation at all, and considering all three
properties (i.e., class homophily (C), feature smoothness (F), and
structural proximity (S)) yields the best performance. This implies
that the randomly added edges contain edges that are not impor-
tant for predicting the node labels that deteriorate the performance,
while our proposed GA mainly adds important edges for predicting
the node labels by considering various real-world graph properties.
This demonstrates that the proposed graph augmentation strategy
supplements the loss of structural information of the extracted
sub-graph that is crucial for accurately predicting the node labels.
Moreover, the augmented graph that satisfies various real-world
graph properties enhances the generalization ability of the link
predictor in the GSR module. 3) Adding the group-training (GT )
strategy significantly improves the node classification accuracy. We
attribute this to the fact that GT allows the proposed link predictor
to pay more attention to low-degree nodes during training, thereby
enhancing the generalization ability to low-degree nodes.

5.3.2 Further analysis on sub-graph extraction (SE). To verify the
benefit of jointly considering the structural proximity and the node
feature similarity for extracting the clean sub-graph, we compare
SE with SE w/o Ẽfeat, which only considers the structural proximity,
and SE w/o Ẽst, which only considers the node feature similarity.
Note that SE w/o Ẽst is equivalent to the extraction method adopted
by STABLE [17]. In Table 5, we observe that SE outperforms SE w/o
Ẽst especially under the structure-feature attack. This is because
when the node features are noisy or attacked, it becomes hard to dis-
tinguish clean edges from adversarial ones solely based on the node
feature similarity, which aggravates the issue regarding false pos-
itives edges in the extracted sub-graph. The superior performance
of SE implies that jointly considering both feature similarity and
structural proximity is beneficial for alleviating false positive issue.
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Figure 3: Node classification accuracy with and without our
proposed graph augmentation (GA) strategy. Struc. Attack
indicatesmetattack 25%.

Table 6: Analysis on GA against noisy node label. GA w. C
indicates that only class homophilly is considered in GA.
Note that GA w. C is equivalent to the augmentation strategy
of GAUG [45] in which only the class homophily property is
considered for graph augmentation.

Cora Citeseer

Noise rate 0.1 0.2 0.3 0.1 0.2 0.3

GA w. C 80.9±0.1 78.9±0.9 76.0±1.1 73.8±0.7 72.9±0.2 69.3±1.3
GA w. C,F,S 82.1±0.7 79.9±0.5 76.5±0.4 74.6±0.6 74.3±0.5 71.9±0.6

5.3.3 Further analysis on graph augmentation (GA). As shown in
Table 4, the proposed graph augmentation strategy effectively sup-
plements the loss of structural information of the extracted sub-
graph, which in turn improves the node classification performance.
To be more concrete, in Fig. 3, we report the node classification accu-
racy with and without our proposed graph augmentation strategy
over various ratios of extracted edges (i.e., |Ẽ |/|E |) under struc-
tural attacks (i.e., metattack 25%). We observe that the proposed
augmentation strategy consistently improves the GSR module.

We further compare our proposed graph augmentation strategy
(i.e., GA w. C,F,S) with GA w. C to verify the effectiveness of the pro-
posed augmentation method when the label information contains
noise. Note that GA w. C is equivalent to the augmentation strategy
adopted by GAUG [45] in which only the class homophily property
is considered for graph augmentation. We train each model on Cora
and Citeseer with varying label noise rates, i.e., {0.1, 0.2, 0.3}, where
the noise is injected by randomly assigning another label. In Table
6, we observe that GA w. C,F,S outperforms GA w. C under noisy
node labels. This is because GA w. C solely relies on the uncertain
node label predictions of the model when supplementing the struc-
tural information of the sub-graph, whereas GA w. C,F,S considers
diverse properties in addition to the class homophily.

5.3.4 Further analysis on the group-training (GT) strategy. As men-
tioned in Sec. 4.4.2, we can further split the edge set in a more
fine-grained manner to obtain a more balanced edge sets. Specifi-
cally, we compare the two splitting strategies, L-H and L-M-H. L-H
indicates that we split the edge set into three groups, Ẽaug

LL , Ẽaug
HH ,

and Ẽaug
HL , where L and H indicate low- and high-degree nodes.

L-M-H indicates that we split the edge set into six groups Ẽaug
LL ,

Ẽaug
MM, Ẽaug

HH , Ẽ
aug
ML , Ẽ

aug
HL , and Ẽ

aug
HM, where L, M, and H indicate low-,

mid-, and high-degree nodes. In Table 7, we observe that adding
the group-training (GT ) strategy significantly improves the node
classification accuracy. Furthermore, splitting the edge set in a more
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Table 7: Further ablation studies on GT. SE, GA, and GT de-
note the sub-graph extraction module, graph augmentation,
and group-training, respectively. Moreover, L, M, and H indi-
cate low-, mid-, and high-degree nodes. Feat. Attack indicates
Random Gaussian noise 50%.

Component Cora Citeseer

SE GA GT Clean + Meta 25% + Feat. Attack Clean + Meta 25% + Feat. Attack

✓ ✓ ✗ 84.6±0.1 82.1±0.3 64.3±0.7 74.8±0.2 74.7±0.4 62.6±0.6
✓ ✓ L-H 84.7±0.6 82.8±0.4 65.8±1.0 75.1±0.3 74.9±0.2 65.2±0.3

✓ ✓ L-M-H 85.5±0.1 83.4±0.5 67.6±1.4 75.4±0.2 75.4±0.3 66.8±1.0

Table 8: Ablation studies on the group-training (GT ) strategy
on high/low-degree nodes. Feat. Attack indicates Random
Gaussian noise 50%.

Dataset Attack Node SG-GSR w/o GT SG-GSR Diff.(%)

Cora

Clean high-degree 85.6±0.5 86.7±0.2 1.1
low-degree 83.8±0.1 84.5±0.6 0.7

+ Meta 25% high-degree 84.4±0.8 86.7±0.8 2.3
low-degree 78.2±0.8 80.7±0.1 2.5

+ Feat. Attack high-degree 73.7±1.3 76.0±1.5 2.3
low-degree 56.9±1.1 61.3±1.4 4.4

Citeseer

Clean high-degree 76.4±0.2 77.7±0.4 1.3
low-degree 73.0±0.4 73.2±0.4 0.2

+ Meta 25% high-degree 77.9±0.7 78.6±0.2 0.7
low-degree 70.8±0.3 72.1±0.4 1.3

+ Feat. Attack high-degree 71.9±0.6 73.9±1.1 2.0
low-degree 54.0±0.2 60.3±1.0 6.3

fine-grained way, i.e., L-M-H, performs the best. We attribute this to
the fact that more fine-grained GT allows the the node degree dis-
tribution to be more balanced, hence enhancing the generalization
ability to low-degree nodes.

To further investigate the effectiveness of our proposed group-
training strategy, we conduct an ablation study of GT with respect
to the node degrees. In Table 8, we indeed observe that adding GT
is more beneficial to low-degree nodes than to high-degree nodes
in terms of robustness under attacks. We again attribute this to
the fact that GT allows the proposed link predictor to pay more
attention to low-degree nodes during training, hence enhancing
the generalization ability to low-degree nodes.

Moreover, we compare the performance of SG-GSR with the
baselines (i.e., Tail-GNN, SLAPS, and RSGNN) that improve the
performance on low-degree nodes. In Fig. 4, we have the following
observations: 1) SG-GSR outperforms Tail-GNN with a large gap
under attacks since Tail-GNN is designed assuming when the given
graph is clean, which suffers from a significant performance drop
under attacks. 2) SG-GSR consistently outperforms the feature-
based methods, i.e., SLAPS and RSGNN, on low-degree nodes under
both structure and structure-feature attacks. We attribute the effec-
tiveness of SG-GSR on low-degree nodes to the group-training strat-
egy that enhances the robustness of GSR to the low-degree nodes.
Moreover, enriching the structural information as in SG-GSR is
beneficial to mitigating the weakness of feature-based approaches
under the structure-feature attacks. 3) SG-GSR also outperforms
the feature-based methods on high-degree nodes under both struc-
ture and structure-feature attacks. We conjecture that since the
feature-based methods cannot fully exploit the abundant structural
information that exist in high-degree nodes, i.e., neighboring nodes,
their performance on high-degree nodes is limited.

5.3.5 Sensitivity analysis. We analyze the sensitivity of 𝜆E , 𝜆aug,
𝑘 , degree split, and hyperparameters in node2vec. For the results,
please refer to Appendix C.2.

→
add

→
add

→
add

→
add

Figure 4: Node Classification on low-/high-degree nodes on
Citeseer dataset. Struc. Attack indicatesmetattack 25% and
Feat. Attack indicates Random Gaussian noise 50%.
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Figure 5: Distribution of attention coefficients of clean and ad-
versarial edges on the refined graph undermetattack. Dashed
lines indicate average values. Cora dataset is used.
5.3.6 Complexity analysis. The complexity analysis of SG-GSR can
be found in Appendix C.3.

5.4 Analysis of Refined Graph
In this subsection, we qualitatively analyze how well SG-GSR re-
fines the attacked graph structure. Based on the learned model
parameters {W𝑙 }𝐿

𝑙=1, we compute the attention coefficients of the
existing edges in the target attacked graph E in the last layer, i.e.,
𝛼𝐿
𝑖 𝑗
, to obtain the refined graph structure. In Fig. 5, we compare

the distribution of attention coefficient values between the adver-
sarial edges and the original clean edges. We clearly observe that
the attention coefficients of adversarial edges are mostly assigned
to values close to zero, whereas those of clean edges tend to be
assigned to larger values. The result is further emphasized when
comparing it to our backbone network, SuperGAT. This indicates
that SG-GSR successfully minimizes the effect of adversarial edges
during the message passing procedure, which enhances the robust-
ness of GSR under the structural attacks. Further analyses of refined
graphs are provided in Appendix C.4.

6 CONCLUSION
In this paper, we have discovered that existing GSR methods are
limited by narrow assumptions, such as assuming clean node fea-
tures, moderate structural attacks, and the availability of external
clean graphs, resulting in the restricted applicability in real-world
scenarios. To mitigate the limitations, we propose SG-GSR , which
refines the attacked graph structure through the self-guided super-
vision regarding clean/adversarial edges. Furthermore, we propose
a novel graph augmentation and group-training strategies in order
to address the two technical challenges of the clearn sub-graph
extraction, i.e., loss of structural information and imbalanced node
degree distribution. We verify the effectiveness of SG-GSR through
extensive experiments under various artificially attacked graph
datasets. Moreover, we introduce novel graph benchmark datasets
that simulate real-world fraudsters’ attacks on e-commerce systems,
which fosters a practical research in adversarial attacks on GNNs.
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1. Clean Sub-graph Extraction
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Figure 6: Overall architecture of SG-GSR.

A OVERALL ARCHITECTURE
Fig. 6 shows the overall architecture of SG-GSR, and the detailed
algorithm is provided in Algorithm. 1.

→
add

→
add

→
add

Figure 7: Performance of SuperGAT trained on a clean graph
or an attacked graph on Cora, Citeseer, and Pubmed datasets.
Struc. Attack indicatesmetattack 25%.

B FURTHER DISCUSSION ON SG-GSR
B.1 Discussion on Graph Structure Refinement

Module (Sec. 4.1)
As mentioned in Sec. 4.1 of the main paper, by minimizing 𝐿𝑙E (Eqn.
2), we expect that a large 𝑒𝑙

𝑖 𝑗
is assigned to clean edges, whereas a

small 𝑒𝑙
𝑖 𝑗
is assigned to adversarial edges, thereby minimizing the

effect of adversarial edges. However, since E may contain unknown
adversarial edges due to structural attacks, the positive samples in
Eqn. 2 may contain false positives, which leads to a sub-optimal so-
lution under structural attacks. In Fig. 7, we indeed observe that the
performance of SuperGAT drops significantly when it is trained on
a graph after the structure attack (i.e., metattack 25%), which high-
lights the necessity of introducing the clean sub-graph extraction
module.

B.2 Discussion on Extraction of Clean
Sub-graph (Sec. 4.2)

Regarding the Importance of Considering Structural Proxim-
ity To illustrate the effectiveness of our proposed clean sub-graph
extraction method, we measure and visualize the cleanness of the
extracted sub-graph in Fig. 8 over various 𝜆sp and 𝜆fs values. When
only the graph structure is attacked (Fig. 8(a)), we observe that the
extracted sub-graph gets cleaner as we extract more confidently

Figure 8: The cleanness of the extracted sub-graph obtained
by the proposed sub-graph extraction method on Cora. Each
element indicates the ratio of clean edges among the ex-
tracted edges. Dark color indicates that the ratio is high.
Struc. Attack indicates metattack 25% and Feat. Attack in-
dicates Random Gaussian noise 50%.

Table 9: Node classification accuracy (%) under the out-of-
distribution (OOD) setting. A → B denotes training a GNN
model on the A graph and evaluating its performance on
the B graph. OG, Atk, and Sub represent the original clean
graph, original attacked graph (metattack 25%), and extracted
sub-graph, respectively. A high node classification accuracy
indicates minimal distribution shift between the two graphs.

Cora Citeseer

OG → OG Sub → OG Atk → OG OG→ OG Sub → OG Atk → OG

GCN 83.8 81.5 43.2 71.9 71.3 45.3
GAT 83.9 80.8 54.7 73.8 73.7 63.5

clean edges in terms of the node feature similarity. For example,
as the ratio of extracted edges w.r.t feature similarity (i.e., 𝑦-axis)
decreases from 1.0 to 0.3, the cleanness of the extracted sub-graph
notably increases to 0.98. This implies that even leveraging only the
node feature similarity well distinguishes the clean edges from the
attacked structure. However, when the node features are also noisy
or attacked (Fig. 8(b)), we observe that the distinguishability based
on the feature similarity drops significantly. For example, when the
ratio of extracted edges w.r.t feature similarity is 0.5, the cleanness
of the extracted sub-graph drops from 0.96 to 0.88. This implies
that when the node features are also noisy or attacked, extracting
a sub-graph based only on the node feature similarity aggravates
the issue regarding false positives edges. Hence, we argue that
jointly considering both feature similarity and structural proximity
is beneficial for alleviating the issue, because the structural prox-
imity is helpful for distinguishing the clean edges even under the
structure attack. For example, in Fig. 8(a) and (b), we observe that
as we extract more confident edges based on structural proximity
(i.e., from left to right on 𝑥-axis), the ratio of clean edges among
the extracted edges increases. Our argument is corroborated by
model analysis shown in Table 5 in Sec. 5.3.2. Note that a recent
relevant work, called STABLE [17], only considers the node feature
similarity, thereby being deteriorated when the node features are
noisy or attacked.
Regarding the Challenge of Clean sub-graph In Sec. 4.3, we dis-
cover the two technical challenges of extracting the clean sub-graph
that limit the robustness of the proposed GSR method: 1) loss of
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structural information (Section 4.3.1), and 2) imbalanced node de-
gree distribution (Section 4.3.2). However, it is worth considering
that the extracted sub-graph may also exhibit out-of-distribution
(OOD) characteristics compared to the original clean graph, as
a significant number of edges are removed, altering the graph’s
context.

To investigate the potential of the extracted sub-graph being an
OOD graph, we follow the evaluation protocol of a recent work on
graph OOD [39]. First, given an input graph, we extract a clean sub-
graph, and train a GNN model on the extracted sub-graph. Then,
we use the trained GNN to perform inference on the nodes of the
input graph (i.e., Sub→ OG). Second, we train another GNN model
on the input graph, and perform inference on the nodes of the
input graph (i.e., OG→ OG). Our assumption is that a significant
performance gap between the two GNN models implies that the
extracted sub-graph deviates from the original graph, which means
it is an OOD graph. In Table 9, we observe that the performance
gap between OG→ OG and Sub→ OG is negligible compared to
the gap between OG → OG and Atk → OG, indicating that the
distribution of the extracted sub-graph closely resembles that of
the original graph. Note that Atk → OG denotes training on an
attacked input graph and performing inference on the nodes of the
non-attacked input graph. This observation underscores that our
proposed sub-graph extraction module preserves the content of the
original graph, while effectively detecting and removing adversarial
edges.

In addition to the challenges of clean sub-graph extraction on
Cora dataset (Fig. 2(a), (b), (c), and (d) in the main paper), we provide
results on Citeseer, Pubmed, and Polblogs datasets in Fig. 16, 17,
and 18, respectively, all of which show similar results.
Regarding the Existence of Labeled Nodes in Sub-graph It is
worth considering whether the extracted sub-graph contains the
training nodes, especially in cases where the sub-graph is small or
there is a scarcity of training nodes in the original graph. Please
note that 𝜆fs and 𝜆sp determine the size of the extracted sub-graph.
More precisely, setting a smaller 𝜆fs and 𝜆sp extracts smaller a sub-
graph. Table 10 represents the number of nodes and edges in the
extracted sub-graph and their number of labeled nodes when SG-
GSR is trained with the best hyperparameters. From the results, we
argue that the extracted sub-graph are large enough to contain the
training nodes.

Furthermore, to confirm the case that the training nodes in the
graph are scarce, we vary the label rate from 10% to 1% and train SG-
GSR. Fig 9 represents the number of labeled nodes in the extracted
sub-graph. Each point represents a sub-graph extracted using spe-
cific 𝜆fs and 𝜆sp values, where we vary 𝜆fs and 𝜆sp from 1 to 0.01.
The points with star marker indicate the sub-graph extracted using
the hyperparameters, i.e., 𝜆fs and 𝜆sp, that yield the best perfor-
mance. We observe that unless the extracted subgraph is extremely
small (e.g., when only 2% of the entire nodes remain for 10% label
rate), the extracted sub-graph always contains labeled nodes. Even
under very scarce label rate, similar results are observed (e.g., when
only 10% of the entire nodes remain for 1% label rate). It is impor-
tant to further emphasize that, in our implementation, we imposed
constraints on the size of the sub-graph, ensuring that the number
of edges in the sub-graph adhered to a ratio of 30% in relation to
the entire edge sets. By doing so, we made sure that each sub-graph
always contains labeled nodes.

Table 10: Statistics of the extracted sub-graph by SG-
GSR given the attacked graph, wheremetattack 25% is used
as the attack.

Dataset Graph # edges # nodes # labeled nodes

Cora

Original graph 5,069 2,485 249
Attacked graph 6,336 2,485 249

Extracted Sub-graph 3,125 2,178 221

Citeseer
Original graph 2,110 3,668 211
Attacked graph 2,110 4,585 211

Extracted Sub-graph 2,275 1,777 180

Figure 9: The number of labeled nodes and the number of
nodes in the extracted sub-graph according to the label rates.
Star denotes the point that SG-GSR achieves the best perfor-
mance.

Table 11: Execution time of node2vec.

Dataset # Nodes Time (sec)

Cora 2,485 23
Citeseer 2,110 18
Pubmed 19,717 219
Polblogs 1,222 11
Amazon 13,752 152

Regarding the Time Complexity of node2vec The execution
time of node2vec is shown in the Table 11. Note that we use an
efficient node2vec package (i.e., fastnode2vec [1]). As stated in the
node2vec [9] paper and our implementation, it can be observed
that the time complexity scales linearly with respect to the number
of nodes. Since this process only needs to be performed once before
the model training, it is considered an acceptable level of complexity
regarding the importance of the structural proximity in extracting
the clean sub-graph.

B.3 Discussion on Graph Augmentation (Sec.
4.4.1)

Implementation Details As aforementioned in Sec. 4.4.1, we
perform augmentions on the extracted sub-graph (i.e., Ẽ) as follows:

Ẽaug = Ẽ ∪ ẼJSD ∪ ẼFS ∪ ẼSP . (4)
However, obtaining ẼJSD requires computing the similarity be-

tween all node pairs in Ṽ in every training epoch, which is time-
consuming (𝑂 ( |Ṽ |2)), and discovering the smallest values among
them also requires additional computation. To alleviate such com-
plexity issue, we construct 𝑘-NN graphs [11, 37] of nodes in Ṽ
based on the node feature similarity and structural proximity, and
denote them as ẼFS

𝑘
and ẼSP

𝑘
, respectively. Then, we compute the
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JSD values of the edges in ẼFS
𝑘

and ẼSP
𝑘

instead of all edges in
{(𝑖, 𝑗) |𝑖 ∈ Ṽ, 𝑗 ∈ Ṽ} as in Eqn. 3, and add the edges with the small-
est JSD values, denoted as ẼFS-JSD

𝑘
and ẼSP-JSD

𝑘
, to the extracted

sub-graph Ẽ, which satisfy both feature smoothness/structural prox-
imity and class homophily. Note that the number of added edges is
set to ⌊|Ẽ | · 𝜆aug⌋ for both ẼFS-JSD

𝑘
and ẼSP-JSD

𝑘
, where 𝜆aug ∈ [0, 1]

is a hyperparameter. Hence, Ẽaug defined in Eqn. 4 is reformulated
as:

Ẽaug = Ẽ ∪ ẼFS-JSD
𝑘

∪ ẼSP-JSD
𝑘

(5)
Comparisonwith the Existing GraphAugmentationMethods
We further analyze the effectiveness of our proposed augmentation
strategy compared with existing approaches [8, 12, 45]. GAUG [45]
adds class homophilic edges to better predict node labels. However,
we argue that adding only class homophilic edges introduces bias
and uncertainty to the model when the model predictions can be
easily misestimated (e.g., noisy node label). This is because the
structural information to be supplemented solely relies on the un-
certain predictions of node labels. On the other hand, our proposed
augmentation strategy considers diverse properties (i.e., feature
smoothness and structural proximity) in addition to the class ho-
mophily thereby alleviating the issue incurred by relying solely
on the class homophily, which is demonstrated in Sec. 5.3.3 and
Table 6. ProGNN [12] and SLAPS [8] utilize the feature smoothness
property, but they indeed require a model training process with
heavy computation and memory burden to obtain an augmented
graph. In contrast, our proposed strategy is more scalable than
these methods [8, 12], since it does not require any model training
process, and besides, the 𝑘-NN graph in terms of node features and
structural features, i.e., ẼFS

𝑘
and ẼSP

𝑘
, can be readily computed be-

fore the model training (i.e., Phase 1), which removes any additional
computation burden during training.

C ADDITIONAL EXPERIMENTAL RESULTS.
C.1 Limitations of the Recent GSR
In Sec. 4.3.1, we demonstrated that our proposed sub-graph extrac-
tion module faces a challenge of losing vital structural information.
In fact, as mentioned in Sec. 2.1, STABLE also employs a similar
approach to our proposed sub-graph extraction module that de-
tects and removes adversarial edges to extract clean edges from the
attacked graph. In this section, we show that the clean sub-graph
extraction module of STABLE also encounters the same problem
that our proposed module faces, to corroborate the necessity of
our novel graph augmentation strategy that reflects the real-world
graph properties, i.e., class homophily, feature smoothness, and
structural proximity.

In Fig. 10(a) and 11(a), we observe that as the ratio of extracted
edges gets smaller, i.e., as the ratio of removed edges gets larger,
most of the extracted edges are clean (blue line), but at the same time
the remaining edges include a lot of clean edges as well (orange
line), which incurs the loss of vital structural information. As a
result, in Fig. 10(b) and 11(b), we observe that the robustness of
STABLE is considerably restricted due to the lack of vital structural
information. Note that we showed the same figure as Fig. 10 and 11
in terms of our proposed sub-graph extraction module in Fig. 2
of the main paper. Although both STABLE and our proposed sub-
graph extraction module face the same challenge, which restricts

0.25 0.50 0.75 1.00
Ratio of extracted edges (| |/| |)

0.7

0.8

0.9

1.0

Cl
ea

n 
Ra

te

(a) Loss of struc. info.

Extracted
Edges
Remaining
Edges

0.25 0.50 0.75 1.00
Ratio of extracted edges (| |/| |)

0.7

0.8

0.9

1.0

Cl
ea

n 
Ra

te

(b) Limited robustness

Clean
Add Struc.
Attack
Extracted
Edges

50

60

70

80

No
de

 C
la

ss
ifi

. A
cc

. (
%

)

0.3

0.4

0.5

0.6

0.7

0.8

Cl
ea

n 
Ra

te

Figure 10: The loss of structural information of STABLE on
Cora. Struc. Attack indicates metattack 25%.
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Figure 11: The loss of structural information of STABLE on
Citeseer. Struc. Attack indicatesmetattack 25%.

their robustness, STABLE does not address this issue, while our
proposed method successfully overcomes it through a novel graph
augmentation strategy.

C.2 Sensitivity Analysis
We analyze the sensitivity of six hyperparameters 𝜆E , 𝜆aug, 𝑘 , de-
gree split, and hyperparameters in node2vec, i.e., 𝑝 and 𝑞.
• For 𝜆E , we increase 𝜆E value from {0.2, 0.5, 1, 2, 3, 4, 5}, and

evaluate the node classification accuracy of SG-GSR under
structure attacks (metattack 25%). In Fig. 12, we observe that the
accuracy of SG-GSR tends to increase as 𝜆E increases on both
Cora and Citeseer datasets. In other words, assigning a higher
weight to the link prediction loss during model training tends
to yield a better performance. We argue that our proposed clean
sub-graph extraction and graph augmentation method provide
the clean and informative sub-graph to the link predictor as
input edges, which makes the link predictor play an important
role in GSR.

• In Fig 13(a) and (b), for any 𝜆aug and 𝑘 in the graph augmenta-
tion module, SG-GSR consistently outperforms the sota base-
line, RSGNN. This implies that our proposed graph augmen-
tation module supplements the loss of structural information
while not being sensitive to the hyperparameters.

• For degree split strategy, a node with its degree less than the
median (i.e., 5:5 ratio) in the node degrees is considered as low-
degree in our implementation. We further consider the splitting
rule of 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, and 8:2. Note that the low-
degree node sets determined by 2:8 has the smallest node set.
In Fig 13(c), we observe that SG-GSR consistently outperforms
RSGNN, except for 2:8. We observe that in 2:8, the number of
edges in the LL group is significantly small compared to the
HH and HL groups, since a small number of nodes are assigned
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Figure 12: Sensitivity Analysis on 𝜆E . We conduct the experi-
ments under metattack 25%.

to low-degree nodes. It indicates that only a small set of low-
degree nodes can take advantage of the group training strategy,
which results in the performance degradation.

• For the hyperparameters in node2vec, we tune the in-out and
return hyperparameters over 𝑝, 𝑞 ∈ {0.5, 1, 2}. In Fig 13(d), we
observe that SG-GSR consistently outperforms RSGNN, which
indicates that the structural features obtained from node2vec
are helpful for extracting clean sub-graphs while not being
dependent on the hyperparameters of node2vec.

• We explore the sensitivity of 𝜆sp and 𝜆fs for SG-GSR. The per-
formance variation of SG-GSR is displayed in Fig 14. It is worth
noting that SG-GSR w/o sub-graph extraction (i.e., 𝜆sp = 1 and
𝜆fs = 1) consistently underperforms the SG-GSR w/ sub-graph
extraction (i.e., 𝜆sp < 1 or 𝜆fs < 1)), which underscores the
importance of the sub-graph extraction module.

C.3 Complexity Analysis
In this subsection, we present a complexity analysis on training SG-
GSR (Phase 2). Specifically, SG-GSR requires𝑂 (𝐶 · ( |ẼFS

𝑘
| + |ẼSP

𝑘
|))

for computing the JSD values in graph augmentation (GA), which is
described in Sec. 4.4.1. Note that obtaining Ẽ*

𝑘
is done offline before

proceeding to Phase 2, and thus it does not increase the computa-
tion burden of Phase 2. For group-training strategy (GT ), which
is described in Sec. 4.4.2, SG-GSR requires 𝑂 (𝐹 𝑙 · |Ẽaug ∪ Ẽ-, aug |)
for computing the grouped link prediction loss (i.e., 𝐿𝑙E = 𝐿𝑙

Ẽaug
LL

+

𝐿𝑙
Ẽaug
HL

+𝐿𝑙
Ẽaug
HH

), where Ẽaug and Ẽ-, aug denote positive and negative

samples in link predictor, respectively, and 𝐹 𝑙 is the dimensionality
at the layer 𝑙 . Note that GT has equivalent time and space complex-
ity as without GT, because the number of samples used for training
remains the same, that is |Ẽaug

HH ∪ Ẽaug
HL ∪ Ẽaug

LL | = |Ẽaug |. Moreover,
the GSR module of SG-GSR, which is described in Sec. 4.1, has
equivalent time and space complexity as GAT [32].

Furthermore, we compare the training time of SG-GSR with
the baselines to verify the scalability of SG-GSR. In Table 12, we
report the training time per epoch on Cora dataset for all models.
We observe that SG-GSR requires much less training time than
ProGNN, GEN, RSGNN, and CoGSL, but requires more training
time than SuperGAT and SLAPS. For GEN and CoGSL, which are
multi-faceted methods, we argue that SG-GSR utilizes multi-faceted
information far more efficiently than GEN and CoGSL. Regarding
SuperGAT, which is our backbone network, SG-GSR significantly
improves the performance of SuperGAT with acceptable additional

Table 12: Training time comparison per epoch on Cora
dataset (sec/epoch).

SuperGAT ProGNN GEN SLAPS RSGNN CoGSL SG-GSR

sec/epoch 0.035 3.565 8.748 0.023 0.114 1.024 0.057

Table 13: Node classification performance under graph injec-
tion attack (i.e., AFGSM [34]).

Cora Citeseer Pubmed

Setting Clean + GIA Clean + GIA Clean + GIA

EvenNet 90.0±0.0 46.7±3.3 68.3±3.3 51.7±3.3 91.3±0.7 53.3±3.3
SG-GSR 93.3±2.4 60.0±0.0 70.0±0.0 43.3±4.7 92.3±0.5 82.3±1.9

training time. Although SLAPS requires less training time, SG-
GSR consistently outperforms SLAPS by utilizing multi-faceted
information with acceptable additional training time. In summary,
SG-GSR outperforms the baselines with acceptable training time.

C.4 Further analysis on Refined Graph
In this subsection, we further analyze how well SG-GSR refines
the attacked graph structure. We investigate whether SG-GSR can
recover the communities, because successful adversarial attacks
are known to add edges to destroy the community structures [12].
Specifically, we compute the inter-class (i.e., # inter-class edges

# all existing edges ) and

inter-community (i.e., # inter-community edges
# all existing edges ) edge ratio where the

communities are predefined by Spectral Clustering under the clean
structure. In Fig. 15, we observe that although the structure at-
tacks significantly increase the inter-class/community edge ratios,
SG-GSR effectively recovers the community structure by the GSR
module. This again corroborates that SG-GSR minimizes the effect
of malicious inter-class/community edges that deteriorate the pre-
dictive power of GNNs, thereby enhancing the robustness against
structure attack.

C.5 Robustness against Graph Injection Attack
In this work, we mainly focused on graph modification attacks,
which modify existing graph structures or node features. On the
other hand, recent studies have shown that another type of attack,
i.e., graph injection attacks (GIAs), can significantly reduce the
performance of GNNs, even when only a few nodes are injected
into the existing graph with limited resources [34, 49].

To further verify the robustness of SG-GSR against GIAs, we
adopt the poisoning GIA method, i.e, AFGSM [34], as the attack
method, and evaluate SG-GSR on the attacked graph. 20 nodes
are randomly selected as our target nodes to be attacked. We use
the default parameter settings in the authors’ original implementa-
tion [34]. We compare the defense performance of SG-GSR with
EvenNet, which is the current state-of-the-art robust GNN model,
on Cora, Citeseer, and Pubmed datasets. Although GIAs are not the
main focus of SG-GSR, we observe from Table 13 that SG-GSR re-
mains competitive against EvenNet.
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C.6 Robustness against Adaptive Attack
We further investigate the capability of SG-GSR against adaptive
attacks, since existing defense algorithms are shown to be more
vulnerable to the adaptive attacks than the transferred attacks gen-
erated using the GCN surrogate model [27]. We tried our best
to implement the adaptive attack on state-of-the-art models, i.e.,
RGCN [47], ProGNN [12], RSGNN [4] and STABLE [17], and used
them as our baselines. The meta attack [51] is used to generate each
adaptive attack. In the following, we describe how we implemented
the adaptive attack on each model:

For RGCN and ProGNN, we implemented the adaptive attack
following the same setting used in [27].

Since STABLE is a two-stage method, which employs an un-
supervised model and a GCN, we had to modify the metattack
algorithm to generate the adaptive attack for STABLE. Specifically,
STABLE first learns the node embeddings using the DGI[6] back-
bone, and obtains the refined graph using kNN algorithm based on
the node embeddings. Second, it trains GCN with the refined graph.
Hence, we implemented the adaptive attack for STABLE by using
the GCN model as the surrogate model at the second stage, where
the input graph is a refined graph obtained at the first stage.

For RSGNN, the implementation of adaptive attacks suffered
from the memory issue due to the design of metattack, which uti-
lizes the training procedure of the surrogate model. In other words,
its memory demand surpassed 48GB on a GPU. Hence, we imple-
mented adaptive attacks on RSGNN by reducing the number of

inner-training iterations to a level that enables execution with-
out a memory issue, i.e., 10 inner-training iterations. However, we
discovered that the reduced number of inner-training iterations
generates relatively weak attacks due to the underfitting of the
surrogate model. Specifically, considering that RSGNN is trained
for 1,000 iterations in the official source code, reducing the number
of inner-training iterations to 10 results in a severe underfitting,
thereby generating weak attacks. Note that adaptive attack with
10 inner-training iterations is even less effective than the + Meta
25% as shown in Table 14. To further vadliate that reducing the
number of inner-training iterations indeed results in generating
weak attacks, we also report the result of RSGNN with only 1 inner-
training iteration. In Table 14, we clearly observe that as the number
of iterations is further reduced from 10 to 1, the performance of
RSGNN further improves, indicating that even weaker attacks are
generated.

Instead of such weaker attacks, we conducted another experi-
ment for RSGNN. While doing the above experiments, we discov-
ered that it is the graph structure learner (GSL) component that
causes the memory issue (Please note that RSGNN consists of two
core components, i.e., a graph structure learner (GSL) and a GNN
classifier). Hence, as an alternative approach, we first trained the
GSL component until convergence to obtain the best structure, and
then used the GNN classifier as the surrogate model to generate
adaptive attacks, where the input to the surrogate model is the
refined graph obtained from the GSL.

In Table 15, we observe that the adaptive attacks indeed de-
grade the performance of the victim models more significantly
than the metattack, which is a non-adaptive attack, as shown in
[27]. Although the performance of SG-GSR has also deteriorated,
SG-GSR still outperforms other baselines on the adaptive attacks,
implying that SG-GSR effectively refines the graph structure, and
the learned representations are robust to the adaptive attacks.

The robustness of SG-GSR under adaptive attacks can be attrib-
uted to its ability to utilize an extracted clean sub-graph. While
adaptive attacks can significantly perturb the graph structure to
degrade the models, SG-GSR responds by extracting a clean sub-
graph from the attacked graph. We argue that our results, derived
from various attack methods such as metattack, nettack, injection
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Table 14: Node classification performance comparison under
adaptive attacks on RSGNN with varying inner-train itera-
tions.

Dataset Setting RSGNN

Cora
+ Meta 25% 81.8±0.3

+ Adaptive attack 10 inner-train iters 82.8±0.4
+ Adaptive attack 1 inner-train iters 83.0±0.9

Citeseer
+ Meta 25% 73.9±0.7

+ Adaptive attack 10 inner-train iters 75.8±0.2
+ Adaptive attack 1 inner-train iters 76.4±0.3

Table 15: Node classification performance under adaptive
attacks.

Dataset Setting RGCN ProGNN RSGNN STABLE SG-GSR

Cora
Clean 84.0±0.1 82.9±0.3 85.1±0.3 85.1±0.3 85.5±0.1

+ Meta 25% 53.4±0.3 70.7±0.2 81.8±0.3 79.0±0.4 83.1±0.5
+ Adaptive attack 52.9±0.4 56.6±0.0 75.5±1.1 76.6±0.6 81.8±0.2

Citeseer
Clean 73.0±0.4 72.5±0.5 74.4±1.1 75.5±0.7 75.4±0.2

+ Meta 25% 58.6±0.9 68.4±0.6 73.9±0.7 73.4±0.3 75.2±0.1
+ Adaptive attack 40.0±0.2 68.0±0.0 70.8±0.8 71.1±0.7 74.3±0.6

attack, and adaptive attack, demonstrate that the strategy of ex-
tracting a clean sub-graph is a potent and effective defense against
a range of attack methods.

In addition to the adaptive attack, we conduct the experiments
using a bare minimum robustness unit test suggested in [27] (Please
refer to line 6 in Section 6 of [27]). That is, we choose four strongest
attacks that are transferred from ProGNN, RGCN, GRAND, and Soft-
median GDC models. In Table 16, SG-GSR generally outperforms
the baselines under these four attacks. From these results, we again
demonstrate the efficacy of SG-GSR against adaptive attacks.

C.7 Application on Other Downstream Tasks.
Although SG-GSR mainly focus on the node classification task,
the graph structure refinement (GSR) method in SG-GSR can be
applied to other downstream tasks such as link prediction and node
clustering. We compared the performance of SG-GSR with the
current state-of-art GSR baselines, i.e., RSGNN and STABLE, on
link prediction and node clustering. Although both baselines and
SG-GSR are primarily tailored for node classification, they can be
adapted for the link prediction and node clustering task with minor
modifications.

C.7.1 Link prediction results. Considering the link prediction task,
RSGNN incorporates a link predictor that infers the latent graph
structure using the embeddings of paired nodes. Based on the
node embedding matrix, RSGNN computes the dot-product be-
tween a pair of node representations to calculate the likelihood of
a link. STABLE is a 2-step GSR method that 1) learns node repre-
sentations in an unsupervised manner using the DGI framework,
and 2) constructs a 𝑘-NN graph as a refined graph structure us-
ing the fixed node representations, which is followed by a GCN
classifier. Hence, we compute the dot-product between a pair of
node representations from step 1 to calculate the likelihood of a
link. Similar to RSGNN, SG-GSR also has a link predictor in the

GSR module, which can be used for link prediction. Note that the
attention coefficient between node 𝑖 and node 𝑗 is computed as
𝑒𝑙+1
𝑖 𝑗

= [(W𝑙+1h𝑙
𝑖
)⊤ ·W𝑙+1h𝑙

𝑗
]/
√
𝐹 𝑙+1, which we use it as the likeli-

hood of a link between node 𝑖 and node 𝑗 .
For the evaluation protocol, we split the given edges into train-

ing and test edges, in a 5:5 ratio [1]. Only the training edges are
shown to the link predictor, and we evaluate the models on test
edges. Specifically, we use the node representations obtained by
the trained models to produce the link score of the test edges. In
Table 17, we observe that SG-GSR outperforms RSGNN and STA-
BLE in the link prediction task in terms of AUROC. We attribute
this to the fact that our proposed sub-graph extraction module
effectively finds the clean edges from the attacked structure and
proposed graph augmentationmodule successfully supplements the
structural information that reflects the real-world graph properties,
which leads GSR to accurately predict reliable links.

C.7.2 Node clustering results. Generally, the node clustering task
is performed to confirm the quality of learned node representa-
tions under the unsupervised learning setting. However, as RSGNN,
STABLE, and SG-GSR are designed for the node classification task
under the supervised setting, we use the node embeddings obtained
from the intermediate GNN layer, which is followed by the classifi-
cation layer to run the k-means algorithm, and obtain the cluster
assignments of nodes. In Table 18, we observe that SG-GSR outper-
forms RSGNN and STABLE in the node clustering task in terms of
NMI, which indicates that SG-GSR effectively acquires more class
separable node embeddings. We attribute it to the fact that SG-GSR
minimizes the effect of malicious inter-class edges that incur the
vague class boundary in the representation space. Regarding the
ability of SG-GSR that removes the inter-class edges, refer to Fig.
15 in Appendix C.4.

C.8 Fair Comparison of Backbone Model
Given that the baselines employ GCN as their backbone model,
while SG-GSR chooses SuperGAT, we ensure fair comparisons by
using SuperGAT as the backbone for the baselines. We reimplement
two baselines SLAPS and STABLE using SuperGAT as the backbone
model. It is important to note that the remaining baselines can not
adopt SuperGAT as the backbone due to the following reasons:

• The training procedure of ProGNN is similar to that of Su-
perGAT, as the structure learner of ProGNN utilizes the edge
weight to propagate messages, where the edge weight is forced
to be close to the original adjacency matrix. This is equivalent
to the link prediction loss in SuperGAT.

• The training procedure of RSGNN is similar to that of SuperGAT,
as it utilizes the edge weight to propagate messages, where the
edge weight is assigned by the link predictor.

• RGCN, ELASTIC, AirGNN, and EvenNet each employ their own
distinct message-passing mechanism. Therefore, it is not logical
to adopt SuperGAT as the backbone of these models.

In Table 19, we observed that when SuperGAT backbone is
adopted, the performance of baselines are generally enhanced. How-
ever, SG-GSR still outperforms the baselines adopting SuperGAT.
The reason is that the fundamental problems of feature-based and
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Table 16: Node classification accuracy on a bare minimum robustness unit test.

Dataset Transfered from SuperGAT RGCN ProGNN GEN ELASTIC AirGNN SLAPS RSGNN CoGSL STABLE EvenNet SE-GSL SG-GSR

Cora-ML

ProGNN 61.1±0.3 50.4±0.4 73.1±0 73.2±0 71±0.8 56.4±0.7 72.6±0.5 82.2±0.5 50.1±0 74.4±1 72.7±0.6 70.2±0.7 81.4±0.4
RGCN 69.7±0.4 52.9±0.4 76.3±0 65.7±0 72.4±1 50.5±0.4 72.6±0.5 79.6±0.2 51.3±0 76.7±1.4 76.1±0.4 65.5±0.3 81.6±0.6
GRAND 47.6±3.1 42.8±0.7 62.8±0 70.5±0 68±0.4 51.8±0.8 72.6±0.5 81.3±0.2 44.7±0 77.7±0.6 70.9±0 62.6±0.1 82.4±0.7

Soft-Median GDC 74.3±1.3 66.6±0.1 78.9±0 78.3±0 77.4±0.4 68.2±0.8 72.6±0.5 82.3±0.2 54.5±0 78.3±1.1 78.9±0.3 67.0±0.7 84.1±0.6

Citeseer

ProGNN 54.4±2.3 43.3±0.3 64.2±0 67±0 65.8±1.6 47.4±0.4 73.5±0.2 75.6±0.6 44.6±0 70.9±2 68.5±0.8 53.3±0.7 74.5±0.3
RGCN 67±1.3 40±0.2 57.9±0 65.1±0 66.7±0.1 37.4±1.1 73.5±0.2 73.9±0.2 49.6±0 72.5±0.3 71.1±0.8 63.7±0.6 74.1±0.7
GRAND 50.3±0.1 44.1±0.2 60±0 70.4±0 65.8±1.6 48.2±0.8 73.5±0.2 75.4±0.8 51.8±0 71.7±0.3 67.1±1.7 59.8±0.8 75.8±0.4

Soft-Median GDC 54.8±0.7 47.9±0.1 63.9±0 68.5±0 66.6±1.5 50.9±0.4 73.5±0.2 76.7±0.4 48.1±0 72.5±0.4 68.7±0.1 60.0±0.5 75.7±0.5

Table 17: Link prediction performance under non-targeted
attack (i.e.,metattack) and feature attack.

Dataset Setting RSGNN STABLE SG-GSR

Cora
Clean 89.3±0.1 93.1±0.1 94.7±0.7

+ Meta 25% 86.9±0.0 91.5±0.1 93.8±0.3
+ Feat attack 82.6±0.1 72.5±3.8 89.8±0.6

Citeseer
Clean 90.1±0.5 96.5±0.1 96.3±1.0

+ Meta 25% 88.0±0.2 95.8±0.2 96.2±0.3
+ Feat attack 83.4±0.2 84.6±0.4 93.9±0.2

Table 18: Node clustering performance under non-targeted
attack (i.e.,metattack) and feature attack.

Dataset Setting RSGNN STABLE SG-GSR

Cora
Clean 62.9±1.0 64.5±1.2 65.8±1.6

+ Meta 25% 57.8±2.2 54.2±0.6 60.7±0.5
+ Feat attack 43.0±2.6 32.2±3.0 44.3±0.5

Citeseer
Clean 49.6±0.7 47.5±1.3 50.1±0.4

+ Meta 25% 42.5±5.1 44.1±0.7 47.4±1.0
+ Feat attack 35.1±0.4 25.3±1.1 35.6±1.0

Table 19: Comparison with baselines when SuperGAT back-
bone is used.

Dataset Setting SLAPS-SuperGAT STABLE-SuperGAT SG-GSR

Cora
Clean 74.3±0.1 83.5±1.2 85.5±0.1

+ Meta 25% 73.7±0.3 75.1±0.5 83.1±0.5
+ Feat attack 50.6±0.4 50.5±1.3 67.6±1.4

Citeseer
Clean 74.1±0.4 74.8±0.2 75.4±0.2

+ Meta 25% 74.0±0.6 73.6±0.6 75.2±0.1
+ Feat attack 58.6±0.4 57.5±1.0 66.8±1.0

multi-faceted GSR (i.e., assuming clean node features and moder-
ate structural attacks) cannot be resolved by simply replacing the
backbone network with SuperGAT.

C.9 Further Comparison with GCN-SVD and
GARNET

We further compare SG-GSR with some related GSR methods such
as GCN-SVD [7] and GARNET [6]. In Table 20, we observe that
SG-GSR outperforms them with various backbone networks. From
the results, we demonstrate that our proposed graph refinement
strategy is more robust compared with GCN-SVD and GARNET.

Table 20: Comparison with baselines when SuperGAT back-
bone is used.

Dataset Setting GCN-SVD GARNET GARNET GARNET
SG-GSRGCN GRPGNN SuperGAT

Cora
Clean 77.8±0.1 81.9±0.3 83.2±0.4 79.2±1.1 85.5±0.1

‘+ Meta 25% 55.8±1.8 74.8±1.3 78.9±0.9 56.9±2.0 83.1±0.5
‘+ Feat attack 50.6±0.4 60.7±1.0 62.6±1.2 54.9±1.7 67.6±1.4

Citeseer
Clean 69.7±0.5 72.6±0.5 75.1±0.6 69.7±0.6 75.4±0.2

‘+ Meta 25% 61.4±0.8 67.8±0.6 72.4±0.9 67.4±1.1 75.2±0.1
‘+ Feat attack 49.0±0.8 56.8±0.9 58.0±1.3 34.2±3.9 66.8±1

Pubmed
Clean 84.4±0.1 86.2±0.3 86.8±0.2 OOM 87.6±0.2

‘+ Meta 25% 76.3±0.6 86.2±0.2 86.7±0.1 OOM 87.3±0.2
’+ Feat attack 59.3±0.3 52.8±0.8 62.3±0.6 OOM 65.5±0.5

D DETAILS ON EXPERIMENTAL SETTINGS
D.1 Datasets
We evaluate SG-GSR and baselines on five existing datasets (i.e.,
Cora [12], Citeseer [12], Pubmed [12], Polblogs [12], and Amazon
[28]) and two newly introduced datasets (i.e., Garden and Pet)
that are proposed in this work based onAmazon review data [10, 26]
to mimic e-commerce fraud (Refer to Appendix D.2 for details). The
statistics of the datasets are given in Table 21. Note that since there
are do not exist node feature matrix in Polblogs dataset, we use
the identity matrix as the node features, following the setting of
existing work [12]. For each graph, we use a random 1:1:8 split for
training, validation, and testing. These seven datasets can be found
in these URLs:
• Cora: https://github.com/ChandlerBang/Pro-GNN
• Citeseer: https://github.com/ChandlerBang/Pro-GNN
• Pubmed: https://github.com/ChandlerBang/Pro-GNN
• Polblogs: https://github.com/ChandlerBang/Pro-GNN
• Amazon: https://pytorch-geometric.readthedocs.io/en/latest/
• Garden: http://jmcauley.ucsd.edu/data/amazon/links.html
• Pet: http://jmcauley.ucsd.edu/data/amazon/links.html

Table 21: Statistics for datasets.

Domain Dataset # Nodes # Edges # Features # Classes

Citation graph
Cora 2,485 5,069 1,433 7

Citeseer 2,110 3,668 3,703 6
Pubmed 19,717 44,338 500 3

Blog graph Polblogs 1,222 16,714 / 2

Co-purchase graph Amazon 13,752 245,861 767 10

Co-review graph Garden 7,902 19,383 300 5
Pet 8,664 69,603 300 5
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D.2 Data generation process on e-commerce
fraud.

In this work, we newly design and publish two novel graph bench-
mark datasets, i.e., Garden and Pet, that simulate real-world fraud-
sters’ attacks on e-commerce systems. To construct a graph, we
use the metadata and product review data of two categories, “Patio,
Lawn and Garden” and “Pet Supplies,” in Amazon product review
data [10, 26]. Specifically, we generate a clean product-product
graph, where the node feature is bag-of-words representation of
product reviews, the edges indicate the co-review relationship be-
tween two products reviewed by the same user, and the node label
is the product category. For the attacked graph, we imitate the
behavior of fraudsters/attackers in a real-world e-commerce plat-
form. As the attackers interact with randomly chosen products
(i.e., write fake product reviews), not only numerous malicious
co-review edges are added to the graph structure, but also noisy
random reviews (i.e., noisy bag-of-words representations) are in-
jected into the node features. More precisely, we set the number
of fraudsters to 100, and moreover, the number of reviews written
by each fraudster is set to 100 in the Garden dataset and to 200 in
the Pet dataset. To generate a fake review text, we randomly select
a text from existing reviews and copy it to the products that are
under attack. This method ensures that the fake reviews closely
resemble the style and content of real reviews while also contain-
ing irrelevant content that makes it more challenging to predict
the product category. The data generation code is also available
at https://anonymous.4open.science/r/torch-SG-GSR-97CC

We again emphasize that while existing works primarily focus on
artificially generated attack datasets, to the best of our knowledge,
this is the first work proposing new graph benchmark datasets
for evaluating the robustness of GNNs under adversarial attacks
that closely imitate a real-world e-commerce system containing
malicious fraudsters. We expect these datasets to foster practical
research in adversarial attacks on GNNs.

D.3 Baselines
We compare SG-GSR with a wide range of GNN methods designed
to defend against structural attacks, which includes robust node
representations methods (i.e., RGCN [47], ELASTIC [23], and Even-
Net [16]), feature-based GSR (i.e., ProGNN [12], SLAPS [8], and
RSGNN [4]), multi-faceted GSR (i.e., SuperGAT [13], GEN [35],
CoGSL [20], OAGS [29], STABLE [17], and SE-GSL [48]). We also
consider AirGNN [22] which is designed to defend against the
feature attack/noise.

The publicly available implementations of baselines can be found
at the following URLs:
• SuperGAT [13] : https://github.com/dongkwan-kim/SuperGAT
• RGCN [47] : https://github.com/DSE-MSU/DeepRobust
• ProGNN [12] : https://github.com/ChandlerBang/Pro-GNN
• GEN [35] : https://github.com/BUPT-GAMMA/Graph-Structure-

Estimation-Neural-Networks
• ELASTIC [23] : https://github.com/lxiaorui/ElasticGNN
• AirGNN [22] : https://github.com/lxiaorui/AirGNN
• SLAPS [8] : https://github.com/BorealisAI/SLAPS-GNN
• RSGNN [4] : https://github.com/EnyanDai/RSGNN
• CoGSL [20] : https://github.com/liun-online/CoGSL
• STABLE [17] : https://github.com/likuanppd/STABLE

• EvenNet [16] : https://github.com/Leirunlin/EvenNet
• SE-GSL [48] : https://github.com/ringbdstack/se-gsl
• OAGS [29] : As there is no publicly available implementation

of OAGS, we tried our best to implement OAGS ourselves. How-
ever, we failed to reproduce the presented results due to the
lack of implementation details in its main paper. Specifically,
there is no detailed derivation of 𝐷𝐾𝐿 (𝑞𝜙 (Â) | |𝑝 (Â)) in Eq. 19
of its main paper, where Â is the estimated graph structure,
𝑝 (Â𝑖 𝑗 ) ∼ N ( ¤A, 0) is the random prior over Â given the ob-
served graph A, and 𝑞𝜙 (Â) is the approximate posterior with

free parameters 𝜇𝜙
𝑖 𝑗
and 𝜎𝜙

𝑖 𝑗
. Moreover, ¤A = 𝜃1A + 𝜃2 (1 − A) is

empirically set with hyperparameters 𝜃1 and 𝜃2. Please note
that implementing the term 𝐷𝐾𝐿 (𝑞𝜙 (Â) | |𝑝 (Â)) is important
because this is the loss directly related to estimating the graph
structure. Hence, we fix the estimated graph structure as the
mean of the prior ¤A = 𝜃1A+𝜃2 (1−A) and implement the other
parts. We report our implemented results in Table 22.

Table 22: Node classification performance under non-
targeted attack (i.e., metattack) and feature attack.

Dataset Setting OAGS SG-GSR

Cora
Clean 67.27±3.89 85.48±0.05

+ Meta 25% 44.20±1.13 83.10±0.47
+ Feat attack 44.15±1.95 67.56±1.40

Citeseer
Clean 61.22±4.10 75.36±0.21

+ Meta 25% 51.74±1.00 75.22±0.10
+ Feat attack 47.06±1.01 66.82±1.02

Pubmed
Clean 50.12±1.18 87.55±0.22

+ Meta 25% 50.19±1.77 87.27±0.19
+ Feat attack 49.85±1.66 65.49±0.49

Polblogs Clean 93.97±0.08 96.22±0.08
+ Meta 25% 85.38±0.58 87.80±0.72

Amazon
Clean 56.03±1.43 91.06±0.17

+ Meta 25% 54.85±0.85 89.23±0.24
+ Feat attack 53.48±1.03 87.21±0.39

D.4 Evaluation Protocol
We compare SG-GSR and the baselines under poisoning structure
and feature attacks, following existing robust GNN works [4, 12, 16,
17, 20]. We consider three attack scenarios, i.e., structure attacks,
structure-feature attacks, and e-commerce fraud. Note that in this
work wemainly focus on graphmodification attacks (i.e., modifying
existing topology or node features). For structure attacks, we adopt
metattack [51] and nettack [50] as a non-targeted and targeted
attack method, respectively, which are the commonly used attacks
in existing defense works [12, 17]. For structure-feature attacks, we
further inject independent random Gaussian noise into the node
features as in [20, 22, 29]. More specifically, we add a noise vector
𝛾 ·mnoise

𝑖
∈ R𝐹 to the node 𝑖 , where 𝛾 is set to 0.5, which is a noise

ratio, and each element of mnoise
𝑖

is independently sampled from
the standard normal distribution. Note that we only add the noise
vector to a subset of the nodes (i.e., 50%) since it is more realistic
that only certain nodes are attacked/noisy rather than all of them.
Lastly, we introduce two new benchmark datasets for attacks that
mimic e-commerce fraud (Refer to Sec. D.2).
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Table 25: Hyperparameter settings on SG-GSR for Table 3.

Dataset Setting lr dropout 𝜆sp 𝜆fs 𝜆aug 𝜆E

Garden Clean 0.01 0.4 1 0.9 0.1 0.5
+ Fraud 0.001 0.2 0.9 0.9 0.7 2.0

Pet Clean 0.005 0.0 0.7 0.9 0.3 0.5
+ Fraud 0.05 0.2 0.5 0.9 0.5 2.0

Algorithm 1 Training Algorithm of SG-GSR

Input: Graph G = ⟨V, E,X⟩, Initial parameters {W}𝐿
𝑙=1

/* Phase 1 */
Pretrain node2vec on G to obtain the node embeddings Hsp

Calculate structural proximity 𝑆sp
𝑖 𝑗

and feature similarity 𝑆 fs
𝑖 𝑗
for

(𝑖, 𝑗) ∈ E
Generate two 𝑘-NN graphs ẼFS

𝑘
and ẼSP

𝑘
from Hsp and X

Extract a clean sub-graph G̃ = ⟨Ṽ, Ẽ, X̃⟩ from G using 𝑆sp
𝑖 𝑗
, 𝑆 fs
𝑖 𝑗

/* Phase 2 */
for all epoch do

Obtain Ẽaug by Eqn. 5
Calculate the node representations {h𝑙

𝑖
}𝐿
𝑙=1 based on Ẽaug

Split Ẽaug into Ẽaug
LL , Ẽaug

HL , and Ẽaug
HH

Calculate 𝐿𝑙
Ẽaug
LL

, 𝐿𝑙
Ẽaug
HL

, and 𝐿𝑙
Ẽaug
HH

via Eqn. 2

Calculate 𝐿final = 𝐿Ṽ + 𝜆E
∑𝐿
𝑙=1 (𝐿

𝑙

Ẽaug
LL

+ 𝐿𝑙
Ẽaug
HL

+ 𝐿𝑙
Ẽaug
HH

)

Update parameters {W𝐿
𝑙=1} to minimize 𝐿final.

end for
return: model parameter {W}𝐿

𝑙=1

D.5 Implementation Details
For each experiment, we report the average performance of 3 runs
with standard deviations. For all baselines, we follow the implemen-
tation details presented in their original papers.

For SG-GSR, the learning rate and dropout are tuned from {0.05,
0.01, 0.005, 0.001} and {0.0, 0.2, 0.4, 0.6, 0.8}, respectively, and weight
decay is fixed to 0.0005. For the GSR module, we fix the number
of GNN layers, hidden units, and attention heads as 2, 16, and 8,
respectively. When calculating the link predictor loss 𝐿𝑙E , we use
the arbitrarily selected negative samples E− , the size of which is
set to 𝑝𝑛 · |E | where the negative sampling ratio 𝑝𝑛 ∈ R+ is set to
0.5 in Cora, Citeseer, and Polblogs, and to 0.25 in Pubmed, Amazon,
Garden, and Pet datasets. And we tune a coefficient 𝜆E for the link
predictor loss from {0.2, 0.5, 1, 2, 3, 4, 5}.

For the clean sub-graph extraction module, 𝜆sp and 𝜆fs are tuned
from {1.0, 0.9, 0.7, 0.5, 0.3 }. For the graph augmentation, the 𝑘 value
in Ẽ∗

𝑘
is set to 5 in Cora, Citeseer, Pubmed, and Garden, to 10 in Pet,

to 50 in Polblogs, and to 30 in Amazon. And the 𝜆aug is tuned from
{0.1, 0.3, 0.5, 0.7, 0.9}, For group-training strategy, we split the edge
set in a more fine-grained way, i.e., Ẽaug

LL , Ẽaug
MM, Ẽ

aug
HH , Ẽ

aug
ML , Ẽ

aug
HL ,

and Ẽaug
HM, where L, M, and H indicate low-, mid-, and high-degree

nodes. We report the details of hyperparameter settings in Table
23, 24, and 25.

Table 23: Hyperparameter settings on SG-GSR for Table 1.

Dataset Setting lr dropout 𝜆sp 𝜆fs 𝜆aug 𝜆E

Cora
Clean 0.005 0.6 1.0 1.0 0.5 2.0

+ Meta 25% 0.01 0.6 1.0 0.5 0.9 3.0
+ Feat attack 0.01 0.4 1.0 0.7 0.9 3.0

Citeseer
Clean 0.001 0.6 0.9 0.9 0.3 1.0

+ Meta 25% 0.001 0.6 1.0 0.5 0.3 3.0
+ Feat attack 0.005 0.6 1.0 0.7 0.7 5.0

Pubmed
Clean 0.05 0.2 1.0 0.9 0.7 4.0

+ Meta 25% 0.05 0.2 0.9 0.7 0.9 2.0
+ Feat attack 0.01 0.0 0.5 1.0 0.9 4.0

Polblogs Clean 0.01 0.2 1.0 1.0 0.5 3.0
+ Meta 25% 0.05 0.8 0.3 1.0 0.9 3.0

Amazon
Clean 0.005 0.2 0.5 1.0 0.3 0.5

+ Meta 25% 0.005 0.2 0.5 1.0 0.7 0.5
+ Feat attack 0.005 0.2 0.7 0.7 0.7 0.5

Table 24: Hyperparameter settings on SG-GSR for Table 2.

Dataset Setting lr dropout 𝜆sp 𝜆fs 𝜆aug 𝜆E

Cora
Clean 0.005 0.2 1.0 0.9 0.5 0.5
+ Net 5 0.001 0.0 0.9 0.5 0.7 4.0

+ Feat attack 0.01 0.4 0.7 0.0 0.3 5.0

Citeseer
Clean 0.005 0.4 0.7 0.5 0.9 2.0
+ Net 5 0.01 0.6 1.0 0.5 0.1 5.0

+ Feat attack 0.005 0.4 0.7 0.7 0.3 3.0

Pubmed
Clean 0.05 0.0 0.5 1.0 0.5 4.0
+ Net 5 0.05 0.2 0.9 0.7 0.3 1.0

+ Feat attack 0.05 0.0 0.7 1.0 0.5 0.5

Polblogs Clean 0.01 0.8 0.7 1 0.9 0.2
+ Net 5 0.005 0.8 0.5 1 0.1 0.5
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Figure 16: (a) Clean rate of the extracted edges and remaining edges over the ratio of extracted edges. (b) Node classification
accuracy under structure attack and clean rate of extracted edges over the ratio of extracted edges. (c) Node degree distribution
of original graph and extracted sub-graph. (d) Accuracy drop in node classification under attacks for high/low-degree nodes.
Citeseer dataset is used. Struc. Attack indicatesmetattack 25% and Feat. Attack indicates Random Gaussian noise 50%.

Figure 17: (a) Clean rate of the extracted edges and remaining edges over the ratio of extracted edges. (b) Node classification
accuracy under structure attack and clean rate of extracted edges over the ratio of extracted edges. (c) Node degree distribution
of original graph and extracted sub-graph. (d) Accuracy drop in node classification under attacks for high/low-degree nodes.
Pubmed dataset is used. Struc. Attack indicatesmetattack 25% and Feat. Attack indicates Random Gaussian noise 50%.

Figure 18: (a) Clean rate of the extracted edges and remaining edges over the ratio of extracted edges. (b) Node classification
accuracy under structure attack and clean rate of extracted edges over the ratio of extracted edges. (c) Node degree distribution
of original graph and extracted sub-graph. (d) Accuracy drop in node classification under attacks for high/low-degree nodes.
Polblogs dataset is used. Struc. Attack indicatesmetattack 25%.
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