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Abstract

Large language models (LLMs) have scaled001
up to unlock a wide range of complex rea-002
soning tasks with the aid of various prompt-003
ing methods. However, previous prompting004
methods generate natural language intermedi-005
ate steps to help reasoning, which can cause006
imperfect task reduction and confusion due to007
the ambiguity and sequential nature of natural008
language. To mitigate such limitations, Gao009
et al. (2023); Chen et al. (2022) have proposed010
program-based prompting, triggering code as011
intermediate steps. In this paper, we perform a012
systematic study of the approach which we re-013
fer to as “code prompting”. We conduct experi-014
ments on both symbolic and arithmetic reason-015
ing datasets regarding both zero-shot/few-shot016
scenarios, whether to employ an external inter-017
preter for code execution or use the LLM itself018
instead, and auxiliary prompting techniques to019
facilitate reasoning including “self-debugging”,020
“comments”, “equation instruction” and “elim-021
ination of irrelevant information”. To further022
understand the performance and limitations of023
code prompting, we perform extensive ablation024
studies and error analyses. We also consider the025
ensemble of code prompting and CoT prompt-026
ing to combine the strengths of both.027

1 Introduction028

Recent years have seen huge revolutions in the029

field of Natural Language Processing regarding030

the shockingly fast development of large language031

models (LLMs) (Brown et al., 2020; OpenAI, 2023;032

Touvron et al., 2023; Zhang et al., 2022a; Thoppi-033

lan et al., 2022; Chowdhery et al., 2022; Raffel034

et al., 2020). According to Qin et al. (2023); Ope-035

nAI (2023), LLMs have shown certain levels of036

the ability to solve complex reasoning tasks, with037

the scaling up for the model size (Kaplan et al.,038

2020). Besides the size of LLMs, how to prompt is039

crucial to the reasoning ability. A large number of040

works have proposed different prompting methods 041

to facilitate LLM reasoning by generating natural 042

language intermediate steps before the final answer 043

and have enhanced the reasoning ability of LLMs 044

to a great extent (Wei et al., 2023; Zhang et al., 045

2022b; Kojima et al., 2023; Zhou et al., 2023; Fu 046

et al., 2023; Khot et al., 2023; Press et al., 2022). 047

However, there still remain limitations. For exam- 048

ple, they may fail to plan the whole process of solu- 049

tion ahead, which is likely to result in unreasonable 050

task reduction. In other words, the “step” can be 051

too big for the LLM to stride over. In Figure 1 (top), 052

we show a case where the LLM is supposed to con- 053

catenate the last letters of the given words. CoT 054

prompting leads the LLM to (1) first extract the last 055

letter of each word and (2) then concatenate all the 056

letters together. However, the second step may be 057

too difficult for the LLM with the number of letters 058

increasing, resulting in wrong answers (Zhou et al., 059

2023). 060

To overcome the difficulties, recent works (Gao 061

et al., 2023; Chen et al., 2022; Cheng et al., 2023) 062

have tried to facilitate complex reasoning in LLMs 063

with code as intermediate steps, which we refer 064

to as “code prompting” in the rest of the paper. 065

Code prompting is generally a two-stage method 066

with the pipeline shown in the bottom of Figure 1, 067

where LLMs first generate a piece of code, and 068

then 1) offload the solution process to an external 069

interpreter or 2) follow the code to generate the 070

final answer by themselves. Gao et al. (2023); Chen 071

et al. (2022) have pointed out that offloading the 072

second stage to an interpreter greatly enhances the 073

LLM reasoning performance. In this paper, we 074

also study the potential of LLMs to “execute” the 075

code generated in the second stage. As a general- 076

purpose tool, code is machine-executable, LLM- 077

producible, and can describe flexible computation 078

processes. Code can work as a mind map for the 079

LLM and reduce the task into sub-tasks represented 080

by separate operations in the code. As the separate 081
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Generate python code to concatenate the 

last letters of the given words. 

Here's the Python code to concatenate the last letters of the given 

words:

words = [“apple”, “banana”, “cherry”, “date”, “elderberry”]
result = “”
for word in words:

result += word[-1]

print(result)

Generate python code to concatenate the 

last letters of the given words. 

Here's the Python code to concatenate the 

last letters of the given words:

words = [“apple”, “banana”, “cherry”, 
“date”, “elderberry”]
for word in words:

result += word[-1]

print(result)

Q: “weapon, reasonable, thin, loyalty”
A: Let’s think step by step. Print all the 

intermediate variables.

words = [“weapon”, “reasonable”, “thin”, “loyalty”]
result = “”
for word in words:

last_letter = word[-1]

result += last_letter

print(f“Word: {word}, Last Letter: {last_letter}, Result: {result}”)
print(result)

Output:

Word: weapon, Last Letter: n, Result: n

Word: reasonable, Last Letter: e, Result: ne

Word: thin, Last Letter: n, Result: nen

Word: loyalty, Last Letter: y, Result: neny

Therefore, the answer is “neny”.

Language 

Model

Language 

Model

Code Prompting

Stage 1

Stage 2

1. The last letter of “weapon” is “n” .
…

4. The last letter of “loyalty” is “y”.

5. Concatenating these letters together, we get "ney".

Therefore, the answer is “ ney”.

Q: Concatenate the last letters of the given 

words: “weapon, reasonable, thin, loyalty”.

A: Let’s think step by step.

Language 

Model

Chain-of-Thought Prompting

×

√

Figure 1: The pipelines of zero-shot CoT prompting (above) and zero-shot code prompting (below). Left: input of
LLM (prompt + previous generation), right: generation by LLM. Texts highlighted in orange are instructions; texts
highlighted in blue are the code generated by the LLM.

operations in code are often easy for LLMs, task082

reduction greatly facilitates LLMs to solve complex083

reasoning problems step by step by themselves.084

Previous works have initially demonstrated the085

power of code prompting, but there are still some086

problems: for example, for which tasks it is more087

suitable, how to improve its performance on spe-088

cific problems, etc. In this paper, we follow the089

works and further explore the code prompting090

method. We perform a systematic study of code091

prompting from the following perspectives: (1)092

tasks calling for different reasoning abilities, (2)093

zero-shot or few-shot prompting, (3) the potential094

of self-contained code executing ability of LLM,095

and (4) some auxiliary prompting tricks including096

self-debugging, writing comments, etc.097

We experiment on both symbolic and arith-098

metic reasoning datasets and show that while code099

prompting generally outperforms CoT prompting,100

the performance gap in symbolic ones is much101

greater than in arithmetic ones. That is, code per-102

forms better on symbolic reasoning tasks. Be-103

sides, we investigate into both zero-shot and few-104

shot settings, showing that zero-shot code prompt-105

ing with auxiliary prompting tricks is competitive106

with current few-shot methods, including few-shot107

CoT (Wei et al., 2023) and PAL (Gao et al., 2023). 108

Moreover, besides calling an external Python Inter- 109

preter to execute the code like previous work, we 110

provide another option of letting the LLM itself to 111

generate the final answer according to the code step 112

by step. We show that even without the executor, 113

code prompting still matches or even exceeds CoT 114

prompting in both symbolic and arithmetic tasks. 115

For the feasibility of auxiliary prompting tricks, 116

we dig into the failure cases of code prompting 117

and identify several key limitations of code prompt- 118

ing, based on which we propose customized exten- 119

sions to enhance its performance, including self- 120

debugging, comments, elimination of irrelevant in- 121

formation and equation instruction. We conduct 122

detailed ablation study to show their effects. More- 123

over, we find out that code prompting and CoT 124

prompting lead the LLM to think from different 125

angles, suggesting a combination of both methods, 126

which achieves 87.95% accuracy (+6.37% from 127

few-shot CoT) on GSM8K. 128

Overall, in this paper, we systematically study 129

the reasoning ability of code prompting across dif- 130

ferent settings and tasks. The key contributions 131

over previous works can be summarized as follows: 132

LLM self-contained. Our work for the first 133
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time explored the self-contained reasoning ability134

of LLMs based on code prompts, while previous135

works all demonstrate the power of code prompting136

based on code interpreters.137

Performance. We improve both zero- and few-138

shot abilities of code prompting. We first show that139

zero-shot code prompting could match few-shot140

methods like few-shot CoT (Wei et al., 2023) and141

PAL (Gao et al., 2023).142

Auxiliary prompting tricks. We identify gen-143

eral limitations of code prompting through detailed144

error analyses. Besides, we show that code prompt-145

ing can be enhanced by simple auxiliary prompting146

techniques specific to the limitations.147

Ensemble. We explore the ensemble of code148

prompting and CoT prompting to combine the149

strengths of both, showing great performance gain.150

2 Related Work151

Prompting. Various prompting methods have152

emerged to boost LLM reasoning (Wei et al., 2023;153

Zhang et al., 2022b; Kojima et al., 2023; Zhou154

et al., 2023; Fu et al., 2023; Khot et al., 2023;155

Press et al., 2022). Classified based on whether156

specific exemplars are provided, prompting meth-157

ods can be divided into zero-shot prompting and158

few-shot prompting. For example, CoT prompt-159

ing has a zero-shot version (Kojima et al., 2023)160

and a few-shot version (Wei et al., 2023). Few-161

shot prompting calls for manually constructed task-162

specific demonstrations, so it is more costly. In163

this paper, we investigate in both zero-shot and164

few-shot versions of code prompting. Existing165

prompting methods can also be divided into single-166

step prompting and multi-step prompting methods.167

CoT prompting (Kojima et al., 2023; Wei et al.,168

2023) is a classic single-step prompting method.169

Least-to-most prompting introduced by Zhou et al.170

(2023) is a multi-step prompting method, which171

first divides a question into several sub-questions172

and then guides the LLM to solve each question173

sequentially. Despite its strong performance, least-174

to-most prompting is limited to a few-shot version175

and requires hand-crafting of task-specific demon-176

strations. Thus, it is less general than CoT and code177

prompting.178

Program-aided reasoning. Prior works have179

shown that programs generated by LLMs may fa-180

cilitate reasoning (Gao et al., 2023; Chen et al.,181

2022; Chowdhery et al., 2022). We follow the182

work and dig deeper into code prompting: 1) Gao183

et al. (2023) (PAL) proposed a few-shot prompting 184

method, while we investigate into both zero-shot 185

and few-shot code prompting. We show that zero- 186

shot code prompting matches or even exceeds PAL 187

in arithmetic reasoning tasks. Besides, we improve 188

the few-shot performance too. Although (Chen 189

et al., 2022) also studied the zero-shot setting, its 190

performance is still far from the few-shot method 191

without auxiliary prompting methods we propose 192

in §5. 2) We offer another option on the second 193

stage of final answer generation, namely directly 194

asking LLM to generate the final answer according 195

to the code, other than calling a Python interpreter 196

as in Gao et al. (2023); Chen et al. (2022). Our 197

experiments on using LLM in the second stage 198

further prove that code prompting indeed assists 199

reasoning in LLM even without executing the code. 200

Although Gao et al. (2023) also conducted experi- 201

ments without an external interpreter, they instruct 202

the LLM to generate the answer directly after gen- 203

erating the code. Instead, we instruct the LLM to 204

follow the code step by step to generate the final 205

answer and boost the performance to a large extent. 206

3) We discuss some key limitations and insights of 207

code prompting through error analysis, based on 208

which we propose several highly useful extensions. 209

Besides, they help us understand the power of code 210

prompting better and motivate us to combine CoT 211

and code prompting. 212

LLMs with external tools. Code prompting has 213

an option to call a Python interpreter as an exter- 214

nal tool to assist the LLM to complete the tasks. 215

The concept of augmenting LLMs with external 216

tools has drawn much attention (Khot et al., 2023; 217

Cheng et al., 2023; Press et al., 2022). A similar 218

work (Cheng et al., 2023) also uses programs to 219

assist LLM reasoning. However, they focus on 220

generating SQL or SQL-like programs to deal with 221

questions of reasoning with tables. Besides, to im- 222

prove the code generation, a recent work (Chen 223

et al., 2023) introduces a method of instructing 224

LLMs to debug their generated program with the 225

help of feedback from a code interpreter. In our 226

work, we equip code prompting with a similar tech- 227

nique, which we call “self-debug” in the rest of the 228

paper. However, we consider reasoning tasks while 229

Chen et al. (2023) focuses on tasks of text-to-code 230

or code-to-code generation. 231
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3 Code Prompting232

Code prompting guides LLMs to solve a complex233

problem in two stages:234

1. Code Generation. In the first stage, the prompt235

asks the LLM to generate Python code to solve236

the problem. We test on both zero-shot and few-237

shot prompting. The zero-shot prompt is simply238

“Generate python code to { task description}.”.239

The few-shot prompt consists of exemplars of240

questions followed by corresponding code.241

2. Based-on-code Solution. The second stage is242

for solving the problem given the code gener-243

ated in the first stage. We compare two different244

methods: 1) LLM self-contained: we ask the245

LLM to generate step-by-step solution follow-246

ing the code. 2) Interpreter: we directly call a247

Python interpreter to execute the code.248

The settings in these two stages are combinato-249

rial so that there are four different pipelines, which250

we will all compare in §4. An example of the251

pipeline in the task of last letter concatenation (Wei252

et al., 2023) is shown in Figure 1, where the zero-253

shot code prompt and the LLM self-contained solu-254

tion are used. In the first stage, we use the zero-shot255

prompt to guide the LLM to output a piece of code256

for the task. In the second stage, the LLM is given257

the generated code along with a concrete question.258

Here we ask the LLM to stimulate code execution259

step by step.260

Self-debugging The “self-debug” technique can261

be used to improve code generation ability of262

LLMs (Chen et al., 2023). It is a general tech-263

nique to improve code generation and has become264

a default setting in GPT-4. Here, if we use a Python265

interpreter in the second stage, we can feed the gen-266

erated code (with bugs) and the bug report back267

to the LLM to fix the bugs by the LLM itself. We268

adapt the technique to help LLMs to generate exe-269

cutable code. The pipeline of the “self-debugging”270

module is shown in Figure 2.271

4 Experiments272

4.1 Setup273

Tasks274

We conduct experiments on 7 popular datasets in-275

volving both symbolic and arithmetic reasoning.276

For symbolic reasoning, we consider two tasks277

introduced by Wei et al. (2023) and widely used278

in Kojima et al. (2023); Zhou et al. (2023); Zhang 279

et al. (2022b): 280

Last letter concatenation. The task asks LLMs 281

to concatenate the last letters of given words. We 282

follow Zhou et al. (2023) to construct word lists 283

by randomly selecting words from five thousand 284

words of the Wikipedia frequency list. We con- 285

struct word lists of lengths 4, 8 and 12. For each 286

length, we test the prompting methods on 500 word 287

lists, which form a test dataset of 1,500 samples. 288

Coin flip. The task requires LLMs to answer 289

whether a coin is still heads up after several people 290

flipped or did not flip it. The number of people 291

varies from 3 to 5. For each certain number of 292

people, we construct 500 questions, which form a 293

test dataset of 1,500 samples. 294

For arithmetic reasoning, we consider five 295

commonly used datasets: (1) SingleEq (Koncel- 296

Kedziorski et al., 2015), (2) AddSub (Hosseini 297

et al., 2014), (3) MultiArith (Roy and Roth, 2016), 298

(4) SVAMP (Patel et al., 2021), (5) GSM8K (Cobbe 299

et al., 2021). Among the datasets, SingleEq and 300

AddSub only take single-step calculation, while 301

MultiArith, GSM8K and SVAMP contain harder 302

math problems that require multi-step reasoning. 303

See Appendix A.2 for more details of each dataset. 304

Baselines 305

In symbolic reasoning tasks, we consider zero-shot 306

standard prompting (only the question), zero-shot 307

and few-shot CoT prompting (Kojima et al., 2023; 308

Wei et al., 2023) as baselines. For code prompting 309

methods, we only consider zero-shot code prompt- 310

ing because the “groundtruth” code for each ques- 311

tion is basically the same so that the exemplars in 312

few-shot code prompting may leak the answer. 313

In arithmetic reasoning tasks, we consider zero- 314

shot and few-shot CoT prompting (Kojima et al., 315

2023; Wei et al., 2023) as the baseline for zero-shot 316

and few-shot code prompting. 317

For all the prompt methods, we use the model 318

gpt-3.5-0301 and set the temperature to 0 unless 319

otherwise specified. 320

Methods 321

As is shown in Figure 1, the method prompts the 322

LLM to first generate task-specific code and then 323

follow the code to generate the final answer. For 324

the first stage, we study both the zero-shot and few- 325

shot prompting. For the second stage, we provide 326

two options for how to generate the final answer: 327

+ LLM Self-contained: we use the LLM itself 328
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Generate python code to answer the question.

Q: Marie ordered one chicken meal that costs $12, 5 packs of 

milk that costs $3 each, 4 apples that cost $1.50 each, and 

some boxes of pizza. Marie paid a total of $50. How many 

boxes of pizza did Marie order if each box costs $8.50?

Language 

Model

output: 2chicken_meal = 12
milk_packs = 3 * 5
apple = 1.5 * 4
total = chicken_meal + milk_packs + apple + 8.5 * x
# where x is the number of boxes of pizza
# we need to find the value of x
# total cost is $50
# so, we can write the equation as:
50 = chicken_meal + milk_packs + apple + 8.5 * x
# solving for x
x = (50 - chicken_meal - milk_packs - apple) / 8.5
print("Marie ordered", x, "boxes of pizza.")

Bug report:
50 = chicken_meal + milk_packs + apple + 8.5 * x
^
SyntaxError: cannot assign to literal

Language 

Model

chicken_meal = 12
milk_packs = 3 * 5
apple = 1.5 * 4
# initialize x to 0
x = 0
total = chicken_meal + milk_packs + apple + 8.5 * x
# where x is the number of boxes of pizza
# we need to find the value of x
# total cost is $50
# so, we can write the equation as:
# 50 = chicken_meal + milk_packs + apple + 8.5 * x
# solving for x
x = (50 - chicken_meal - milk_packs - apple) / 8.5
print("Marie ordered", int(x), "boxes of pizza.")

√

Python

Interpreter

Figure 2: The pipeline of “self-debugging”.

last letter concatenation coin flip
l=4 l=8 l=12 flips=3 flips=4 flips=5

zero-shot standard 7.4 2.0 2.6 22.6 17.2 16.8
zero-shot CoT 71.0 27.8 2.8 86.2 71.8 67.8
few-shot CoT 94.6 69.6 39.8 99.8 99.8 99.0

zero-shot code + LLM self-contained 97.2 85.4 75.6 86.2 88.8 85.8
zero-shot code + interpreter 99.4 99.8 99.8 99.8 99.8 99.4

Table 1: The accuracy (%) of different prompting methods on symbolic reasoning tasks. The number of words to
concatenate (ranging from 4 to 12 with an interval of 4) and the number of flips (ranging from 3 to 5) are listed.

to perform reasoning; + Interpreter: we employ329

a Python interpreter to execute the code and take330

the output as the answer. We list all the prompt331

mentioned above in Appendix B (symbolic tasks)332

and Appendix D (arithmetic tasks).333

4.2 Symbolic reasoning or arithmetic334

reasoning335

Our first observation is that the code prompting336

performs better in tasks involving symbolic rea-337

soning. For symbolic reasoning, as shown in338

Table 1, even without a Python interpreter, code339

prompting greatly outperforms CoT prompting in340

the zero-shot setting, while the interpreter can fur-341

ther enlarge the gap. Zero-shot code prompting342

performance can match or even surpass the few-343

shot CoT. On the contrary, code prompting and344

CoT prompting generally show comparable perfor-345

mance in arithmetic reasoning, as shown in Table 2.346

Moreover, in the symbolic reasoning, the per-347

formance gain increases with the complexity of the348

questions, implying that code prompting gener-349

alizes better than CoT. The performance of CoT350

prompting decreases rapidly as the task becomes 351

harder (e.g., longer word lists or bigger number of 352

flips), while code prompting helps the LLM to com- 353

plete tasks of various difficulties. The performance 354

gain grows from 26.2% to 72.8% in last letter con- 355

catenation as the length of word lists increases from 356

4 to 12, and in the task of coin flip, the performance 357

gain rises from 0.0% to 18.0% with flip times in- 358

creasing from 3 to 5. However, we do not observe 359

the same phenomenon in arithmetic reasoning 360

tasks. Instead, code prompting performs worse 361

than CoT when the tasks become harder. Shown 362

in Table 2, in more easier (single-step) datasets 363

SingleEQ and AddSub, the code prompting can 364

ourperform CoT slightly, while in harder datasets 365

MultiArith and GSM8k, CoT prompting is better. 366

We also experiment on questions in GSM8K with 367

various difficulties in Figure 4, where the gap be- 368

tween CoT and code prompt is larger in harder 369

questions. 370

We summarize the reason behind the outstanding 371

performance of code prompting in symbolic tasks 372

as abstraction and simplification. In both symbolic 373
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SingleEq AddSub SVAMP MultiArith GSM8K

zero-shot CoT 93.11 86.08 78.20 96.67 81.58
zero-shot code (+self-debug) 97.64 89.62 79.40 96.67 77.40

few-shot CoT 95.47 90.63 77.10 98.50 82.11
few-shot code + LLM self-contained 95.07 88.86 75.60 96.00 73.84

few-shot code + interpreter (PAL) 97.64 89.11 79.50 97.00 79.45
few-shot code + interpreter (+self-debug) 97.64 90.13 79.60 97.00 79.90

Table 2: The accuracy (%) of different prompting methods on arithmetic reasoning.

tasks, code prompting endows the LLM the abil-374

ity to extract the “loop” nature of the question and375

leverages it explicitly in the code using “for” or376

“while” syntax in Python language. In other words,377

code simplifies the solution. However, arithmetic378

tasks do not have such features that may help sim-379

plify the solution.380

4.3 Zero-shot or few-shot381

In symbolic reasoning, zero-shot code (+ inter-382

preter) outperforms few-shot CoT prompting in383

both tasks, and zero-shot code (+ LLM self-384

contained) performs better in last letter concatena-385

tion. Overall, zero-shot code prompting is highly386

competitive with few-shot prompting methods387

in symbolic reasoning.388

In arithmetic reasoning tasks, the performance389

gap between zero-shot and few-shot CoT prompt-390

ing is wider than that between zero-shot and few-391

shot code prompting, reflecting that code prompt-392

ing is less sensitive to the number of exemplars.393

This is crucial since few-shot scenarios call for394

the handcraft of task-specific demonstrations, and395

code prompting handles this with less sensitivity to396

zero-shot or few-shot settings.397

4.4 With or without interpreter398

In Gao et al. (2023), the authors state that LLMs399

(specifically, Codex (Chen et al., 2021)) show little400

ability to return correct results of a piece of code.401

However, as show in Table 3, we observe that the402

self-contained code executing ability of LLM403

can be stimulated by prompting the LLM “run”404

the code step by step instead of directly asking405

for the final answer right after the code as in Gao406

et al. (2023). Although LLMs show code executing407

ability in both symbolic and arithmetic reasoning408

tasks, the external Python interpreter greatly boosts409

the performance of code prompting.410

Method
Model

Codex ChatGPT

LLM direct 23.2 43.8
LLM step-by-step / 73.8
interpreter 72.0 79.5

Table 3: GSM8K accuracy (%) of few-shot prompt-
ing methods including LLM direct (instruct the LLM
to directly generate the final answer after the code
in one step), LLM step-by-step (i.e. code + LLM
self-contained) and code + interpreter adapted on
Codex (Chen et al., 2021) and ChatGPT. Data of Codex
is from Gao et al. (2023).

SingleEq AddSub MultiArith SVAMP GSM8K0.70

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

zero-shot code
zero-shot code w/ self-debug
few-shot code
few-shot code w/ self-debug

Figure 3: Accuracy of zero-shot and few-shot code
prompting w/ or w/o “self-debugging” on arithmetic
datasets.

4.5 With or without self-debugging 411

We study the effects of “self-debugging” described 412

in §3. Figure 3 shows the performance of code 413

prompting with or without self-debugging. This 414

technique can indeed improve the reasoning accu- 415

racy, especially for the harder questions. The per- 416

formance on harder benchmarks is more likely 417

to benefit from self-debugging, as more complex 418

problems are more likely to trigger bugs in code. 419

5 Auxiliary Prompting Tricks 420

In this section, we point out some general limi- 421

tations of code prompting through detailed error 422

analyses, including sensitivity to irrelevant infor- 423

mation and lack of the ability to solve equations. 424

Based on the limitations, we propose several sim- 425

ple yet helpful auxiliary prompting tricks and show 426

their feasibility through ablation studies. 427
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Method SingleEq AddSub MultiArith SVAMP GSM8K
W/o comments (PAL) 97.64 89.11 97.00 79.50 79.45
W/ comments (end) 97.44 89.87 97.33 79.60 80.21
W/ comments (beginning) 96.85 89.87 95.33 79.90 77.71

Table 4: Accuracy (%) of methods of few-shot code prompting w/o comments or w/ comments added at different
locations of each line of the code. “Self-debugging” is not used here.

<=3 4 5 >= 6
step num

0.60

0.65

0.70

0.75

0.80

0.85

0.90

ac
cu

ra
cy

0-20 20-40 40-60 60-80 >=80
word num

0.5

0.6

0.7

0.8

0.9

1.0
code
code+com
CoT

Figure 4: Accuracy of few-shot code prompting w/ or
w/o comments and CoT prompting on questions with
various difficulties. The left figure use the number of
steps of the rationales as the metric; the right one use
the number of words of the rationales as the metric.

5.1 Comments428

Comments in code are informative natural language429

that may help to hint at the semantics and the role430

of a certain part of the code. So we investigate431

into the effects of comments in code prompting.432

As shown in Table 4, adding comments slightly433

improves the performance.434

Does where we add comments matter? We ex-435

periment on code prompting with comments added436

either at the beginning or at the end of each line of437

code. As shown in Table 4, in most cases, adding438

comments at the end is a better choice. This may439

be due to humans’ habit of writing code. We tend440

to add comments specifically describing each line441

of code at the end of each line, thus the training442

corpus contains more code samples with comments443

at the end of each line.444

Do comments help harder or easier questions?445

We experiment on GSM8K to find out where the446

performance gain of adding comments comes from.447

We consider the number of steps and the number448

of words in the provided answer as two notions of449

difficulty. According to Figure 4, the performance450

gain on the hardest questions are the largest.451

Method AddSub
zero-shot code 89.62
zero-shot code+irr 91.65
few-shot code 89.87
few-shot code+irr 91.39

Table 5: Accuracy (%) of code prompting w/ or w/o
“irrelevant information” on AddSub.

Method GSM8K
zero-shot code 77.40
zero-shot code+equ(comments) 78.09
zero-shot code+equ(sympy) 78.92

Table 6: Accuracy (%) of code prompting w/ or w/o
“equation instruction” on GSM8K.

Method GSM8K
few-shot CoT 81.58
few-shot code 79.68
CoT vote 87.49
code vote 83.85
CoT + code vote 87.95

Table 7: Accuracy (%) of ensemble methods on
GSM8K.

5.2 Elimination of irrelevant information 452

In AddSub, the generated code tend to define irrel- 453

evant variables that appear in the question but are 454

not useful for the final result, thus disturbing the 455

reasoning process. See Appendix E for examples. 456

The observation suggests code generation by LLMs 457

can be easily distracted by irrelevant information. 458

. This motivates elimination of irrelevant informa- 459

tion (+irr). We add an instruction “There may be 460

irrelevant information in the question. If you find it, 461

ignore it.” at the end of the prompt. Table 5 shows 462

that despite the simplicity, it effectively improves 463

the performance. 464

5.3 Equation instruction 465

In GSM8K, the LLM struggles to solve equations 466

in code. When facing an equation, the LLM tends 467

to solve it in the comments or directly lists the 468

equation in the code, which may easily result in 469

mistakes. See examples in Appendix E. To mit- 470

igate such limitations, we provide an instruction 471

on solving equations in Python using the package 472

sympy. See Appendix D for more details. We also 473

experiment on directly asking the LLM to solve 474

equations in the comments. Table 6 shows that 475

the best choice is to teach the LLM to use certain 476

Python packages to solve equations. 477

5.4 Ensemble of CoT and code prompting 478

In GSM8K, we find out through statistics that the 479

error overlap of code prompting and CoT prompt- 480

7



ing is very small, suggesting that the two prompt-481

ing methods lead LLMs to think from different482

angles (Appendix E). So we consider the ensemble483

of CoT prompting and code prompting based on484

voting. Here we also adapt the “comments” and485

“equation” tricks for code prompting. For each486

question, if both prompting methods generate the487

same answer, we accept the answer as the final an-488

swer; otherwise, we set the temperature to 0.7 and489

ask the LLM to generate n answers following each490

prompting method. Then we vote among the 2n491

answers to give the final answer. We also compare492

voting methods whose 2n answers are generated493

from the same prompting method. As shown in Ta-494

ble 7, ensemble methods outperform the baselines495

significantly. Further, the ensemble of two prompt-496

ing methods surpasses that of only one prompting497

method votes. See Appendix D for details.498
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Figure 5: Answer distribution on questions w/ and w/o
ambiguity.

5.5 Conclusion499

Above, we propose some simple auxiliary tricks500

which can improve the performance of code501

prompting further. The “comments” and “ensem-502

ble” tricks are independent of the specific task and503

are always available as an option. The “irrelevant504

information” and “equation” tricks are a kind of505

targeted remedies, requiring an analysis of the mis-506

takes in specific tasks and the provision of targeted507

prompts accordingly. However, although the spe- 508

cific prompts vary, the effectiveness of this kind of 509

feedback is generally moderate, demonstrating the 510

room for further improvement in code prompting. 511

6 Discussion 512

Disambiguation. One of the most different prop- 513

erty between code and natural language is the am- 514

biguity, where the semantic of code is generally 515

clearer than natural language. 516

On one hand, the general semantic of words in 517

CoT (which could be different from this current 518

semantic usage of the word) sometimes mislead the 519

steps, while the code can avoid the risk by giving 520

clearer instructions. See examples in Appendix C. 521

On the other hand, code prompting can detect 522

some confusing or imprecise expressions in ques- 523

tions. We find out that code prompting is more sen- 524

sitive to ambiguity in the question. See Appendix E 525

for examples in MultiArith. This indicates that 526

code prompting has the potential to discover ambi- 527

guity in a question. Here we use 5 cases where the 528

questions present ambiguities and we can manually 529

fix them. We test few-shot code prompting and 530

CoT prompting on both questions with and with- 531

out ambiguity. For each question, we generate 15 532

answers by code prompting and CoT prompting 533

respectively with the temperature of the LLM set 534

to 0.7. Figure 5 shows the histogram of answers. It 535

is evident that ambiguity disturbs code prompting, 536

while CoT prompting is less sensitive to ambiguity. 537

We may leverage this feature to detect ambiguity 538

in questions. 539

7 Conclusion 540

We study code prompting systematically. We con- 541

duct comprehensive experiments on 7 benchmarks 542

involving both symbolic and arithmetic reason- 543

ing. For tasks calling for different reasoning abil- 544

ities, we show the advantage of code prompting 545

lies mostly in symbolic tasks instead of arithmetic 546

tasks. Besides, we first show that zero-shot code 547

prompting matches few-shot methods with the aid 548

of auxiliary prompting tricks. Moreover, we ex- 549

plore the potential of self-contained code executing 550

ability of LLMs for the first time. Finally, extensive 551

experiments and analyses verify the effectiveness 552

of our auxiliary prompting tricks including self- 553

debugging, comments, equation instruction and 554

elimination of irrelevant information. 555
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8 Limitations556

We only investigate in a specific programming557

language Python and a specific language model558

ChatGPT. The comparison between multiple pro-559

gramming languages and between various language560

models are left for future work.561
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A Datasets738

A.1 Symbolic reasoning739

dataset #samples example problem

last letter concatenation 1,500
500 (4 words) "fully, drug, gut, agreement"
500 (8 words) "urge, participate, strategic, rise, win,

through, now, within"
500 (12 words) "elementary, consensus, plaza, mes-

sage, telescope, accessible, another,
transport, bubble, bizarre, adviser,
cow"

coin flip 1,500
500 (3 flips) A coin is heads up. Taylor doesn’t flip

the coin. Harmon doesn’t flip the coin.
Dejesus doesn’t flip the coin. Is the
coin still heads up?

500 (4 flips) A coin is heads up. Nichols flips the
coin. Mcbride flips the coin. Mathis
doesn’t flip the coin. Ruiz flips the
coin. Is the coin still heads up?

500 (5 flips) A coin is heads up. Weber flips the
coin. Contreras flips the coin. Carter
flips the coin. Moran flips the coin.
Colon doesn’t flip the coin. Is the coin
still heads up?

A.2 Arithmetic reasoning740

dataset #samples example problem

SingleEq 508 Joan found 70 seashells on the beach. she gave Sam some
of her seashells. She has 27 seashell left. How many
seashells did she give to Sam ?

AddSub 395 There are 22 walnut trees currently in the park. Park work-
ers will plant walnut trees today. When the workers are
finished there will be 55 walnut trees in the park. How
many walnut trees did the workers plant today?

MultiArith 600 For Halloween Debby and her sister combined the candy
they received. Debby had 32 pieces of candy while her
sister had 42. If they ate 35 pieces the first night, how
many pieces do they have left?

SVAMP 1,000 Julia played tag with 18 kids on monday. She played tag
with 10 kids on tuesday. How many more kids did she play
with on monday than on tuesday ?

GSM8K 1,319 Janet’s ducks lay 16 eggs per day. She eats three for break-
fast every morning and bakes muffins for her friends every
day with four. She sells the remainder at the farmers’ mar-
ket daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?

12



We list the details and licenses for arithmetic datasets we used. The symbolic datasets were newly created. 741

• SingleEq (Koncel-Kedziorski et al. (2015)); AddSub (Hosseini et al. (2014)): https://www.cs. 742

washington.edu/nlp/arithmetic; MultiArith (Roy and Roth (2016)) from Math World Problem 743

Repository (Koncel-Kedziorski et al. (2016)): https://github.com/sroy9/mawps, license: CC 744

BY 4.0 745

746

• SVAMP (Patel et al. (2021)): https://github.com/arkilpatel/SVAMP, MIT license: 747

https://github.com/arkilpatel/SVAMP/blob/main/LICENSE 748

749

• GSM8K (Cobbe et al. (2021)): https://github.com/openai/grade-school-math, MIT li- 750

cense: https://github.com/openai/grade-school-math/blob/master/LICENSE 751

Our use of the datasets is consistent with their intended use under the licenses. 752
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B Experiment details for symbolic reasoning753

B.1 Last letter concatenation754

Here we show correct and incorrect examples for all the prompting methods we have mentioned in the755

paper on the task of last letter concatenation.756

Zero-shot standard757

Q: Concatenate the last letters of the given words: "imagine,admire,assume,equally"
A: e, e, e, y. Therefore, the answer is "eeey“ (correct)

Q: Concatenate the last letters of the given words: uh,employer,intelligent,straight"
A: hrtt. Therefore, the answer is "hrtt". (correct)

Q: Concatenate the last letters of the given words: "motion,instant,act,chapter"
A: n,t,t,r. Therefore, the answer is “nttr”. (correct)

Q: Concatenate the last letters of the given words: "fully,drug,gut,agreement"
A: lygdnt. Therefore, the answer is “lygdnt” (incorrect)

Q: Concatenate the last letters of the given words: "evil,secret,expansion,experience"
A: lnts. Therefore, the answer is lnts. (incorrect)

Q: Concatenate the last letters of the given words: "consist,wear,concede,considerable"
A: t-r-e-e-l-e. Therefore, the answer is "treele". (incorrect)

Table 8: Examples of correct and incorrect results by zero-shot standard prompting on last letter concatenation.
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Zero-shot CoT 758

Q: Concatenate the last letters of the given words: "fully,drug,gut,agreement"
A: Let’s think step by step.
1. The last letter of "fully" is "y".
2. The last letter of "drug" is "g".
3. The last letter of "gut" is "t".
4. The last letter of "agreement" is "t".
5. Concatenating these letters together, we get "ygtt".Therefore, the answer is "ygtt". (correct)

Q: Concatenate the last letters of the given words: "imagine,admire,assume,equally"
A: Let’s think step by step.1. The last letter of "imagine" is "e".
2. The last letter of "admire" is "e".
3. The last letter of "assume" is "e".
4. The last letter of "equally" is "y".
5. Concatenating these letters gives us "eeeY".Therefore, the answer is "eeeY". (correct)

Q: Concatenate the last letters of the given words: "consist,wear,concede,considerable"
A: Let’s think step by step.1. The last letter of "consist" is "t".
2. The last letter of "wear" is "r".
3. The last letter of "concede" is "e".
4. The last letter of "considerable" is "e".
5. Concatenating these letters together, we get "tree".Therefore, the answer is "tree".(correct)

Q: Concatenate the last letters of the given words: "evil,secret,expansion,experience"
A: Let’s think step by step.1. The last letter of "evil" is "l".
2. The last letter of "secret" is "t".
3. The last letter of "expansion" is "n".
4. The last letter of "experience" is "e".
5. Concatenating these letters together, we get "lten". Therefore, the answer is "lten". (incorrect)

Q: Concatenate the last letters of the given words: "weapon,reasonable,thin,loyalty"
A: Let’s think step by step.1. The last letter of "weapon" is "n".
2. The last letter of "reasonable" is "e".
3. The last letter of "thin" is "n".
4. The last letter of "loyalty" is "y".
5. Concatenating these letters together, we get "ney".Therefore, the answer is "ney". (incorrect)

Q: Concatenate the last letters of the given words: "motion,instant,act,chapter"
A: Let’s think step by step.1. The last letter of "motion" is "n".
2. The last letter of "instant" is "t".
3. The last letter of "act" is "t".
4. The last letter of "chapter" is "r".
5. Concatenating these letters together, we get "ntr".Therefore, the answer is "ntr". (incorrect)

Table 9: Examples of correct and incorrect results by zero-shot CoT prompting on last letter concatenation.
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Few-shot CoT759

Q: "think, machine"
A: The last letter of "think" is "k". The last letter of "machine" is "e". Concatenating "k", "e" leads to
"ke". So, "think, machine" outputs "ke".

Q: "learning, reasoning, generalization"
A: The last letter of "learning"is "g". The last letter of "reasoning" is "g". The last letter of "general-
ization" is "n". Concatenating "g", "g", "n" leads to "ggn". So, "learning, reasoning, generalization"
outputs "ggn".

Table 10: Exemplars for the full prompt of few-shot CoT prompting on last letter concatenation. We follow Zhou
et al. (2023) to construct the exemplars.

Q: Concatenate the last letters of the given words: "fully,drug,gut,agreement"
A: The last letter of "fully" is "y". The last letter of "drug" is "g". The last letter of "gut" is
"t". The last letter of "agreement" is "t". Concatenating "y", "g", "t", "t" leads to "ygtt". So,
"fully,drug,gut,agreement" outputs "ygtt".(correct)

Q: Concatenate the last letters of the given words: "imagine,admire,assume,equally"
A: The last letter of "imagine" is "e". The last letter of "admire" is "e". The last letter of "assume" is
"e". The last letter of "equally" is "y". Concatenating "e", "e", "e", "y" leads to "eeey". So, "imagine,
admire, assume, equally" outputs "eeey".(correct)

Q: Concatenate the last letters of the given words: "evil,secret,expansion,experience"
A: The last letter of "evil" is "l". The last letter of "secret" is "t". The last letter of "expansion"
is "n". The last letter of "experience" is "e". Concatenating "l", "t", "n", "e" leads to "ltne". So,
"evil,secret,expansion,experience" outputs "ltne".(correct)

Q: "vacation,diverse,argument,speculation"
A: The last letter of "vacation" is "n". The last letter of "diverse" is "e". The last letter of "argument" is
"t". The last letter of "speculation" is "n". Concatenating "n", "e", "t", "n" leads to "nent". So, "vacation,
diverse, argument, speculation" outputs "nent". (incorrect)

Q: "Christianity,arm,invention,dog"
A: There is no common letter at the end of all four words, so there is no output for "Christianity, arm,
invention, dog".(incorrect)

Q: "German,establishment,accurate,initially"
A: The last letter of "German" is "n". The last letter of "establishment" is "t". The last letter of
"accurate" is "e". The last letter of "initially" is "y". Concatenating "n", "t", "e", "y" leads to "nty". So,
"German, establishment, accurate, initially" outputs "nty". (incorrect)

Table 11: Examples of correct and incorrect results by few-shot CoT prompting on last letter concatenation.
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760

Zero-shot code 761

Generate python code to concatenate the last letters of the given words.

Here’s the Python code to concatenate the last letters of the given words:
```
words = ["apple", "banana", "cherry", "date", "elderberry"]
result = ""
for word in words:
result += word[-1]
print(result)
```

Table 12: Code generated in the first stage of code prompting for last letter concatenation.
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Q: "fully,drug,gut,agreement"
A:
Let’s think step by step. Print all the middle variables.
```
words = ["fully", "drug", "gut", "agreement"]
result = ""
for word in words:
last_letter = word[-1]
result += last_letter
print(f"Word: {word}, Last Letter: {last_letter}, Result: {result}")
print(result)
```
Output:
```
Word: fully, Last Letter: y, Result: y
Word: drug, Last Letter: g, Result: yg
Word: gut, Last Letter: t, Result: ygt
Word: agreement, Last Letter: t, Result: ygtt
ygtt
```
Therefore, the answer is "ygtt". (correct)

Q: "feed,characteristic,spray,anymore"
A:
Let’s think step by step. Print all the middle variables.
```
words = ["feed", "characteristic", "spray", "anymore"]
result = ""
for word in words:
last_letter = word[-1]
result += last_letter
print(f"Word: {word}, Last Letter: {last_letter}, Result: {result}")
print(result)
```
Output:
```
Word: feed, Last Letter: d, Result: d
Word: characteristic, Last Letter: c, Result: dc
Word: spray, Last Letter: y, Result: dcy
Word: anymore, Last Letter: e, Result: dbye
dbye
```
Therefore, the answer is dbye. (incorrect)

Table 13: Examples of correct and incorrect results (in the second stage) by zero-shot code prompting on last letter
concatenation.
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B.2 Coin flip 762

Here we show correct and incorrect examples for all the prompting methods we have mentioned in the 763

paper on the task of coin flip. 764

Zero-shot standard 765

Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".
A: Yes, the coin is still heads up. Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Tyler doesn’t flip the coin. Gates doesn’t flip the coin. Weber doesn’t flip the
coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Yes, the coin is still heads up. Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Kline doesn’t flip the coin. Underwood doesn’t flip the coin. Yu doesn’t flip the
coin. Is the coin still heads up? Note that "flip" here means "reverse".

A: Yes, the coin is still heads up. The fact that no one flipped the coin does not change its initial state.
Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up? Note that "flip" here means "reverse".

A: Yes, the coin is still heads up. The actions of Valencia, Ross, and Walter do not affect the initial
state of the coin. Therefore, the answer (Yes or No) is Yes. (incorrect)

Q: A coin is heads up. Valentine flips the coin. Beck flips the coin. Molina doesn’t flip the coin. Is the
coin still heads up? Note that "flip" here means "reverse".

A: No, we don’t know the result of Valentine and Beck’s flips, so we can’t assume the coin is still heads
up. Therefore, the answer (Yes or No) is unknown. (incorrect)

Q: A coin is heads up. Stephens flips the coin. Cooper doesn’t flip the coin. Olson flips the coin. Is the
coin still heads up? Note that "flip" here means "reverse".

A: It depends on the outcome of Olson’s flip. If Olson flips the coin and it lands heads up, then the
coin is still heads up. If Olson flips the coin and it lands tails up, then the coin is no longer heads
up.Therefore, the answer (Yes or No) is uncertain. (incorrect)

Table 14: Examples of correct and incorrect results by zero-shot standard prompting on coin flip.
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Zero-shot CoT766

Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".
A: Let’s think step by step. Initially, the coin is heads up. None of the three people mentioned in the
question flip the coin, which means they don’t reverse it. Therefore, the coin remains in its initial
state, which is heads up. So, yes, the coin is still heads up. Therefore, the answer (Yes or No) is Yes.
(correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up? Note that "flip" here means "reverse".
A: Let’s think step by step.
1. The coin is heads up.
2. Valencia doesn’t flip the coin, so the coin remains heads up.
3. Ross flips the coin, which means the coin is now tails up.
4. Walter doesn’t flip the coin, so the coin remains tails up.
Therefore, the answer is no, the coin is not still heads up. It is now tails up. Therefore, the answer (Yes
or No) is No. (correct)

Q: A coin is heads up. Medrano doesn’t flip the coin. Cannon doesn’t flip the coin. Hutchinson flips
the coin. Is the coin still heads up? Note that "flip" here means "reverse".
A: Let’s think step by step.
1. The coin is heads up.
2. Medrano doesn’t flip the coin, so it remains heads up.
3. Cannon doesn’t flip the coin, so it still remains heads up.
4. Hutchinson flips the coin. We don’t know the result of the flip, so we can’t say for sure whether the
coin is still heads up or not.
Therefore, we can’t determine whether the coin is still heads up or not after Hutchinson flips it.
Therefore, the answer (Yes or No) is indeterminate. (incorrect)

Q: A coin is heads up. Farmer flips the coin. Chandler doesn’t flip the coin. Lozano flips the coin. Is
the coin still heads up? Note that "flip" here means "reverse".
A: Let’s think step by step.
1. The coin is heads up.
2. Farmer flips the coin, which means he reverses it. So now the coin is tails up.
3. Chandler doesn’t flip the coin, so it remains tails up.
4. Lozano flips the coin, which means he reverses it again. So now the coin is heads up again.
Therefore, the coin is not still heads up, but it has gone through a series of flips and is now heads up
again. Therefore, the answer (Yes or No) is No. (incorrect)

Table 15: Examples of correct and incorrect results by zero-shot CoT prompting on coin flip.
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Few-shot CoT 767

Q: A coin is heads up. Ka flips the coin. Sherrie flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".
A: The coin was flipped by Ka and Sherrie. So the coin was flipped 2 times, which is an even number.
The coin started heads up, so after an even number of flips, it will still be heads up. So the answer is
yes.

Q: A coin is heads up. Jamey flips the coin. Teressa flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".
A: The coin was flipped by Jamey and Teressa. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. So the
answer is yes.

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads
up? Note that "flip" here means "reverse".
A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Millicent does not flip the coin. Conception flips the coin. Is the coin still heads
up? Note that "flip" here means "reverse".
A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Sal flips the coin. Raymond does not flip the coin. Is the coin still heads up?
Note that "flip" here means "reverse".
A: The coin was flipped by Sal. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Conception flips the coin. Kristian does not flip the coin. Is the coin still heads
up? Note that "flip" here means "reverse".
A: The coin was flipped by Conception. So the coin was flipped 1 time, which is an odd number. The
coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

Q: A coin is heads up. Inga does not flip the coin. Elanor does not flip the coin. Is the coin still heads
up? Note that "flip" here means "reverse".
A: The coin was flipped by no one. So the coin was flipped 0 times. The coin started heads up, and it
was not flipped, so it is still heads up. So the answer is yes.

Q: A coin is heads up. Ryan flips the coin. Shaunda flips the coin. Is the coin still heads up? Note that
"flip" here means "reverse".
A: The coin was flipped by Ryan and Shaunda. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. So the
answer is yes.

Table 16: Exemplars for the full prompt of few-shot CoT prompting on coin flip. We follow Wei et al. (2023) to
construct the exemplars.
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Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up? Note that "flip" here means "reverse".
A: The coin was not flipped by anyone. So the coin was flipped 0 times. The coin started heads up, and
it was not flipped, so it is still heads up. So the answer is yes. (correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up? Note that "flip" here means "reverse".
A: The coin was flipped by Ross. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. So the answer is no. (correct)

Q: A coin is heads up. Valentine flips the coin. Beck flips the coin. Molina doesn’t flip the coin. Is the
coin still heads up? Note that "flip" here means "reverse".
A: The coin was flipped by Valentine and Beck. So the coin was flipped 2 times, which is an even
number. The coin started heads up, so after an even number of flips, it will still be heads up. Molina
did not flip the coin, so it does not affect the outcome. So the answer is yes. (correct)

Q: A coin is heads up. Park flips the coin. Cooper doesn’t flip the coin. Wright doesn’t flip the coin. Is
the coin still heads up?
A: The coin was flipped by Park. So the coin was flipped 1 time, which is an odd number. The coin
started heads up, so after an odd number of flips, it will be tails up. However, since Cooper and Wright
did not flip the coin, we do not know if it was flipped again. So the answer is uncertain. (incorrect)

Table 17: Examples of correct and incorrect results by few-shot CoT prompting on coin flip.

Zero-shot code768

A coin is heads up , there are some people, each one flipped or didn’t flip the coin. Generate python
code to determine whether the coin is still heads up.
Note that "flip" here means "reverse".
Assuming that the initial state of the coin is represented by a boolean variable called "heads_up" and
the list of people’s actions is represented by a list of boolean values called "flips", the following Python
code can be used to determine whether the coin is still heads up:
```
heads_up = True # initial state of the coin
flips = [True, False, True, True, False] # list of people’s actions
for flip in flips:
if flip:
heads_up = not heads_up
# if the person didn’t flip the coin, do nothing
if heads_up:
print("The coin is still heads up.")
else:
print("The coin is now tails up.")
```

Table 18: Code generated in the first stage of code prompting for coin flip.
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Q: A coin is heads up. Taylor doesn’t flip the coin. Harmon doesn’t flip the coin. Dejesus doesn’t flip
the coin. Is the coin still heads up?
Let’s think step by step. Print all the middle variables.
A:Yes, the coin is still heads up.
To verify this, we can use the same Python code as before, but with a different list of flips:
```
heads_up = True # initial state of the coin
flips = [False, False, False] # list of people’s actions
for flip in flips:
if flip:
heads_up = not heads_up # reverse the state of the coin
# if the person didn’t flip the coin, do nothing
print(heads_up) # print the current state of the coin
if heads_up:
print("The coin is still heads up.")
else:
print("The coin is now tails up.")
```
When we run this code, we can see that the current state of the coin remains True (heads up) throughout
the loop, and the final message confirms that the coin is still heads up:
```
True
True
True
The coin is still heads up.
```
Therefore, the answer (Yes or No) is Yes. (correct)

Q: A coin is heads up. Valencia doesn’t flip the coin. Ross flips the coin. Walter doesn’t flip the coin.
Is the coin still heads up?
Let’s think step by step. Print all the middle variables.
A:Using the same code as before, we can modify the list of flips to match the scenario described in the
question:
```
heads_up = True # initial state of the coin
flips = [False, True, False] # list of people’s actions
for flip in flips:
if flip:
heads_up = not heads_up # reverse the state of the coin
# if the person didn’t flip the coin, do nothing
print(heads_up)
if heads_up:
print("The coin is still heads up.")
else:
print("The coin is now tails up.")
```
When we run this code, we get the following output:
```
True
False
True
The coin is still heads up.
```
This means that the coin is still heads up after Ross flips it, since the final state of the coin is still heads
up.Therefore, the answer (Yes or No) is Yes, the coin is still heads up. (incorrect)

Table 19: Examples of correct and incorrect results by zero-shot code prompting on coin flip.
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C Error analysis for symbolic reasoning769

Here we show an example to illustrate how ambiguity disturbs CoT prompting.770

Q: A coin is heads up. Christian doesn’t flip the coin. Lewis doesn’t flip the coin. Becker flips the coin.
Is the coin still heads up? Note that “flip” here means “reverse”.

A: Let’s think step by step.
1. The coin is heads up.
2. Christian doesn’t flip the coin, so it remains heads up.
3. Lewis doesn’t flip the coin, so it still remains heads up.
4. Becker flips the coin. We don’t know the result of the flip, so we can’t say for sure whether the coin
is still heads up or not.
Therefore, we can’t determine whether the coin is still heads up or not without knowing the result of
Becker’s flip. Therefore, the answer (Yes or No) is unknown.

Table 20: Example of ambiguity in CoT prompting. In the specific example, in the fourth step, the LLM is confused
by the meaning of “flip” and thus fail to give the correct answer.

D Experiment details for arithmetic reasoning771

Here we show full prompts for zero-shot CoT prompting, zero-shot code prompting (+irr/+equ), few-shot772

CoT, PAL, few-shot code prompting (+irr/+equ) and few-shot code prompting + LLM self-contained.773

Furthermore, we show the results for few-shot code prompting + LLM self-contained.774

Besides, we add system messages for all the prompting methods to align with Gao et al. (2023). For775

CoT prompting, we set the system message to “You will solve math problems.”; for PAL and code776

prompting, we set the system message to “You will write python program to solve math problems. You777

will only write code blocks.”.778

Zero-shot CoT779

Q: {question}
A: Let’s think step by step.

Table 21: Zero-shot CoT prompt for math world problems.
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Zero-shot code 780

plain:
Generate python code to answer the question.
Note that code should follow the format ```code```.
Q: {question}

+irr:
Generate python code to answer the question.
Note that code should follow the format ```code```.
There may be irrelevant information in the question. If you find it, ignore it.
Q: {question}

+equ:
Generate python code to answer the question.
Note that code should follow the format ```code```.
If you need to solve an equation, here’s an instruction:
```python
# to solve an equation, you can use python package sympy
import sympy
# for example, to solve 2*x = 5
# First, declarify your variable, in this case, ’x’
x = sympy.symbols("x")
# Second, transform the equation so that the right hand side of the equation is zero.
# 2*x - 5 = 0
# Third, use ‘sympy.solve‘ to solve the equation
a = sympy.solve([2 * x - 5], [x])
# Print the output as a float. Note that ‘a‘ is a dict
print(float(a[x]))
```
Q: {question}

Table 22: Zero-shot code prompt (plain/+irr/+equ) for math world problems.
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Few-shot CoT781

A: The robe takes 2 bolts of blue 

fiber and half that much white fiber. 

So it takes 2 + 1 = 3 bolts in total. 

The answer is 3.

Q: If there are 3 cars in the parking 

lot and 2 more cars arrive, how 

many cars are in the parking lot?

A: There are originally 3 cars. 2 

more cars arrive. 3 + 2 = 5. The 

answer is 5.

…(more exemplars hidden)

Q: A robe takes 2 bolts of blue fiber 

and half that much white fiber.  

How many bolts in total does it 

take?

Language Model

Few-shot Code Prompting

Q: If there are 3 cars in the parking 

lot and 2 more cars arrive, how 

many cars are in the parking lot?

C:

```

original_cars = 3 # There are 3 

cars in the parking lot

new_cars = 2 # 2 more cars arrive

total_cars = original_cars + 

new_cars # So the total number of 

cars in the parking lot is 

original_cars + new_cars

print(total_cars) # print final result

```

…(more exemplars hidden)

Q: A robe takes 2 bolts of blue 

fiber and half that much white 

fiber.  How many bolts in total 

does it take?

Language 

Model

Python

Interpreter

3

Few-shot Chain-of-Thought Prompting

blue_fiber_bolts = 2 # A robe takes 2 
bolts of blue fiber
white_fiber_bolts = blue_fiber_bolts /
2 # Half as many white fiber bolts are 
needed as blue fiber bolts
total_bolts = blue_fiber_bolts +
white_fiber_bolts # Total number of 
bolts needed is the sum of blue and 
white fiber bolts
print(total_bolts) # Print the final 
result

Figure 6: The pipelines of few-shot CoT prompting and few-shot code prompting are shown in the figure.

Let’s think step by step to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
A: Olivia had 23 dollars. 5 bagels for 3 dollars each will be 5 x 3 = 15 dollars. So she has 23 - 15
dollars left. 23 - 15 is 8. The answer is 8.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
A: Michael started with 58 golf balls. After losing 23 on tuesday, he had 58 - 23 = 35. After losing 2
more, he had 35 - 2 = 33 golf balls. The answer is 33.

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
A: There were originally 9 computers. For each of 4 days, 5 more computers were added. So 5 * 4 =
20 computers were added. 9 + 20 is 29. The answer is 29.

How about this question?
Q: {question}

Table 23: Few-shot CoT prompt for math world problems. We follow the code released by Gao et al. (2023) to
choose the exemplars.
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PAL 782

Let’s use python to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
```
def solution():
"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result
```

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
```
def solution():
"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?"""
golf_balls_initial = 58
golf_balls_lost_tuesday = 23
golf_balls_lost_wednesday = 2
golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday
result = golf_balls_left
return result
```

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
```
def solution():
"""There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?"""
computers_initial = 9
computers_per_day = 5
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days
computers_total = computers_initial + computers_added
result = computers_total
return result
```

How about this question?
Q: {question}

Table 24: PAL prompt for math world problems. We use the demonstrations from the code released by Gao et al.
(2023).
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Few-shot code + comments783

Let’s use python to solve math problems. Here are three examples how to do it,
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
```
def solution():
"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23 # Olivia has $23 initially
bagels = 5 # Olivia bought 5 bagels
bagel_cost = 3 # Each bagel cost $3
money_spent = bagels * bagel_cost # The total cost of 5 bagels is the product of the price of each bagel
and the number of bagels
money_left = money_initial - money_spent # Money left is the difference between initial money and
the total cost of 5 bagels
result = money_left
return result
```
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
```
def solution():
"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?"""
golf_balls_initial = 58 # Michael had 58 golf balls initially
golf_balls_lost_tuesday = 23 # He lost 23 golf balls on Tuesday
golf_balls_lost_wednesday = 2 # He lost 2 more golf balls on Wednesday
golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday # Number of
golf balls remaining is the difference between initial golf balls and the golf balls lost on Tuesday and
Wednesday
result = golf_balls_left
return result
```
Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
```
def solution():
"""There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?"""
computers_initial = 9 # There were 9 computers in the server room initially
computers_per_day = 5 # 5 more computers were installed each day from Monday to Thursday
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days # Additional computers are the product of the
number of computers installed each day and the number of days
computers_total = computers_initial + computers_added # Total number of computers is the sum of
initial computers and the additional computers installed on 4 days
result = computers_total
return result
```
How about this question?
Q: {question}

Table 25: Few-shot code prompt for math world problems.
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Few-shot code + LLM self-contained 784

Let’s use python to solve math problems. Here are three examples how to do it,

Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
```
def solution():
"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23 # Olivia has $23 initially
bagels = 5 # Olivia bought 5 bagels
bagel_cost = 3 # Each bagel cost $3
money_spent = bagels * bagel_cost # The total cost of 5 bagels is the product of the price of each bagel
and the number of bagels
money_left = money_initial - money_spent # Money left is the difference between initial money and
the total cost of 5 bagels
result = money_left
return result
```
Let’s think step by step according to the code:

```
money_initial = 23
bagels = 5
bagel_cost = 3
money_left = money_initial - money_spent = 23 - 15 = 8
result = money_left = 8
```
So the answer is 8.

Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?
```
def solution():
"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How
many golf balls did he have at the end of wednesday?"""
golf_balls_initial = 58 # Michael had 58 golf balls initially
golf_balls_lost_tuesday = 23 # He lost 23 golf balls on Tuesday
golf_balls_lost_wednesday = 2 # He lost 2 more golf balls on Wednesday
golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday # Number of
golf balls remaining is the difference between initial golf balls and the golf balls lost on Tuesday and
Wednesday
result = golf_balls_left
return result
```
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Let’s think step by step according to the code:
```
golf_balls_initial = 58
golf_balls_lost_tuesday = 23
golf_balls_lost_wednesday = 2
golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday = 58 - 23 - 2
= 33
result = golf_balls_left = 33

```
So the answer is 33.

Q: There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?
```
def solution():
"""There were nine computers in the server room. Five more computers were installed each day, from
monday to thursday. How many computers are now in the server room?"""
computers_initial = 9 # There were 9
computers in the server room initially computers_per_day = 5 # 5 more computers were installed each
day from Monday to Thursday
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days # Additional computers are the product of the
number of computers installed each day and the number of days
computers_total = computers_initial + computers_added # Total number of computers is the sum of
initial computers and the additional computers installed on 4 days
result = computers_total return result
```
Let’s think step by step according to the code:

```
computers_initial = 9
computers_per_day = 5
num_days = 4
computers_added = computers_per_day * num_days = 5 * 4 = 20
computers_total = computers_initial + computers_added = 9 + 20 = 29
result = computers_total = 29
```
So the answer is 29.

How about this question?
Q: {question}

Table 26: Prompt of few-shot code + LLM self-contained for math world problems.

E Error analysis for arithmetic reasoning785

E.1 AddSub786

As mentioned in §5.2, in AddSub, LLMs make errors mainly due to the distraction of irrelevant variables.787

Here we show two examples of the LLMs distracted by irrelevant variables.788
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Q: Joan had 695 Pokemon cards, and 6 were torn.
Sara bought 133 of Joan’s Pokemon cards. How
many Pokemon cards does Joan have now?

Q: Dan spent $11.76 on a snake toy, and a cage
cost him $14.54. Dan also found a dollar bill
on the ground. What was the total cost of Dan’s
purchases?

# Joan had 695 Pokemon cards initially
initial_cards = 695
# 6 of the cards were torn
torn_cards = 6
# Sara bought 133 of Joan's Pokemon cards
cards_sold = 133
# Total number of cards Joan has now is the difference 
between initial cards, torn cards, and cards sold
remaining_cards = initial_cards - torn_cards - cards_sold
# Print the final result
print(remaining_cards)

snake_toy_cost = 11.76 # The cost of the snake toy is 
$11.76
cage_cost = 14.54 # The cost of the cage is $14.54
found_money = 1 # Dan found $1 on the ground
total_cost = snake_toy_cost + cage_cost - found_money
# The total cost is the sum of the cost of the snake toy 
and the cage, minus the dollar bill Dan found
print(total_cost) # Print the final result

# Joan had 695 Pokemon cards initially
initial_cards = 695
# 6 of the cards were torn
torn_cards = 6
# Sara bought 133 of Joan's Pokemon cards
cards_sold = 133
# Total number of cards Joan has now is the difference 
between initial cards, torn cards, and cards sold
remaining_cards = initial_cards - torn_cards - cards_sold
# Print the final result
print(remaining_cards)

snake_toy_cost = 11.76 # The cost of the snake toy is 
$11.76
cage_cost = 14.54 # The cost of the cage is $14.54
found_money = 1 # Dan found $1 on the ground
total_cost = snake_toy_cost + cage_cost - found_money
# The total cost is the sum of the cost of the snake toy 
and the cage, minus the dollar bill Dan found
print(total_cost) # Print the final result

Table 27: Error examples for AddSub. In the left example, torn_card is an irrelevant variable that should not
appear in the equation. The correct answer should be remaining_cards = initial_cards - torn_cards,
which gives 562. In the right example, found_money is an irrelevant variable. The correct answer should be
total_cost = snake_toy_cost + cage_cost, which gives 26.3.

E.2 MultiArith 789

In MultiArith, the wrong answers from code prompting are mainly due to two reasons: 1) Code prompting 790

is more sensitive to ambiguity in the question, which may leads to a wrong answer. 2) The groundtruth for 791

some questions is wrong, while the predictions are correct. 792

Here we show examples for both cases. 793

Q: The school cafeteria ordered 43 red apples and 32 green apples for students lunches. But, if only 2
students wanted fruit, how many extra did the cafeteria end up with?

red_apples = 43 # The cafeteria ordered 43 red apples
green_apples = 32 # The cafeteria ordered 32 green apples
total_apples = red_apples + green_apples # Total number of apples ordered is the sum of red and green apples
students_want_fruit = 2 # Only 2 students wanted fruit
apples_needed = students_want_fruit * 2 # Each student needs 2 apples
extra_apples = total_apples - apples_needed # Extra apples are the difference between total apples and the 
apples needed for the 2 students
print(extra_apples) # Print the final result

Table 28: An error example of few-shot code prompting for MultiArith. The question does not make it clear how
many apple a student want, but the ground truth suggests that we should take it as default that each student wants 1
apple. Code prompting makes the LLM more sensitive to such ambiguity.

Q: Emily’s team won their dodgeball game and scored 39 points total. If Emily scored 23 of the points
and everyone else scored 2 points each, how many players were on her team?

emily_points = 23 # Emily scored 23 points
other_players_points = 2 # Each other player scored 2 points
total_points = 39 # The team scored 39 points in total
num_other_players = (total_points - emily_points) / other_players_points # Number of other players is the 
difference between total points and Emily's points, divided by the points each other player scored
num_players = num_other_players + 1 # Total number of players is the number of other players plus Emily
print(num_players) # Print the final result

Table 29: An error example of few-shot code prompting for MultiArith. The ground truth fails to count Emily into
the players, resulting in wrong answer (39− 23)/2 = 8.
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E.3 GSM8K794

Error with equations. We have mentioned in §5.3 that the LLM struggles to solve equations in code.795

When facing an equation, the LLM tends to solve it in the comments or directly lists the equation in the796

code, which may easily result in wrong answers or bugs. Here are two examples.797

Q: Ruby is 6 times older than Sam. In 9 years, Ruby will be 3 times as old as Sam. How old is Sam
now?

# Let's assume Sam's age is x
# According to the question, Ruby is 6 times older than Sam
# So, Ruby's age will be 6x

# In 9 years, Ruby will be 3 times as old as Sam
# So, (6x + 9) = 3(x + 9)
# Solving the above equation, we get x = 9

# Therefore, Sam's age now is 9 years old

sam_age = 9
print("Sam's age now is", sam_age, "years old.")

Table 30: An error example of code prompting for GSM8K.

Q: The three angles in a triangle add up to 180 degrees. One angle is twice the smallest angle, and
one angle is three times the smallest angle. What is the measure of the largest angle in the triangle, in
degrees?

smallest_angle = x
second_angle = 2 * x
third_angle = 3 * x
sum_of_angles = smallest_angle + second_angle + third_angle
largest_angle = third_angle
print(largest_angle)

Bug report:
NameError: name 'x' is not defined

Table 31: An error example of code prompting for GSM8K.

Error distribution of CoT prompting and code prompting. Here we show the error distribution798

of few-shot CoT prompting and few-shot code prompting(w/ comments at the end). Since here we only799

investigate into the error overlap of CoT prompting and code prompting, to eliminate the effects of system800

messages and instructions, we remove all the system messages and unnecessary instructions (They are801

added in the former experiments to align with the method PAL Gao et al. (2023)). Besides, we use the802

original 8 exemplars from Wei et al. (2023). In §5.4, we show the results of 8-shot CoT prompting, 8-shot803

code prompting and the ensemble of them.804

32



70.96% 8.72%

10.61% 9.70%

few-shot CoT

right wrong

fe
w

-s
h

o
t 

co
d

e

ri
g

h
t

w
ro

n
g

Figure 7: Error distribution of few-shot code prompting and few-shot CoT prompting regarding dataset GSM8K.
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