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Abstract

Understanding fine-grained temporal dynamics is crucial for multimodal video
comprehension and generation. Due to the lack of fine-grained temporal annota-
tions, existing video benchmarks mostly resemble static image benchmarks and
are incompetent at evaluating models for temporal understanding. In this paper, we
introduce TemporalBench, a new benchmark dedicated to evaluating fine-grained
temporal understanding in videos. TemporalBench consists of ∼10K video
question-answer pairs, derived from ∼2K high-quality human annotations detailing
the temporal dynamics in video clips. As a result, our benchmark provides a unique
testbed for evaluating various temporal understanding and reasoning abilities such
as action frequency, motion magnitude, event order, etc. Moreover, it enables eval-
uations on various tasks like both video question answering and captioning, both
short and long video understanding, as well as different models such as multimodal
video embedding models and text generation models. Results show that state-of-
the-art models like GPT-4o achieve only 38.5% question answering accuracy on
TemporalBench, demonstrating a significant gap (∼ 30%) between humans and AI
in temporal understanding. Furthermore, we notice a critical pitfall for multi-choice
QA where LLMs can detect the subtle changes in negative captions and find a
“centralized” description as a cue for its prediction, where we propose Multiple
Binary Accuracy (MBA) to correct such bias. We hope that TemporalBench can
foster research on improving models’ temporal reasoning capabilities. Both dataset
and evaluation code will be made available.

1 Introduction
The ability to understand and reason about events in videos is a crucial aspect of artificial intelligence,
with applications ranging from activity recognition and long-term action anticipation to perception
for autonomous driving and robotics. Recently, there has been an emergence of highly capable
multimodal generative models, including proprietary ones such as GPT-4o [51] and Gemini [17] as
well as open-sources ones [37, 86, 4], that have demonstrated impressive results on existing video
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TemporalBench

The person picks up the packet from the table 
with their left hand and tears it open with their 
right hand. They place the packet back on the 
table with their left hand, then pull out the 
rectangular object with their right hand. They 
press the rectangular object onto the table 
with their left hand while holding the tube.

A right hand holds a piece of peeled ginger 
while a knife is held in the left and makes 3 
slices off the ginger. A piece of partially peeled 
ginger is held in the right hand while a spoon is 
held in the left and scraped long the ginger 
removing the skin. 

A woman turns and transfers the mug from 
her right hand to left. She pushes her glasses 
with her right hand. She drinks from the cup 
with her left hand and puts her right hand on 
her waist. And she turns her head to the left 
and glances at the wall.

Two people are pitching tents by moving 
the tent fabric with both their hands from 
right to the left to cover the tent. They hold 
the fabric on either edges in each hand and 
cover the tent and lets it drop. A person 
fastens the hooks by pressing the strap 
over another strip with both hands.

Figure 1: The tasks of TemporalBench. TemporalBench starts from fine-grained video descriptions
and supports diverse video understanding tasks including video QA, video captioning, long video
understanding, etc. It differs from existing benchmarks by the average number of words per video
(middle top), word density (center) and the coverage of various temporal aspects (middle bottom).

benchmarks [69, 7, 75, 43]. However, these benchmarks often do not truly evaluate the abilities
of the aforementioned models to understand video content due to their generally coarse-grained
annotations.

The lack of fine-grained temporal details in the annotations often leads to existing video understanding
benchmarks suffering from a strong language prior bias. This is similar to observations in visual
question answering with images [3]. For example, prior works [60, 31] show that language models
such as Flan-T5 [11] and Llama-2/3 [62] perform comparably to video models on EgoSchema [43] and
Seed-Bench [31] without using any information from videos. Furthermore, the lack of fine-grained
temporal details often results in the single frame bias of current video understanding benchmarks [29].
These benchmarks are often biased toward spatial reasoning, where static information from a single
frame suffices to achieve high performance. They often fail to test a model’s ability to reason about
temporal sequences, leading to inflated evaluations of AI models that are not genuinely capable
of understanding temporal events. Specifically, vision-language models (VLMs) [38, 39] that are
trained on image-level datasets, including FreeVA [66], IG-VLM [27] and M3 [6], often outperform
their video counterparts on popular video question answering benchmarks such as MSRVTT [69],
MSVD [68], and TGIF [25].

To address this limitation, we propose TemporalBench (Figure 1), a new video understanding
benchmark that evaluates multimodal video models on understanding fine-grained activities, and
consists of ∼10K question and answer pairs curated from ∼2K high-quality human-annotated
captions with rich activity details. Unlike static image-based tasks, video understanding requires
models to reason effectively about both spatial and temporal information. The temporal dynamics
inherent in videos introduce significant complexity, as actions and events often unfold over time and
cannot be captured in a single frame.

With this in mind, we designed our benchmark to focus on areas where current models often struggle,
emphasizing annotations related to long-range dependencies, fine-grained visual observations, and
event progression.

As shown in Figure 2, we first collect video clips from existing video grounding benchmarks that span
diverse domains, including procedural videos [61], human activities [28, 16], ego-centric videos [19],
movie descriptions [56], professional gymnasium videos (FineGym from [57]), and unexpected
humor videos [12]. The positive captions include rich and fine-grained details about actions and
activities, which are annotated by highly qualified Amazon Mechanical Turk (AMT) workers and
authors of this paper. Then, we generate the negative captions with respect to the actions using
powerful Large Language Models (LLMs) and filter them according to our defined rules. Our
resulting TemporalBench contains ∼10K video descriptions and matching questions of high quality.
Furthermore, the rich temporal context of annotations in our diverse corpus creates a solid foundation
for the development of additional benchmarks in related tasks such as spatio-temporal localization
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and causal inference. We hope that our benchmark can pave the road for further development of
multimodal video models capable of fine-grained video understanding and reasoning.

In contrast to existing video benchmarks, TemporalBench has the following defining characteristics:

• Emphasis on fine-grained action understanding. Due to the highly descriptive video captions,
our negative captions highlight fine-grained temporal differences shown in Figure 3, such as “sliced
the ginger three times” versus “sliced the ginger twice”, and “put on the eyeglasses” versus “push
the eyeglasses”.

• Evaluations on both short (<20 seconds) and long (<20 minute) videos. Since the videos
clips are sampled from existing videos, our benchmark can also support evaluations on long video
understanding by concatenating the descriptions of multiple and non-overlapping video clips from
the same source video.

• Extends to video captioning, video grounding, and video generation. Besides the task of video
question answering, the nature of the positive captions in our benchmark allows it to seamlessly
extend to evaluation of other tasks such as video temporal grounding and dense captioning.

• Evaluations of both video embedding and question-answering models. Given the annotated
positive and negative captions in TemporalBench, it also supports the evaluation of discriminative
and contrastive learning-based models such as XCLIP [47], ImageBind [18] as well as multimodal
generative models such as GPT-4o and Gemini.

Furthermore, we notice a critical pitfall for multi-choice QA. If every negative answer choice is
generated by changing a small part of the correct answer, the LLM can detect those changes to find a
“centralized” description and use that cue for its prediction. Therefore, we propose Multiple Binary
Accuracy (MBA) to correct such bias.

Among other observations, our empirical evaluations show that state-of-the-art multimodal video
models like GPT-4o only achieve an average accuracy of 38.5% on our benchmark (short videos)
using our proposed multiple binary QA accuracy metric, compared to 67.9% obtained by humans.
Models show even worse results on long videos. This result highlights that the aforementioned models
are able to understand static visual concepts but are still limited in reasoning about the fine-grained
temporal relationships of objects and events in videos. More significantly, we highlight a critical
issue with using LLMs to answer multi-choice QA.

2 Related Work
Large Multimodal Models. Large Language Models (LLMs) like ChatGPT [49], GPT-4 [50],
and Llama [62] have demonstrated impressive reasoning and generalization capabilities for text.
The introduction of models that integrate visual data has brought about a significant shift in the
landscape of LLMs, such as GPT-4V(ision)[48]. Building upon open-source LLMs [62, 10], a wide
range of multimodal models has achieved remarkable progress, led by pioneering models such as
LLaVA [37, 38] and MiniGPT-4 [86], which combine LLMs’ capabilities with a CLIP [54] based
image encoder. Recently, a growing number of LMMs have been developed to handle a wider range
of tasks and modalities, such as region-level LMMs [5, 83, 8, 53, 81], 3D LMMs [23], and video
LMMs [34, 80, 84].

Multimodal Understanding Benchmarks. The recent significant advancements have resulted in
more versatile multimodal models, making it imperative to thoroughly and extensively evaluate their
visual understanding and reasoning abilities. Conventional multimodal benchmarks like VQA [3],
GQA [24] and VizWiz [20] have been revitalized and used for evaluating the general visual question
answering performance for LMMs. Some other question answering benchmarks like TextVQA [58],
DocVQA [44] and InfoVQA [45] have also been employed to validate the text-oriented under-
standing. Recent studies have introduced a variety of new benchmarks, such as SEED-Bench [31],
MMBench [40] and MM-Vet [74] for evaluating the models’ integrated problem-solving capabilities,
and MMMU [77] and MathVista [42] for scientific and mathematical reasoning. In addition, the
commonly known hallucination problem also appears in LMMs, and is also investigated in POPE [33],
MMHal-Bench [59] and Object HalBench [73], etc.

Video Understanding Benchmarks. Recently, an increasing amount of research is transitioning
its focus from the image to the video domain. Videos differ from images in that they possess more
complex content with temporal dynamics. This unique aspect calls for a different set of metrics and
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A person bends down and cuts off 
the string twice that is wrapping the 
tree with a pair of scissors he is 
holding with his right hand. A woman 
smiles and walks to the right. He 
transfers the scissors to his left 
hand and moves around the tree 
looking for the string to be cut.

(straightens up)
A person bends down and cuts …

(rope)
Bends down and cuts off the string 
…

(three times)
… cuts off the string twice that  …

Positive Caption

(a) Generating Negative Captions Candidates 
by Replacing Words and Temporal Reordering (b) Author Filtering

(a) AMT 
Annotation

Step1:  Positive caption generation

Step2: Negative captions generation

… He transfers the scissors to 
his left hand … A woman smiles 
and walks to the right

… A woman smiles and walks to 
the right.… A person bends down 
and cuts off the string twice …

A person bends down and cuts 
off the string twice that is 
wrapping the tree with a pair of 
scissors he is holding with his 
right hand. A woman smiles and 
walks to the right. He transfers 
the scissors to his left hand and 
moves around the tree looking 
for the string to be cut.

GPT-4o Gemini-1.5-Pro Llama-3-405b

(b) Author 
Refinement 

Figure 2: Overview of the annotation pipeline for TemporalBench. In step 1, we fist collect
high-quality captions for the videos using qualified AMT annotators followed by refining them.
In step 2, we leverage existing LLMs to generate negative captions by replacing select words and
reordering the sequence of actions before filtering them ourselves.

benchmarks. Many efforts have leveraged existing video question answering benchmarks [68, 76, 67]
built on top of video-text datasets [7, 69, 79]. More recently, several LMM-oriented benchmarks have
been proposed for different aspects such as long-form egocentric understanding with EgoSchema [43],
and temporal understanding and ordering like Tempcompass [41]. MV-Bench [32] compiles existing
video annotations from different disciplines into a new benchmark, while Video-MME [14] and
MMWorld [22] claim to support a comprehensive evaluation of video understanding and world
modeling, respectively. Our TemporalBench serves the common goal of evaluating models for
video understanding but differs in several aspects. On the one hand, we exhaustively curate videos
from different domains and ask human annotators to annotate the visual contents with as much
detail as possible. On the other hand, we particularly focus on temporal dynamics such as human
actions and human-object interactions that exist exclusively in videos and which are crucial for video
understanding, reasoning and forecasting. While the ShareGPT4Video dataset [9] also contains
long captions, theirs differ from ours by being entirely generated by GPT-4o instead of annotated by
humans.

3 TemporalBench

Compared to static images, videos inherently contain significantly more fine-grained temporal
information, as they capture the unfolding of actions and events over time. Existing multimodal
video understanding benchmarks [69] mostly evaluate models’ coarse-level understanding of videos.
An example from the recent Seed-Bench dataset is the question, “What action is happening in
the video?” with the answer, “moving something up.” However, such types of coarse-level video
questions have been demonstrated to be easily solved with just a single frame [66] or even by a
text-only LLM [60, 43].

Such phenomena arises due to a fundamental limitation in the text descriptions in those benchmarks.
As a result of their coarseness, the positive and negative options for video question-answering can
usually be distinguished without understanding the temporal dynamics, such as the models only
needing to choose between “The man is cooking” and “The man is exercising”.

To address this limitation, we carefully design a human annotation pipeline to curate highly detailed
descriptions about the activities in the videos. Given the detailed video clip descriptions, such as
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A right hand holds a piece of peeled 
ginger while a knife is held in the left and 
makes 3 slices off the ginger. A piece of 
partially peeled ginger is held in the right 
hand while a spoon is held in the left and 
scraped long the ginger removing the skin. 
Partially peeled ginger is held in the right 
hand and a knife in the left which cuts off 
the skin.

Next, the cooking board is shown and it 
has two lemons ,ginger, and a bottle of 
honey.

Our Detailed Caption

Negative Caption

ginger➔ garlic

two lemons ➔ one lemon

a bottle of ➔ a jar of

3 slices ➔ 4 slices

held in the left hand ➔
held in the left hand 

3 slices off … then scraped➔
scraped … then 3 slices off 

Original Caption

A woman turns and transfers the mug 
from her right hand to left. She pushes 
her glasses with her right hand. She 
drinks from the cup with her left hand and 
puts her right hand on her waist. And she 
turns her head to the left and glances at 
the wall.

person holding a cup of water than drinks 
from it.

Our Detailed Caption

Water ➔ Juice

Drinks from it ➔ throws it

person ➔ kid

Right to left ➔
left to right right

Push ➔ pull

Push … then drink ➔
Drink … then push fine-grained

temporal

Original Caption

Negative Caption

(a) Charades (exocentric) (b) COIN (egocentric)

coarse-grained
(mostly) static

Figure 3: Comparison of negative captions generated from the original captions and our detailed
captions in TemporalBench. With fine-grained details, the negatives are more difficult and temporal
centric.

A right hand holds a piece of peeled ginger while a knife is held in the left and makes 3 slices off
the ginger., the negative captions can be curated to truly reflect whether a model understands the
temporal dynamics, such as changing “three slices” into “two slices”. In a nutshell, such highly
detailed temporal annotations can be used to carefully examine whether a multimodel video model
truly understands the temporal state transition in videos.

Our benchmark enriches several fundamental video understanding tasks due to its detailed captions:

• Fine-grained video question answering. Given a detailed positive caption, multimodal video
models need to distinguish it from the associated negative where a slight modification is made to
temporal descriptions, e.g., “push the eyeglasses up” versus “pull the eyeglasses down”, or “cut 3
slices off” versus “cut 2 slices off”.

• Fine-grained video captioning. Our detailed video captions can naturally enrich the video
captioning task, different from current video captioning tasks such as MSRVTT [69] which focus
on coarse-level descriptions.

• Long video understanding with fine-grained activity inspection. Since the video clips are
extracted from a long source video, the respective video clip descriptions can be concatenated to
form a longer video description which can be pivoted to the long video understanding task, where
we find that all current multimodal video models suffer.

• Dense video-text matching and retrieval. Our detailed video captions can be naturally employed
to evaluate video-language embedding models such as XCLIP [47]. Given a positive caption and
several negative captions, we can evaluate whether CLIP [54] based video embedding models
can distinguish the subtle differences in captions. In addition, given a set of positive video-text
pairs, video retrieval performance can be evaluated, similar to image retrieval on COCO [36] and
Flickr30K [72].

• Video grounding from detailed text descriptions. Since the video clips are cropped from the
source video, with the documented starting and ending time, our benchmark can serve as a fine-
grained moment localizing benchmark from text descriptions. This is different from existing video
grounding datasets such as Charades-STA [16], COIN [61], Ego4D [19] where the text descriptions
are usually very short, possibly resulting in low temporal localization performance due to the vague
and coarse descriptions.

• Text-to-Video (T2V) generation with detailed prompts. Given our highly detailed description, a
T2V generation model can be evaluated by verifying if the generated videos reflect the fine-grained
action details.

Next, we detail the dataset curation and evaluation setup for TemporalBench.

3.1 Video Collection

We collect video clips from a wide range of sources across diverse domains, where the majority
comes from existing video grounding benchmarks. Our dataset includes a wide spectrum of video
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(a) Short videos (b) Long videos

Figure 4: Video length distribution of (a) short video clips and (b) long videos in TemporalBench.

types from seven sources, including (1) procedure videos e.g., COIN [61], (2) human activities e.g.,
ActivityNet-Captions [75] and Charades [28], (3) ego-centric videos e.g., EgoExo4D [19], (4) movie
descriptions [56], (5) professional gymnasium videos e.g., FineGym [57], and (6) unexpected humor
videos Oops [12]. We sample around 300 video clips from the validation and test sets of each video
dataset, which results in 2K videos. The statistics of TemporalBench is shown in Table 1.

We intentionally filter out video clips that (1) are mostly static by leveraging optical flow [13], (2)
contain multiple scene transitions by leveraging PySceneDetect 2 and (3) last longer than 20 seconds.
We observe that the large amount of information in long videos make it difficult for annotators to
provide detailed action descriptions. The distribution of video lengths is shown in Figure 4 (a).
Additionally, we remove the audio from the videos during annotation to ensure that all informative
signals come solely from the visual frames, preventing the answers from being influenced by the
audio.

3.2 Video Caption Annotation Process

Positive Captions Annotation. We employ a two-stage human labeling process for curating video
captions with fine-grained activity descriptions, where the qualified Amazon Mechanical Turk (AMT)
workers are first instructed to give a detailed video caption. Then, the authors of this work refine
the caption by correcting the mistakes and adding missing details w.r.t. the actions. The overall
pipeline is shown in Figure 2. All video clips are annotated following the same pipeline except for
Finegym [57] as it has already provided accurate and detailed action descriptions for professional
gymnasium videos. Consequently, we reuse its annotations.

We first use 3 probing video captioning questions with 2 in-context examples as the onboarding task
for AMT master workers. We manually inspect the soundness and amount of temporal details of the
AMT worker captions to select high quality AMT video captioning workers. During the annotation
process by AMT workers, we also continue to remove the unqualified workers based on the ratio of
the captions that authors in this paper refined. In this way, we ensure that the AMT provides a high
quality initial point for positive captions.

Negative Caption Annotation. Our negative captions are aimed at confusing multimodal video
models with respect to fine-grained activity details, such as changing “cut a ginger twice using a
knife” to “cut a ginger three times using a knife”. We construct negatives upon two granularities:
word level and event level. Specifically, word level negatives denote the case where a certain word
or phrase is replaced while event level negatives denote the case where the order of two events
are reversed. Empirically, we find that LLMs can produce more creative and diverse negatives
compared to AMT workers and authors. Therefore, we leverage three leading LLMs, GPT-4o [51],
Gemini-1.5-Pro [17] and Llama-3.1-405b [46] to curate a diverse set of negative caption candidates
instructed by 3 in-context examples, with up to 9 negatives at word level and 6 negatives at event
level.

Afterwards, the authors of this work review those negative caption candidates in the format of
multi-choice QA, which results in our complete TemporalBench dataset with ∼2K high-quality
human-annotated video captions and ∼10K video question-answer pairs.

2https://www.scenedetect.com/
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(a) Original Negative Captions (b) Heuristics-guided Negative Captions

𝐶
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𝑁"(𝐶)

𝑁#(𝐶)

Figure 5: An illustration of multi-choice QA with (a) original and (b) heuristics-guided negative
captions. Orange blocks indicate the altered contents from the positive option (green box).

3.3 A Pitfall in Multi-choice Question Answering

A conventional approach to evaluate large multimodal models is using the multi-choice question-
answering format, which is adopted by the majority of current benchmarks including MMMU [77],
MathVista [42], EgoSchema [43] etc. However, indicated by recent studies by [6] and [78], a pure
LLM can achieve comparable or even stronger performance on those benchmarks without looking at
the visual content at all. Recent studies argue that (1) some questions are not designed well so that
the question can be answered without looking at the visual content, or (2) the model memorizes the
QA pairs, i.e., data contamination occurs.

While developing our benchmark, we notice another previously ignored but critical pitfall for multi-
choice QA. Specifically, if every negative answer choice is generated by changing a small part of the
correct answer, the LLM can detect those changes to find a “centralized” description and use that cue
for its prediction. To study this, given a positive caption C and its associated negative caption N(C),
we intentionally derive a few negatives from N1(C) (instead of for C), resulting in N1(N1(C)) and
N2(N1(C)), resulting in [C,N1(C), N1(N1(C)), N2(N1(C))] as options, so that N1(C) becomes
the “centralized” description (see Fig. 5). Surprisingly, we find that 66.4% of text-only GPT-4o’s
predictions correspond to N(C), while only 6.4% of its predictions correspond to C. Our findings
also align with human behavior analysis from psychology [15], where humans can achieve better
than random chance performance on multi-choice QAs using similar cues.

Motivated by this findings, we propose to decompose a single multi-choice QA into multiple binary
QAs. In this case, we eliminate the “centralized option” due to the fact that there are only two options
to choose from. As a result, given M negatives, the multiple binary QAs will query a model M times,
where the random chance performance changes from 1

M+1 to ( 12 )
M . Given that ( 12 )

M > 1
M+1 for

every M > 2, multiple binary QA is a more difficult task than multi-choice QA.

4 Experiments

4.1 Experiment Setup

We evaluate both (1) multimodal video text generation models, including GPT-4o [51], Gemini-1.5-
Pro [17], Claude-3.5-Sonnet [2], Qwen2VL [64], LLaVA-OneVision [30], LLaVA-Next-Video [84],
Phi-3.5-Vision [1], MiniCPM-2.6 [70], MA-LMM [21], VideoLLaVA [34], InternLM-Xcomposer-
2.5 [82], Matryoshka Multimodal Models (M3) [6], and (2) multimodal video embedding models,
including XCLIP [47], ImageBind [18], and LanguageBind [85]. We exponentially increase the
number of frames to study its effect on video understanding. More details can be found in Appendix F.

To study the effect of single frame bias and text bias, we also evaluate models trained on single
images, including LLaVA-1.5 [38], LLaVA-NeXT [39], and Phi-3V [1]. In the latter case, we evaluate
the LLMs including GPT-4o [51], Gemini-1.5-Pro [17], Yi-34B [71], Vicuna [10] and Flan-T5 [65]
without using videos at all.

4.2 Human Performance

We use Amazon Mechanical Turk to evaluate human performance. Note that we exclude the positive
caption annotators to ensure that there is no data contamination. Again, we use an onboarding
test using a held out binary video QA evaluation set which has clear answers. Next, we show the
performance on each task.
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Table 1: Dataset characteristics including number of samples, average number of words in original
captions and our fine-grained captions.

Dataset Number of Samples Org. Avg. # words Ours Avg. # words

ActivityNet [28] 281 13.03 49.55
EgoExo4D [19] 307 7.73 47.79
Charades [16] 298 6.21 44.16
MPI Movie Description [56] 326 12.39 35.33
Oops [12] 294 10.06 43.27
COIN [61] 385 5.01 50.06
FineGym [57] 288 21.92 21.92

TemporalBench (ours) 2179 10.91 41.72

4.3 Fine-grained Video Question Answering on Short Videos

The results for multimodal generative models and embedding models are shown in Table 2 and
Figure 7 (a). Note that we show the result with the best average multiple binary QA (MBA)
performance for each model with respect to the number of frames. Results under different frames can
be found in Appendix F. Several interesting findings arise:

The performance of any video model is far from human performance. As shown in the table,
humans show an average performance of 67.9%, which is significantly higher than the best models,
GPT-4o and Qwen2VL-72B, by ∼30%. Therefore, there is a large gap between model’s performance
and human performance. Note that we are employing standard AMT workers instead of domain
experts, meaning that the expert-level accuracy can be even higher, especially for professional video
understanding like FineGym.

Models show limited performance gains with more frames. As shown in Figure 6, with more
frames, multimodal video models usually show better performance. However, performance generally
saturates around 8-16 frames, meaning that models struggle to improve fine-grained activity under-
standing even with more frames. This is a clear contrast with human performance, showing that there
is still a large space for multimodal video models to improve.

Figure 6: Model performance on TemporalBench with
varying frames.

Multiple Binary QA is a more chal-
lenging metric. Multiple Binary QA,
as proposed in Section 3.3, prevents a
model from exploiting cues in the an-
swer choices, and evaluates whether
a model truly understands the tempo-
ral dynamics in the video by splitting
a single M + 1-way multiple choice
question into M binary choice ques-
tions. For example, GPT-4o receives
75.7% accuracy but only 38.5% on
multiple binary accuracy, showing a
huge gap. These results indicate that
understanding the fine-grained tem-
poral dynamics is still a challenging
task for current proprietary models
and open-sourced models.

Video Embedding models show
near chance performance. All multi-
modal video embedding models, including XCLIP, LanguageBind, and ImageBind show near random
chance performance. One reason could be that their small embedding size (typically a vector with
size around 768-2048) is insufficient to capture fine-grained temporal details.

Low single-frame bias and language bias. As shown in Figure 6 and Table 10, the performance
of models like GPT-4o gradually increases with more frames. Excluding GPT-4o, all remaining
VLMs trained with single images e.g., LLaVA-1.5, Phi-3V, and text-only LLMs such as Yi-34B and
Vicuna-7B show poor performance.
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Table 2: TemporalBench performance of various multimodal generative models and embedding
models under the binary QA accuracy (BA) and multiple binary QA settings (MBA) for short videos.
The prefix “T-” indicates MBA performance for the annotated subset in our TemporalBench. We
show the result with the best average MBA performance for each model with respect to the number
of frames, denoted as # Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-Movie T-Oops T-COIN T-EgoExo4D BA MBA

Human Performance - 68.7 82.2 36.1 74.2 69.7 70.6 71.0 89.7 67.9
Random Chance - 11.0 13.7 6.1 12.0 5.6 11.1 5.6 50.0 9.5

Video Embedding Models: Text + Multiple Frames as Input
XCLIP 8 14.2 16.1 7.3 19.9 8.8 15.6 6.8 51.6 12.9
ImageBind 2 17.4 16.8 7.3 19.0 11.2 16.1 9.1 53.0 14.0
LanguageBind 8 22.4 15.1 6.6 19.3 10.9 15.6 11.1 52.8 14.5

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 16 48.8 42.6 18.8 41.7 31.6 46.5 36.5 75.7 38.5
Gemini-1.5-Pro 1FPS 34.9 24.5 8.3 35.6 22.8 34.3 21.8 67.5 26.6
Claude-3.5-Sonnet 8 29.9 27.5 11.1 28.2 16.3 29.6 20.5 65.5 23.6
Qwen2-VL-72B 32 43.8 42.6 16.7 45.1 36.7 43.6 37.1 75.8 38.3
Qwen2-VL-7B 32 32.4 32.2 4.9 35.9 18.4 25.5 21.8 64.4 24.7
LLaVA-OneVision-72B 8 45.2 36.2 11.8 41.1 31.0 34.5 30.3 72.1 33.0
LLaVA-OneVision-7B 32 30.2 23.2 5.9 27.3 18.0 25.5 16.3 61.9 21.2
LLaVA-NeXT-Video-34B 32 30.6 26.8 10.4 24.8 18.0 25.2 17.3 64.0 22.0
LLaVA-NeXT-Video-7B 8 33.5 32.6 10.8 28.2 17.3 22.9 19.9 65.1 23.6
InternLM-XC2.5 1FPS 25.3 21.5 8.7 24.8 11.9 18.4 14.0 58.8 17.9
VideoLLaVA 8 35.2 29.2 13.5 25.5 20.7 32.5 20.2 67.1 25.5
MiniCPM-V2.6 1FPS 33.1 25.8 8.0 29.1 13.6 23.4 16.0 62.3 21.4
Phi-3.5-Vision 2 25.3 20.1 5.2 22.7 12.2 18.2 13.7 58.0 16.9
MA-LMM 4 12.5 16.4 3.5 11.0 5.1 11.4 4.9 48.0 9.4
M3 6 21.0 20.1 6.6 19.6 10.2 15.1 10.4 56.4 14.8

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 1 32.0 30.2 15.3 31.3 26.5 33.8 27.7 70.0 28.4
LLaVA-1.5-13B 1 16.0 17.1 9.4 16.6 6.1 16.4 9.1 55.7 13.1
LLaVA-1.5-7B 1 25.3 25.8 8.7 19.3 9.2 21.8 16.6 60.5 18.3
LLaVA-NeXT-34B 1 20.6 22.5 9.4 21.5 15.3 21.6 13.7 60.5 18.0
Phi-3-Vision 1 23.1 19.8 4.5 17.8 8.5 17.7 13.7 54.4 15.1

Large Language Models (LLMs): Text as Input
GPT-4o 0 30.2 31.9 16.7 27.9 22.8 27.5 28.0 67.7 26.5
Gemini-1.5-Pro 0 22.4 20.5 4.5 19.9 10.2 16.9 17.9 58.1 16.1
Yi-34B 0 17.4 27.5 10.4 21.8 11.2 23.4 16.9 59.9 18.7
Vicuna7b-1-5 0 11.4 17.4 6.6 11.3 5.1 12.2 7.8 50.5 10.4
Flan-T5-XL 0 24.9 23.5 5.6 19.9 11.9 23.4 14.0 57.9 17.9
Flan-T5-XXL 0 19.2 16.8 8.3 18.1 7.8 19.7 14.0 55.1 15.1

4.4 Video Captioning

Our detailed video captions also enables analyzing a model’s fine-grained video captioning capabil-
ities. For this, we prompt multimodal video models to generate a caption for an input video, with
3 captioning examples in the prompt as guidance to mimic the style of our detailed video captions.
Note that we remove the FineGym captions due to its different structure compared to other video
captions, resulting in 1891 samples. We evaluate the resulting video captioning performance using
classical image captioning metrics, CIDEr [63], BLEU [52] at different n-gram levels, ROUGE [35],
as well as the embedding similarity with sentence transformer [55] between the ground truth caption
and the generated caption. Note that we for each model, we use the same number of frames as in
Section 4.3.

Results in Table 4 show that GPT-4o achieves the best performance. Interestingly, the results indicate
that the embedding similarity aligns most closely with the video QA task results from Sec 4.3.
Other classical captioning metrics show inconsistent results. For example, GPT-4o obtains similar
performance with one compared to 64 frames on both CIDEr and BLEU scores (e.g., for BLEU 1
24.1 vs. 25.1). On the other hand, all models show similar ROUGE scores. Thus, for the zero-shot
captioning task, our findings indicate that text embedding similarity may be the most reliable metric.

5 Conclusion and Future Work

We propose TemporalBench, a novel video understanding benchmark, to evaluate the fine-grained
temporal understanding abilities of multimodal video models. The video captions in our benchmark
are significantly denser than existing datasets such as MSRVTT and TGIF, offering detailed temporal
annotations. TemporalBench also provides a more challenging set of tasks that push current mul-
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timodal models beyond coarse-level understanding. The empirical results reveal a substantial gap
between human performance and current state-of-the-art models. We also found a critical pitfall for
multi- choice QA, where we devise multiple binary accuracy (MBA) to address thi issue. We hope
that this benchmark fosters further research in developing models with enhanced temporal reasoning
capabilities. Our benchmark could also be easily utilized for other fundamental video tasks such as
spatio-temporal localization and text-to-video generation with fine-grained prompts.
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(a) Binary Accuracy (BA) per subset (b) Binary Accuracy (BA) per negative category

Figure 7: Visualization of binary accuracy for short video QA per (a) subset and (b) negative type.
Human performance is much better than GPT-4o, Qwen2-VL-72B, LLaVA-OneVision-72B, and
Gemini-1.5-Pro.

Reproducibility Statement

We attach part of the dataset in the submission’s supplementary materials. We will also publicly
release it along with the code used to evaluate the LMMs upon the paper’s acceptance.

Limitations. One cannot fully analyze the behavior of proprietary models included in this paper due
to the lack of access to these models, which are GPT-4o, Gemini-1.5-Pro and Claude 3.5 Sonnet.

A Long Video Understanding

Since our benchmark is annotated at the video clip level, we can easily extend it to long video
understanding by concatenating the captions of different video clips within the same original video.
In our study, we choose video datasets from AcitivityNet, Charades, EgoExo4D, COIN and FineGym.
We randomly sample video clips within the same original video, and then crop a new video segment
whose starting time corresponds to that of the earliest sampled video clip and whose ending time
corresponds to that of the latest sampled video clip. We then concatenate all the sampled video
captions together to form a single long detailed description corresponding to the new video segment.
Given this positive caption, we generate negative captions for it by replacing the positive caption of
one of the sampled video clips with its negatives. The model is then tasked to choose the correct long
caption out of multiple choices. We control the random chance multiple binary QA performance to
be ∼9.5%, resulting in an apple-to-apple comparsion with in Sec 4.3. In this way, we investigate
whether multimodal video models can understand and distinguish fine details in a long video. Finally,
we sampled 1,574 videos with durations ranging between [0, 20] minutes, as shown in Figure 4.

We show in Table 5, that all multimodal video models show a significant performance drop for this
task compared to short video understanding. This is also reflected in all models performing better on
relatively shorter videos (e.g., Charades) compared to longer videos (e.g., FineGym). These results
indicate that finding the subtle temporal dynamic differences in a long video is indeed an extremely
difficult task. It is similar in nature to the needle-in-the-sea task [26] in NLP except in the temporal
domain. We hope that TemporalBench for long video understanding can serve as a very challenging
task for future video understanding model development.
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Table 3: Effect of the “Centralized” Caption on text-only GPT-4o.
Percentage of Predictions Aligned with −→ C N1(C)

[C,N1(C), N2(C)), N3(C))] 83.3 6.4
[C,N1(C), N1(N1(C)), N2(N1(C))] 17.7 66.4

B In-Depth Analysis

B.1 Why multiple Binary QA instead of multi-choice QA?

As discussed in Section 3.3, in the standard multi-choice QA setting, if negatives are all slightly
variations of the positive caption, we find that LLMs can determine the “centralized” caption, and take
a shortcut to achieve better performance. To demonstrate this, based on one negative caption N(C)
in TemporalBench, we intentionally generate two negative captions derived from N(C) (instead of
C), resulting in N1(N(C)) and N2(N(C)). Given two set of options [C,N1(C), N2(C)), N3(C))]
and [C,N1(C), N1(N1(C)), N2(N1(C))] shown in Figure 5, text-only GPT-4o displays different
behaviors. As shown in Table 3, under the intentionally designed negative options, GPT-4o will
choose N1(C) under 66.4% cases. This again demonstrates the necessity and advantage of our
multiple binary QA accuracy (MBA) metric design over the standard multi-choice QA setting.

B.2 Performance on categories

Broadly, TemporalBench evaluates word level replacement and event level re-ordering. Here we
further breakdown the word level replacement into following categories: (1). Action order (change
the order); (2). Action frequency (1 times v.s. two times); (3). Action type (put v.s. pull); (4). Motion
magnitude (slightly v.s. intensively); (5). Motion Direction/Orientation (forward v.s. backward,
circular v.s. back-and-forth). (6). Action effector (cutting with left hand v.s. cutting with right
hand) (7). Others. We prompt GPT-4o to perform 7-way classification and show the per-category
performance in Table 7 and Figure 7 (b). Results indicate that multimodal video models shows better
performance on “others” category rather than the other categories related to actions. Among the
seven categories, models struggle most on action frequency (counting), which show that they do
not memorize repeated occurrences well. The visualizations of failture cases in GPT-4o is shown in
Figure 8.

Ethics Statement

This research primarily utilizes publicly available video datasets, which have been collected and
annotated by qualified annotators and authors, ensuring compliance with ethical standards. We
have made every effort to ensure that the data used respects privacy and contains no personally
identifiable information. Furthermore, we acknowledge the potential implications of fine-grained
video understanding, especially in sensitive applications such as surveillance and autonomous systems.
As such, we advocate for responsible and ethical use of this research, urging caution in deploying
these models in real-world scenarios to avoid harmful or unintended consequences.

C Broader Impact

TemporalBench, a comprehensive benchmark for video understanding, has the potential to signifi-
cantly advance research in this field by offering improved metrics for model evaluation. Our work
aims to enhance the temporal reasoning capabilities of future video understanding models. However,
the broader impact of more advanced video understanding technologies raises important societal
concerns, including the risk of mass surveillance, privacy violations, and the development of harmful
applications like autonomous weapons. Therefore, we strongly encourage thoughtful consideration
when deploying these models in real-world scenarios to mitigate negative or unintended consequences.

D More Visualizations of Our Benchmark

In this section, we present comprehensive visualizations of our fine-grained annotations with both
positive and negative descriptions. For each benchmark mentioned in Table 1, we provide one video
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The gymnast performs the balance beam, which 
include split leap (knees above horizontal alternately).

The gymnast performs the balance beam, which 
include cat leap (knees above horizontal alternately).

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

The man inserts the inner tube with his right hand 
into the wheel held in the left hand. He turns the 
wheel and presses it into the tube. He flips the tire 
over with both the hands.

The man inserts the inner tube with his right hand 
into the wheel held in the left hand. He turns the 
wheel and presses it into the tube. He flips the tire 
over with his left hand.

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

The person presses the phone panel with the right 
index finger so the liquid within diffuses and spreads 
from the corner to the central. The person presses 
and shakes the index finger for better application and 
removes the hand.

The person presses the phone panel with the right 
index finger so the liquid within diffuses and spreads 
from the central to the corner. The person presses 
and shakes the index finger for better application and 
removes the hand.

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

A woman holds a sack of garbage with both hands and 
swings it back and forth five times. She attempts to 
throw it onto the truck when the garbage bag breaks, 
causing the trash to fly out and hit the ground. She 
turns around, mouth open in shock.

A woman holds a sack of garbage with both hands and 
swings it back and forth four times. She attempts to 
throw it onto the truck when the garbage bag breaks, 
causing the trash to fly out and hit the ground. She 
turns around, mouth open in shock.

GPT-4o’s Choice

Ground-truth

Q: Which caption best describes this video? Answer 
with the option's letter from the given choices directly.

(a) COIN (b) Oops

(c) FineGym (d) EgoExo4D

Figure 8: The failure cases of GPT-4o in TemporalBench. GPT-4o does not understand the fine-
grained details well, including motion direction, action frequency, action type, and motion direction.

example with its positive annotation and one of the corresponding negative descriptions (there are
more than one negative for a single video in our dataset) in Figures 9 & 10. The video examples (a -
f ) are displayed in the same order as their sources in Table 1 (7 in total).

E Per subset Results for Short and Long Video QA under Binary Accuracy
(BA)

The per subset results (denoted as “T-”) for short and long video QA under Binary Accuracy (BA)
are shown in Table 8, and Table 9, respectively. Still, human achieve much better performance than
all multimodal videos. Interestingly, both human and Finegym, the professional subset,

F More Results with Extended Frames

In the main paper, we only report the performance of each multimodal video models with the the
number of frams that leads to the best performance. Here we extend the results to show the results of
more frames in Table 10.

G Data Annotation Platform

Positive Captions We use Amazon Mechanical Turk (AMT) 3 for positive caption annotation, and
then use Label Studio 4 to let authors refine the caption. As shown in Figure 11, authors can edit the

3https://www.mturk.com/
4https://labelstud.io/
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Table 4: Comparison of models for video captioning using Caption Similarity, CIDEr, BLEU, and
ROUGE metrics. Cosine similarity using sentence transformer reflects the captioning quality the best.

Model Similarity CIDEr ROUGE BLEU 1 BLEU 2 BLEU 3 BLEU 4

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 61.3 7.3 19.6 24.1 11.8 5.8 3.0
Gemini-1.5-Pro 56.5 10.9 19.1 19.0 9.2 4.5 2.4
Claude-3.5-Sonnet 54.1 8.6 17.1 24.4 10.3 4.4 2.1
Qwen2-VL-72B 56.1 9.3 19.1 15.7 8.0 4.1 2.2
Qwen2-VL-7B 51.9 6.9 18.0 12.5 6.1 3.0 1.6
LLaVA-OneVision-72B 55.0 9.7 18.7 23.7 11.3 5.6 2.9
LLaVA-OneVision-7B 50.1 0.3 14.5 11.1 5.1 2.2 1.1
LLaVA-NeXT-Video-34B 53.1 5.3 15.9 21.4 9.2 4.0 1.8
LLaVA-NeXT-Video-7B 50.1 2.3 15.8 18.1 7.0 2.6 1.1
InternLM-XC2.5 52.4 2.3 15.9 17.8 7.1 2.8 1.2
VideoLLaVA 46.0 4.5 16.9 12.6 5.4 2.3 1.0
MiniCPM-V2.6 47.2 1.5 14.2 15.5 5.4 1.9 0.8
Phi-3.5-Vision 42.9 3.7 16.5 20.4 8.4 3.4 1.6
MA-LMM 38.7 3.1 15.0 10.1 4.8 2.2 1.1
M3 47.8 3.0 16.4 16.7 6.9 2.8 1.2

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 52.3 7.3 17.1 25.1 11.1 5.0 2.4
LLaVA-1.5-13B 47.9 4.9 18.0 22.6 9.8 4.2 2.0
LLaVA-1.5-7B 45.7 6.9 17.8 22.0 9.5 4.2 2.0
LLaVA-NeXT-34B 49.1 6.2 16.7 24.2 10.4 4.6 2.2
Phi-3-Vision 42.0 4.0 16.1 19.9 8.3 3.4 1.6

caption from AMT workers. Also, we provide the original short video captions to let people better
understand our task.

Negative Captions We first prompt LLMs (GPT-4o, Gemini, and Llama-3.1-405b) to get initial
negative captions, and then ask authors to choose the negatives that can reflect the temporal dynamic.
The visualization of the multi-choice platform in shown in Figure 12.
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Table 5: TemporalBench performance of various multimodal generative models and embedding
models under long video understanding with binary QA accuracy (BA) and multiple binary QA
accuracy (MBA). The MBA performance under each dataset is also included. We show the result with
the best average MBA performance for each model with respect to the number of frames, denoted as
# Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-COIN T-EgoExo4D BA MBA

Random Performance - 9.3 9.8 10.1 11.4 9.3 50.0 9.5

Video Embedding Models: Text + Multi-Frames as Input
XCLIP 8 11.1 12.4 6.5 10.8 11.8 51.7 11.1
ImageBind 2 10.2 8.1 9.3 10.8 12.4 51.0 10.7
LanguageBind 8 11.7 10.8 10.3 11.0 14.1 51.6 12.0

Video Multimodal Generative Models : Text + Multi-Frames as Input
GPT-4o 64 40.0 37.8 16.8 32.7 29.3 70.5 32.7
Gemini-1.5-Pro 1FPS 32.1 18.4 18.7 24.8 23.8 65.2 24.7
Claude-3.5-Sonnet 8 28.9 22.2 16.8 22.2 26.7 64.6 24.5
Qwen2-VL-72B 8 32.4 20.5 21.5 18.9 33.1 64.7 26.2
Qwen2-VL-7B 32 22.2 20.0 9.3 18.3 18.7 59.7 18.8
LLaVA-OneVision-72B 4 28.6 19.5 18.7 16.5 30.9 63.4 23.8
LLaVA-OneVision-7B 32 21.3 13.0 13.1 11.4 19.8 56.9 16.2
LLaVA-NeXT-Video-34B 4 23.5 22.2 19.6 17.9 19.2 60.3 20.0
LLaVA-NeXT-Video-7B 8 18.1 21.6 10.3 18.5 15.6 57.2 17.3
InternLM-XC2.5 1FPS 21.0 18.4 20.6 14.0 11.4 55.8 15.6
VideoLLaVA 8 20.0 16.8 15.9 9.8 16.6 56.0 15.1
MiniCPM-V2.6 1FPS 14.3 16.8 6.5 17.1 14.1 60.3 19.3
Phi-3.5-Vision 4 23.2 11.9 19.6 10.2 13.3 54.5 14.5
MA-LMM 4 10.2 9.2 2.8 11.4 11.6 47.1 9.2
M3 6 10.8 8.6 12.1 13.0 12.4 53.1 11.8

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 1 27.9 23.2 19.6 25.2 22.9 64.7 24.5
LLaVA-1.5-13B 1 14.3 11.9 10.3 15.4 14.7 54.8 14.2
LLaVA-1.5-7B 1 9.2 11.9 10.3 12.8 14.5 53.2 12.3
LLaVA-NeXT-34B 1 21.6 20.5 19.6 18.9 19.8 60.5 19.9
Phi-3-Vision 1 18.1 12.4 15.0 15.4 15.6 56.0 15.6

Large Larguage Models (LLMs): Text as Input
GPT-4o 0 27.6 32.4 17.8 24.2 33.5 67.6 28.2
Gemini-1.5-Pro 0 22.9 19.5 17.8 19.3 23.4 62.2 21.2
Yi-34B 0 19.7 19.5 14.0 15.9 20.6 59.5 18.4
Vicuna7b-1-5 0 6.3 9.2 9.3 10.6 12.0 51.1 9.9
Flan-T5-XL 0 21.6 15.7 23.4 18.1 19.8 60.1 19.4
Flan-T5-XXL 0 20.0 11.9 18.7 15.7 17.1 56.9 16.7

Table 6: TemporalBench statistics on negative caption types.
Action Action Action Motion Motion Action Event Overall
Order Frequency Type Magnitude Direction Effector Reorder Others

129 530 2,802 320 1,536 1,109 2,099 1,342 9,867
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Table 7: TemporalBench performance under each category under BA. Multimodal videos models
struggle on certain tasks such as action frequency. We show the result with the best average MBA
performance for each model with respect to the number of frames.

The Number Action Action Action Motion Motion Action Event
Model of Frames Order frequency Type Magnitude Direction Effector Reorder Others Average

Human Performance - 89.9 82.6 91.9 87.5 85.9 90.0 89.1 93.4 89.7
Random Chance - 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Video Embedding Models: Text + Multi-Frames as Input
XCLIP 8 46.5 50.8 50.9 56.9 51.2 51.7 50.1 55.6 51.6
ImageBind 2 44.2 44.7 55.4 50.9 52.5 50.5 48.6 61.8 53.0
LanguageBind 8 43.4 41.5 53.4 55.0 51.4 46.6 51.0 65.9 52.8

Video Multimodal Generative Models : Text + Multi-Frames as Input
GPT-4o 16 69.8 64.7 80.6 78.4 67.9 67.2 75.8 85.6 75.7
Gemini-1.5-Pro 1FPS 67.4 60.1 70.6 70.7 58.7 59.5 67.9 79.2 67.5
Claude-3.5-Sonnet 8 62.0 57.4 70.7 70.3 60.0 57.8 61.3 76.2 65.5
Qwen2-VL-72B 32 72.1 69.2 79.9 78.7 65.9 69.5 76.0 85.7 75.8
Qwen2-VL-7B 32 65.9 45.8 67.3 66.1 54.6 54.7 69.7 75.7 64.4
LLaVA-OneVision-72B 8 73.6 56.0 76.2 70.3 65.2 62.4 73.2 84.2 72.1
LLaVA-OneVision-7B 32 63.6 45.5 62.9 56.9 52.8 54.0 66.5 77.1 61.9
LLaVA-NeXT-Video-34B 32 61.2 56.0 66.4 61.6 58.5 59.3 63.4 74.1 64.0
LLaVA-NeXT-Video-7B 8 69.0 65.7 68.2 62.2 66.5 68.6 52.2 74.3 65.1
InternLM-XC2.5 1FPS 55.8 42.5 62.7 62.5 52.6 51.1 58.3 70.7 58.8
VideoLLaVA 8 69.8 70.2 71.4 70.0 70.6 70.2 50.5 75.5 67.1
MiniCPM-V2.6 1FPS 59.4 52.3 65.5 62.5 54.1 53.3 63.5 74.7 62.3
Phi-3.5-Vision 2 53.5 55.3 60.1 55.9 54.0 52.2 55.3 69.4 58.0
MA-LMM 4 54.3 43.0 48.0 47.8 46.3 48.8 48.6 49.6 48.0
M3 6 51.9 53.6 58.9 56.3 52.2 53.7 50.8 68.6 56.4

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 1 67.4 65.1 74.1 70.3 64.2 62.6 68.7 78.4 70.0
LLaVA-1.5-13B 1 57.4 51.9 57.6 53.8 50.4 53.9 54.2 63.1 55.7
LLaVA-1.5-7B 1 62.0 61.5 62.2 54.1 61.4 64.9 51.0 67.9 60.5
LLaVA-NeXT-34B 1 51.2 55.7 61.2 60.0 54.8 53.0 65.0 67.5 60.5
Phi-3-Vision 1 46.5 45.5 56.0 55.6 48.8 49.2 56.9 62.1 54.4

Large Larguage Models (LLMs): Text as Input
GPT-4o 0 65.1 59.8 73.7 70.0 61.5 60.1 69.3 68.6 67.7
Gemini-1.5-Pro 0 54.3 42.5 60.4 62.2 53.6 53.3 64.8 57.4 58.1
Yi-34B 0 51.9 62.3 60.1 60.3 57.1 55.1 65.4 58.0 59.9
Vicuna7b-1-5 0 55.8 47.2 51.7 48.4 50.1 49.4 49.9 51.4 50.5
Flan-T5-XL 0 53.5 57.7 60.2 59.7 56.1 56.9 54.9 60.7 57.9
Flan-T5-XXL 0 55.8 62.5 59.0 58.4 54.2 48.2 49.3 58.9 55.1
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Table 8: TemporalBench performance of various multimodal generative models and embedding
models under the binary QA accuracy (BA) and multiple binary QA settings (MBA) for short videos.
The prefix “T-” indicates BA performance for the annotated subset in our TemporalBench. We show
the result with the best average MBA performance for each model with respect to the number of
frames, denoted as # Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-Movie T-Oops T-COIN T-EgoExo4D BA MBA

Human Performance - 91.1 93.8 77.0 93.1 92.6 90.2 92.5 89.7 67.9
Random Chance - 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Video Embedding Models: Text + Multiple Frames as Input
XCLIP 8 52.7 52.8 49.0 53.9 53.5 52.3 48.1 51.6 12.9
ImageBind 2 52.9 52.6 47.5 55.4 56.8 52.4 53.4 53.0 14.0
LanguageBind 8 56.5 50.1 48.2 55.8 55.1 51.1 52.8 52.8 14.5

Video Multimodal Generative Models : Text + Multiple Frames as Input
GPT-4o 16 78.5 74.8 64.8 77.2 77.9 79.2 78.3 75.7 38.5
Gemini-1.5-Pro 1FPS 70.7 63.0 55.0 72.5 70.3 70.2 70.8 67.5 26.6
Claude-3.5-Sonnet 8 68.5 62.4 62.7 68.2 64.2 65.4 66.8 65.5 23.6
Qwen2-VL-72B 32 76.6 74.5 65.4 79.8 77.7 77.2 79.7 75.8 38.3
Qwen2-VL-7B 32 67.0 65.2 49.9 70.5 66.5 66.5 66.6 64.4 24.7
LLaVA-OneVision-72B 8 76.0 70.4 59.3 76.1 75.2 73.5 74.9 72.1 33.0
LLaVA-OneVision-7B 32 66.5 60.0 49.4 68.0 61.6 64.6 64.4 61.9 21.2
LLaVA-NeXT-Video-34B 32 67.5 62.9 56.3 68.0 66.1 63.4 64.5 64.0 22.0
LLaVA-NeXT-Video-7B 8 68.0 66.5 56.7 69.9 66.1 65.2 65.0 65.1 23.6
InternLM-XC2.5 1FPS 61.0 57.9 50.6 63.5 60.3 59.2 59.7 58.8 17.9
VideoLLaVA 8 71.8 63.4 61.6 68.2 68.5 68.9 67.3 67.1 25.5
MiniCPM-V2.6 1FPS 66.1 59.6 54.1 68.0 63.1 62.7 62.7 62.3 21.4
Phi-3.5-Vision 2 62.0 55.8 50.0 64.1 58.2 57.7 58.9 58.0 16.9
MA-LMM 4 49.8 48.8 42.3 48.0 49.9 49.0 48.8 48.0 9.4
M3 6 59.5 54.9 51.1 60.9 58.9 54.9 55.2 56.4 14.8

Large Multimodal Models (LMMs): Text + 1 Frame as Input
GPT-4o 1 69.1 67.1 64.8 71.0 71.9 71.0 74.0 70.0 28.4
LLaVA-1.5-13B 1 57.6 54.3 51.9 56.8 53.2 58.1 57.8 55.7 13.1
LLaVA-1.5-7B 1 64.2 58.6 55.7 61.0 57.5 62.7 63.9 60.5 18.3
LLaVA-NeXT-34B 1 59.7 60.3 55.0 61.8 62.0 61.0 63.7 60.5 18.0
Phi-3-Vision 1 57.4 54.5 45.2 57.5 52.8 55.8 58.9 54.4 15.1

Large Language Models (LLMs): Text as Input
GPT-4o 0 66.2 67.4 65.6 65.6 68.9 67.8 71.7 67.7 26.5
Gemini-1.5-Pro 0 58.5 57.6 50.6 59.8 57.6 58.6 64.3 58.1 16.1
Yi-34B 0 59.1 62.3 54.9 59.7 57.7 63.1 63.6 59.9 18.7
Vicuna7b-1-5 0 49.7 49.5 50.2 50.7 50.5 50.0 52.1 50.5 10.4
Flan-T5-XL 0 60.5 59.2 50.5 60.7 56.8 58.7 60.3 57.9 17.9
Flan-T5-XXL 0 56.7 49.3 52.0 59.0 54.6 56.1 56.2 55.1 15.1
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Table 9: TemporalBench performance of various multimodal generative models and embedding
models under long video understanding with binary QA accuracy (BA) and multiple binary QA
accuracy (MBA). The BA performance under each dataset is also included. We show the result with
the best average MBA performance for each model with respect to the number of frames, denoted as
# Frames.

Model # Frames T-ActivityNet T-Charades T-FineGym T-COIN T-EgoExo4D BA MBA

Random Performance - 50.0 50.0 50.0 50.0 50.0 50.0 50.0

Video Embedding Models: Text + Multi-Frames as Input
XCLIP 8 51.9 48.7 47.9 52.6 52.8 51.7 11.1
ImageBind 2 50.3 52.6 47.9 51.3 51.3 51.0 10.7
LanguageBind 8 51.9 46.4 48.2 52.0 53.7 51.6 12.0

Video Multimodal Generative Models : Text + Multi-Frames as Input
GPT-4o 64 74.8 73.8 61.2 70.1 68.7 70.5 32.7
Gemini-1.5-Pro 1FPS 67.0 61.6 60.6 65.9 65.9 65.2 24.7
Claude-3.5-Sonnet 8 66.8 63.7 56.7 63.1 66.6 64.6 24.5
Qwen2-VL-72B 8 68.5 59.6 62.5 59.6 70.0 64.7 26.2
Qwen2-VL-7B 32 60.7 58.0 49.9 59.8 61.9 59.7 18.8
LLaVA-OneVision-72B 4 67.0 63.5 61.2 55.8 69.3 63.4 23.8
LLaVA-OneVision-7B 32 60.0 53.6 57.6 53.2 59.8 56.9 16.2
LLaVA-NeXT-Video-34B 4 59.4 63.0 57.6 59.5 61.4 60.3 20.0
LLaVA-NeXT-Video-7B 8 60.9 58.6 51.5 56.7 56.1 57.2 17.3
InternLM-XC2.5 1FPS 59.6 58.9 57.0 54.9 52.8 55.8 15.6
VideoLLaVA 8 61.2 57.0 59.5 50.1 57.3 56.0 15.1
MiniCPM-V2.6 1FPS 53.7 58.6 41.3 54.8 53.9 60.3 19.3
Phi-3.5-Vision 4 60.3 52.3 58.1 50.3 55.1 54.5 14.5
MA-LMM 4 47.4 51.7 36.4 50.1 51.2 47.1 9.2
M3 6 52.5 52.9 51.0 53.4 53.6 53.1 11.8

Large Multimodal Models (LMMs): Text + 1 frame as Input
GPT-4o 1 67.6 64.3 62.8 65.9 62.0 64.7 24.5
LLaVA-1.5-13B 1 55.1 52.3 52.9 55.0 54.8 54.5 14.2
LLaVA-1.5-7B 1 51.2 53.4 51.5 51.8 56.2 53.2 12.3
LLaVA-NeXT-34B 1 60.6 60.8 57.0 59.8 61.8 60.5 19.9
Phi-3-Vision 1 56.9 53.9 52.1 55.6 57.6 56.0 15.6

Large Larguage Models (LLMs): Text as Input
GPT-4o 0 67.1 68.1 63.6 65.1 71.3 67.6 28.2
Gemini-1.5-Pro 0 62.8 59.4 55.6 60.7 65.7 62.2 21.2
Yi-34B 0 59.0 60.2 56.5 59.5 60.4 59.5 18.4
Vicuna7b-1-5 0 49.0 52.4 49.3 51.2 52.2 51.1 9.9
Flan-T5-XL 0 61.3 57.7 59.8 58.8 61.7 60.1 19.4
Flan-T5-XXL 0 59.4 53.6 59.5 56.3 56.5 56.9 16.7
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Holding a hose in their left hand, a person is gently praying water on a wooden 
chair. First on the left arm, then the slats on the back and sides and down to the 
seat area then up along the top down a leg a bit around the front of the seat .

Holding a hose in their left hand, a person is gently spraying water on a wooden 
chair. First down a leg, then up along the top, the slats on the back and sides, 
down to the seat area, a bit around the front of the seat, and the left arm.

Positive

Negative

The person picks up the blue packet with both hands and puts it back on the table. 
The person picks up the tube and places it on the table. The person picks up a 
white packet and tears it open with both hands. The person pulls out the white tube 
with the right hand and keeps the packet on the table with the left hand.

The person picks up the blue packet with both hands and puts it back on the table. 
The person picks up the tube and places it on the table. The person picks up a 
white packet and tears it open with the right hand. The person pulls out the white 
tube with the right hand and keeps the packet on the table with the left hand.

Positive

Negative

A person lifts his right leg up while resting his left hand on the table. He puts his 
right leg into a shoe. He then lifts the left leg up and puts it into the other shoe.

A person puts his left leg into the other shoe while resting his left hand on the 
table. He lifts his right leg up and then puts it into a shoe.

Positive

Negative

(a)

(b)

(c)

Figure 9: Visualizations (I) of our fine-grained annotations of the videos with both positive and
negative descriptions.
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An army man waves his right hand to direct the tanks and other vehicles down the 
right-side road. Other trucks and vans drive down the street. Left-side road drives 
up several red container truck. People in the background walk about on the street.

An army man waves his right hand to direct the tanks and other vehicles down the 
right-side road. Other trucks and vans park by the street. Left-side road drives up 
several red container truck. People in the background walk about on the street.

Positive

Negative

Two deer come out of the trees and run along a road into the trees on the other 
side. A third deer trips as it approaches the road, then turns back around and goes 
back to where it came from.

Two deer come out of the trees and run along a road into the trees on the other 
side. A third deer trips as it approaches the road, then turns back around and 
continues running to the other side.

Positive

Negative

The person presses the top of the sandwich with the left hand and slices the 
sandwich in a diagonal cut by running the knife held in the right hand in a up and 
down motion. They start cutting at the left bottom corner of the sandwich.

The person presses the top of the sandwich with the left hand and slices the 
sandwich in a horizontal cut by running the knife held in the right hand in a up and 
down motion. They start cutting at the left bottom corner of the sandwich.

Positive

Negative

The gymnast performs the following actions: giant circle; circle backward; with turn 
before handstand phase.

The gymnast performs the following actions: giant circle; circle forward; with turn 
before handstand phase.

Positive

Negative

(d)

(e)

(f)

(g)

Figure 10: Visualizations (II) of our fine-grained annotations of the videos with both positive and
negative descriptions.
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Table 10: TemporalBench performance of various models under binary QA and multiple binary QA
setting for short question answering with different number of frames.

Model Frames Per Video Multiple Binary Accuracy (%) Binary QA Accuracy (%)

Human - 67.9 89.7
Random Chance - 9.5 50.0

XCLIP 8 12.9 51.6
ImageBind 2 14.0 53.0
LanguageBind 8 14.5 52.8

GPT-4o 64 38.0 76.0
32 38.2 75.9
16 38.5 75.7
8 37.3 75.1
4 35.8 74.4
2 33.2 72.7
1 28.4 70.0
0 26.5 67.7

Gemini-1.5-Pro 1FPS 26.6 67.5
0 16.1 58.1

Claude-3.5-Sonnet 16 23.5 65.4
8 23.6 65.5
4 23.1 64.8
2 21.2 61.8
1 18.4 58.4

InternLM-XC25 1FPS 17.9 58.8

LLaVA-NeXT-Video-34B-DPO 32 22.0 64.0
16 21.8 63.7
8 21.4 63.3
4 20.7 63.0
2 19.9 61.8
1 18.8 60.5

LLaVA-NeXT-Video-7B-DPO 32 17.2 59.5
16 22.3 64.0
8 23.6 65.1
4 22.9 64.2
2 21.4 63.0
1 19.0 62.0

VideoLLaVA 8 25.5 67.1

Phi-3.5-Vision-Instruct 32 15.5 56.7
16 15.9 57.2
8 15.9 57.4
4 15.5 57.5
2 16.9 58.0
1 16.4 57.7

Qwen2-VL-7B 32 24.7 64.4
16 23.6 63.2
8 21.0 60.9
4 19.2 59.5
2 17.6 57.8

Qwen2-VL-72B 32 38.3 75.8
16 36.8 74.6
8 33.8 73.0
4 31.0 71.4
2 27.3 69.1

MiniCPM-V-2.6 1FPS 21.4 62.3

LLaVA-1.5-13B 1 13.1 55.7

LLaVA-1.5-7B 1 18.3 60.5

Phi-3-Vision 1 15.1 54.4

Yi34B 0 18.7 59.9

Vicuna7B-1.5 0 10.4 50.55

Flan-T5-XL 0 17.9 57.9

Flan-T5-XXL 0 15.1 55.1
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Figure 11: Positive caption refinement platform.
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Figure 12: Negative caption annotation platform.
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