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Abstract: Sampling-based motion planning methods, while effective in high-
dimensional spaces, often suffer from inefficiencies due to irregular sampling dis-
tributions, leading to suboptimal exploration of the configuration space. In this
paper, we propose an approach that enhances the efficiency of these methods by
utilizing low-discrepancy distributions generated through Message-Passing Monte
Carlo (MPMC). MPMC leverages Graph Neural Networks (GNNs) to generate
point sets that uniformly cover the space, with uniformity assessed using the the
L,-discrepancy measure, which quantifies the irregularity of sample distributions.
By improving the uniformity of the point sets, our approach significantly reduces
computational overhead and the number of samples required for solving motion
planning problems. Experimental results demonstrate that our method outper-
forms traditional sampling techniques in terms of planning efficiency.
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1 Introduction

Sampling-based motion planning is a key method for robot navigation in complex environments.
From Probabilistic Roadmaps (PRMs) [1] to Rapidly-exploring Random Trees (RRTs) [2], the fo-
cus of much of the research in this area has been on developing more efficient and optimal motion
planning algorithms [3, 4] that can handle high-dimensional spaces [5, 6], various types of con-
straints [7, 8], and dynamic environments [9, 10].

Instead of refining motion planning algorithms, our work targets the fundamental building block
underlying these approaches—the core sampling process itself. We introduce a novel sampling
strategy based on Message-Passing Monte Carlo (MPMC) [11], a graph neural network architecture
trained to generate low-discrepancy point sets on unit hypercubes of arbitrary dimension. We expand
the generic MPMC algorithm with the introduction of a novel training objective tailored to high-
dimensional spaces, ensuring that generated points are optimally distributed and scalable.

This leads to a potent unbiased state sampling technique, that can be seamlessly integrated into any
sampling-based planner, and that requires neither conditioning on the workspace description, nor
a steer function, nor past examples, nor start and goal information. This approach provides strong
theoretical guarantees and it also outperforms traditional techniques across various benchmarks, in
environments of varying complexity and dimensionality.
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Our contributions are stated as follows:

* We introduce the first application of MPMC neural network point set generation in motion
planning, a significant novelty for unbiased sampling techniques.

* We propose a novel training objective tailored to high-dimensional configuration spaces,
ensuring the generated points are well-suited for complex planning problems.

* We support our approach with rigorous theoretical justification, linking the training objec-
tive of MPMC point sets to a tighter upper bound on the distance from the optimal path.

* We establish superior planning efficiency against the current gold standard sampling ap-
proach in motion planning on a variety of PRM benchmarks, including challenging high-
dimensional environments.

* We demonstrate the effectiveness of our sampling technique on a real-world URS5 robot
arm, showing its potential for practical deployment in robotics.

Our MPMC-based sampling strategy offers a powerful and versatile alternative to traditional sam-
pling methods. By targeting the sampling process directly, we open up new possibilities for improv-
ing the efficiency of a wide array of motion planning algorithms in robotic systems.

2 Related work

2.1 Learning for sampling-based planners

The incorporation of machine learning into motion planning has opened up new ways to accelerate
pathfinding by learning from past experiences. One common strategy involves storing and reusing
previously computed paths or solutions. For example, methods such as path libraries [12], sparse
roadmaps [13], and local obstacle roadmaps [14] allow a robot to retrieve and adapt previously suc-
cessful solutions to new, but similar, planning problems. These approaches reduce the computation
time by narrowing the search space using knowledge from past instances.

Another line of research enhances the sampling process by learning distributions that guide planners
toward more promising regions of the configuration space. Some methods employ problem-invariant
distributions [15], while others adapt based on the workspace environment [16]. Deep learning
further extends these concepts by learning from prior planning tasks, enabling distributions that
condition on both the workspace and specific start-goal configurations of new problems [17]. These
learned distributions effectively bias the sampling process, improving convergence rates and solution
quality in new planning scenarios.

In contrast, our method departs from these past learning-based approaches by introducing a deter-
ministic sampling strategy obtained via neural network training that does not depend on conditioning
or prior knowledge.

2.2 Low-discrepancy constructions

Over the past century, numerous constructions of low-discrepancy point sets and sequences have
been proposed. Most constructions are deeply rooted in number theory and abstract algebra. A
widely used building block of low-discrepancy constructions is the one-dimensional van der Corput
sequence [18] in base b, which is generalized to a higher dimensional setting via the Halton sequence
[19]. Each of the d coordinates in a Halton sequence corresponds to a distinct van der Corput
sequence in base b, with the bases selected to be co-prime. Faure sequences, as introduced in [20],
offer a similar construction to Halton sequences but incorporate permutations of the digits in base b.

Another broad class of low-discrepancy constructions are today known as digital (¢, s)-sequences,
first introduced in [21]. These constructions include the widely known Sobol sequence [22] which
is constructed using tools from linear algebra involving primitive polynomials and well-chosen gen-
erating matrices defined over finite fields.



A further distinct approach, rooted in a different branch of number theory, emerged with Korobov’s
introduction of the good-lattice method [23]. This technique utilizes modular arithmetic and prime
number properties to construct a structured, grid-like set of integration nodes. Since its introduction,
lattice rules have undergone significant extensions and refinements. Comprehensive discussions and
valuable reviews of these developments are available in [24, 25, 26, 27].

Several approaches have recently emerged targeting the construction of points for fixed dimension
and number of points. In [28], new low-discrepancy point sets were proposed by optimizing permu-
tations applied to the Halton sequence. Another approach, known as subset selection, was introduced
to select k < N points from an N-element set that minimize the discrepancy. An exact algorithm for
this selection was presented in [29], while a swap-based heuristic approach was employed in [30].
Additionally, [31] proposed a non-linear programming method to generate point sets with optimal
star-discrepancy for fixed dimension and number of points. However, this approach faces significant
computational challenges, limiting its practical application to finding optimal sets for only up to 21
points in two dimensions and 8 points in three dimensions. MPMC significantly differs from all
previous approches by its explicit use of machine learning. Moreover, it has been shown in [11]
that MPMC generates point sets with significantly better distributional properties compared to any
previous method, reaching optimal or near-optimal discrepancy.

3 Methods

Message-Passing Monte Carlo (MPMC) is a machine learning approach designed to generate low-
discrepancy point sets, which are the key for efficiently covering space in a uniform manner. MPMC
leverages Graph Neural Networks (GNNs) and tools from Geometric Deep Learning to generate
these point sets. The method focuses on the geometric properties needed to ensure uniformity and
it is highly versatile for generating points across different dimensions. In this section we describe
MPMC and its extensions for the motion planning application domain.

3.1 Message-Passing Monte Carlo Sampling

Message-Passing Monte Carlo (MPMC) [11] leverages Graph Neural Networks (GNNs) to generate
point sets that cover the space in a uniform manner (for an extension to non-uniform distributions
see [32]). This uniformity can be assessed through measures of irregularity termed discrepancy.
While there exist a plethora of different uniformity measures, we focus on the £,-discrepancy here.
That is, given a set of points {X;}¥ ; in the unit hypercube [0, 1]¢ and p > 1, the £,-discrepancy is
defined as,
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where #({X;}¥, N [0,x)) counts how many points of {X;}, fall inside the box [0,x) =
Hle[O,xi) for x = (z1,...,24) € [0,1]%, and u(-) denotes the usual Lebesgue measure. A
differentiable closed-form solution to the high-dimensional integral in (1) for the case of p = 2,
known as Warnock’s formula [33], can be computed in O(N?d). Consequently, MPMC utilizes the
Lo-discrepancy as the training loss to generate point sets with low-discrepancy. The MPMC model
transforming random input points into low-discrepancy sets via deep GNNs is depicted in Fig. 1.

3.1.1 Fast MPMC training in higher dimensions

As described in [11], the £,-discrepancy fails to distinguish random from highly uniform points
in high dimensions for moderate amount of points. Therefore, it was suggested in [11] to mini-
mize the Hickernell Lo-discrepancy Dy o [34] in this case, that sums over all L£,-discrepancies of
k-dimensional projections, with 1 < k < d. A straightforward implementation of Dy 5 has a com-
putational complexity of O((2¢ — 1)N2d), which would involve evaluating the £5-discrepancy for
billions of projections for d > 30. To mitigate this issue, the authors in [11] limit the summation to
smaller, randomly selected subsets of projections. In contrast, in this work we leverage the closed-
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Figure 1: Schematic of the MPMC model reproduced from [11]. First, random input points are en-
coded to a high dimensional representation. Second, the encoded representations are passed through
a deep GNN, where the underlying computational graph is constructed based on nearest neighbors
using the positions of the initial input points. Finally, the node-wise output representations of the
final GNN layer are decoded and clamped back into the unit hypercube.

form solution of the Hickernell £o-discrepancy from [35] that can be computed again in O(N2d)
instead of O((2¢ — 1)N2d) [36]. More concretely,
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where X, , is the k-th entry of X;, and {XZ(-S) N | is the projection of {X;}~ , onto [0, 1]!*I. This
enables very fast training in higher dimensions, minimizing the discrepancy over all projections.

3.2 Motion planning via Probabilistic Road Maps

In this work, the focus is on the efficiency of
sampling-based motion planning in the sense of
task success with respect to number of points .

sampled. Furthermore, for convenience in deal- ?: ‘S/”: {P}zune I)I(Wal}lg (SS )
ing with pre-trained sets of points of fixed 4: E« starty goal Y
number, we use a particular instantiation of 5- forallv € V do
6
7
8

Algorithm 1 ps-PRM Algorithm
1: S <+ Sample(NV)

the Probabilistic Roadmap (PRM) algorithm, Paear + Near(V \ {v},v,7n)
which we refer to as ps-PRM (for pre-sampled for all p € P,.,. do

PRM). This specific version of the PRM algo- : if CollisionFree(v, p) then
rithm is described in Algorithm 1. 9: E <+ EU{(v,p)} U{(p,v)}
10: end if

The algorithm begins by sampling N points ;. end for

from the entire space to form the set S. Next, 12: end for

we prune out milestones from the initial set S 13: return ShortestPath(Xun, Xgoals Vs E)
that do not fall in free space, keeping only valid
samples S, which are combined with the start
and goal {Xj, Xgoal} to obtain V. For each node v in V, the algorithm identifies nearby nodes
within a radius 7, with the set of such points denoted P,¢,. For each neighbor p in Py, the algo-
rithm checks for collision-free paths between v and p. If the path is free of collisions, a bidirectional
edge is added between v and p to the edge set E. Finally, the algorithm attempts to find a shortest
path from X t0 Xgoar and returns the path if one exists; otherwise, it indicates failure.

3.3 Theoretical guarantee

Next, we outline a theoretical justification of minimizing discrepancy as a means to improving effi-
ciency of sampling-based motion planning. To this end, we introduce another uniformity measure
known as dispersion, which is commonly used in assessing the efficiency of sampling-based motion



planning. Given a point set {X:} X, in [0,1]? and p > 1, the I,-dispersion is then defined as,
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Dispersion is closely related to discrepancy through the following inequality established in [37],

Do ({X7HL1) < Lo ((XFHE)Y,
with the £.-discrepancy. Based on this and following [38], one can provide a deterministic sam-
pling guarantee. Namely, using the PRM planning algorithm, assuming some mild assumptions are
satisfied (e.g., feasible path J-clearance), and choosing a radius 7y of the PRM algorithm based on
N samples according to,

ry = 20VdLo ({X3HY))7,
for some o > 1 and 7y satisfying conditions corresponding to the path J-clearance, one can guar-

antee that the cost of the returned path is within a factor of ﬁ of the optimal d-clear path. Clearly,
a low-discrepancy induces a guarantee of the resulting path to be close to the optimal d-clear path.

Note. The MPMC points are generated using the Hickernell £,-discrepancy loss, while our guar-
antee is related to the £.,-discrepancy. Though the relation between L., and Lo remains an open
question in discrepancy theory, empirical evidence suggests the two are very close to each other at
least for medium numbers of points [11]. Elsewhere, a clarification on D, dispersion used in the
referenced result from [38] and its relationship to grids of points is provided in Appendix A.3.

4 Experimental Evaluation

We evaluate our motion planning solution in simulation, using a variety of environments ranging
from 2D mazes to higher dimensional spaces and in a physical setting with a URS robot arm. We
assess performance according to the number of sampled points and success rate in finding a path.

4.1 Sampling methods

10°

The performance of our method is evaluated
against Uniform sampling and also against Hal-
ton [39] and Sobol [40] (for the 2-D maze
setup only) sequences, two widely-used low-
discrepancy Quasi-Monte Carlo methods (see
Appendix A.l1 for 2D-visualization). Sobol
sequences are designed to efficiently cover
spaces by minimizing gaps between sample
points, making them ideal for complex prob-
lems. Halton sequences generate points using Figure 2: Hickernell £o-discrepancy in d = 10
prime number bases, providing effective uni- for Uniform, Halton and MPMC sampling.

form coverage. However, both approaches suffer from correlation issues in higher dimensions [11].
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To obtain a statistical measure of performance across repeated runs, we randomize the selection of
the MPMC points from the pool of trained point sets (batches can contain 8, 16 or 32 point sets based
on the training instance). Similarly for the deterministic Halton and Sobol sequences, we initialize
a new sequence where the previous one ended. Hence, when sampling point sets of size N, we take
the points indexed from (¢ — 1) N + 1 to i x N for the i-th run, with ¢ taking integer values from 1
to the number of runs fixed for the experiment.

To illustrate differences between the sampling techniques considered in the context of this work, we
provide the Hickernell £o-discrepancies of point sets of sizes {128,256,512,1024} in 10 dimen-
sions in Figure 2. Halton sequences never surpass a 2 times advantage over Uniform sampling, and
can even offer worse discrepancy for smaller N. MPMC points, on the other hand, reach substan-
tially lower Hickernell £,-discrepancy, consistently close to 3 times lower than that of Halton and
achieving up to a 5-fold improvement over Uniform sampling for larger point sets.



Figure 3: Experiments of increasing task complexity: 2D mazes (top) with start (green) and goal
(orange) for basic navigation, followed by SE(3) (bottom left/center) for complex object rota-
tion/translation, and 5-D URS (bottom right) for constrained robotic manipulation.

4.2 Experiments

2-D maze. The goal is to navigate a series of three 2-D mazes depicted in Figure 3. These are
designed only to be increasingly difficult to solve for PRM with Uniform sampling before comparing
to the other sampling techniques to avoid introducing any bias favoring a specific scheme. The maps
are of size 640 by 480 and the agent is assumed to be a disk of radius 6 for collision checking. A
single start and end goal is considered and 50 planning attempts are run by level, number of sampled
points and sampling technique. The shortest path solver used is A* [41].

OMPL benchmarks All of the Uniform, Halton and MPMC sampling schemes are put to the
test on experiments from the popular Open Motion Planning Library (OMPL) [42]. The base code
PRM implementation is only modified to account for our fixed number pre-sampling. We ensure
sufficient compute time to reach failure and run 50 iterations per sampling method, per number of
points sampled and per scenario described below:

1. SE(3) rigid body puzzles. The Special Euclidean Group in 3 Dimensions SE(3) is composed
of a 3-D translational component and a 3-D rotational component. The latter is often conveniently
sampled in quaternion space, with uniform sampling on the 4D unit sphere manifold. In keeping with
standard practice, we evaluate samplers’ efficient coverage only on the translational 3-D Euclidean
space component (discussion on this point provided in Appendix A.4. Two puzzles, Cubicle and
Twistycool, are benchmarked from the OMPL. For the latter, we reduce the bounds to allow this
harder problem to be solved with the same /N values. Both examples can be visualized in Figure 3

2. d-D hypercube corridor. On the d-dimensional hypercube, the valid region is defined such that
there exists an index k with the following constraints: for all dimensions ¢ < k, the i-th coordinate
must be less than or equal to a threshold edge width A, and for all dimensions ¢ > k, it must be
greater than or equal to 1 — A. This results in a valid subspace that resembles narrow passageways
along the hypercube edges, leading from one corner of the hypercube to the diagonally opposite
corner. For dimension d € {2,3,10}, the value of the edge width is tuned to ensure a meaningful
comparison between samplers (respectively A € {0.1,0.2,0.37}).

3. 10-D kinematic chain. The experiment features a robot with multiple links in a 10-dimensional
configuration space. The robot must navigate through an environment with obstacles represented as
line segments. Initially, the robot’s first link is at zero radians, and subsequent links are arranged
with a specific angular offset. The goal is to reach a target configuration where the first link aligns
nearly with a desired orientation, while avoiding collisions with the environment and itself.



Figure 4: Demonstration of a motion plan on hardware. The goal is to reach into the box without
making contact.

URS robot arm The URS robot arm is a popular collaborative robot with a 6 degree of freedom
workspace. In this benchmark, our goal is to reach into a sideways box without contacting the
table or the box. We forgo an end effector and thus we do not utilize the last DOF of the robot
(which rotates the end effector and in this setting does not effect the workspace of the manipulator).
Simulation, sampling, and planning is implemented in the Klamp’t software package. We compare
our sampling method to sampling from the uniform distribution. For a visualization of the task in
simulation see Fig. 3. We also demonstrate our results on real hardware.

5 Results

5.1 2-D maze

The performance of the different sampling 100] — 1ot P— ]

techniques for all three levels of the 2-D mazes [ /77 A Faj O' o

are presented in Figure 5. On all three levels % s

and for all fixed number of points, MPMC of- & . X ﬁ 7

fers the best value per sampled point set sizeon £ . 7 o o

all but two instances (outperformed by Halton & / % o 8 Sobol

by 2% on level 1 with N = 32 and by Sobol , M Iy
64

by 8% on level 3 with N = 128). Indeed, 32
MPMC'’s efficiency superiority is all the more
established on the harder level, where it can Figure 5: Success rates on the 3 levels of 2-D
reach close to 90% with only 256 points sam- mazes versus the number of points sampled. Per-
pled, a feat that takes Halton and Sobol twice level results are grouped by color and the data by
the number of points to reach, and a perfor- sampler is identified by marker and line styles.
mance level Uniform sampling fails to reach even with 4 times that number.
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In fact, Uniform sampling is substantially less efficient as it requires sampling at least 4 times the
number of points of low-discrepancy methods to reach the 90% mark on all levels. Elsewhere, Sobol
and Halton sequences seem to offer comparable performance overall, with relative ranking seem-
ingly contingent on the level and number of points sampled. They often fail to meet the performance
of MPMC with significant margins (e.g. 34% success for Halton on level 1 with N = 64 against
MPMC’s 54%, under 64% for both Halton and Sobol on level 3 with N = 256 to MPMC’s 88%).

5.2 OMPL and URS benchmarks

The benchmarking success rates are provided in Table 1, along with the average number of valid
points sampled by each scheme and its standard deviation.

On the SE(3) Cubicle and Twistycool experiments, MPMC globally achieves the best performance,
although with a marginal advantage. This tightness of margins can be linked to the importance of
the SO(3) angle quaternion sampling which is done uniformly in all setups. Halton and Uniform
schemes appear to be relatively more contingent on the scenario and are harder to clearly rank.

However, MPMC outperforms both Uniform and Halton samplers more consistently and signifi-
cantly when used on all the samples’ components. Indeed, over the 2 and 3 dimensional hypercube



Table 1: Benchmark results on the OMPL suite and URS robot arm comparing performance in
terms of success rate (SR in %) versus N the number of points sampled {128, 256, 512,1024}. Also
provided are the mean and standard deviation of the number of valid milestones in each experiment
(denoted |V|)

. < . 128 256 512 1024
Experiment Space  Samp
SR (%) V| | SR (%) [V| | SR (%) V| | SR (%) V]
Uniform 0 56.4+5.0 0 1129+ 7.2 2 221.8 +13.6 26 412.6 £+ 60.8
Cubicle SE(3) Halton 0 57.4+34 0 112.3+4.8 4 221.1+8.9 36 382.4 +98.9
MPMC 0 58.8 +£3.3 0 112.3+ 3.6 10 221.2+14.5 46 367.4 +100.5
Uniform 8 89.2 +14.7 4 180.4 4+ 22.3 26 332.7+71.6 70 485.0 £+ 221.7
Twistycool SE(3) Halton 6 89.9 +10.8 16 171.4 £ 30.2 20 336.0 £ 63.0 56 584.1 +193.4
MPMC 10 89.5£11.5 8 175.2 £ 27.6 30 327.7+67.1 72 499.3 + 212.7
Uniform 24 15.8 +13.5 24 19.1 +24.1 44 56.4 £ 50.0 60 104.1 + 85.6
Hypercube R? Halton 24 79+11.1 36 19.2+23.5 36 47.0+48.9 36 67.5 £ 90.7
MPMC 48 154+124 60 31.6 £24.4 68 69.3 +£45.5 84 161.0 £ 71.0
Uniform 24 79+75 34 17.1+14.9 44 29.5+27.4 54 64.1 £51.5
Hypercube R3 Halton 20 5.3+6.5 32 15.0 £ 14.2 34 27.6 +27.3 28 42.44+52.3
MPMC 56 10.3+6.3 64 225+£12.7 76 40.6 £+ 22.6 96 103.1 £20.1
Uniform 2 7.0+£2.0 12 9.7+£25 62 17.7+£4.3 88 33.9+5.5
Hypercube R0 Halton 2 6.6£1.8 12 104+£23 56 17.7+£29 98 32.6+3.4
MPMC 0 6.3+ 1.7 16 10.7+2.4 80 189+1.9 100 31.1+29
Uniform 4 30.2+4.8 12 57.5£9.6 22 103.5 £ 26.3 54 172.5 £64.9
Kinematic Chain R0 Halton 2 30.0 £4.7 14 55.5£9.1 22 103.7£21.4 62 156.0 £ 64.5
MPMC 6 31.5+£4.3 24 51.8£7.5 26 102.3 +£21.5 60 161.7£71.9
Uniform 0 47.6+£5.8 10 922 +£738 6 184.3 £11.5 12 368.6 = 16.1
URS RS Halton 2 49.4+6.9 4 93.1£75 14 185.8 £10.8 18 369.2 £ 15.6
MPMC 6 49.1+3.0 31 97.4£3.5 75 181.4 £ 3.8 81 360.6 £4.3

examples, MPMC sampling solves around twice as many runs as its best competitor with 128 and
256 point regimes and maintains an advantage in the region of 50% with larger point sets.

The previous observation remains, to a solid extent, valid in higher dimensions. Although relative
performance gains are in multiple cases well reduced, MPMC sampling maintains top-performing
status. Furthermore, there remains instances where it offers large performance gains.

This is evident on the 10-D kinematic chain test, where MPMC reaches 24% success rate with 256
samples, compared to only 12% for Uniform and 14% for Halton. Similarly, a significant gap is
established between MPMC (80%) and its counterparts (Halton 56% and Uniform 62%) with 512
points on the 10-D hypercube benchmark. In the realistic scenario of the URS planning task (5-D),
MPMC consistently surpasses Uniform and Halton sampling (3 to 8-fold higher success rates). We
also demonstrate that our approach is readily deployed to real hardware (Figure 4).

6 Discussion

This work introduces the application of MPMC neural network point set generation in motion plan-
ning, offering a novel, unbiased approach to sampling. Our proposed method includes a custom
training objective specifically designed for high-dimensional configuration spaces, ensuring that the
generated points are optimized for complex planning tasks. Moreover, we rigorously show that
MPMC point sets offer a tighter upper bound on the distance from the optimal path.

Through extensive experiments on PRM benchmarks, we demonstrate that our method signifi-
cantly improves planning efficiency over commonly used sampling methods, especially in high-
dimensional and challenging environments. Furthermore, we validate the real-world applicability
of our technique by successfully implementing it on a URS robot arm, highlighting its potential for
deployment in practical robotic systems.



Limitations and future work

One limitation of our approach is the need to retrain the MPMC model for each specific number
of points IV and dimensionality d to ensure optimal performance. This retraining requirement can
be computationally intensive, particularly for applications where the configuration space frequently
changes. Future work will focus on refining the neural network architecture and training procedure
to achieve generalization across both IV and d, reducing the need for retraining and making the
method more flexible across different planning scenarios. Possible avenues to mitigate this limitation
are discussed in Appendix A.2.

Moreover, while we have demonstrated the benefits of MPMC within the PRM framework, future
research will explore the potential advantages of integrating this technique into more sophisticated
sampling-based planners, potentially extending its impact across a broader class of planning algo-
rithms. Finally, an exciting avenue for future exploration lies in adapting our technique to compute-
critical applications, such as acrobatic flight or high-speed driving, where planners require real-time
performance and could greatly benefit from efficient, high-quality sampling methods.
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A Appendix
A.1 2D point set visualizations

Figure 6 depicts point sets generated by the various sampling schemes used in the 2D-maze exper-
iments namely, Uniform, MPMC, Halton, and Sobol for different numbers of points. Uniformly
sampled points exhibit large gap regions for all numbers of points. The sequential constructions

of Halton and Sobol are more evenly spread but are surpassed in discrepancy terms by the learned
MPMC points.
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Figure 6: Points sampled on the unit square for N € {32, 64, 128,256} and sampling distributions
among Uniform, Halton, Sobol, and MPMC.
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A.2 MPMC point (re)generation

The solution as presented in this work requires retraining a GNN point cloud for each (N, d) pair.
Indeed, we focus on optimized point sets (not sequences) to maintain the clearest link between low-
discrepancy sampling and improved PRM planning efficiency. There are, however, many practical
solutions for mitigating this practicality obstacle and adapting this approach to sequential point
generation:

1. For sequences over the number of points [N, we propose training a large MPMC point set
that can be transformed into a low-discrepancy sequence using a greedy approach, i.e.,
successively adding points that minimize the discrepancy over all choices in the point set.
This further obviates the need for pruning.

2. Inductive graph learning is another solution to N generalization, where a GNN can be
trained to perform across a varying range of number of nodes (i.e., points). This approach
has proven its efficacy in many other contexts.

3. To deal with varying d, a high dimensional point cloud can be used for lower dimensional
problems via canonical projection of the MPMC points. Indeed, it has been shown in [11]
that MPMC points yield low-discrepancy in particular for lower dimensional projections of
the point sets.

A.3 Dispersion and grids

Sukharev grids are structured sampling patterns that achieve uniform coverage by placing one point
at the center of each cell in an evenly spaced Cartesian grid. In d dimensions, the domain [0, 1]¢ is
divided into k equal intervals along each axis, producing k¢ hypercubes, and one sample is placed at
the center of each hypercube. Sukharev grids are D -dispersion optimal when N = k¢, with k an
integer. For arbitrary IV, however, they can be wasteful: for example, with N = 100 and d = 3, the
best the grid can do is 4 x 4 x 4 = 64 points on the lattice, leaving 36 points that do not contribute to
an improvement in dispersion. This inefficiency becomes increasingly severe in higher dimensions.

A.4 The case of non-Euclidean manifolds

MPMC can be extended to general manifolds by developing appropriate objective functions. As
an example, MPMC can be extended to S™ by minimizing the total euclidean distance between
all pairs of points. However, a general framework of MPMC on manifolds will require a separate
investigation to measure the best approach and performance gains in such cases.
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