Code prompting: A Systematic Study of How to Improve Program-based
Prompting for Large Language Model Reasoning

Anonymous ACL submission

Abstract

Large language models (LLMs) have scaled
up to unlock a wide range of complex rea-
soning tasks with the aid of various prompt-
ing methods. However, previous prompting
methods generate natural language intermedi-
ate steps to help reasoning, which can cause
imperfect task reduction and confusion due to
the ambiguity and sequential nature of natural
language. To mitigate such limitations, Gao
et al. (2023); Chen et al. (2022) have proposed
program-based prompting, triggering code as
intermediate steps. In this paper, we perform a
systematic study of the approach which we re-
fer to as “code prompting”. We conduct experi-
ments on both symbolic and arithmetic reason-
ing datasets regarding both zero-shot/few-shot
scenarios, whether to employ an external inter-
preter for code execution or use the LLM itself
instead, and auxiliary prompting techniques to
facilitate reasoning including “self-debugging”,
“comments”, “equation instruction” and “elim-
ination of irrelevant information”. To further
understand the performance and limitations of
code prompting, we perform extensive ablation
studies and error analyses. We also consider the
ensemble of code prompting and CoT prompt-
ing to combine the strengths of both.

1 Introduction

Recent years have seen huge revolutions in the
field of Natural Language Processing regarding
the shockingly fast development of large language
models (LLMs) (Brown et al., 2020; OpenAl, 2023;
Touvron et al., 2023; Zhang et al., 2022a; Thoppi-
lan et al., 2022; Chowdhery et al., 2022; Raffel
et al., 2020). According to Qin et al. (2023); Ope-
nAl (2023), LLMs have shown certain levels of
the ability to solve complex reasoning tasks, with
the scaling up for the model size (Kaplan et al.,
2020). Besides the size of LLMs, how to prompt is
crucial to the reasoning ability. A large number of

works have proposed different prompting methods
to facilitate LLM reasoning by generating natural
language intermediate steps before the final answer
and have enhanced the reasoning ability of LLMs
to a great extent (Wei et al., 2023; Zhang et al.,
2022b; Kojima et al., 2023; Zhou et al., 2023; Fu
et al., 2023; Khot et al., 2023; Press et al., 2022).
However, there still remain limitations. For exam-
ple, they may fail to plan the whole process of solu-
tion ahead, which is likely to result in unreasonable
task reduction. In other words, the “step” can be
too big for the LLM to stride over. In Figure 1 (top),
we show a case where the LLM is supposed to con-
catenate the last letters of the given words. CoT
prompting leads the LLM to (1) first extract the last
letter of each word and (2) then concatenate all the
letters together. However, the second step may be
too difficult for the LLM with the number of letters
increasing, resulting in wrong answers (Zhou et al.,
2023).

To overcome the difficulties, recent works (Gao
et al., 2023; Chen et al., 2022; Cheng et al., 2023)
have tried to facilitate complex reasoning in LLMs
with code as intermediate steps, which we refer
to as “code prompting” in the rest of the paper.
Code prompting is generally a two-stage method
with the pipeline shown in the bottom of Figure 1,
where LLMs first generate a piece of code, and
then 1) offload the solution process to an external
interpreter or 2) follow the code to generate the
final answer by themselves. Gao et al. (2023); Chen
et al. (2022) have pointed out that offloading the
second stage to an interpreter greatly enhances the
LLM reasoning performance. In this paper, we
also study the potential of LLMs to “execute” the
code generated in the second stage. As a general-
purpose tool, code is machine-executable, LLM-
producible, and can describe flexible computation
processes. Code can work as a mind map for the
LLM and reduce the task into sub-tasks represented
by separate operations in the code. As the separate

Chain-of-Thought Prompting

1. The last letter of “weapon” is “n” .

[T}

4. The last letter of “loyalty” is “y”.
5. Concatenating these letters together, we get “ney".
Therefore, the answer is “ ney”. ¥

Here's the Python code to concatenate the last letters of the given
words:
words = [“apple”, “banana”, “cherry”, “date”, “elderberry”]
result = "
for word in words:
result += word[-1]
print(result)

Q: Concatenate the last letters of the given Language
words: “weapon, reasonable, thin, loyalty”. Model —
A: Let’s think step by step.
Code Prompting
Generate python code to concatenate the Language N
last letters of the given words. Model
Stage 1
p
Generate python code to concatenate the Stage 2
last letters of the given words.
Here's the Python code to concatenate the
last letters of the given words:
words = [“apple”, “banana”, “cherry”,
“date”, “elderberry”
_ Ty 1 | , Language _ |
for word in words: Model
result += word[-1]
print(result)
Q: “weapon, reasonable, thin, loyalty”
A: Let’s think step by step. Print all the
intermediate variables.
. J

Therefore, the answer is “neny”.
. -

words = [“weapon”, “reasonable”, “thin”, “loyalty"]
result = "
for word in words:
last_letter = word[-1]
result += last_letter
print(f“Word: {word}, Last Letter: {last_letter}, Result: {result}")
print(result)
Output:

Word: weapon, Last Letter: n, Result: n
Word: reasonable, Last Letter: e, Result: ne
Word: thin, Last Letter: n, Result: nen
Word: loyalty, Last Letter: y, Result: neny

J

Figure 1: The pipelines of zero-shot CoT prompting (above) and zero-shot code prompting (below). Left: input of
LLM (prompt + previous generation), right: generation by LLM. Texts highlighted in orange are instructions; texts

highlighted in blue are the code generated by the LLM.

operations in code are often easy for LLMs, task
reduction greatly facilitates LLMs to solve complex
reasoning problems step by step by themselves.

Previous works have initially demonstrated the
power of code prompting, but there are still some
problems: for example, for which tasks it is more
suitable, how to improve its performance on spe-
cific problems, etc. In this paper, we follow the
works and further explore the code prompting
method. We perform a systematic study of code
prompting from the following perspectives: (1)
tasks calling for different reasoning abilities, (2)
zero-shot or few-shot prompting, (3) the potential
of self-contained code executing ability of LLM,
and (4) some auxiliary prompting tricks including
self-debugging, writing comments, etc.

We experiment on both symbolic and arith-
metic reasoning datasets and show that while code
prompting generally outperforms CoT prompting,
the performance gap in symbolic ones is much
greater than in arithmetic ones. That is, code per-
forms better on symbolic reasoning tasks. Be-
sides, we investigate into both zero-shot and few-
shot settings, showing that zero-shot code prompt-
ing with auxiliary prompting tricks is competitive
with current few-shot methods, including few-shot

CoT (Wei et al., 2023) and PAL (Gao et al., 2023).
Moreover, besides calling an external Python Inter-
preter to execute the code like previous work, we
provide another option of letting the LLM itself to
generate the final answer according to the code step
by step. We show that even without the executor,
code prompting still matches or even exceeds CoT
prompting in both symbolic and arithmetic tasks.
For the feasibility of auxiliary prompting tricks,
we dig into the failure cases of code prompting
and identify several key limitations of code prompt-
ing, based on which we propose customized exten-
sions to enhance its performance, including self-
debugging, comments, elimination of irrelevant in-
formation and equation instruction. We conduct
detailed ablation study to show their effects. More-
over, we find out that code prompting and CoT
prompting lead the LLM to think from different
angles, suggesting a combination of both methods,
which achieves 87.95% accuracy (+6.37% from
few-shot CoT) on GSM8K.

Overall, in this paper, we systematically study
the reasoning ability of code prompting across dif-
ferent settings and tasks. The key contributions
over previous works can be summarized as follows:

LLM self-contained. Our work for the first

time explored the self-contained reasoning ability
of LLMs based on code prompts, while previous
works all demonstrate the power of code prompting
based on code interpreters.

Performance. We improve both zero- and few-
shot abilities of code prompting. We first show that
zero-shot code prompting could match few-shot
methods like few-shot CoT (Wei et al., 2023) and
PAL (Gao et al., 2023).

Auxiliary prompting tricks. We identify gen-
eral limitations of code prompting through detailed
error analyses. Besides, we show that code prompt-
ing can be enhanced by simple auxiliary prompting
techniques specific to the limitations.

Ensemble. We explore the ensemble of code
prompting and CoT prompting to combine the
strengths of both, showing great performance gain.

2 Related Work

Prompting. Various prompting methods have
emerged to boost LLM reasoning (Wei et al., 2023;
Zhang et al., 2022b; Kojima et al., 2023; Zhou
et al., 2023; Fu et al., 2023; Khot et al., 2023;
Press et al., 2022). Classified based on whether
specific exemplars are provided, prompting meth-
ods can be divided into zero-shot prompting and
few-shot prompting. For example, CoT prompt-
ing has a zero-shot version (Kojima et al., 2023)
and a few-shot version (Wei et al., 2023). Few-
shot prompting calls for manually constructed task-
specific demonstrations, so it is more costly. In
this paper, we investigate in both zero-shot and
few-shot versions of code prompting. Existing
prompting methods can also be divided into single-
step prompting and multi-step prompting methods.
CoT prompting (Kojima et al., 2023; Wei et al.,
2023) is a classic single-step prompting method.
Least-to-most prompting introduced by Zhou et al.
(2023) is a multi-step prompting method, which
first divides a question into several sub-questions
and then guides the LLM to solve each question
sequentially. Despite its strong performance, least-
to-most prompting is limited to a few-shot version
and requires hand-crafting of task-specific demon-
strations. Thus, it is less general than CoT and code
prompting.

Program-aided reasoning. Prior works have
shown that programs generated by LLMs may fa-
cilitate reasoning (Gao et al., 2023; Chen et al.,
2022; Chowdhery et al., 2022). We follow the
work and dig deeper into code prompting: 1) Gao

et al. (2023) (PAL) proposed a few-shot prompting
method, while we investigate into both zero-shot
and few-shot code prompting. We show that zero-
shot code prompting matches or even exceeds PAL
in arithmetic reasoning tasks. Besides, we improve
the few-shot performance too. Although (Chen
et al., 2022) also studied the zero-shot setting, its
performance is still far from the few-shot method
without auxiliary prompting methods we propose
in §5. 2) We offer another option on the second
stage of final answer generation, namely directly
asking LLLM to generate the final answer according
to the code, other than calling a Python interpreter
as in Gao et al. (2023); Chen et al. (2022). Our
experiments on using LLM in the second stage
further prove that code prompting indeed assists
reasoning in LLM even without executing the code.
Although Gao et al. (2023) also conducted experi-
ments without an external interpreter, they instruct
the LLM to generate the answer directly after gen-
erating the code. Instead, we instruct the LLM to
follow the code step by step to generate the final
answer and boost the performance to a large extent.
3) We discuss some key limitations and insights of
code prompting through error analysis, based on
which we propose several highly useful extensions.
Besides, they help us understand the power of code
prompting better and motivate us to combine CoT
and code prompting.

LLMs with external tools. Code prompting has
an option to call a Python interpreter as an exter-
nal tool to assist the LLM to complete the tasks.
The concept of augmenting LL.Ms with external
tools has drawn much attention (Khot et al., 2023;
Cheng et al., 2023; Press et al., 2022). A similar
work (Cheng et al., 2023) also uses programs to
assist LLM reasoning. However, they focus on
generating SQL or SQL-like programs to deal with
questions of reasoning with tables. Besides, to im-
prove the code generation, a recent work (Chen
et al., 2023) introduces a method of instructing
LLMs to debug their generated program with the
help of feedback from a code interpreter. In our
work, we equip code prompting with a similar tech-
nique, which we call “self-debug” in the rest of the
paper. However, we consider reasoning tasks while
Chen et al. (2023) focuses on tasks of text-to-code
or code-to-code generation.

3 Code Prompting

Code prompting guides LLMs to solve a complex
problem in two stages:

1. Code Generation. In the first stage, the prompt
asks the LLM to generate Python code to solve
the problem. We test on both zero-shot and few-
shot prompting. The zero-shot prompt is simply
“Generate python code to { task description }.”.
The few-shot prompt consists of exemplars of
questions followed by corresponding code.

2. Based-on-code Solution. The second stage is
for solving the problem given the code gener-
ated in the first stage. We compare two different
methods: 1) LLM self-contained: we ask the
LLM to generate step-by-step solution follow-
ing the code. 2) Interpreter: we directly call a
Python interpreter to execute the code.

The settings in these two stages are combinato-
rial so that there are four different pipelines, which
we will all compare in §4. An example of the
pipeline in the task of last letter concatenation (Wei
et al., 2023) is shown in Figure 1, where the zero-
shot code prompt and the LLM self-contained solu-
tion are used. In the first stage, we use the zero-shot
prompt to guide the LLM to output a piece of code
for the task. In the second stage, the LLM is given
the generated code along with a concrete question.
Here we ask the LLM to stimulate code execution
step by step.

Self-debugging The “self-debug” technique can
be used to improve code generation ability of
LLMs (Chen et al., 2023). It is a general tech-
nique to improve code generation and has become
a default setting in GPT-4. Here, if we use a Python
interpreter in the second stage, we can feed the gen-
erated code (with bugs) and the bug report back
to the LLM to fix the bugs by the LLM itself. We
adapt the technique to help LLMs to generate exe-
cutable code. The pipeline of the “self-debugging”
module is shown in Figure 2.

4 Experiments

4.1 Setup
Tasks

We conduct experiments on 7 popular datasets in-

volving both symbolic and arithmetic reasoning.
For symbolic reasoning, we consider two tasks

introduced by Wei et al. (2023) and widely used

in Kojima et al. (2023); Zhou et al. (2023); Zhang
et al. (2022b):

Last letter concatenation. The task asks LLMs
to concatenate the last letters of given words. We
follow Zhou et al. (2023) to construct word lists
by randomly selecting words from five thousand
words of the Wikipedia frequency list. We con-
struct word lists of lengths 4, 8 and 12. For each
length, we test the prompting methods on 500 word
lists, which form a test dataset of 1,500 samples.

Coin flip. The task requires LLMs to answer
whether a coin is still heads up after several people
flipped or did not flip it. The number of people
varies from 3 to 5. For each certain number of
people, we construct 500 questions, which form a
test dataset of 1,500 samples.

For arithmetic reasoning, we consider five
commonly used datasets: (1) SingleEq (Koncel-
Kedziorski et al., 2015), (2) AddSub (Hosseini
et al., 2014), (3) MultiArith (Roy and Roth, 2016),
(4) SVAMP (Patel et al., 2021), (5) GSM8K (Cobbe
et al., 2021). Among the datasets, SingleEq and
AddSub only take single-step calculation, while
MultiArith, GSM8K and SVAMP contain harder
math problems that require multi-step reasoning.
See Appendix A.2 for more details of each dataset.

Baselines

In symbolic reasoning tasks, we consider zero-shot
standard prompting (only the question), zero-shot
and few-shot CoT prompting (Kojima et al., 2023;
Wei et al., 2023) as baselines. For code prompting
methods, we only consider zero-shot code prompt-
ing because the “groundtruth” code for each ques-
tion is basically the same so that the exemplars in
few-shot code prompting may leak the answer.

In arithmetic reasoning tasks, we consider zero-
shot and few-shot CoT prompting (Kojima et al.,
2023; Wei et al., 2023) as the baseline for zero-shot
and few-shot code prompting.

For all the prompt methods, we use the model
gpt-3.5-0301 and set the temperature to O unless
otherwise specified.

Methods

As is shown in Figure 1, the method prompts the
LLM to first generate task-specific code and then
follow the code to generate the final answer. For
the first stage, we study both the zero-shot and few-
shot prompting. For the second stage, we provide
two options for how to generate the final answer:
+ LLM Self-contained: we use the LLM itself

Generate python code to answer the question.

Q: Marie ordered one chicken meal that costs $12, 5 packs of
milk that costs $3 each, 4 apples that cost $1.50 each, and
some boxes of pizza. Marie paid a total of $50. How many
boxes of pizza did Marie order if each box costs $8.50?

!
Python
Interpreter

50 = chicken_meal + milk_packs + apple + 8.5 * x

A

SyntaxError: cannot assign to literal

['
Language Language
Model Model
v '

chicken_meal = 12

milk_packs = 3 * 5

apple = 1.5 * 4

total = chicken_meal + milk_packs + apple + 8.5 *
where x is the number of boxes of pizza

we need to find the value of x

total cost is $50

so, we can write the equation as:

50 = chicken_meal + milk_packs + apple + 8.5 *

solving for x

X = (50 - chicken_meal - milk_packs - apple / 8.5

chicken_meal = 12
milk_packs = 3 * 5
apple = 1.5 * 4

initialize x to @
X =0

total = chicken_meal + milk_packs + apple + 8.5 * x
where x is the number of boxes of pizza

we need to find the value of x

total cost is $50

so, we can write the equation as:

50 = chicken_meal + milk_packs + apple + 8.5 * x
solving for x

print("Marie ordered". x. "boxes of pizza." X = (50 - chicken_meal - milk_packs - apple / 8.5
L print("Marie ordered" int(x "boxes of pizza."
|
Figure 2: The pipeline of “self-debugging”.
last letter concatenation coin flip

=4 1=8 1=12 flips=3 flips=4 flips=5
zero-shot standard 74 2.0 2.6 22.6 17.2 16.8
zero-shot CoT 71.0 27.8 2.8 86.2 71.8 67.8
few-shot CoT 94.6 69.6 39.8 99.8 99.8 99.0
zero-shot code + LLM self-contained 97.2 854 75.6 86.2 88.8 85.8
zero-shot code + interpreter 994 99.8 99.8 99.8 99.8 99.4

Table 1: The accuracy (%) of different prompting methods on symbolic reasoning tasks. The number of words to
concatenate (ranging from 4 to 12 with an interval of 4) and the number of flips (ranging from 3 to 5) are listed.

to perform reasoning; + Interpreter: we employ
a Python interpreter to execute the code and take
the output as the answer. We list all the prompt
mentioned above in Appendix B (symbolic tasks)
and Appendix D (arithmetic tasks).

4.2 Symbolic reasoning or arithmetic
reasoning

Our first observation is that the code prompting
performs better in tasks involving symbolic rea-
soning. For symbolic reasoning, as shown in
Table 1, even without a Python interpreter, code
prompting greatly outperforms CoT prompting in
the zero-shot setting, while the interpreter can fur-
ther enlarge the gap. Zero-shot code prompting
performance can match or even surpass the few-
shot CoT. On the contrary, code prompting and
CoT prompting generally show comparable perfor-
mance in arithmetic reasoning, as shown in Table 2.

Moreover, in the symbolic reasoning, the per-
formance gain increases with the complexity of the
questions, implying that code prompting gener-
alizes better than CoT. The performance of CoT

prompting decreases rapidly as the task becomes
harder (e.g., longer word lists or bigger number of
flips), while code prompting helps the LLM to com-
plete tasks of various difficulties. The performance
gain grows from 26.2% to 72.8% in last letter con-
catenation as the length of word lists increases from
4 to 12, and in the task of coin flip, the performance
gain rises from 0.0% to 18.0% with flip times in-
creasing from 3 to 5. However, we do not observe
the same phenomenon in arithmetic reasoning
tasks. Instead, code prompting performs worse
than CoT when the tasks become harder. Shown
in Table 2, in more easier (single-step) datasets
SingleEQ and AddSub, the code prompting can
ourperform CoT slightly, while in harder datasets
MultiArith and GSM8k, CoT prompting is better.
We also experiment on questions in GSM8K with
various difficulties in Figure 4, where the gap be-
tween CoT and code prompt is larger in harder
questions.

We summarize the reason behind the outstanding
performance of code prompting in symbolic tasks
as abstraction and simplification. In both symbolic

SingleEq AddSub SVAMP MultiArith GSMS8K

zero-shot CoT 93.11 86.08 78.20 96.67 81.58

zero-shot code (+self-debug) 97.64 89.62 79.40 96.67 77.40
few-shot CoT 95.47 90.63 77.10 98.50 82.11

few-shot code + LLM self-contained 95.07 88.86 75.60 96.00 73.84
few-shot code + interpreter (PAL) 97.64 89.11 79.50 97.00 79.45
few-shot code + interpreter (+self-debug) 97.64 90.13 79.60 97.00 79.90

Table 2: The accuracy (%) of different prompting methods on arithmetic reasoning.

tasks, code prompting endows the LLM the abil-
ity to extract the “loop” nature of the question and
leverages it explicitly in the code using “for” or
“while” syntax in Python language. In other words,
code simplifies the solution. However, arithmetic
tasks do not have such features that may help sim-
plify the solution.

4.3 Zero-shot or few-shot

In symbolic reasoning, zero-shot code (+ inter-
preter) outperforms few-shot CoT prompting in
both tasks, and zero-shot code (+ LLM self-
contained) performs better in last letter concatena-
tion. Overall, zero-shot code prompting is highly
competitive with few-shot prompting methods
in symbolic reasoning.

In arithmetic reasoning tasks, the performance
gap between zero-shot and few-shot CoT prompt-
ing is wider than that between zero-shot and few-
shot code prompting, reflecting that code prompt-
ing is less sensitive to the number of exemplars.
This is crucial since few-shot scenarios call for
the handcraft of task-specific demonstrations, and
code prompting handles this with less sensitivity to
zero-shot or few-shot settings.

4.4 With or without interpreter

In Gao et al. (2023), the authors state that LLLMs
(specifically, Codex (Chen et al., 2021)) show little
ability to return correct results of a piece of code.
However, as show in Table 3, we observe that the
self-contained code executing ability of LLM
can be stimulated by prompting the LLM “run”
the code step by step instead of directly asking
for the final answer right after the code as in Gao
et al. (2023). Although LLMs show code executing
ability in both symbolic and arithmetic reasoning
tasks, the external Python interpreter greatly boosts
the performance of code prompting.

Method Model | cogex ChatGPT
LLM direct 232 43.8
LLM step-by-step / 73.8
interpreter 72.0 79.5

Table 3: GSMS8K accuracy (%) of few-shot prompt-
ing methods including LLM direct (instruct the LLM
to directly generate the final answer after the code
in one step), LLM step-by-step (i.e. code + LLM
self-contained) and code + interpreter adapted on
Codex (Chen et al., 2021) and ChatGPT. Data of Codex
is from Gao et al. (2023).

1.00

o
©
o

few-shot code w/ self-debug

accuracy
o o o
=] 0 o
3 & 8

°
N
a

0.70

SingleEq GSM8K
Figure 3: Accuracy of zero-shot and few-shot code
prompting w/ or w/o “self-debugging” on arithmetic
datasets.

AddSub MultiArith SVAMP

4.5 With or without self-debugging

We study the effects of “self-debugging” described
in §3. Figure 3 shows the performance of code
prompting with or without self-debugging. This
technique can indeed improve the reasoning accu-
racy, especially for the harder questions. The per-
formance on harder benchmarks is more likely
to benefit from self-debugging, as more complex
problems are more likely to trigger bugs in code.

5 Auxiliary Prompting Tricks

In this section, we point out some general limi-
tations of code prompting through detailed error
analyses, including sensitivity to irrelevant infor-
mation and lack of the ability to solve equations.
Based on the limitations, we propose several sim-
ple yet helpful auxiliary prompting tricks and show
their feasibility through ablation studies.

SingleEq AddSub MultiArith SVAMP GSMS8K

Method

W/o comments (PAL) 97.64
W/ comments (end) 97.44
W/ comments (beginning) 96.85

89.11 97.00 79.50 79.45
89.87 97.33 79.60 80.21
89.87 95.33 79.90 77.71

Table 4: Accuracy (%) of methods of few-shot code prompting w/o comments or w/ comments added at different
locations of each line of the code. “Self-debugging” is not used here.

0.90 1.0

code
0.85 code+com
CoT

0.80

accuracy
°
3
Il

0.70

0.65

0.60 0.5
<=3 4 >=6 0-20

5 20-40 40-60 60-80 >=80
step num word num

Figure 4: Accuracy of few-shot code prompting w/ or
w/o comments and CoT prompting on questions with
various difficulties. The left figure use the number of
steps of the rationales as the metric; the right one use
the number of words of the rationales as the metric.

5.1 Comments

Comments in code are informative natural language
that may help to hint at the semantics and the role
of a certain part of the code. So we investigate
into the effects of comments in code prompting.
As shown in Table 4, adding comments slightly
improves the performance.

Does where we add comments matter? We ex-
periment on code prompting with comments added
either at the beginning or at the end of each line of
code. As shown in Table 4, in most cases, adding
comments at the end is a better choice. This may
be due to humans’ habit of writing code. We tend
to add comments specifically describing each line
of code at the end of each line, thus the training
corpus contains more code samples with comments
at the end of each line.

Do comments help harder or easier questions?
We experiment on GSMS8K to find out where the
performance gain of adding comments comes from.
We consider the number of steps and the number
of words in the provided answer as two notions of
difficulty. According to Figure 4, the performance
gain on the hardest questions are the largest.

Method AddSub
zero-shot code 89.62
zero-shot code,iy 91.65
few-shot code 89.87
few-shot code 91.39

Table 5: Accuracy (%) of code prompting w/ or w/o
“irrelevant information” on AddSub.

Method GSMSK
zero-shot code 77.40
zero-shot code yequ(comments) 78.09
zero-shot code equ(sympy) 78.92

Table 6: Accuracy (%) of code prompting w/ or w/o
“equation instruction” on GSM8K.

Method GSMSK
few-shot CoT 81.58
few-shot code 79.68
CoT vote 87.49
code vote 83.85
CoT + code vote 87.95

Table 7: Accuracy (%) of ensemble methods on
GSMSK.

5.2 [Elimination of irrelevant information

In AddSub, the generated code tend to define irrel-
evant variables that appear in the question but are
not useful for the final result, thus disturbing the
reasoning process. See Appendix E for examples.
The observation suggests code generation by LLMs
can be easily distracted by irrelevant information.
. This motivates elimination of irrelevant informa-
tion (+irr). We add an instruction “There may be
irrelevant information in the question. If you find it,
ignore it.” at the end of the prompt. Table 5 shows
that despite the simplicity, it effectively improves
the performance.

5.3 Equation instruction

In GSM8K, the LLM struggles to solve equations
in code. When facing an equation, the LLLM tends
to solve it in the comments or directly lists the
equation in the code, which may easily result in
mistakes. See examples in Appendix E. To mit-
igate such limitations, we provide an instruction
on solving equations in Python using the package
sympy. See Appendix D for more details. We also
experiment on directly asking the LLM to solve
equations in the comments. Table 6 shows that
the best choice is to teach the LLLM to use certain
Python packages to solve equations.

5.4 Ensemble of CoT and code prompting

In GSMS8K, we find out through statistics that the
error overlap of code prompting and CoT prompt-

ing is very small, suggesting that the two prompt-
ing methods lead LLMs to think from different
angles (Appendix E). So we consider the ensemble
of CoT prompting and code prompting based on
voting. Here we also adapt the “comments” and
“equation” tricks for code prompting. For each
question, if both prompting methods generate the
same answer, we accept the answer as the final an-
swer; otherwise, we set the temperature to 0.7 and
ask the LLM to generate n answers following each
prompting method. Then we vote among the 2n
answers to give the final answer. We also compare
voting methods whose 2n answers are generated
from the same prompting method. As shown in Ta-
ble 7, ensemble methods outperform the baselines
significantly. Further, the ensemble of two prompt-
ing methods surpasses that of only one prompting
method votes. See Appendix D for details.

answer 1
answer 2
0 10 answer 3
it answer 4
°
>

code w/ amb code w/o amb CoT w/ amb CoT w/o amb

votes

code w/ amb code w/o amb CoT w/ amb CoT w/o amb

votes

code w/ amb code w/o amb CoT w/ amb CoT w/o amb

votes

code w/ amb code w/o amb CoT w/ amb CoT w/o amb

votes

code w/ amb code w/o amb CoT w/ amb CoT w/o amb

Figure 5: Answer distribution on questions w/ and w/o
ambiguity.

5.5 Conclusion

Above, we propose some simple auxiliary tricks
which can improve the performance of code
prompting further. The “comments” and “ensem-
ble” tricks are independent of the specific task and
are always available as an option. The “irrelevant
information” and “equation” tricks are a kind of
targeted remedies, requiring an analysis of the mis-
takes in specific tasks and the provision of targeted

prompts accordingly. However, although the spe-
cific prompts vary, the effectiveness of this kind of
feedback is generally moderate, demonstrating the
room for further improvement in code prompting.

6 Discussion

Disambiguation. One of the most different prop-
erty between code and natural language is the am-
biguity, where the semantic of code is generally
clearer than natural language.

On one hand, the general semantic of words in
CoT (which could be different from this current
semantic usage of the word) sometimes mislead the
steps, while the code can avoid the risk by giving
clearer instructions. See examples in Appendix C.

On the other hand, code prompting can detect
some confusing or imprecise expressions in ques-
tions. We find out that code prompting is more sen-
sitive to ambiguity in the question. See Appendix E
for examples in MultiArith. This indicates that
code prompting has the potential to discover ambi-
guity in a question. Here we use 5 cases where the
questions present ambiguities and we can manually
fix them. We test few-shot code prompting and
CoT prompting on both questions with and with-
out ambiguity. For each question, we generate 15
answers by code prompting and CoT prompting
respectively with the temperature of the LLM set
to 0.7. Figure 5 shows the histogram of answers. It
is evident that ambiguity disturbs code prompting,
while CoT prompting is less sensitive to ambiguity.
We may leverage this feature to detect ambiguity
in questions.

7 Conclusion

We study code prompting systematically. We con-
duct comprehensive experiments on 7 benchmarks
involving both symbolic and arithmetic reason-
ing. For tasks calling for different reasoning abil-
ities, we show the advantage of code prompting
lies mostly in symbolic tasks instead of arithmetic
tasks. Besides, we first show that zero-shot code
prompting matches few-shot methods with the aid
of auxiliary prompting tricks. Moreover, we ex-
plore the potential of self-contained code executing
ability of LLMs for the first time. Finally, extensive
experiments and analyses verify the effectiveness
of our auxiliary prompting tricks including self-
debugging, comments, equation instruction and
elimination of irrelevant information.

8 Limitations

We only investigate in a specific programming
language Python and a specific language model
ChatGPT. The comparison between multiple pro-
gramming languages and between various language
models are left for future work.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug.

Zhoujun Cheng, Tianbao Xie, Peng Shi, Chengzu
Li, Rahul Nadkarni, Yushi Hu, Caiming Xiong,
Dragomir Radev, Mari Ostendorf, Luke Zettlemoyer,
Noah A. Smith, and Tao Yu. 2023. Binding language
models in symbolic languages.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2304.05128
http://arxiv.org/abs/2210.02875
http://arxiv.org/abs/2210.02875
http://arxiv.org/abs/2210.02875

David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Yao Fu, Hao Peng, Ashish Sabharwal, Peter Clark, and
Tushar Khot. 2023. Complexity-based prompting for
multi-step reasoning.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 523-533, Doha, Qatar. Association for Com-
putational Linguistics.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu,
Kyle Richardson, Peter Clark, and Ashish Sabharwal.
2023. Decomposed prompting: A modular approach
for solving complex tasks.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2023. Large lan-
guage models are zero-shot reasoners.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585-597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1152-1157, San
Diego, California. Association for Computational
Linguistics.

OpenAl. 2023. Gpt-4 technical report.

10

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems?

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,
Noah A. Smith, and Mike Lewis. 2022. Measuring
and narrowing the compositionality gap in language
models.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver?

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Subhro Roy and Dan Roth. 2016. Solving general arith-
metic word problems.

Romal Thoppilan, Daniel De Freitas, Jamie Hall,
Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du,
YaGuang Li, Hongrae Lee, Huaixiu Steven Zheng,
Amin Ghafouri, Marcelo Menegali, Yanping Huang,
Maxim Krikun, Dmitry Lepikhin, James Qin, Dehao
Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts,
Maarten Bosma, Vincent Zhao, Yanqi Zhou, Chung-
Ching Chang, Igor Krivokon, Will Rusch, Marc
Pickett, Pranesh Srinivasan, Laichee Man, Kathleen
Meier-Hellstern, Meredith Ringel Morris, Tulsee
Doshi, Renelito Delos Santos, Toju Duke, Johnny So-
raker, Ben Zevenbergen, Vinodkumar Prabhakaran,
Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora
Aroyo, Ravi Rajakumar, Alena Butryna, Matthew
Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Co-
hen, Rachel Bernstein, Ray Kurzweil, Blaise Aguera-
Arcas, Claire Cui, Marian Croak, Ed Chi, and Quoc
Le. 2022. Lamda: Language models for dialog appli-
cations.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022a. Opt: Open
pre-trained transformer language models.

http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2210.00720
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
https://doi.org/10.3115/v1/D14-1058
http://arxiv.org/abs/2001.08361
http://arxiv.org/abs/2210.02406
http://arxiv.org/abs/2210.02406
http://arxiv.org/abs/2210.02406
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.1162/tacl_a_00160
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
https://doi.org/10.18653/v1/N16-1136
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2210.03350
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/2302.06476
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1608.01413
http://arxiv.org/abs/1608.01413
http://arxiv.org/abs/1608.01413
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2201.08239
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex
Smola. 2022b. Automatic chain of thought prompt-
ing in large language models.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi.
2023. Least-to-most prompting enables complex rea-
soning in large language models.

11

http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2210.03493
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625
http://arxiv.org/abs/2205.10625

A Datasets

A.1 Symbolic reasoning

dataset

#samples example problem

last letter concatenation

1,500

500 (4 words) "fully, drug, gut, agreement"

500 (8 words) "urge, participate, strategic, rise, win,
through, now, within"

500 (12 words) "elementary, consensus, plaza, mes-
sage, telescope, accessible, another,
transport, bubble, bizarre, adviser,

"

cow

coin flip

1,500

500 (3 flips) A coin is heads up. Taylor doesn’t flip
the coin. Harmon doesn’t flip the coin.
Dejesus doesn’t flip the coin. Is the
coin still heads up?

500 (4 flips) A coin is heads up. Nichols flips the
coin. Mcbride flips the coin. Mathis
doesn’t flip the coin. Ruiz flips the
coin. Is the coin still heads up?

500 (5 flips) A coin is heads up. Weber flips the
coin. Contreras flips the coin. Carter
flips the coin. Moran flips the coin.
Colon doesn’t flip the coin. Is the coin
still heads up?

A.2 Arithmetic reasoning

dataset

#samples

example problem

SingleEq

508

Joan found 70 seashells on the beach. she gave Sam some
of her seashells. She has 27 seashell left. How many
seashells did she give to Sam ?

AddSub

395

There are 22 walnut trees currently in the park. Park work-
ers will plant walnut trees today. When the workers are
finished there will be 55 walnut trees in the park. How
many walnut trees did the workers plant today?

MultiArith

600

For Halloween Debby and her sister combined the candy
they received. Debby had 32 pieces of candy while her
sister had 42. If they ate 35 pieces the first night, how
many pieces do they have left?

SVAMP

1,000

Julia played tag with 18 kids on monday. She played tag
with 10 kids on tuesday. How many more kids did she play
with on monday than on tuesday ?

GSMSK

1,319

Janet’s ducks lay 16 eggs per day. She eats three for break-
fast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ mar-
ket daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

12

We list the details and licenses for arithmetic datasets we used. The symbolic datasets were newly created.

* SingleEq (Koncel-Kedziorski et al. (2015)); AddSub (Hosseini et al. (2014)): https://www.cs.
washington.edu/nlp/arithmetic; MultiArith (Roy and Roth (2016)) from Math World Problem
Repository (Koncel-Kedziorski et al. (2016)): https://github.com/sroy9/mawps, license: CC
BY 4.0

* SVAMP (Patel et al. (2021)): https://github.com/arkilpatel/SVAMP, MIT license:
https://github.com/arkilpatel/SVAMP/blob/main/LICENSE

* GSMSK (Cobbe et al. (2021)): https://github.com/openai/grade-school-math, MIT li-

cense: https://github.com/openai/grade-school-math/blob/master/LICENSE

Our use of the datasets is consistent with their intended use under the licenses.

13

https://www.cs.washington.edu/nlp/arithmetic
https://www.cs.washington.edu/nlp/arithmetic
https://www.cs.washington.edu/nlp/arithmetic
https://github.com/sroy9/mawps
https://github.com/arkilpatel/SVAMP
https://github.com/arkilpatel/SVAMP/blob/main/LICENSE
https://github.com/openai/grade-school-math
https://github.com/openai/grade-school-math/blob/master/LICENSE

B Experiment details for symbolic reasoning

B.1 Last letter concatenation

Here we show correct and incorrect examples for all the prompting methods we have mentioned in the
paper on the task of last letter concatenation.
Zero-shot standard

: Concatenate the last letters of the given words: "imagine,admire,assume,equally"”
. e, e, e, y. Therefore, the answer is "eeey™ (correct)

: Concatenate the last letters of the given words: uh,employer,intelligent,straight"
: hrtt. Therefore, the answer is "hrtt". (correct)

: Concatenate the last letters of the given words: "motion,instant,act,chapter”
: n,t,t,r. Therefore, the answer is “nttr”. (correct)

: Concatenate the last letters of the given words: "fully,drug,gut,agreement"
: lygdnt. Therefore, the answer is “lygdnt” (incorrect)

: Concatenate the last letters of the given words: "evil,secret,expansion,experience”
: Ints. Therefore, the answer is Ints. (incorrect)

: Concatenate the last letters of the given words: "consist,wear,concede,considerable"
: t-r-e-e-l-e. Therefore, the answer is "treele". (incorrect)

PRO|IFPO|IPRO|IPOIZPRO|IPAO

Table 8: Examples of correct and incorrect results by zero-shot standard prompting on last letter concatenation.

14

Zero-shot CoT

Q: Concatenate the last letters of the given words: "fully,drug,gut,agreement"”

A: Let’s think step by step.

1. The last letter of "fully" is "y".

2. The last letter of "drug" is "g".

3. The last letter of "gut" is "t".

4. The last letter of "agreement" is "t".

5. Concatenating these letters together, we get "ygtt".Therefore, the answer is "ygtt". (correct)

Q: Concatenate the last letters of the given words: "imagine,admire,assume,equally"

A: Let’s think step by step.1. The last letter of "imagine" is "e".

n_n

2. The last letter of "admire" is "e".

n_n

3. The last letter of "assume" is "e".

non

4. The last letter of "equally" is "y".
5. Concatenating these letters gives us "eeeY".Therefore, the answer is "eeeY". (correct)

Q: Concatenate the last letters of the given words: "consist,wear,concede,considerable”
A: Let’s think step by step.1. The last letter of "consist" is "t".

n_n

2. The last letter of "wear" is "r".

3. The last letter of "concede" is "e".

n_n

4. The last letter of "considerable" is "e".
5. Concatenating these letters together, we get "tree". Therefore, the answer is "tree".(correct)

Q: Concatenate the last letters of the given words: "evil,secret,expansion,experience"
A: Let’s think step by step.1. The last letter of "evil" is "1".

2. The last letter of "secret" is "t".

3. The last letter of "expansion" is "n".

4. The last letter of "experience" is "e".
5. Concatenating these letters together, we get "lten". Therefore, the answer is "lten". (incorrect)

Q: Concatenate the last letters of the given words: "weapon,reasonable,thin,loyalty"

n_n

A: Let’s think step by step.1. The last letter of "weapon" is "n".
2. The last letter of "reasonable" is "e".

3. The last letter of "thin" is "n".

4. The last letter of "loyalty" is "y".

5. Concatenating these letters together, we get "ney".Therefore, the answer is "ney". (incorrect)

Q: Concatenate the last letters of the given words: "motion,instant,act,chapter"
A: Let’s think step by step.1. The last letter of "motion" is "n".

2. The last letter of "instant" is "t".

3. The last letter of "act" is "t".

4. The last letter of "chapter" is "r".

5. Concatenating these letters together, we get "ntr". Therefore, the answer is "ntr". (incorrect)

Table 9: Examples of correct and incorrect results by zero-shot CoT prompting on last letter concatenation.

15

Few-shot CoT

Q: "think, machine"
A: The last letter of "think" is "k". The last letter of "machine" is "e". Concatenating "k", "e" leads to
"ke". So, "think, machine" outputs "ke".

Q: "learning, reasoning, generalization"
A: The last letter of "learning"is "g". The last letter of "reasoning" is "g". The last letter of "general-
ization" is "n". Concatenating "g", "g", "n" leads to "ggn". So, "learning, reasoning, generalization"

outputs "ggn".

Table 10: Exemplars for the full prompt of few-shot CoT prompting on last letter concatenation. We follow Zhou
et al. (2023) to construct the exemplars.

Q: Concatenate the last letters of the given words: "fully,drug,gut,agreement"

A: The last letter of "fully" is "y". The last letter of "drug is g The last letter of "gut" is

"t". The last letter of "agreement" is "t". Concatenating "y", "g", "t", "t" leads to "ygtt". So,
"fully,drug,gut,agreement” outputs "ygtt".(correct)

Q: Concatenate the last letters of the given words: "imagine,admire,assume,equally"
A: The last letter of "imagine" is "e". The last letter of "admire" is "e". The last letter of "assume" is

"e". The last letter of "equally" is "y". Concatenating "e y" leads to "eeey". So, "imagine,
admire, assume, equally" outputs ‘eeey".(correct)

Q: Concatenate the last letters of the given words: "evil,secret,expansion,experience”
A: The last letter of "evil" is "1". The last letter of "secret" is "t". The last letter of "expansion"
mnen " " ll n leads to Hltne S()7

n_n "nn

is "n". The last letter of "experience" is "e". Concatenating "l",
eVﬂ,secret,expansion,experience" outputs ”ltne ".(correct)

Q: "vacation,diverse,argument,speculation”
A: The last letter of "vacation" is "n". The last letter of "diverse" is "e". The last letter of "argument” is

"t". The last letter of "speculation" is "n". Concatenating "n", "e", "t", "n" leads to "nent". So, "vacation,
diverse, argument, speculation" outputs "nent". (1nc0rrect)

Q: "Christianity,arm,invention,dog"
A: There is no common letter at the end of all four words, so there is no output for "Christianity, arm,
invention, dog".(incorrect)

Q: "German,establishment,accurate,initially"

A: The last letter of "German" is "n". The last letter of "establishment" is "t". The last letter of
"accurate" is "e". The last letter of "1n1t1ally"' "y". Concatenating "n", "t", "e", "y" leads to "nty". So,
"German, establishment, accurate, initially" outputs 'nty". (1nc0rrect)

Table 11: Examples of correct and incorrect results by few-shot CoT prompting on last letter concatenation.

16

Zero-shot code

Generate python code to concatenate the last letters of the given words.

Here’s the Python code to concatenate the last letters of the given words:

non

words = ["apple", "banana", "cherry", "date", "elderberry"]
result =""

for word in words:

result += word[-1]

print(result)

Table 12: Code generated in the first stage of code prompting for last letter concatenation.

17

Q: "fully,drug,gut,agreement"”
A:
Let’s think step by step. Print all the middle variables.

non non non

words = ["fully”, "drug", "gut",
result =""

for word in words:

last_letter = word[-1]

result += last_letter
print(f"Word: {word}, Last Letter: {last_letter}, Result: {result}")
print(result)

agreement"]

Output:

Word: fully, Last Letter: y, Result: y

Word: drug, Last Letter: g, Result: yg
Word: gut, Last Letter: t, Result: ygt

Word: agreement, Last Letter: t, Result: ygtt

ygtt

Therefore, the answer is "ygtt". (correct)

Q: "feed,characteristic,spray,anymore"
A:
Let’s think step by step. Print all the middle variables.

non non

words = ["feed", "characteristic", "spray", "anymore"]

result =""

for word in words:

last_letter = word[-1]

result += last_letter

print(f"Word: {word}, Last Letter: {last_letter}, Result: {result}")
print(result)

Output:

Word: feed, Last Letter: d, Result: d

Word: characteristic, Last Letter: ¢, Result: dc
Word: spray, Last Letter: y, Result: dcy
Word: anymore, Last Letter: e, Result: dbye
dbye

Therefore, the answer is dbye. (incorrect)

Table 13: Examples of correct and incorrect results (in the second stage) by zero-shot code prompting on last letter
concatenation.

18

B.2 Coin flip

Here we show correct and incorrect examples for all the prompting methods we have mentioned in the
paper on the task of coin flip.
Zero-shot standard

Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".
A: Yes, the coin is still heads up. Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Tyler doesn’t flip the coin. Gates doesn’t flip the coin. Weber doesn’t flip the
coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Yes, the coin is still heads up. Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Kline doesn’t flip the coin. Underwood doesn’t flip the coin. Yu doesn’t flip the
coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Yes, the coin is still heads up. The fact that no one flipped the coin does not change its initial state.
Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up? Note that "flip" here means "reverse".

A: Yes, the coin is still heads up. The actions of Valencia, Ross, and Walter do not affect the initial
state of the coin. Therefore, the answer (Yes or No) is Yes. (incorrect)

Q: A coin is heads up. Valentine flips the coin. Beck flips the coin. Molina doesn’t flip the coin. Is the
coin still heads up? Note that "flip" here means "reverse".

A: No, we don’t know the result of Valentine and Beck’s flips, so we can’t assume the coin is still heads
up. Therefore, the answer (Yes or No) is unknown. (incorrect)

Q: A coin is heads up. Stephens flips the coin. Cooper doesn’t flip the coin. Olson flips the coin. Is the
coin still heads up? Note that "flip" here means "reverse".

A: It depends on the outcome of Olson’s flip. If Olson flips the coin and it lands heads up, then the
coin is still heads up. If Olson flips the coin and it lands tails up, then the coin is no longer heads
up.Therefore, the answer (Yes or No) is uncertain. (incorrect)

Table 14: Examples of correct and incorrect results by zero-shot standard prompting on coin flip.

19

Zero-shot CoT

Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step. Initially, the coin is heads up. None of the three people mentioned in the
question flip the coin, which means they don’t reverse it. Therefore, the coin remains in its initial
state, which is heads up. So, yes, the coin is still heads up. Therefore, the answer (Yes or No) is Yes.
(correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step.

1. The coin is heads up.

2. Valencia doesn’t flip the coin, so the coin remains heads up.

3. Ross flips the coin, which means the coin is now tails up.

4. Walter doesn’t flip the coin, so the coin remains tails up.

Therefore, the answer is no, the coin is not still heads up. It is now tails up. Therefore, the answer (Yes
or No) is No. (correct)

Q: A coin is heads up. Medrano doesn’t flip the coin. Cannon doesn’t flip the coin. Hutchinson flips
the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step.

1. The coin is heads up.

2. Medrano doesn’t flip the coin, so it remains heads up.

3. Cannon doesn’t flip the coin, so it still remains heads up.

4. Hutchinson flips the coin. We don’t know the result of the flip, so we can’t say for sure whether the
coin is still heads up or not.

Therefore, we can’t determine whether the coin is still heads up or not after Hutchinson flips it.
Therefore, the answer (Yes or No) is indeterminate. (incorrect)

Q: A coin is heads up. Farmer flips the coin. Chandler doesn’t flip the coin. Lozano flips the coin. Is
the coin still heads up? Note that "flip" here means "reverse".

A: Let’s think step by step.

1. The coin is heads up.

2. Farmer flips the coin, which means he reverses it. So now the coin is tails up.

3. Chandler doesn’t flip the coin, so it remains tails up.

4. Lozano flips the coin, which means he reverses it again. So now the coin is heads up again.
Therefore, the coin is not still heads up, but it has gone through a series of flips and is now heads up
again. Therefore, the answer (Yes or No) is No. (incorrect)

Table 15: Examples of correct and incorrect results by zero-shot CoT prompting on coin flip.

20

Few-shot CoT

Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".

A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an even number.
The coin started heads up, so after an even number of flips, it will still be heads up. So the answer is
yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".

A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. So the
answer is yes.

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads
up? Note that "flip" here means "reverse".

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Millicent does not flip the coin. Conception flips the coin. Is the coin still heads
up? Note that "flip"” here means "reverse".

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Sal flips the coin. Raymond does not flip the coin. Is the coin still heads up?
Note that "flip" here means "reverse".

A: The coin was flipped by Sal. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Conception flips the coin. Kristian does not flip the coin. Is the coin still heads
up? Note that "flip" here means "reverse".

A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Inga does not flip the coin. Elanor does not flip the coin. Is the coin still heads
up? Note that "flip"” here means "reverse".

A: The coin was flipped by no one. So the coin was flipped O times. The coin started heads up, and it
was not flipped, so it is still heads up. So the answer is yes.

Q: A coin is heads up. Ryan flips the coin. Shaunda flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".

A: The coin was flipped by Ryan and Shaunda. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. So the
answer is yes.

Table 16: Exemplars for the full prompt of few-shot CoT prompting on coin flip. We follow Wei et al. (2023) to
construct the exemplars.

21

Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: The coin was not flipped by anyone. So the coin was flipped 0 times. The coin started heads up, and
it was not flipped, so it is still heads up. So the answer is yes. (correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up? Note that "flip" here means "reverse".

A: The coin was flipped by Ross. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. So the answer is no. (correct)

Q: A coin is heads up. Valentine flips the coin. Beck flips the coin. Molina doesn’t flip the coin. Is the
coin still heads up? Note that "flip" here means "reverse".

A: The coin was flipped by Valentine and Beck. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. Molina
did not flip the coin, so it does not affect the outcome. So the answer is yes. (correct)

Q: A coin is heads up. Park flips the coin. Cooper doesn’t flip the coin. Wright doesn’t flip the coin. Is
the coin still heads up?

A: The coin was flipped by Park. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. However, since Cooper and Wright
did not flip the coin, we do not know if it was flipped again. So the answer is uncertain. (incorrect)

Table 17: Examples of correct and incorrect results by few-shot CoT prompting on coin flip.

Zero-shot code

A coin is heads up , there are some people, each one flipped or didn’t flip the coin. Generate python
code to determine whether the coin is still heads up.

Note that "flip" here means "reverse".

Assuming that the initial state of the coin is represented by a boolean variable called "heads_up" and
the list of people’s actions is represented by a list of boolean values called "flips", the following Python
code can be used to determine whether the coin is still heads up:

heads_up = True # initial state of the coin

flips = [True, False, True, True, False] # list of people’s actions

for flip in flips:

if flip:

heads_up = not heads_up

if the person didn’t flip the coin, do nothing

if heads_up:

print("The coin is still heads up.")

else:

print("The coin is now tails up.")

Table 18: Code generated in the first stage of code prompting for coin flip.

22

Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up?

Let’s think step by step. Print all the middle variables.

A:Yes, the coin is still heads up.

To verify this, we can use the same Python code as before, but with a different list of flips:
heads_up = True # initial state of the coin

flips = [False, False, False] # list of people’s actions

for flip in flips:

if flip:

heads_up = not heads_up # reverse the state of the coin

if the person didn’t flip the coin, do nothing

print(heads_up) # print the current state of the coin

if heads_up:

print("The coin is still heads up.")

else:

print("The coin is now tails up.")

When we run this code, we can see that the current state of the coin remains True (heads up) throughout
the loop, and the final message confirms that the coin is still heads up:

True

True

True

The coin is still heads up.

Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up?

Let’s think step by step. Print all the middle variables.

A:Using the same code as before, we can modify the list of flips to match the scenario described in the
question:

heads_up = True # initial state of the coin

flips = [False, True, False] # list of people’s actions

for flip in flips:

if flip:

heads_up = not heads_up # reverse the state of the coin

if the person didn’t flip the coin, do nothing

print(heads_up)

if heads_up:

print("The coin is still heads up.")

else:

print("The coin is now tails up.")

When we run this code, we get the following output:

True

False

True

The coin is still heads up.

This means that the coin is still heads up after Ross flips it, since the final state of the coin is still heads
up.Therefore, the answer (Yes or No) is Yes, the"coin is still heads up. (incorrect)

Table 19: Examples of correct and incorrect results by zero-shot code prompting on coin flip.

C Error analysis for symbolic reasoning

Here we show an example to illustrate how ambiguity disturbs CoT prompting.

Q: A coin is heads up. Christian doesn’t flip the coin. Lewis doesn’t flip the coin. Becker flips the coin.
Is the coin still heads up? Note that “flip” here means “reverse”.

A: Let’s think step by step.

1. The coin is heads up.

2. Christian doesn’t flip the coin, so it remains heads up.

3. Lewis doesn’t flip the coin, so it still remains heads up.

4. Becker flips the coin. We don’t know the result of the flip, so we can’t say for sure whether the coin
is still heads up or not.

Therefore, we can’t determine whether the coin is still heads up or not without knowing the result of
Becker’s flip. Therefore, the answer (Yes or No) is unknown.

Table 20: Example of ambiguity in CoT prompting. In the specific example, in the fourth step, the LLM is confused
by the meaning of “flip” and thus fail to give the correct answer.

D Experiment details for arithmetic reasoning

Here we show full prompts for zero-shot CoT prompting, zero-shot code prompting (+irr/+equ), few-shot
CoT, PAL, few-shot code prompting (+irr/+equ) and few-shot code prompting + LLM self-contained.
Furthermore, we show the results for few-shot code prompting + LLM self-contained.

Besides, we add system messages for all the prompting methods to align with Gao et al. (2023). For
CoT prompting, we set the system message to “You will solve math problems.”; for PAL and code
prompting, we set the system message to ““You will write python program to solve math problems. You
will only write code blocks.”.

Zero-shot CoT

Q: {question}
A: Let’s think step by step.

Table 21: Zero-shot CoT prompt for math world problems.

24

Zero-shot code

plain:
Generate python code to answer the question.
Note that code should follow the format ~~ ~code™ " ~.

Q: {question}

+irr:

Generate python code to answer the question.

Note that code should follow the format ~~~code™ ™.

There may be irrelevant information in the question. If you find it, ignore it.

Q: {question}

+equ:

Generate python code to answer the question.

Note that code should follow the format ~~~code™ ™.

If you need to solve an equation, here’s an instruction:

" python

to solve an equation, you can use python package sympy
import sympy

for example, to solve 2¥x =5

First, declarify your variable, in this case, 'x’

X = sympy.symbols("x")

Second, transform the equation so that the right hand side of the equation is zero.
#2¥x-5=0

Third, use ‘sympy.solve‘ to solve the equation

a = sympy.solve([2 * x - 5], [x])

Print the output as a float. Note that ‘a‘is a dict
print(float(a[x]))

Q: {question}

Table 22: Zero-shot code prompt (plain/+irr/+equ) for math world problems.

25

Few-shot CoT

Few-shot Chain-of-Thought Prompting Few-shot Code Prompting
(.) g

Q: If there are 3 cars in the parking Q: If there are 3 cars in the parking 3

lot and 2 more cars arrive, how lot and 2 more cars arrive' how

many cars are in the parking lot? many cars are in the parking lot?

A: There are originally 3 cars. 2 C:

more cars arrive. 3 + 2 = 5. The

answer is 5. original_cars = 3 # There are 3 Language Python

...(more exemplars hidden) cars in the parking lot Model Interpreter

) new_cars = 2 # 2 more cars arrive

Q: Arrobe takes 2 bolts of blue fiber total_cars = original_cars +

and half that much white fiber. new_cars # So the total number of

How many bolts in total does it cars in the parking lot is p

take?) original_cars + new_cars blue_fiber_bolts = 2 # A robe takes 2 A
~ : = e bolts of blue fiber

¥
print(total_cars) # print final result white_fiber_bolts = blue_fiber_bolts /
Lan M | . 2 # Half as many white fiber bolts are
anguage ode ...(more exemplars hidden) needed as blue fiber bolts
v total_bolts = blue_fiber_bolts +

A: The robe takes 2 bolts of blue Q: A robe takes 2 bolts of blue white_fiber_bolts # Total number of

fiber and half that much white fiber. fiber and half that much white Polts needed 1s the sum of blue and

So it takes 2 + 1 = 3 bolts in total. dl er._t toll/vomany ofts In fota print total bolts) # Print the final

The answer is 3. S 08s It taxe:)\ result)

Figure 6: The pipelines of few-shot CoT prompting and few-shot code prompting are shown in the figure.

Let’s think step by step to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15
dollars left. 23 - 15 is 8. The answer is 8.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2
more, he had 35 - 2 = 33 golf balls. The answer is 33.

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?

A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 =
20 computers were added. 9 + 20 is 29. The answer is 29.

How about this question?
Q: {question}

Table 23: Few-shot CoT prompt for math world problems. We follow the code released by Gao et al. (2023) to
choose the exemplars.

26

PAL

Let’s use python to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
def solution():

"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23

bagels =5

bagel_cost =3

money_spent = bagels * bagel_cost

money_left = money_initial - money_spent

result = money_left

return result

INENEN

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?

def solution():

"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?"""

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf_balls_lost_wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday

result = golf_balls_left

return result

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?

def solution():

"""There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?"""

computers_initial = 9

computers_per_day = 5

num_days = 4 # 4 days between monday and thursday

computers_added = computers_per_day * num_days

computers_total = computers_initial + computers_added

result = computers_total

return result

How about this question?
Q: {question}

Table 24: PAL prompt for math world problems. We use the demonstrations from the code released by Gao et al.
(2023).

27

Few-shot code + comments

Let’s use python to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

def solution():

"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23 # Olivia has $23 initially

bagels = 5 # Olivia bought 5 bagels

bagel_cost = 3 # Each bagel cost $3

money_spent = bagels * bagel_cost # The total cost of 5 bagels is the product of the price of each bagel
and the number of bagels

money_left = money_initial - money_spent # Money left is the difference between initial money and
the total cost of 5 bagels

result = money_left

return result

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?

def solution():

"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?"""

golf_balls_initial = 58 # Michael had 58 golf balls initially

golf_balls_lost_tuesday = 23 # He lost 23 golf balls on Tuesday

golf_balls_lost_wednesday = 2 # He lost 2 more golf balls on Wednesday

golf balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday # Number of
golf balls remaining is the difference between initial golf balls and the golf balls lost on Tuesday and
Wednesday

result = golf_balls_left

return result

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?

def solution():

"""There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?"""

computers_initial = 9 # There were 9 computers in the server room initially

computers_per_day = 5 # 5 more computers were installed each day from Monday to Thursday
num_days = 4 # 4 days between monday and thursday

computers_added = computers_per_day * num_days # Additional computers are the product of the
number of computers installed each day and the number of days

computers_total = computers_initial + computers_added # Total number of computers is the sum of
initial computers and the additional computers installed on 4 days

result = computers_total

return result

How about this question?
Q: {question}

Table 25: Few-shot code prompt for math world problems.

28

Few-shot code + LLM self-contained

Let’s use python to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

def solution():

"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23 # Olivia has $23 initially

bagels = 5 # Olivia bought 5 bagels

bagel_cost = 3 # Each bagel cost $3

money_spent = bagels * bagel_cost # The total cost of 5 bagels is the product of the price of each bagel
and the number of bagels

money_left = money_initial - money_spent # Money left is the difference between initial money and
the total cost of 5 bagels

result = money_left

return result

Let’s think step by step according to the code:

money_initial = 23

bagels =5

bagel_cost=3

money_left = money_initial - money_spent =23 - 15 =38
result = money_left = 8

So the answer is 8.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?

def solution():

"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?"""

golf_balls_initial = 58 # Michael had 58 golf balls initially

golf_balls_lost_tuesday = 23 # He lost 23 golf balls on Tuesday

golf_balls_lost_wednesday = 2 # He lost 2 more golf balls on Wednesday

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday # Number of
golf balls remaining is the difference between initial golf balls and the golf balls lost on Tuesday and
Wednesday

result = golf_balls_left

return result

29

Let’s think step by step according to the code:

golf_balls_initial = 58

golf_balls_lost_tuesday = 23

golf_balls_lost_wednesday = 2

golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday = 58 - 23 - 2
=33

result = golf_balls_left = 33

So the answer is 33.

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?

def solution():

"""There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?"""

computers_initial = 9 # There were 9

computers in the server room initially computers_per_day = 5 # 5 more computers were installed each
day from Monday to Thursday

num_days = 4 # 4 days between monday and thursday

computers_added = computers_per_day * num_days # Additional computers are the product of the
number of computers installed each day and the number of days

computers_total = computers_initial + computers_added # Total number of computers is the sum of
initial computers and the additional computers installed on 4 days

result = computers_total return result

Let’s think step by step according to the code:

computers_initial =9

computers_per_day = 5

num_days =4

computers_added = computers_per_day * num_days =5 * 4 =20
computers_total = computers_initial + computers_added =9 + 20 = 29
result = computers_total = 29

So the answer is 29.

How about this question?
Q: {question}

Table 26: Prompt of few-shot code + LLM self-contained for math world problems.

E Error analysis for arithmetic reasoning

E.1 AddSub

As mentioned in §5.2, in AddSub, LL.Ms make errors mainly due to the distraction of irrelevant variables.
Here we show two examples of the LLMs distracted by irrelevant variables.

30

Q: Joan had 695 Pokemon cards, and 6 were torn. | Q: Dan spent $11.76 on a snake toy, and a cage
Sara bought 133 of Joan’s Pokemon cards. How | cost him $14.54. Dan also found a dollar bill
many Pokemon cards does Joan have now? on the ground. What was the total cost of Dan’s
purchases?

Joan had 695 Pokemon cards initially

initial_cards = 695

6 of the cards were torn

torn_cards = 6

Sara bought 133 of Joan's Pokemon cards

cards_sold = 133

Total number of cards Joan has now is the difference
between initial cards, torn cards, and cards sold
remaining_cards = initial_cards - cards_sold
Print the final result

print remaining_cards

snake_toy_cost = 11.76 # The cost of the snake toy is
$11.76

cage_cost = 14.54 # The cost of the cage is $14.54
[found_money = 1 # Dan found $1 on the ground
total_cost = snake_toy_cost + cage_cost |- found_money

The total cost is the sum of the cost of the snake toy
and the cage, minus the dollar bill Dan found
printtotal_cost # Print the final result

Table 27: Error examples for AddSub. In the left example, torn_card is an irrelevant variable that should not
appear in the equation. The correct answer should be remaining_cards = initial_cards - torn_cards,
which gives 562. In the right example, found_money is an irrelevant variable. The correct answer should be
total_cost = snake_toy_cost + cage_cost, which gives 26.3.

E.2 MultiArith

In MultiArith, the wrong answers from code prompting are mainly due to two reasons: 1) Code prompting
is more sensitive to ambiguity in the question, which may leads to a wrong answer. 2) The groundtruth for
some questions is wrong, while the predictions are correct.

Here we show examples for both cases.

Q: The school cafeteria ordered 43 red apples and 32 green apples for students lunches. But, if only 2
students wanted fruit, how many extra did the cafeteria end up with?

red_apples = 43 # The cafeteria ordered 43 red apples

green_apples = 32 # The cafeteria ordered 32 green apples

total_apples = red_apples + green_apples # Total number of apples ordered is the sum of red and green apples
students want fruit = 2 # Only 2 students wanted fruit

|apples_needed = students_want_fruit * 2 # Each student needs 2 apples

extra_apples = total_apples - apples_needed # Extra apples are the difference between total apples and the
apples needed for the 2 students

printiextra_apples) # Print the final result

Table 28: An error example of few-shot code prompting for MultiArith. The question does not make it clear how
many apple a student want, but the ground truth suggests that we should take it as default that each student wants 1
apple. Code prompting makes the LLM more sensitive to such ambiguity.

Q: Emily’s team won their dodgeball game and scored 39 points total. If Emily scored 23 of the points
and everyone else scored 2 points each, how many players were on her team?

emily points = 23 # Emily scored 23 points

other_players_points = 2 # Each other player scored 2 points

total_points = 39 # The team scored 39 points in total

num_other_players = (total_points - emily points / other_players_points # Number of other players is the
difference between total points and Emily's points, divided by the points each other player scored
|num_players = num_other_players + 1 # Total number of players is the number of other players plus Emily
print num_players # Print the final result

Table 29: An error example of few-shot code prompting for MultiArith. The ground truth fails to count Emily into
the players, resulting in wrong answer (39 — 23)/2 = 8.

31

E.3 GSMSK

Error with equations. We have mentioned in §5.3 that the LLM struggles to solve equations in code.

When facing an equation, the LLM tends to solve it in the comments or directly lists the equation in the
code, which may easily result in wrong answers or bugs. Here are two examples.

Q: Ruby is 6 times older than Sam. In 9 years, Ruby will be 3 times as old as Sam. How old is Sam
now?

Let's assume Sam's age is x
According to the question, Ruby is 6 times older than Sam
So, Ruby's age will be 6x

In 9 years, Ruby will be 3 times as old as Sam
So, (6x + 9) = 3(x +9)
Solving the above equation, we get x = 9

Therefore, Sam's age now is 9 years old

sam_age = 9
print "Sam's age now is". sam_age. "years old."

Table 30: An error example of code prompting for GSMSK.

Q: The three angles in a triangle add up to 180 degrees. One angle is twice the smallest angle, and
one angle is three times the smallest angle. What is the measure of the largest angle in the triangle, in
degrees?

smallest_angle =
second_angle = 2
third_angle = 3 * x

sum_of_angles = smallest_angle + second_angle + third_angle
largest_angle = third_angle

print largest_angle

X
* x

NameError: name 'x' is not defined

Table 31: An error example of code prompting for GSM8K.

Error distribution of CoT prompting and code prompting. Here we show the error distribution
of few-shot CoT prompting and few-shot code prompting(w/ comments at the end). Since here we only
investigate into the error overlap of CoT prompting and code prompting, to eliminate the effects of system
messages and instructions, we remove all the system messages and unnecessary instructions (They are
added in the former experiments to align with the method PAL Gao et al. (2023)). Besides, we use the
original 8 exemplars from Wei et al. (2023). In §5.4, we show the results of 8-shot CoT prompting, 8-shot
code prompting and the ensemble of them.

32

few-shot CoT
right wrong

70.96% 8.72%

right

few-shot code

10.61% 9.70%

wrong

Figure 7: Error distribution of few-shot code prompting and few-shot CoT prompting regarding dataset GSMSK.

33

	Introduction
	Related Work
	Code Prompting
	Experiments
	Setup
	Symbolic reasoning or arithmetic reasoning
	Zero-shot or few-shot
	With or without interpreter
	With or without self-debugging

	Auxiliary Prompting Tricks
	Comments
	Elimination of irrelevant information
	Equation instruction
	Ensemble of CoT and code prompting
	Conclusion

	Discussion
	Conclusion
	Limitations
	Datasets
	Symbolic reasoning
	Arithmetic reasoning

	Experiment details for symbolic reasoning
	Last letter concatenation
	Coin flip

	Error analysis for symbolic reasoning
	Experiment details for arithmetic reasoning
	Error analysis for arithmetic reasoning
	AddSub
	MultiArith
	GSM8K

