
Critical Influence of Overparameterization on Sharpness-aware Minimization

Sungbin Shin⋆1 Dongyeop Lee⋆1 Maksym Andriushchenko2 Namhoon Lee1

1POSTECH, Pohang, South Korea
2EPFL, Lausanne, Switzerland

Abstract

Sharpness-Aware Minimization (SAM) has at-
tracted considerable attention for its effectiveness
in improving generalization in deep neural network
training by explicitly minimizing sharpness in the
loss landscape. Its success, however, relies on the
assumption that there exists sufficient variability
of flatness in the solution space—a condition com-
monly facilitated by overparameterization. Yet, the
interaction between SAM and overparameteriza-
tion has not been thoroughly investigated, leaving
a gap in understanding precisely how overparam-
eterization affects SAM. Thus, in this work, we
analyze SAM under varying degrees of overpa-
rameterization, presenting both empirical and the-
oretical findings that reveal its critical influence
on SAM’s effectiveness. First, we conduct exten-
sive numerical experiments across diverse domains,
demonstrating that SAM consistently benefits from
overparameterization. Next, we attribute this phe-
nomenon to the interplay between the enlarged
solution space and increased implicit bias result-
ing from overparameterization. Furthermore, we
show that this effect is particularly pronounced in
practical settings involving label noise and sparsity,
and yet, sufficient regularization is necessary. Last
but not least, we provide other theoretical insights
into how overparameterization helps SAM achieve
minima with more uniform Hessian moments com-
pared to SGD, and much faster convergence at a
linear rate.

1 INTRODUCTION

Optimization algorithms, though primarily designed to min-
imize training loss, have increasingly been recognized for

⋆ Equal contribution

their role in implicitly regularizing machine learning mod-
els, with some optimizers leading to stronger generalization
than others [Keskar et al., 2017, Wilson et al., 2017, Ji et al.,
2020, Andriushchenko et al., 2023b]. This has motivated
extensive efforts to uncover the underlying mechanisms and
incorporate these insights into the design of more effective
optimizers [Izmailov et al., 2018, Foret et al., 2021, Orvieto
et al., 2022, Zhao et al., 2022].

One prominent line of research examines the relationship
between the sharpness of the loss landscape and generaliza-
tion error, with flatter minima generally associated with im-
proved generalization performance [Hochreiter and Schmid-
huber, 1997a, Keskar et al., 2017, Jiang et al., 2020]. This
observation has motivated the development of optimization
techniques aimed at encouraging convergence to such flat
regions [Izmailov et al., 2018, Chaudhari et al., 2017, Foret
et al., 2021, Orvieto et al., 2022, Zhao et al., 2022]. Notably,
SAM [Foret et al., 2021] has drawn significant interest for its
ability to promote flatter minima and enhance generalization
beyond what is typically achieved with standard optimizers
[Bahri et al., 2022, Chen et al., 2022b, Qu et al., 2022].

However, it relies on a seemingly implicit assumption: that
the loss landscape provides sufficient variability in flatness
for SAM to exploit. Recent perspectives suggest that over-
parameterization may be precisely what gives rise to such
conditions, as it enlarges the solution space and potentially
enables solutions with greater variation in local geometry,
such as sharpness [Ma and Damian, 2023]. If so, overpa-
rameterization might not be merely optional but essential:
without it, SAM might fail to produce similar benefits.

This line of reasoning motivates us to conduct a closer exam-
ination into the effects of overparameterization on sharpness-
aware minimization (SAM) [Foret et al., 2021], with an eye
toward understanding not just whether SAM is effective
but also under what conditions and why. Specifically, we
conduct extensive experiments to precisely measure the im-
pact of overparameterization across a diverse set of tasks,
ranging from standard tasks in computer vision and natu-

ral language processing, to molecular property prediction,
and further, to video games in reinforcement learning. To
gain further insight into the results, we perform detailed
investigations into the interactions between overparameteri-
zation and SAM through visual inspection of the solution
space on a simple regression setting as well as analyzing
the influence of overparameterization on the implicit bias
of SAM. Furthermore, we study how overparameterization
influences SAM under various conditions, including label
noise, sparsity, and regularization. Last but not least, we
explore other implications of overparameterization on SAM
through theoretical analyses, including the characteristics
of the attained minima and the convergence rate.

Our key contributions and findings are summarized as fol-
lows.

• Section 3. We perform extensive experiments across
eight workloads of datasets and models at varying scales,
spanning synthetic, vision, language, chemistry, and game
domains. We observe that overparameterization consis-
tently improves the generalization benefit of SAM1. This
phenomenon is general and previously unknown2.

• Section 4. We propose hypotheses to understand this
general phenomenon, positing that two factors may be at
play: (i) overparameterization first increases the number
of simpler and flatter solution candidates, and (ii) it also
increases the implicit bias of SAM. These are verified
with standard experiments in both synthetic and realistic
settings.

• Section 5. We present the merits and caveats of overpa-
rameterization in employing SAM in practice: (i) the ben-
efit of overparameterization for SAM is more pronounced
under label noise and sparsity, while (ii) sufficient regu-
larization is needed. This can serve as a useful guidance
for practitioners.

• Section 6. We develop theoretical analyses3 on linear
stability and convergence: under overparameterization,
(i) linearly stable minima for SAM are flatter and have
more uniformly distributed Hessian moments compared
to SGD, and (ii) a stochastic SAM can converge at a linear
rate. These are also numerically verified.

• Overall. We discover that overparameterization has crit-
ical influences on SAM. Both empirical performance and
theoretical aspects of SAM all improve with overparame-
terization. In other words, SAM may not take its advan-
tage over SGD without overparameterization.

1By “generalization benefit”, we mean the improvement made
by SAM over SGD in validation accuracy.

2While evidence of the similar observation can be found in the
literature [Chen et al., 2022b], no prior work has conducted experi-
ments or confirmed this phenomenon at any scale comparable to
ours.

3We note that these are not intended to directly support Sec-
tion 3 and 4, which we discuss in Section 7.

2 BACKGROUND

Let us consider the general unconstrained optimization prob-
lem:

min
x

f(x) (1)

where f : Rd → R is the objective function to minimize,

and x ∈ Rd is the optimization variable. Based on recent
studies that indicate a strong correlation between the sharp-
ness of f at a minimum and its generalization error [Keskar
et al., 2017, Dziugaite and Roy, 2017, Jiang et al., 2020],
Foret et al. [2021] suggests to turn (1) into a min-max prob-
lem of the following form

min
x

max
∥ϵ∥2≤ρ

f(x+ ϵ) (2)

where ϵ and ρ denote some perturbation added to x and
its norm bound, respectively. Thus, the goal is now to seek
x that minimizes f in its ϵ-neighborhood, such that the
objective landscape becomes locally flat. Taking the first-
order Talyor approximation of f at x and solving for optimal
ϵ⋆ gives the following update rule for SAM:

xt+1 = xt − η∇f

(
xt + ρ

∇f(xt)

∥∇f(xt)∥2

)
. (3)

SAM has been shown to be effective for improving gener-
alization performance compared against SGD [Chen et al.,
2022b, Kaddour et al., 2022, Bahri et al., 2022], and sub-
sequent works have analyzed various aspects of SAM un-
der different settings including its convergence rates [An-
driushchenko and Flammarion, 2022, Mi et al., 2022, Si and
Yun, 2023] and implicit bias [Compagnoni et al., 2023, Wen
et al., 2023, Andriushchenko et al., 2023a].

Meanwhile, a considerable amount of evidence has indi-
cated the benefit of overparameterization for training neural
networks. Besides the empirical success witnessed across
different domains [Kaplan et al., 2020, Radford et al., 2021,
Dehghani et al., 2023], overparameterization turns all local
minima into global ones in theory enabling local methods
to succeed under non-convex settings [Kawaguchi, 2016,
Du et al., 2019]. Researchers have also proved the power
of overparameterization to enable much faster convergence
[Ma et al., 2018, Vaswani et al., 2019, Meng et al., 2020]
and better generalization [Allen-Zhu et al., 2019, Brutzkus
and Globerson, 2019]. To our knowledge, however, previous
work has mostly focused on non-sharpness-aware optimiz-
ers, and the effects of overparameterization on SAM has
been left rather unattended despite its contemporary signifi-
cance to large-scale training trends and widespread usage in
practice.

Workload # Domain Task Dataset Architecture Model

1 Synthetic Regression Synthetic MLP Two-layer MLP
2 Vision Image classification MNIST MLP LeNet-300-100
3 Vision Image classification CIFAR-10 CNN ResNet-18
4 Vision Image classification ImageNet CNN ResNet-50
5 Language PoS tagging Universal Dependencies Transformer Encoder-only Transformer
6 Language Sentiment classification SST-2 RNN LSTM
7 Chemistry Graph property prediction ogbg-molpcba GNN GCN
8 Game Proximal policy optimization Atari Breakout CNN Five-layer CNN

Table 1: Summary of evaluation workloads. They cover eight different datasets spanning five domains and six tasks at
varying scales, and include eight neural network models of five different architecture types. For each workload, we test up to
ten different models of varying degrees of parameterization.

1 2 3 4 5 6 7 8 9 10
of params (×104)

0.04

0.06

0.08

Lo
ss

 im
pr

ov
em

en
t

Synthetic / 2-layer MLP
SGD-SAM

0.06 0.13 0.27 1.43 5.37
of params (×106)

0.0

0.1

0.2

Ac
c

im
pr

ov
em

en
t (

%
)

MNIST / 3-layer MLP
SAM-SGD

0.04 0.18 0.70 3 11 45 179
of params (×106)

0.3

0.6

0.9

1.2

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

2.0 6.9 14.8 14.8 25.6
of params (×106)

0.0

0.2

0.4

0.6

Ac
c

im
pr

ov
em

en
t (

%
)

ImageNet / ResNet-50
SAM-SGD

5.5 13.5 23.7 36.3 51.3
of params (×106)

0.0

0.5

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

PoS tagging / Transformer
SAM-AdamW

0.5 1.1 2.5 5.8 10.0 15.1
of params (×106)

0.0

0.5

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

SST2 / LSTM
SAM-SGD

0.2 0.7 2.7
of params (×106)

0.0

0.3

0.6

m
AP

 im
pr

ov
em

en
t

gpp / GCN
SAM-Adam

0.4 1.7 3.8 6.7
of params (×106)

0

100

200

Sc
or

e
im

pr
ov

em
en

t

Atari / CNN
SAM-Adam

Figure 1: Improvement in validation metrics by SAM. The generalization benefit of SAM tends to increase as the model
becomes more overparameterized. We present the full results including the absolute metrics for SAM and baseline optimizers
in Figure 7 of Appendix B.

3 KEY OBSERVATION: SAM IMPROVES
WITH OVERPARAMETERIZATION

SAM is introduced to find flat minima and thereby improve
generalization performance in practice. In this work, we are
interested in whether and how this improvement is affected
by overparameterization. In order to understand any poten-
tial relationship between SAM and overparameterization,
we first focus on precisely measuring the effect of overpa-
rameterization. More specifically, we conduct a wide range
of deep learning experiments (see Table 1 for the summary
of all tested workloads), and observe how the generaliza-
tion improvement made by SAM changes as with more
parameters.

As a result, we find a strong and consistent trend that SAM
improves with overparameterization in all tested cases (see
Figure 1). To elaborate, initially, SAM does not work much
better than the non-sharpness-aware baseline optimizer (i.e.,
SGD or Adam family depending on the default choice)
when the model is at relatively low number of parameters;
it only starts to improve with more parameters and makes
a clear distinction at very large number of parameters. We

emphasize that this holds true for a wide variety of architec-
tures (MLP, CNN, RNN, GCN, Transformer) and datasets
of different domains (Synthetic, Vision, Language, Chem-
istry, Game) under a rigorous hyperparameter search (see
Appendix A.1 for the full experiment details).

This result possibly indicates that SAM is more effective,
when (and possibly only when) applied to overparameter-
ized models. On the other hand, the increased generaliza-
tion performance of SAM with more parameters renders a
promising avenue, given that the modern neural network
models are often heavily overparameterized [Zhang et al.,
2022, Dehghani et al., 2023]. We note that some evidence
of the similar positive influence of overparameterization for
SAM can be derived in the literature [Chen et al., 2022b],
however, no prior work has conducted experiments or con-
firmed this phenomenon at any scale comparable to ours.4

4As an additional result, we provide a theoretical analysis of
the effect of overparameterization decreasing the test error of SAM
in Appendices I to J. Precisely, however, this result only mean
for SAM and is not to be confused with the relative improvement
against SGD as shown in Section 3.

1 0 1
x

2

1

0

1

2

y
of neurons: 5 / SGD

1 0 1
x

2

1

0

1

2

y

of neurons: 10 / SGD

1 0 1
x

2

1

0

1

2

y

of neurons: 100 / SGD

1 0 1
x

2

1

0

1

2

y

of neurons: 1000 / SGD

1 0 1
x

2

1

0

1

2

y

of neurons: 5 / SAM

1 0 1
x

2

1

0

1

2
y

of neurons: 10 / SAM

1 0 1
x

2

1

0

1

2

y

of neurons: 100 / SAM

1 0 1
x

2

1

0

1

2

y

of neurons: 1000 / SAM

Figure 2: Solutions found by SGD (top) and SAM (bottom). Both optimizers find similar solutions for under/moderately-
parameterized models, whereas the solutions found by SAM are much simpler with less variance compared to those by SGD
for overparameterized models. Here, different colors correspond to different random seeds.

4 UNDERSTANDING WHY SAM
IMPROVES WITH
OVERPARAMETERIZATION

Then why does overparameterization particularly favor
SAM over non-sharpness-aware optimizers? We address
this question in this section to better understand the effect of
overparameterization on SAM. Precisely, we posit that it is
potentially due to the complementarity between overparam-
eterization enlarging the solution space and the implicit bias
of SAM driving toward flat minima; i.e., once there are more
diverse solutions available (including both sharp and flat
minima) by overparameterization, optimizers intrinsically
biased toward flat solutions (such as SAM) will more likely
find such solutions than unbiased optimizers (such as SGD).
We support this reasonable hypothesis by demonstrating
the followings: (i) SAM finds simpler and flatter solutions
than SGD with the enlarged solution space (Section 4.1),
and (ii) the implicit bias of SAM becomes stronger with
overparameterization (Section 4.2); both of these take place
only when the model is overparameterized.

4.1 ENLARGED SOLUTION SPACE ALLOWS SAM
TO FIND SIMPLER AND FLATTER
SOLUTIONS

To corroborate our hypothesis, we start with a simple ex-
periment where we train one-hidden-layer ReLU networks
using SAM and SGD following Andriushchenko and Flam-
marion [2022]; we use 5, 10, 100, and 1000 hidden neurons
for underparameterized to highly overparameterized cases;
we run three random seeds and compare solutions obtained

by SAM and SGD in Figure 2.

First, we find that the solutions found by SAM are not
differentiated much from those of SGD when the model has
no more than 10 neurons. Looking closely into the case of
10 neurons, they all seem to be roughly 4 to 6 degrees of
piecewise linear functions, i.e., the number of line segments
for each solution is less than 10, which is the maximum
possible joints that this model can have in theory. On the
other hand, in the case of 100 to 1000 neurons, one can
easily see that the solutions found by SAM are much simpler
(and thus more likely to generalize) compared to those by
SGD.

Next, we also track the optimization trajectories of both
SAM and SGD. The trajectories are plotted along PCA
directions calculated from the converged minima following
Li et al. [2018]. The results are illustrated in Figure 3. We
find that both SAM and SGD reach solutions in a similar
basin when the model is under/moderately parameterized,
whereas in the overparameterized case, they reach different
solutions, i.e., SAM reaches a flatter solution, even though
they all start from the same initial point.

These results support the idea that SAM has some implicit
bias that drives itself toward a certain type of solutions
(e.g., simple and flat) as previously shown in prior work
[Andriushchenko and Flammarion, 2022, Compagnoni et al.,
2023, Wen et al., 2023]. More importantly, however, these
results newly reveal that overparameterization is a critical
factor in facilitating this implicit behavior of SAM; without
it the space of potential solutions decreases, and SAM may
not take effect.

2 0 2 44

2

0

2

4

6
of neurons: 5

10

10

100

SGD
SAM

0

1

10

100

1000

10000

10 0 10 20 305

0

5

10

15 # of neurons: 10

10

10

10
0

10
0

1000

1000

SGD
SAM

0

1

10

100

1000

10000

0 20 40
0

10

20

30

40 # of neurons: 100

10

10

10
0

100

10
00

1000

10000

SGD
SAM

0

1

10

100

1000

10000

25 0 25 50 7525

0

25

50

75

100

125
of neurons: 1000

10

10

10
0

10
00

1000

10000

SGD
SAM

0

1

10

100

1000

10000

Figure 3: Optimization trajectories of SGD and SAM starting from the same initial point. SGD and SAM reach solutions in
a similar basin for under/moderately-parameterized models, whereas they reach different solutions for overparameterized
models, i.e., flatter region for SAM.

0.01
0.02

0.05 0.1 0.2

98.0

98.1

98.2

98.3

Ac
cu

ra
cy

 (%
)

of params: 61k

SGD
SAM

0.01
0.02

0.05 0.1 0.2
98.4

98.5

98.6

98.7

Ac
cu

ra
cy

 (%
)

of params: 126k

SGD
SAM

0.01
0.02

0.05 0.1 0.2
98.5

98.6

98.7

98.8

Ac
cu

ra
cy

 (%
)

of params: 267k

SGD
SAM

0.01
0.02

0.05 0.1 0.2

98.7

98.8

98.9

Ac
cu

ra
cy

 (%
)

of params: 1m

SGD
SAM

0.01
0.02

0.05 0.1 0.2

98.7

98.8

98.9

Ac
cu

ra
cy

 (%
)

of params: 5m

SGD
SAM

61k
126k

267k
1.4m

5.4m

of params

0.05

0.10

0.15

0.20
Optimal

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
74

77

80

83

Ac
cu

ra
cy

 (%
)

of params: 45k

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
86

88

90

92

Ac
cu

ra
cy

 (%
)

of params: 701k

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0

90

92

94

Ac
cu

ra
cy

 (%
)

of params: 2.8m

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0

92

94

96
Ac

cu
ra

cy
 (%

)
of params: 11.2m

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
93

94

95

96

97

Ac
cu

ra
cy

 (%
)

of params: 178.6m

SGD
SAM

45k
176k

701k 3m 11m 45m
179m

of params

0.0

0.1

0.2
Optimal

Figure 4: Validation accuracy versus ρ for 3-layer MLP trained on MNIST (top) and ResNet-18 trained on CIFAR-10
(bottom). ρ⋆ is located to be higher with more parameters.

4.2 IMPLICIT BIAS OF SAM INCREASES WITH
OVERPARAMETERIZATION

While overparameterization can secure favorable conditions
for SAM, it is not to be confused with guaranteeing the
implicit bias of SAM taking effect. In fact, we can further
relate the implicit bias of SAM to the perturbation bound
ρ to bridge this gap. Specifically, SAM can be interpreted
as SGD on an implicitly regularized loss based on SDE
(stochastic differential equation) modeling [Compagnoni
et al., 2023]:

f̃(x) := f(x) + ρE∥∇fγ(x)∥2 (4)

where γ refers to some stochasticity. This indicates that
SAM becomes more regularized (i.e., the implicit bias is
amplified) when ρ increases.5

Our interest thus lies in seeing whether overparameteriza-
tion has any effect on increasing ρ. Since if that is the case,
it indeed means that overparameterization puts more regu-
larization on SAM. We verify this by finding the empirically

5This holds as long as ρ is not too large, by which it might
overshadow minimizing f and implicitly bias the optimizer toward
stationary points such as saddles and maxima. Note it reduces to
standard SGD when ρ = 0.

optimal perturbation bound ρ⋆ that yields the best general-
ization performance as we change the degree of overparam-
eterization. Specifically, we take a standard deep learning
task and perform an extensive grid search to find ρ⋆. The
result is displayed in Figure 4.

Indeed, it is observed that ρ⋆ tends to increase as the number
of parameters increases; i.e., seeing from left to right, ρ
value that yields highest accuracy (marked as green star ⋆)
tends to increase. We confirm that this trend is consistently
observed for various other workloads (See Figures 8 to 11
of Appendix C for more results). This result is certainly
encouraging since it supports that the generalization benefit
of SAM via implicit regularization can indeed increase by
overparameterization.

Additionally, we can develop a conceptual account of why
ρ⋆ increases with overparameterization. First, if we consider
the expected effect of perturbation ϵ ∈ Rd of size ρ on
individual parameters simply as Ek[ϵ

2
k] = ||ϵ||22/d = ρ2/d,

we can see that Ek[ϵ
2
k] → 0 as d → ∞, which implies

that SAM would eventually have almost no effect on each
parameter as the model scales unless ρ is also increased.

Also, the Lipschitz bound on the gradients reveals that
∥∇f (x+ ϵ)−∇f(x)∥2 ≤ β ∥x+ ϵ− x∥2 = βρ, indi-

cating that the SAM gradient becomes more similar to the
original gradient as the model gets smoother (i.e., smaller
smoothness constant β) with increasing size, requiring
larger perturbation bound to achieve similar levels of pertur-
bation effect. These hold under the assumption that overpa-
rameterization makes the model smoother, which we empir-
ically confirm in Figure 21a.

5 FURTHER MERITS AND CAVEATS OF
OVERPARAMETERIZATION

In this section, we present further merits and some caveats
of overparameterization. Specifically, we show that the over-
parameterization benefit of SAM continues to exist and
becomes more evident under label noise or sparsity. We also
discover that sufficient regularization is required to attain
the benefit. These results could serve as guidance to employ
SAM in practice.

Overparameterization secures the robustness of SAM
to label noise In practice, deep learning models are of-
ten trained on noisy data [Song et al., 2022]. To examine
whether the overparameterization benefit for SAM contin-
ues to exist in this scenario, we introduce some label noise
to training data [Angluin and Laird, 1988, Natarajan et al.,
2013] and see how SAM responds. The results are reported
in Figure 5a. Overall, we find SAM benefits from overpa-
rameterization significantly more than SGD in the presence
of label noise. Precisely, the accuracy improvement made
by SAM keeps on increasing as the model has more pa-
rameters, whereas the improvement over SGD is marginal
for less parameterized models. Notably, this trend is more
pronounced with a higher noise level; e.g., it rises from 5%
to nearly 50% at the highest noise rate. Notably, it is previ-
ously known that SAM is robust to label noise compared
to SGD [Foret et al., 2021, Baek et al., 2024, Huang et al.,
2023, Zou et al., 2024, Kim et al., 2023], and yet, this result
newly reveals that overparameterization plays a profound
role in securing the robustness of SAM.

SAM benefits from sparse overparameterization. There
has been a recent interest in employing sparsity to train large
models to alleviate the computation and memory costs [Hoe-
fler et al., 2021, Mishra et al., 2021]. To test the effect of
overparameterization on SAM under this setting, we intro-
duce a varying degree of sparsity to an overparameterized
model at initialization [Lee et al., 2019] such that the number
of parameters matches the original dense model. The results
are reported in Figure 5b. We observe that the generalization
improvement tends to increase as the model becomes more
sparsely overparameterized; more precisely, the average ac-
curacy improvement increases from 0.4% in the small dense
model to around 0.8% in the large sparse model. This result
suggests that one can consider taking sparsification more
actively when employing SAM.

Sufficient regularization is needed to secure the benefit
of overparameterization. We also investigate whether
the overparameterization benefit for SAM continues to ex-
ist when models are prone to overfitting due to insufficient
regularization [Ying, 2019]. Specifically, we evaluate three
cases: (a) without weight decay, (b) without early stopping,
and (c) without sufficient inductive bias.6 The results are
reported in Figures 5c to 5e. We observe that the general-
ization improvement does not increase by simply adding
more parameters. The results indicate that some level of
regularization is required in practice to attain the overparam-
eterization benefit for SAM.

6 OTHER EFFECTS OF
OVERPARAMETERIZATION:
THEORETICAL ASPECTS

Thus far, we have focused on empirically exploring how an
increasing number of parameters influences SAM, and dis-
covered critical improvements in its generalization benefits.
However, existing theoretical analyses on overparameter-
ization also hint at other types of positive influences on
different aspects of SAM such as convergence [Ma et al.,
2018, Vaswani et al., 2019] and implicit bias [Neyshabur,
2017, Zhang et al., 2017]. Despite this, we find that there is
little work on explicitly verifying whether these influences
extend to SAM, however.

To fill this gap, we develop theoretical analyses of the effect
of overparameterization on SAM7 in this section. Specif-
ically, we show that (i) linearly stable minima for SAM
have more uniform Hessian moments compared to SGD
(Section 6.1), and (ii) SAM can converge much faster (Sec-
tion 6.2), all when the model is overparameterized.

To characterize overparameterization, we adopt a widely
accepted definition: a model is overparameterized if it pos-
sesses more parameters than necessary to fit the entire train-
ing data or achieve zero training loss [Ma et al., 2018, Belkin
et al., 2018, 2019, Neyshabur et al., 2019, Nakkiran et al.,
2020, 2021]—that is, any model capable of interpolation.
We formalize this via the following interpolation assump-
tion:

Definition 6.1. (Interpolation) Let f(x) =
∑n

i=1 fi(x).
There exists x⋆ s.t. fi(x⋆) = 0 and ∇fi(x

⋆) = 0 for i =
1, . . . , n.

Crucially, this implies that there exists a fixed point x⋆ for

6We train ViTs that are not pre-trained on a massive dataset,
which is known to lack inductive biases inherent to CNNs and thus
more prone to overfitting [Lee et al., 2021, Chen et al., 2022a].

7We use an unnormalized version of SAM: xt+1 = xt −
η∇f (xt + ρ∇f(xt)), an empirically similar variant of SAM of-
ten adopted to simplify proofs [Andriushchenko and Flammarion,
2022, Compagnoni et al., 2023].

0.04 0.70 3 11
of params (×106)

0

20

40

60
Ac

c
im

pr
ov

em
en

t (
%

)
CIFAR-10 / ResNet-18

Noise = 0.25
Noise = 0.5
Noise = 0.75

(a) Label noise

0.00 0.56 0.75 0.94
Sparsity

0.4

0.6

0.8

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

(b) Sparsity

0.04 0.18 0.70 3 11 45
of params (×106)

0.0

0.2

0.4

0.6

0.8

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

(c) w/o weight decay

5.5 13.5 23.7 36.3 51.3
of params (×106)

1

2

3

4

PoS tagging / Transformer
SAM-AdamW

(d) w/o early stop.

0.06 0.21 0.81 3 13 51
of params (×106)

0.0

0.5

1.0

1.5

2.0
CIFAR-10 / ViT

SAM-SGD

(e) w/o induc. bias

Figure 5: Effect of (a) label noise, (b) sparsity, and (c-e) regularization on SAM. (a) The benefit of SAM is more pronounced
with a higher noise level. (b) The improvement by SAM tends to increase in large sparse models compared to their small
dense counterparts. (c-e) SAM does not always benefit from overparameterization without sufficient regularization. See
Figures 12 to 16 in Appendix D for more results.

stochastic gradient-based optimizers, which comes as an
important property in the following two sections.

We leave a clear note here that the aim of these analyses is to
complement, rather than directly support Sections 3 and 4,
by outlining theoretically guaranteed benefits of overparam-
eterization on SAM. We discuss more about the limitations
later in Section 7.

6.1 SAM ESCAPES SHARP MINIMA WITH
NON-UNIFORM HESSIAN

Here we demonstrate that SAM escapes until it encounters
minima of a certain level of flatness and uniform Hessian
moments that are stricter compared to SGD. To this end,
we employ linear stability analysis [Wu et al., 2018, 2022],
which aims to derive specific conditions a minimum should
satisfy in order for a given optimizer to remain stable and
not escape from it.

We first define linear stability as follows:

Definition 6.2. (Linear stability) Consider a general itera-
tive first-order optimizer xt+1 = xt −G(xt). A minimizer
x⋆ is called linearly stable if there exists a constant C such
that

E[∥x̃t − x⋆∥2] ≤ C∥x̃0 − x⋆∥2

for all t > 0 under the linearized dynamic near x⋆: x̃t+1 =
x̃t −∇G(x⋆)(x̃t − x⋆), i.e., if it does not deviate far from
x⋆ once arrived near a fixed point.

Here, the linearized dynamic x̃t appears when the iterate
xt approaches sufficiently near x⋆ such that the loss be-
comes approximately quadratic, with the existence of the
fixed point x⋆ implied by the interpolation assumption in
Definition 6.1.

With this, we provide the stability condition that minima
should satisfy for a stochastic SAM to converge in the fol-
lowing theorem:

Theorem 6.3. Let us assume x⋆ = 0 without loss of gener-
ality. Then x⋆ is linearly stable for a stochastic SAM if the
following is satisfied:

λmax
(
(I − ηH − ηρH2)2 + η(η − 2ρ)(M2 −H2)

+2η2ρ(M3 −H3) + η2ρ2(M4 −H4)
)
≤ 1

(5)

where H = 1
n

∑n
i=1 Hi and Mk = 1

n

∑n
i=1 H

k
i are the

average Hessian and the k-th moment of the Hessian at x⋆

over n training data. Subsequently as a necessary condition
of (5) it follows that

0 ≤ a(1 + ρa) ≤ 2

η
, 0 ≤ s22 ≤ 1

η(η − 2ρ)
,

0 ≤ s33 ≤ 1

2η2ρ
, 0 ≤ s44 ≤ 1

η2ρ2
,

(6)

where a = λmax(H), sk = λmax((Mk − Hk)1/k) are the
sharpness and the non-uniformity of the Hessian measured
with the k-th moment, respectively.

The detailed proof of the theorem is provided in Ap-
pendix G.

Our result (6) suggests that SAM requires less sharp minima
and more uniformly distributed Hessian moments to achieve
linear stability (provided that ρ > 0) compared to those of
SGD [Wu et al., 2018], i.e., when ρ → 0 in (6). While a
similar result is shared by a concurrent work of Behdin et al.
[2023], we further ensure that higher-order terms of Hessian
moments are bounded, and interestingly, it becomes tighter
for a larger ρ. To corroborate our result, we measure the
empirical sharpness and non-uniformity of Hessian. The
results are reported in Figures 6a and 6b.

6.2 STOCHASTIC SAM CONVERGES MUCH
FASTER WITH OVERPARAMETERIZATION

Prior works have revealed the power of overparameteriza-
tion for stochastic optimization methods to accelerate con-
vergence [Ma et al., 2018, Vaswani et al., 2019, Meng et al.,

0.10 0.05 0.00 0.05 0.10

0.10

0.05

0.00

0.05

0.10

Sharpness: 16.05

0.01

0.05

0.10
0.10 0.05 0.00 0.05 0.10

0.10

0.05

0.00

0.05

0.10

Sharpness: 3.71

0.01

0.05

(a) Landscape (SGD vs. SAM)

0.01 0.02 0.05 0.1 0.2

15

20

25

30

No
n-

un
ifo

rm
ity

 (s
2)

MNIST / 3-layer MLP

SGD
SAM

(b) Non-uniformity

0 50 100
Epoch

2 7

2 5

2 3

Tr
ai

n
lo

ss

Matrix Factorization

rank 4
rank 10

0 10 20
Epoch

2 10

2 8

2 6

2 4

2 2

Tr
ai

n
lo

ss

MLP / MNIST

23k
266k
5.36m

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0 25 50 75
Epoch

2 6

2 4

2 2

20

Tr
ai

n
lo

ss

CIFAR-10 / ResNet-18

filter 4
filter 16
filter 64

(c) Convergence

Figure 6: (a) Loss landscapes of SGD (left) and SAM (right) along with the corresponding sharpness a = λmax(H).
SAM converges to flatter minima with lower sharpness compared to SGD. (b) Non-uniformity of Hessian for SGD and
SAM. SAM has a more uniform Hessian distribution than SGD. (c) Convergence properties of SAM. As model becomes
overparameterized, SAM converges much faster and closer to a linear rate. See Appendix A.3 for the experiment details.

2020]. We prove that this benefit also extends to a stochastic
SAM.

Besides the interpolation assumption we defined earlier in
Definition 6.1, let us start by providing some assumptions
used below.

Definition 6.4. (Smoothness) f is β-smooth if there exists
β > 0 s.t. ∥∇f(x)−∇f(y)∥ ≤ β∥x−y∥ for all x, y ∈ Rd.

Definition 6.5. (Polyak-Lojasiewicz) f is α-PL if there
exists α > 0 s.t. ∥∇f(x)∥2 ≥ α(f(x) − f(x⋆)) for all
x ∈ Rd.

The smoothness and the Polyak-Lojasiewicz (PL) assump-
tions are standard and used frequently in optimization
[Gower et al., 2020, Meng et al., 2020, Nutini et al., 2022,
Karimi et al., 2016]. The smoothness assumption is satis-
fied for any neural network with smooth activation and loss
function with bounded inputs [Andriushchenko and Flam-
marion, 2022], and the PL condition is argued to be satisfied
when the model is overparameterized [Belkin, 2021, Liu
et al., 2022], which we empirically verify in Figure 21b of
Appendix F.

Under these assumptions, we present the following conver-
gence theorem of a stochastic SAM:

Theorem 6.6. Suppose each fi is β-smooth, f is λ-smooth
and α-PL, and interpolation holds. For any ρ ≤ 1

(β/α+1/2)β ,
a stochastic SAM that runs for t iterations with constant step

size η⋆
def
= α−(β+α/2)βρ

2λβ(βρ+1)2 gives the following convergence
guarantee:

E
xt

[f(xt)] ≤
(
1− α− (β + α/2)βρ

2
η⋆
)t

f(x0).

We provide the full proof in Appendix H, which also con-
tains results for the more general case of a mini-batch SAM.

This result shows that with overparameterization, a stochas-
tic SAM can converge as fast as the deterministic gradient
method at a linear convergence rate, which is much faster
than the well-known sublinear rate of O(1/t) for SAM

[Andriushchenko and Flammarion, 2022]. Also, our anal-
ysis suggests that convergence is guaranteed without the
bounded variance assumption and diminishing step size
under overparameterization, while without overparameter-
ization, convergence does not hold [Andriushchenko and
Flammarion, 2022]. This suggests that overparameteriza-
tion can significantly ease the convergence of SAM. We
corroborate our result empirically as well, by measuring
how training proceeds with overparameterization in realistic
settings. The results are plotted in Figure 6c.

7 CONCLUSION
In this work, we have disclosed the critical influence of
overparameterization on SAM from empirical and theoret-
ical perspectives. We started with an extensive evaluation
to display a highly consistent trend that the generalization
benefit of SAM increases with overparameterization, with-
out which SAM may not take effect (Section 3). This led
us to come up with a reasonable hypothesis to explain the
benefit in terms of increased solution space and implicit
bias (Section 4). In addition, we presented further merits
and caveats of overparameterization in practice (Section 5).
Finally, we developed theoretical advantages of overparam-
eterization for SAM on linear stability, convergence, and
generalization (Section 6). We believe these findings can
bridge between overparameterization and SAM, which has
been rather unattended in the literature as of yet. Neverthe-
less, we discuss limitations, ideas for potential future work
as well as practical implications of our results below.

Theoretical account of Section 3 The consistent trend ob-
served in Section 3 certainly hints at the presence of a funda-
mental process underneath, and yet, our study does not offer
a precise theory to support this phenomenon. This is largely
because modeling the generalization of SAM under varying
degrees of overparameterization challenges the boundaries
of existing theoretical frameworks currently available in the
literature. Nevertheless, drawing upon recent advancements
in understanding overparameterization and generalization,
we have developed plausible hypotheses to directly address
this phenomenon (Section 4). We also employed rigorous

theoretical frameworks to examine the effects of overparam-
eterization on various other aspects of SAM, reinforcing the
general trend of overparameterization benefits (Section 6).
We believe these efforts offer valuable insights and prelimi-
nary foundations that could be instrumental in achieving a
comprehensive theoretical account of Section 3 in the future.

Other sharpness minimization schemes Our theoreti-
cal results in Section 6 are based on an unnormalized ver-
sion of SAM. This is largely driven by two reasons: (i)
it appears to render minimal practical difference from the
original SAM, and more crucially, (ii) it simplifies analy-
ses as widely adopted in initial studies [Andriushchenko
and Flammarion, 2022, Compagnoni et al., 2023]. How-
ever, more recently, works such as Dai et al. [2023], Si and
Yun [2023] have highlighted the theoretical significance
of the normalization step. We plan to extend our analysis
to better reflect the effect of normalization in future work.
Additionally, given that different sharpness minimization
schemes can make a difference in the found minima and
resulting performance [Kaddour et al., 2022, Dauphin et al.,
2024], extension of our analyses to other non-SAM sharp-
ness minimization schemes [Izmailov et al., 2018, Orvieto
et al., 2022] and studying how they compare to SAM under
overparameterization would be a promising avenue for fu-
ture work. Nonetheless, we consider these results an initial
exploration of the impact of overparameterization on SAM,
setting the stage for future research.

More ablation study In addition to label noise, sparsity,
and regularization from Section 5, we investigate the influ-
ence of other factors on the increased benefit of SAM in
Appendix E. Specifically, in Appendix E.1, we explore the
effect of increasing the depth instead of the width, where
we find that the advantages differ across architectures with
MLPs appearing to benefit more significantly than ResNets.
We suspect that this may result from the complex interplay
of various intricate factors and decisions involved in increas-
ing depth in modern architecture. Also, in Appendix E.3,
inspired by recent studies suggesting that overparameter-
ized models can behave like linearized models [Jacot et al.,
2018, Chizat et al., 2019], we test if the increased benefit of
SAM is due to linearization. As a result, we have observed
that SAM underperforms SGD in the linearized regimes by
more than −10%. This indicates that linearization is not
the main factor for the increased benefit of SAM and again
verifies that overparameterization itself is likely to be the
main factor of the benefit.

Potential to modern deep learning Our key observations
in Section 3 indicate a great potential to use SAM in the
modern landscape of large-scale training [Kaplan et al.,
2020, Belkin, 2021]. Also, our results in Section 5 further
highlight its potential in the current trend where founda-
tion models are often trained with noisy data [Radford et al.,

2021, Schuhmann et al., 2022] or to employ sparsity [Frantar
et al., 2024, Jiang et al., 2024]. In this regard, we can possi-
bly anticipate that the overparameterization benefit might
hold even when training billion-scale foundation models
[Zhang et al., 2022, Dehghani et al., 2023], which we leave
to explore as future work. It would also be interesting to
study how popular settings for training foundation models
other than label noise or sparsity affect the benefit, such as
quantization [Gholami et al., 2022], dataset pruning [Agi-
ollo et al., 2024], differential privacy [Yu et al., 2022], or
human alignment [Ouyang et al., 2022].

Acknowledgements

This work was partly supported by the Institute of Infor-
mation & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korean government
(MSIT) (IITP-2019-0-01906, Artificial Intelligence Gradu-
ate School Program (POSTECH) and RS-2022-II220959,
(part2) FewShot learning of Causal Inference in Vision and
Language for Decision Making), the National Research
Foundation of Korea (NRF) grant funded by the Korean gov-
ernment (MSIT) (2022R1F1A1064569, RS-2023-00210466,
RS-2023-00265444), and POSCO Creative Ideas grant
(2023Q032). Sungbin Shin was supported by Kwanjeong
Educational Foundation Scholarship. M.A. was supported
by the Google Fellowship and Open Phil AI Fellowship.

References

Madhu S. Advani, Andrew M. Saxe, and Haim Sompolinsky.
High-dimensional dynamics of generalization error in
neural networks. Neural Networks, 2020.

Andrea Agiollo, Young In Kim, and Rajiv Khanna. Approx-
imating memorization using loss surface geometry for
dataset pruning and summarization. SIGKDD, 2024.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning
and generalization in overparameterized neural networks,
going beyond two layers. NeurIPS, 2019.

Maksym Andriushchenko and Nicolas Flammarion. To-
wards understanding sharpness-aware minimization.
ICML, 2022.

Maksym Andriushchenko, Dara Bahri, Hossein Mobahi,
and Nicolas Flammarion. Sharpness-aware minimization
leads to low-rank features. NeurIPS, 2023a.

Maksym Andriushchenko, Aditya Vardhan Varre, Loucas
Pillaud-Vivien, and Nicolas Flammarion. Sgd with large
step sizes learns sparse features. ICML, 2023b.

Dana Angluin and Philip Laird. Learning from noisy exam-
ples. Machine learning, 1988.

Christina Baek, Zico Kolter, and Aditi Raghunathan. Why
is sam robust to label noise? ICLR, 2024.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware
minimization improves language model generalization.
ACL, 2022.

Raef Bassily, Mikhail Belkin, and Siyuan Ma. On exponen-
tial convergence of sgd in non-convex over-parametrized
learning. arXiv preprint arXiv:1811.02564, 2018.

Kayhan Behdin, Qingquan Song, Aman Gupta, Ayan
Acharya, David Durfee, Borja Ocejo, Sathiya Keerthi,
and Rahul Mazumder. msam: Micro-batch-averaged
sharpness-aware minimization. arXiv preprint
arXiv:2302.09693, 2023.

Mikhail Belkin. Fit without fear: remarkable mathemat-
ical phenomena of deep learning through the prism of
interpolation. Acta Numerica, 2021.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To under-
stand deep learning we need to understand kernel learning.
ICML, 2018.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Man-
dal. Reconciling modern machine-learning practice and
the classical bias–variance trade-off. PNAS, 2019.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclaurin,
George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

Alon Brutzkus and Amir Globerson. Why do larger models
generalize better? a theoretical perspective via the xor
problem. ICML, 2019.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann
LeCun, Carlo Baldassi, Christian Borgs, Jennifer Chayes,
Levent Sagun, and Riccardo Zecchina. Entropy-SGD:
Biasing gradient descent into wide valleys. ICLR, 2017.

Jie-Neng Chen, Shuyang Sun, Ju He, Philip HS Torr, Alan
Yuille, and Song Bai. Transmix: Attend to mix for vision
transformers. CVPR, 2022a.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When
vision transformers outperform resnets without pre-
training or strong data augmentations. ICLR, 2022b.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy
training in differentiable programming. NeurIPS, 2019.

Enea Monzio Compagnoni, Luca Biggio, Antonio Orvi-
eto, Frank Norbert Proske, Hans Kersting, and Aurelien
Lucchi. An sde for modeling sam: Theory and insights.
ICML, 2023.

Yan Dai, Kwangjun Ahn, and Suvrit Sra. The crucial role of
normalization in sharpness-aware minimization. NeurIPS,
2023.

Yann N Dauphin, Atish Agarwala, and Hossein Mobahi. Ne-
glected hessian component explains mysteries in sharp-
ness regularization. arXiv, 2024.

Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alab-
dulmohsin, et al. Scaling vision transformers to 22 billion
parameters. ICML, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. CVPR, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. ICLR, 2021.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Lian-
gli Zhen, Rick Siow Mong Goh, and Vincent Tan. Effi-
cient sharpness-aware minimization for improved training
of neural networks. ICLR, 2022.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu
Zhai. Gradient descent finds global minima of deep neural
networks. ICML, 2019.

Gintare Karolina Dziugaite and Daniel M Roy. Computing
nonvacuous generalization bounds for deep (stochastic)
neural networks with many more parameters than training
data. UAI, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam
Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. ICLR, 2021.

Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan Alis-
tarh, and Utku Evci. Scaling laws for sparsely-connected
foundation models. ICLR, 2024.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network infer-
ence. Low-Power Computer Vision, 2022.

Robert M Gower, Mark Schmidt, Francis Bach, and Peter
Richtárik. Variance-reduced methods for machine learn-
ing. IEEE, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. CVPR,
2016.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin
Ritter, Bertrand Rondepierre, Andreas Steiner, and Marc
van Zee. Flax: A neural network library and ecosystem
for JAX, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima.
Neural computation, 1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural computation, 1997b.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning
and growth for efficient inference and training in neural
networks. JMLR, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong,
Hongyu Ren, Bowen Liu, Michele Catasta, and Jure
Leskovec. Open graph benchmark: Datasets for machine
learning on graphs. NeurIPS, 2020.

Zhuo Huang, Miaoxi Zhu, Xiaobo Xia, Li Shen, Jun Yu,
Chen Gong, Bo Han, Bo Du, and Tongliang Liu. Ro-
bust generalization against photon-limited corruptions
via worst-case sharpness minimization. CVPR, 2023.

P Izmailov, AG Wilson, D Podoprikhin, D Vetrov, and
T Garipov. Averaging weights leads to wider optima
and better generalization. UAI, 2018.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural
tangent kernel: Convergence and generalization in neural
networks. NeurIPS, 2018.

Ziwei Ji, Miroslav Dudík, Robert E Schapire, and Matus
Telgarsky. Gradient descent follows the regularization
path for general losses. CoLT, 2020.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux,
Arthur Mensch, Blanche Savary, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Emma Bou Hanna,
Florian Bressand, et al. Mixtral of experts. arXiv preprint
arXiv:2401.04088, 2024.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip
Krishnan, and Samy Bengio. Fantastic generalization
measures and where to find them. ICLR, 2020.

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kus-
ner. When do flat minima optimizers work? NeurIPS,
2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scal-
ing laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear
convergence of gradient and proximal-gradient methods
under the polyak-ℓojasiewicz condition. ECML-PKDD,
2016.

Kenji Kawaguchi. Deep learning without poor local minima.
NeurIPS, 2016.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. ICLR, 2017.

Hoki Kim, Jinseong Park, Yujin Choi, and Jaewook Lee.
Fantastic robustness measures: The secrets of robust gen-
eralization. NeurIPS, 2023.

Thomas N Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. ICLR, 2017.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms.
NeurIPS, 1999.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs, 2010.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr.
Snip: Single-shot network pruning based on connection
sensitivity. ICLR, 2019.

Seung Hoon Lee, Seunghyun Lee, and Byung Cheol Song.
Vision transformer for small-size datasets. arXiv preprint
arXiv:2112.13492, 2021.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Visualizing the loss landscape of neural
nets. NeurIPS, 2018.

Chaoyue Liu, Libin Zhu, and Mikhail Belkin. Loss land-
scapes and optimization in over-parameterized non-linear
systems and neural networks. ACHA, 2022.

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and
Simon Lacoste-Julien. Stochastic polyak step-size for sgd:
An adaptive learning rate for fast convergence. AISTATS,
2021.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power
of interpolation: Understanding the effectiveness of sgd
in modern over-parametrized learning. ICML, 2018.

Tengyu Ma and Alex Damian. Recent advances in the
generalization theory of neural networks *. ICML tutorial,
2023.

Si Yi Meng, Sharan Vaswani, Issam Hadj Laradji, Mark
Schmidt, and Simon Lacoste-Julien. Fast and furious
convergence: Stochastic second order methods under in-
terpolation. AISTATS, 2020.

Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Xiaoshuai
Sun, Rongrong Ji, and Dacheng Tao. Make sharpness-
aware minimization stronger: A sparsified perturbation
approach. NeurIPS, 2022.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko
Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
Paulius Micikevicius. Accelerating sparse deep neural
networks. arXiv preprint arXiv:2104.08378, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Mar-
tin Riedmiller. Playing atari with deep reinforcement
learning. Workshop on Deep Learning, NeurIPS, 2013.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan
Yang, Boaz Barak, and Ilya Sutskever. Deep double
descent: Where bigger models and more data hurt. ICLR,
2020.

Preetum Nakkiran, Prayaag Venkat, Sham Kakade, and
Tengyu Ma. Optimal regularization can mitigate dou-
ble descent. ICLR, 2021.

Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Raviku-
mar, and Ambuj Tewari. Learning with noisy labels.
NeurIPS, 2013.

Behnam Neyshabur. Implicit regularization in deep learning.
arXiv preprint arXiv:1709.01953, 2017.

Behnam Neyshabur, Srinadh Bhojanapalli, David
McAllester, and Nati Srebro. Exploring generalization in
deep learning. NeurIPS, 2017.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, and
Yann LeCun. The role of over-parametrization in gener-
alization of neural networks. ICLR, 2019.

Joakim Nivre, Marie-Catherine De Marneffe, Filip Ginter,
Yoav Goldberg, Jan Hajic, Christopher D Manning, Ryan
McDonald, Slav Petrov, Sampo Pyysalo, Natalia Silveira,
et al. Universal dependencies v1: A multilingual treebank
collection. LREC, 2016.

Julie Nutini, Issam Laradji, and Mark Schmidt. Let’s make
block coordinate descent converge faster: faster greedy
rules, message-passing, active-set complexity, and super-
linear convergence. JMLR, 2022.

Antonio Orvieto, Hans Kersting, Frank Proske, Francis
Bach, and Aurelien Lucchi. Anticorrelated noise injection
for improved generalization. ICML, 2022.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Car-
roll Wainwright, Pamela Mishkin, Chong Zhang, Sand-
hini Agarwal, Katarina Slama, Alex Ray, et al. Training
language models to follow instructions with human feed-
back. NeurIPS, 2022.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo
Lu. Generalized federated learning via sharpness aware
minimization. ICML, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural lan-
guage supervision. ICML, 2021.

Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, et al. Laion-5b: An open large-scale dataset for
training next generation image-text models. NeurIPS,
2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

Dongkuk Si and Chulhee Yun. Practical sharpness-aware
minimization cannot converge all the way to optima.
NeurIPS, 2023.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
ICLR, 2015.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D Manning, Andrew Y Ng, and Christopher
Potts. Recursive deep models for semantic composition-
ality over a sentiment treebank. EMNLP, 2013.

Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin,
and Jae-Gil Lee. Learning from noisy labels with deep
neural networks: A survey. TNNLS, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. NeurIPS, 2017.

Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and
faster convergence of sgd for over-parameterized models
and an accelerated perceptron. AISTATS, 2019.

Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-
aware minimization minimizes sharpness? ICLR, 2023.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati
Srebro, and Benjamin Recht. The marginal value of
adaptive gradient methods in machine learning. NeurIPS,
2017.

Lei Wu, Chao Ma, et al. How sgd selects the global minima
in over-parameterized learning: A dynamical stability
perspective. NeurIPS, 2018.

Lei Wu, Mingze Wang, and Weijie Su. The alignment
property of sgd noise and how it helps select flat minima:
A stability analysis. NeurIPS, 2022.

Xue Ying. An overview of overfitting and its solutions.
Journal of physics, 2019.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi,
Huseyin A Inan, Gautam Kamath, Janardhan Kulkarni,
Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Dif-
ferentially private fine-tuning of language models. ICLR,
2022.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin
Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. ICLR, 2017.

Guodong Zhang, Lala Li, Nado Zachar, James Martens,
Sushant Sachdeva, George Dahl, Chris Shallue, and
Roger B. Grosse. Which algorithmic choices matter at
which batch sizes? insights from a noisy quadratic model.
NeurIPS, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-
trained transformer language models. arXiv preprint
arXiv:2205.01068, 2022.

Yang Zhao, Hao Zhang, and Xiuyuan Hu. Penalizing gradi-
ent norm for efficiently improving generalization in deep
learning. ICML, 2022.

Yingtian Zou, Kenji Kawaguchi, Yingnan Liu, Jiashuo Liu,
Mong-Li Lee, and Wynne Hsu. Towards robust out-of-
distribution generalization bounds via sharpness. ICLR,
2024.

A EXPERIMENTAL DETAILS

We present the experimental details of Sections 3 to 6. Most of the experiments are conducted with a single RTX3090 GPU
with 24GB VRAM while some experiments requiring larger memory are conducted with multiple RTX3090 GPUs. The
code to reproduce the results of this work is implemented with JAX [Bradbury et al., 2018] and Flax [Heek et al., 2023],
which is available at https://github.com/LOG-postech/SAM-overparam.

A.1 EXPERIMENTS FOR SECTION 3

Workload Epochs/steps Learning rate / decay Weight decay Batch size ρ search Baseline optimizer

Synthetic 100 epochs 0.1 / step 0.0 128
{
0.001,0.01,0.05,0.07,0.1,
0.2,0.3,0.5,0.7,1.0,2.0

}
SGD

MNIST/MLP 100 epochs 0.1 / step 0.0001 128 {0.01, 0.02, 0.05, 0.1, 0.2} SGD with momentum 0.9

CIFAR-10/ResNet-18 200 epochs 0.1 / step 0.0005 128
{
0.001,0.005,0.01,0.02,
0.05,0.1,0.2,0.5,1.0

}
SGD with momentum 0.9

ImageNet/ResNet-50 90 epochs 0.1 / cosine 0.0001 512 {0.01, 0.02, 0.05, 0.1, 0.2} SGD with momentum 0.9

PoS tagging 75000 steps 0.05 / inverse sqrt 0.1 64 {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} AdamW (β1 = 0.9, β2 = 0.98)

Sentiment classification 30 epochs 0.1 / constant 3e-6 64 {0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.5} SGD with momentum 0.8

Graph property prediction 105 steps 0.001 / constant 0.0 256 {0.01, 0.02, 0.05, 0.1, 0.2} Adam (β1 = 0.9, β2 = 0.999)

Atari game 107 steps 2.5e-4 / linear 0.0 256 {0.01, 0.02, 0.05, 0.1, 0.2} Adam (β1 = 0.9, β2 = 0.999)

CIFAR-10/ViT 200 epochs 0.1 / cosine 0.0001 128 {0.01, 0.02, 0.05, 0.1, 0.2} SGD with momentum 0.9

Table 2: Hyperparameters for each workload.

Workload Scaling factor Values

Synthetic # of neurons {k ∗ 100|1 ≤ k ≤ 10}
MNIST/MLP # of neurons {[300 ∗ p, 100 ∗ p]|p ∈ {0.25, 0.5, 1, 4, 10}}
CIFAR-10/ResNet-18 # of convolutional filters {2k|2 ≤ k ≤ 8}
ImageNet/ResNet-50 # of convolutional filters {16 ∗ k|1 ≤ k ≤ 5}
PoS tagging dimension of hidden states {128 ∗ k|1 ≤ k ≤ 5}
Sentiment classification dimension of hidden states {2k|5 ≤ k ≤ 9}
Graph property prediction # of neurons {2k|7 ≤ k ≤ 9}
Atari game # of convolutional filters {16 ∗ k|1 ≤ k ≤ 4}
CIFAR-10/ViT dimension of hidden states {2k|5 ≤ k ≤ 10}

Table 3: Model scaling factors and values for each workload.

For all the experiments in Section 3, we run the experiments with the same configurations over three different random seeds.
We visualize the average and standard error (i.e., std/

√
nseed) as a line plot and a shaded region surrounding it. Many of our

experiments and the hyperparameter values are based on examples provided by Flax [Heek et al., 2023] official repository.8

The hyperparameter values and how the models are scaled for each workload are summarized in Tables 2 and 3, respectively.
We present the additional details for individual workloads below.

Synthetic Regression / 2-layer MLP We follow the student-teacher setting from Advani et al. [2020] where the teacher
is a randomly initialized 2-layer ReLU network with 200 neurons and the student is a 2-layer ReLU network with a
different number of neurons. Each element for the input x ∈ R100 is sampled from a standard normal distribution while the
target y ∈ R is calculated as the output of the teacher network added by Gaussian noise sampled from a standard normal
distribution. The models are trained on 20400 training data, which is roughly the same as the number of parameters in the
teacher model, and tested on the 5100 data, which is a quarter of the number of the training data.

MNIST / 3-layer MLP We train LeNet-300-100 [LeCun et al., 1998] for the MNIST [LeCun et al., 2010]. The learning
rate decays by 0.1 after 50% and 75% of the total epochs. We scale the models while preserving the relative proportions of
the number of neurons in each layer as 3 : 1.

8https://github.com/google/flax/tree/main/examples

https://github.com/LOG-postech/SAM-overparam
https://github.com/google/flax/tree/main/examples

CIFAR-10 / ResNet-18 We train ResNet-18 [He et al., 2016] for the CIFAR-10 [Krizhevsky et al., 2009]. We choose the
hyperparameters as similar to Andriushchenko and Flammarion [2022]. The learning rate decays by 0.1 after 50% and 75%
of the total epochs.

ImageNet / ResNet-50 We train ResNet-50 [He et al., 2016] for the ImageNet [Deng et al., 2009]. We choose the
hyperparameters as similar to Du et al. [2022] and use a linear warmup of 5000 steps. We additionally experiment with
ρ = 0.005 for the two smallest models.

PoS tagging/ Transformer We train Encoder-only Transformer [Vaswani et al., 2017] for the Universal Dependencies
[Nivre et al., 2016] – Ancient Greek. We use a linear warmup of 8000 steps. We evaluate the validation accuracy once
every 1000 step and report the best value except for the experiment in Figure 5d. The dimension of MLP and the number of
attention heads are scaled as 4× and 1/64× of the dimension of the hidden states following the Flax example.

SST / LSTM We train LSTM [Hochreiter and Schmidhuber, 1997b] for SST2 [Socher et al., 2013] where the task is a
binary classification (positive/negative) of the movie reviews. We evaluate the validation accuracy for every epoch and report
the best value. The embedding size is scaled as 300/256× of the dimension of hidden states following the Flax example.

Graph property prediction / GCN We train 2-layer Graph Convolutional Networks [Kipf and Welling, 2017] for the
ogbg-molpcba [Hu et al., 2020]. Here, the input is a graph of a molecule where nodes and edges each represent atoms and
chemical bonds. The task is a binary classification of whether a molecule inhibits HIV replication or not.

Atari game / CNN We train 5-layer CNNs for the Atari Breakout-v5 game [Mnih et al., 2013]. We train the Actor-Critic
networks [Konda and Tsitsiklis, 1999] with proximal policy optimization [Schulman et al., 2017]. We evaluate the validation
score once every 100 step and report the best value. We also use gradient clipping of 0.5 for all models.

CIFAR-10 / ViT For the experiment in Figure 5e, we train 6-layer Vision Transformers [Dosovitskiy et al., 2021] for
the CIFAR-10 [Krizhevsky et al., 2009] using the patch size of 4× 4. We scale the dimension of MLP and the number of
attention heads as 2× and 1/32× of the dimension of hidden states.

A.2 EXPERIMENTS FOR SECTION 4

For the experiments in Figures 2 and 3, we follow the setting in Andriushchenko and Flammarion [2022].9 Specifically, we
train one-hidden-layer ReLU networks where each data has input x ∈ R and target y ∈ R. Here, the networks are trained on
the quadratic loss with mini-batch SGD or SAM with ρ = 0.2 where we randomly choose 6 data points every iteration.
Additionally, the optimization trajectories in Figure 3 are plotted following Li et al. [2018].10 Specifically, the trajectories
are plotted along the PCA directions calculated from converged minima of two different paths from SGD and one path from
SAM.

A.3 EXPERIMENTS FOR SECTION 6

Linear stability For the experiments of Figures 6a and 6b, we follow the setting in Wu et al. [2018]. Specifically, we set
up 3-layer MLP having [3000, 1000] hidden neurons with squared loss, so that the local quadratic approximation becomes
precise, and train the networks on MNIST. We use 1000 random samples to calculate the non-uniformity, and all models
are trained to reach near zero loss. The networks are trained with a constant learning rate of 0.1 without weight decay or
momentum.

Convergence – Matrix Factorization For the matrix factorization experiment in Figure 6c, we solve the following non-
convex regression problem: minW1,W2 Ex∼N (0,I)∥W2W1x−Ax∥2 where the objective function is smooth and satisfies the
PL-condition [Loizou et al., 2021]. We choose A ∈ R10×6 and generate 1000 training samples, which are used for training
a rank k linear network with two matrix factors W1 ∈ Rk×6 and W2 ∈ R10×k. Here, interpolation is satisfied when rank
k = 10. We train two linear networks with k ∈ {4, 10} for 100 epochs with a constant learning rate of 0.0005 and compare
the convergence speed.

9https://github.com/tml-epfl/understanding-sam/tree/main/one_layer_relu_nets
10https://github.com/tomgoldstein/loss-landscape

https://github.com/tml-epfl/understanding-sam/tree/main/one_layer_relu_nets
https://github.com/tomgoldstein/loss-landscape

B ABSOLUTE VALIDATION METRIC FOR SECTION 3

We present the full results of Figure 1, including the absolute validation metrics of SAM and SGD in Figure 7. There is a
consistent trend that SAM improves with overparameterization in all tested cases.

1 2 3 4 5 6 7 8 9 10
of params (×104)

0.04

0.06

0.08

Lo
ss

 im
pr

ov
em

en
t

Synthetic / 2-layer MLP
SGD-SAM

0.06 0.13 0.27 1.43 5.37
of params (×106)

0.0

0.1

0.2

Ac
c

im
pr

ov
em

en
t (

%
)

MNIST / 3-layer MLP
SAM-SGD

0.04 0.18 0.70 3 11 45 179
of params (×106)

0.3

0.6

0.9

1.2

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

2.0 6.9 14.8 14.8 25.6
of params (×106)

0.0

0.2

0.4

0.6

Ac
c

im
pr

ov
em

en
t (

%
)

ImageNet / ResNet-50
SAM-SGD

5.5 13.5 23.7 36.3 51.3
of params (×106)

0.0

0.5

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

PoS tagging / Transformer
SAM-AdamW

0.5 1.1 2.5 5.8 10.0 15.1
of params (×106)

0.0

0.5

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

SST2 / LSTM
SAM-SGD

0.2 0.7 2.7
of params (×106)

0.0

0.3

0.6

m
AP

 im
pr

ov
em

en
t

gpp / GCN
SAM-Adam

0.4 1.7 3.8 6.7
of params (×106)

0

100

200

Sc
or

e
im

pr
ov

em
en

t

Atari / CNN
SAM-Adam

(a) Improvement in validation metrics by SAM

1 2 3 4 5 6 7 8 9 10
of params (×104)

1.00

1.02

1.04

1.06

1.08

Lo
ss

Synthetic / 2-layer MLP
SGD
SAM

0.06 0.13 0.27 1.43 5.37
of params (×106)

98.2

98.4

98.6

98.8

Ac
cu

ra
cy

 (%
)

MNIST / 3-layer MLP
SGD
SAM

0.04 0.18 0.70 3 11 45 179
of params (×106)

85

90

95

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18
SGD
SAM

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 (%
)

ImageNet / ResNet-50

76

78
SGD
SAM

2.0 6.9 14.8 14.8 25.6
of params (×106)

65

70

5.5 13.5 23.7 36.3 51.3
of params (×106)

68.0

68.5

69.0

69.5

70.0

Ac
cu

ra
cy

 (%
)

PoS tagging / Transformer
AdamW
SAM

0.5 1.1 2.5 5.8 10.0 15.1
of params (×106)

85

86

Ac
cu

ra
cy

 (%
)

SST2 / LSTM
SGD
SAM

0.2 0.7 2.7
of params (×106)

20

21

22

M
ea

n
AP

gpp / GCN
Adam
SAM

0.4 1.7 3.8 6.7
of params (×106)

400

600

800

Sc
or

e

Atari / CNN
Adam
SAM

(b) Absolute validation metrics of SAM and baseline optimizers

Figure 7: Effects of overparameterization on SAM. Improvement in validation metrics by SAM. (a) Improvement in
validation metrics by SAM and (b) the absolute metrics for SAM and baseline optimizers. The generalization benefit of
SAM tends to increase as the model becomes more overparameterized.

C FULL RESULTS ON OPTIMAL PERTURBATION BOUND

Extending from Section 4, we plot the validation accuracy of SAM versus different values of ρ, along with their optimal
value of ρ for 3-layer-MLP/MNIST, ResNet-50/ImageNet, ResNet-18/CIFAR-10, and LSTM/SST2 in Figures 8 to 11,
respectively. It is observed that ρ⋆ tends to increase as the model becomes more overparameterized; on CIFAR-10 with
ResNet18, the smallest model has ρ⋆ = 0.01 while the largest three have ρ⋆ = 0.2.

0.01
0.02

0.05 0.1 0.2

98.0

98.1

98.2

98.3

Ac
cu

ra
cy

 (%
)

of params: 61k

SGD
SAM

0.01
0.02

0.05 0.1 0.2
98.4

98.5

98.6

98.7

Ac
cu

ra
cy

 (%
)

of params: 126k

SGD
SAM

0.01
0.02

0.05 0.1 0.2
98.5

98.6

98.7

98.8

Ac
cu

ra
cy

 (%
)

of params: 267k

SGD
SAM

0.01
0.02

0.05 0.1 0.2

98.7

98.8

98.9

Ac
cu

ra
cy

 (%
)

of params: 1m

SGD
SAM

0.01
0.02

0.05 0.1 0.2

98.7

98.8

98.9

Ac
cu

ra
cy

 (%
)

of params: 5m

SGD
SAM

61k
126k

267k
1.4m

5.4m

of params

0.05

0.10

0.15

0.20
Optimal

Figure 8: Validation accuracy versus ρ for MNIST and 3-layer MLP.

0.005
0.01

0.02
0.05 0.1 0.2

61

62

63

64

Ac
cu

ra
cy

 (%
)

of params: 2.0m

SGD
SAM

0.005
0.01

0.02
0.05 0.1 0.2

69

70

71

72

Ac
cu

ra
cy

 (%
)

of params: 6.9m

SGD
SAM

0.01
0.02

0.05 0.1 0.2

73

74

75

Ac
cu

ra
cy

 (%
)

of params: 14.8m

SGD
SAM

0.01
0.02

0.05 0.1 0.2
75.0

75.5

76.0

76.5

77.0

Ac
cu

ra
cy

 (%
)

of params: 25.6m

SGD
SAM

0.01
0.02

0.05 0.1 0.2
75

76

77

78

Ac
cu

ra
cy

 (%
)

of params: 39.3m

SGD
SAM

2.0m
6.9m

14.8m
14.8m

25.6m

of params

0.01

0.02

0.03

0.04

0.05
Optimal

Figure 9: Validation accuracy versus ρ for ResNet-50 and ImageNet.

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
74

77

80

83

Ac
cu

ra
cy

 (%
)

of params: 45k

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
82

84

86

88

90

Ac
cu

ra
cy

 (%
)

of params: 176k

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
86

88

90

92

Ac
cu

ra
cy

 (%
)

of params: 701k

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0

90

92

94

Ac
cu

ra
cy

 (%
)

of params: 2.8m

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0

92

94

96

Ac
cu

ra
cy

 (%
)

of params: 11.2m

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
92

93

94

95

96

Ac
cu

ra
cy

 (%
)

of params: 44.7m

SGD
SAM

0.001
0.005

0.01
0.02

0.050.1 0.2 0.5 1.0
93

94

95

96

97

Ac
cu

ra
cy

 (%
)

of params: 178.6m

SGD
SAM

45k
176k

701k 3m 11m 45m
179m

of params

0.0

0.1

0.2
Optimal

Figure 10: Validation accuracy versus ρ for ResNet-18 and CIFAR-10.

0.01
0.02

0.05 0.1 0.2

60

70

80

Ac
cu

ra
cy

 (%
)

of params: 527k

SGD
SAM

0.01
0.02

0.05 0.1 0.2

60

70

80

Ac
cu

ra
cy

 (%
)

of params: 1.1m

SGD
SAM

0.01
0.02

0.05 0.1 0.2 0.3 0.5

60

70

80

Ac
cu

ra
cy

 (%
)

of params: 2.5m

SGD
SAM

0.01
0.02

0.05 0.1 0.2 0.3 0.5
50

60

70

80

Ac
cu

ra
cy

 (%
)

of params: 5.8m

SGD
SAM

0.01
0.02

0.05 0.1 0.2 0.3 0.5
50

60

70

80

Ac
cu

ra
cy

 (%
)

of params: 10.0m

SGD
SAM

0.01
0.02

0.05 0.1 0.2 0.3 0.5

60

70

80

Ac
cu

ra
cy

 (%
)

of params: 15.1m

SGD
SAM

527k
1.1m

2.5m
5.8m

10.0m
15.1m

of params

0.05

0.10

0.15

0.20
Optimal

Figure 11: Validation accuracy versus ρ for LSTM and SST2.

D ADDITIONAL RESULTS FOR SECTION 5

D.1 LABEL NOISE

More results on the effect of overparameterization on SAM under label noise are presented in Figure 12. Overall, we find
SAM benefits from overparameterization significantly more than SGD in the presence of label noise. Precisely, the accuracy

0.04 0.70 3 11
of params (×106)

0

20

40

60
Ac

c
im

pr
ov

em
en

t (
%

)
CIFAR-10 / ResNet-18

Noise = 0.25
Noise = 0.5
Noise = 0.75

(a) Effect of label noise

0.04 0.70 3 11
of params (×106)

20

40

60

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18

SGD
SAM

(b) Noise rate = 0.75

0.04 0.70 3 11
of params (×106)

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18

SGD
SAM

(c) Noise rate = 0.5

0.04 0.70 3 11
of params (×106)

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18

SGD
SAM

(d) Noise rate = 0.25

Figure 12: Effect of overparameterization on SAM under label noise for CIFAR-10 and ResNet-18. (a) SAM benefits a lot
more from overparameterization than SGD; it is more pronounced with high noise level. (b-d) Under label noise, SGD tends
to overfit as with more parameters unlike SAM.

improvement made by SAM keeps on increasing as the model becomes more overparameterized, and this trend is more
pronounced with higher noise levels; e.g., it rises from 5% to nearly 50% at the highest noise rate.

D.2 SPARSE OVERPARAMETERIZATION

0.00 0.56 0.75 0.94
Sparsity

0.4

0.6

0.8

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

0.00 0.56 0.75 0.94
Sparsity

92.0

92.5

93.0

93.5

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18
SGD
SAM

(a) Random pruning

0.00 0.56 0.75 0.94
Sparsity

0.4

0.6

0.8

1.0

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

0.00 0.56 0.75 0.94
Sparsity

93

94

95

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18
SGD
SAM

(b) SNIP

Figure 13: Effect of sparsification on SAM for ResNet-18 and CIFAR-10. Here, all the models have approximately 701k
parameters. The improvement tends to increase in large sparse models compared to their small dense counterparts.

0.00 0.52 0.77 0.96
Sparsity

0.1

0.2

0.3

Ac
c

im
pr

ov
em

en
t (

%
)

MNIST / 3-layer MLP
SAM-SGD

0.00 0.52 0.77 0.96
Sparsity

97.5

98.0

98.5

99.0

Ac
cu

ra
cy

 (%
)

MNIST / 3-layer MLP
SGD
SAM

(a) Random pruning

0.00 0.52 0.77 0.96
Sparsity

0.05

0.10

0.15

0.20

0.25

Ac
c

im
pr

ov
em

en
t (

%
)

MNIST / 3-layer MLP
SAM-SGD

0.00 0.52 0.77 0.96
Sparsity

98.0

98.2

98.4

98.6

98.8

Ac
cu

ra
cy

 (%
)

MNIST / 3-layer MLP
SGD
SAM

(b) SNIP

Figure 14: Effect of sparsification on SAM for MNIST and 3-layer MLP. Here, all the models have approximately 61k
parameters. The improvement tends to increase in large sparse models compared to their small dense counterparts.

Additional results on the effect of sparsification on the generalization benefit of SAM are plotted in Figures 13 and 14.
Here, we try two sparsification methods that do not require pertaining, random pruning and SNIP [Lee et al., 2019]. For
both methods, we note that the generalization improvement by SAM tends to increase as the model becomes more sparsely
overparameterized.

0.00 0.52 0.77 0.96
Sparsity

0.05

0.10

0.15

0.20
of params: 61k /Random

0.00 0.52 0.77 0.96
Sparsity

0.05

0.10

0.15

0.20
of params: 61k /SNIP

(a) MNIST/MLP

0.00 0.56 0.75 0.94
Sparsity

0.05

0.10

0.15

0.20# of params: 701k /Random

0.00 0.56 0.75 0.94
Sparsity

0.05

0.10

0.15

0.20 # of params: 701k /SNIP

(b) CIFAR-10/ResNet-18

Figure 15: Effect of sparsification on ρ⋆. ρ⋆ can be sometimes different across different sparsity patterns despite having a
similar number of parameters.

We also plot the effect of sparsification on ρ⋆ in Figure 15. We find that ρ⋆ is sometimes different between small dense and
large sparse models despite having a similar number of parameters; for the MLP of 61k parameters on MNIST, ρ⋆ changes
over different sparsity levels and sparsification methods, but this does not generalize to the CIFAR-10 and ResNet-18. This
indicates that it is not just the parameter count that affects the behavior of SAM, but some other factors such as the pattern
of parameterization also have an influence on how SAM shapes training.

D.3 REGULARIZATION

More results on the effect of regularization on SAM are presented in Figure 16. We find that overparameterization does not
increase the generalization benefit of SAM. We suspect this is because the models are prone to overfitting in these cases and
overparameterizing models may decrease the overall performance both for SGD and SAM; for example in Figure 16c, the
validation accuracy drops after 11.2m parameters.

0.04 0.18 0.70 3 11 45
of params (×106)

0.0

0.2

0.4

0.6

0.8

Ac
c

im
pr

ov
em

en
t (

%
)

CIFAR-10 / ResNet-18
SAM-SGD

5.5 13.5 23.7 36.3 51.3
of params (×106)

1

2

3

4

PoS tagging / Transformer
SAM-AdamW

0.06 0.21 0.81 3 13 51
of params (×106)

0.0

0.5

1.0

1.5

2.0
CIFAR-10 / ViT

SAM-SGD

0.04 0.18 0.70 3 11 45
of params (×106)

85

90

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ResNet-18

SGD
SAM

(a) w/o weight decay

5.5 13.5 23.7 36.3 51.3
of params (×106)

60

62

64

Ac
cu

ra
cy

 (%
)

PoS tagging / Transformer

AdamW
SAM

(b) w/o early stop.

0.06 0.21 0.81 3 13 51
of params (×106)

80

82

84

86

Ac
cu

ra
cy

 (%
)

CIFAR-10 / ViT

SGD
SAM

(c) ViT

Figure 16: Effect of overparameterization on SAM without regularization: (a) CIFAR-10/ResNet-18 without weight
decay, (b) Transformer/PoS tagging without early stopping, and (c) ViT/CIFAR-10. SAM does not always benefit from
overparameterization in these cases.

E ABLATION

E.1 EFFECT OF DEPTH

0.8 1.8 2.8
of params (×106)

0.10

0.15

0.20

Ac
cu

ra
cy

 im
pr

ov
em

en
t (

%
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
MNIST / MLP

4 11 48
of params (×106)

0.8

0.9

1.0

1.1

Ac
cu

ra
cy

 im
pr

ov
em

en
t (

%
)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
CIFAR-10 / ResNet

Figure 17: Improvement in validation metrics by SAM over
different model depths. Deeper models tend to yield higher
validation accuracy improvements. Here we change the num-
ber of width-1000 hidden layers in MLP and resblock in each
stage of ResNet-18 for MNIST and CIFAR-10, respectively.
Benefits of SAM also improves with overparameterization in
terms of depth, although the increase is not significant for
ResNet.

We experiment with changing the number of layers
for MNIST/MLP and Cifar-10/ResNet-18. Precisely, we
change the number of width-1000 hidden layers in MLP
and resblock in each stage of ResNet-18 for MNIST and
CIFAR-10 respectively. The results are provided in Fig-
ure 17. We find that SAM also improves with overparam-
eterization for MLPs, while the increase is not significant
for ResNets. We suspect that this may result from the com-
plex interplay of various intricate factors and decisions
involved in increasing depth in modern architectures such
as ResNets (e.g., deciding whether to increase the number
of resblocks, layers within the resblock, width stages, or
some combination of them), each affecting the training
dynamics in distinct ways. Further study into these fac-
tors would be an interesting direction to understand these
influences more comprehensively.

E.2 SAM VS. WEIGHT DECAY

5e-05 0.0001 0.0005 0.001 0.005
Weight decay

76

78

80

82

84

Ac
cu

ra
cy

 (%
)

of parameters: 45k

SGD
SAM

5e-05 0.0001 0.0005 0.001 0.005
Weight decay

85.0

87.5

90.0

92.5

Ac
cu

ra
cy

 (%
)

of parameters: 701k

SGD
SAM

5e-05 0.0001 0.0005 0.001 0.005
Weight decay

85

90

95

Ac
cu

ra
cy

 (%
)

of parameters: 3m

SGD
SAM

5e-05 0.0001 0.0005 0.001 0.005
Weight decay

87.5

90.0

92.5

95.0

Ac
cu

ra
cy

 (%
)

of parameters: 11m

SGD
SAM

0.04 0.70 3 11
of params (×106)

0.25

0.50

0.75

1.00

Ac
c

im
pr

ov
em

en
t (

%
) SAM-SGD

Figure 18: Effect of weight decay on validation accuracy of ResNet-18 trained on CIFAR-10 with SAM and SGD over
various model scales and the improvement in validation metrics by SAM when considering weight decay. Even after being
given much larger values of weight decay, SGD isn’t able to outperform SAM on any model size.

We conduct experiments on Cifar-10/ResNet-18 for four different model sizes and five values of weight decay. The results are
provided in Figure 18. We find that SGD with stronger weight decay does not compete to replace SAM for overparameterized
models; for overparameterized models, using larger weight decay rather degrades the performance for SGD. This potentially
indicates that a generic regularization strategy may not suffice for overparameterized models relatively compared to SAM.

E.3 RESULTS ON SAM UNDER LINEARIZED REGIME

1 10 100 1000

20

40

60

80

Ac
cu

ra
cy

 (%
)

SGD
SAM (= 0.001)
SAM (= 0.01)
SAM (= 0.02)

1 10 100 1000

0.6

0.8

1.0

St
ab

ilit
y

of
 a

ct
iv

at
io

ns

SGD
SAM (= 0.001)
SAM (= 0.01)
SAM (= 0.02)

Figure 19: Effect of linearization on SAM. Here, α con-
trols the degree of linearization. High linearization does
not yield improvement, and in fact, SAM (ρ = 0.001)
underperforms SGD in the linearized regime (left), al-
though both achieve effective linearization at α = 1000
with stability close to 1 (right).

Recent studies suggest that highly overparameterized models
can behave like linearized networks [Jacot et al., 2018], while
such implicit linearization phenomenon can coincide indepen-
dently of overparameterization [Chizat et al., 2019]. One might
wonder if the increased effectiveness of SAM directly comes
from the overparameterization itself or is rather due to lineariza-
tion. To verify, we reproduce experiments in Chizat et al. [2019]
and see how SAM performs in the linearized regimes while
fixing the number of parameters. Specifically, we train VGG-
11 [Simonyan and Zisserman, 2015] on the Cifar-10 with the
α-scaled squared loss L(x, y) = ∥f(x) − y/α∥2 and use the
centered model whose initial output is set to 0. Here, a large
value of α leads to a higher degree of linearization of the models.

The results are reported in Figure 19. We observe that SAM underperforms SGD in the linearized regimes; while SAM
(ρ = 0.001) and SGD both achieve effective linearization at α = 1000, SAM underperforms SGD by more than 10%. This
indicates that linearization is not the main factor, and overparameterization itself is what leads to the improvement of SAM
in previous experiments.

E.4 SGD WITH TWICE THE EPOCHS

0.040.180.70 3 11 45 179
of params (×106)

85.0
87.5
90.0
92.5
95.0

Ac
cu

ra
cy

 (%
)

SAM(200e)
SGD(400e)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.040.180.70 3 11 45 179
of params (×106)

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

 im
pr

ov
em

en
t (

%
)

SAM(200e)-SGD(400e)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 20: SGD with twice the epochs. SAM still in-
creasingly outperforms SGD with further overparame-
terization.

We compare SGD, trained for twice the number of epochs
as SAM, to account for the additional gradient computation
of SAM. Precisely, we report the validation accuracy of SGD
trained for 400 epochs and compare it to SAM trained for the
original 200 epochs on ResNet-18/CIFAR-10 in Figure 20. Sim-
ilar to our observation in Section 3, we find that the generaliza-
tion benefit of SAM improves with overparameterization. This
outcome is expected: granting SGD additional training iterations
can lead to overfitting and degrade generalization, potentially
placing it at a disadvantage. Thus, while providing a larger train-
ing budget to SGD may appear fair, it is not necessarily a more
equitable comparison, and may in fact be unfair.

F EMPIRICAL MEASUREMENT OF LIPSCHITZ SMOOTHNESS AND PL CONSTANTS

0 25 50 75 100
Epoch

10
12
14
16
18
20

Lip
sc

hi
tz

 c
on

st
an

t

701K
2.8M
11.2M

(a) Lipschitz smoothness

0 20 40 60 80
Epoch

0

5

10

15

20

PL
 c

on
st

an
t

701K
2.8M
11.2M

(b) PL-ness

Figure 21: The empirical measurement of Lipschitz
smoothness (a) and PL-ness (b) for CIFAR-10 and
ResNet-18. The Lipschitz smoothness becomes smaller
and PL constant becomes larger as the model size in-
creases.

We measure the empirical Lipschitz smoothness constant and
PL constant based on Zhang et al. [2019]. Specifically, the
empirical smoothness β̂(xk) and empirical PL constant α̂(xk)
at iteration k is computed as follows:

β̂(xk) = max
γ∈{δ,2δ,...,1}

∥∇f(xk + γd)−∇f(xk)∥2
∥γd∥2

, (7)

α̂(xk) = min
γ∈{δ,2δ,...,1}

∥∇f(xk + γd)∥22
f(xk + γd)− f(x⋆)

. (8)

where d = xk+1 − xk and δ ∈ (0, 1) where we choose δ =
0.1. We measure these quantities at the end of every epoch
throughout training. The results are shown in Figure 21.

G PROOF OF THEOREM 6.3

Here, we provide the detailed proof of Theorem 6.3.

We first define a linearized stochastic SAM, which is derived from applying a first-order Taylor approximation to a stochastic
SAM update given as follows:

Definition G.1. (Linearized stochastic SAM) We define a linearized stochastic SAM as

xt+1 = xt − ηHξt(xt+1/2 − x⋆), (9)

where xt+1/2 = xt + ρHξt(xt − x⋆) is the linearized ascent step and Hξt is the Hessian estimation at step t.

This actually corresponds to using SAM for the quadratic approximation of f near x⋆, and we use this fact in the experiment
setup. We assume without loss of generality that the fixed point x⋆ satisfies x⋆ = 0.

Then, we are ready to present the proof of Theorem 6.3. Our goal is to derive a bound of the form E∥xt∥2 ≤ C∥x0∥2. We
first apply (9) to E

[
∥xt+1∥2 |xt

]
and continue expanding the terms as follows:

E
[
∥x2

t+1∥ |xt

]
= E∥xt − ηHξt(xt + ρHξtxt)∥2

= x⊤
t E

[(
I − ηHξt − ηρH2

ξt

)2 ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2η(Hξt + ρH2

ξt) + η2
(
Hξt + ρH2

ξt

)2 ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2η(Hξt + ρH2

ξt) + η2
(
H2

ξt + 2ρH3
ξt + ρ2H4

ξt

) ∣∣∣xt

]
xt

= x⊤
t E

[
I − 2ηHξt + η(η − 2ρ)H2

ξt + 2η2ρH3
ξt + η2ρ2H4

ξt

∣∣∣xt

]
xt

= x⊤
t

(
I − 2ηH + η(η − 2ρ)EH2

ξt + 2η2ρEH3
ξt + η2ρ2EH4

ξt

)
xt

= x⊤
t

(
I − 2ηH + η(η − 2ρ)H2 + 2η2ρH3 + η2ρ2H4

+ η(η − 2ρ)(EH2
ξt −H2) + 2η2ρ(EH3

ξt −H3) + η2ρ2(EH4
ξt −H4)

)
xt

= x⊤
t

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξt −H2) + 2η2ρ(EH3
ξt −H3) + η2ρ2(EH4

ξt −H4)
)
xt

Since x⊤Ax ≤ λmax(A)∥x∥2 always holds for any x and any matrix A with the maximum eigenvalue λmax(A), applying
this inequality and taking the total expectation gives the following;

E
[
∥xt+1∥2

]
≤ λmax

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξ −H2)

+ 2η2ρ(EH3
ξ −H3) + η2ρ2(EH4

ξ −H4)

)
E
[
∥xt∥2

]
.

Recursively applying this bound gives

E∥xt∥2 ≤ λmax

((
I − ηH − ηρH2

)2
+ η(η − 2ρ)(EH2

ξ −H2)

+ 2η2ρ(EH3
ξ −H3) + η2ρ2(EH4

ξ −H4)

)t

∥x0∥2.

Here, we can see that x⋆ is linearly stable if

λmax

(
(I − ηH − ηρH2)2

+ η(η − 2ρ)(EH2
ξ −H2) + 2η2ρ(EH3

ξ −H3) + η2ρ2(EH4
ξ −H4)

)
≤ 1.

H PROOF OF THEOREM 6.6

In this section, we show that a stochastic SAM converges linearly under an overparameterized regime. To put into perspective,
this is the rate of convergence of gradient descent for a family of functions satisfying the PL-condition and smoothness
assumptions [Karimi et al., 2016]. We first make several remarks on this result below.

• Crucially, this result shows that with overparameterization, a stochastic SAM can converge as fast as the deterministic
gradient method at a linear convergence rate. It is much faster than the well-known sublinear rate of O(1/t) for SAM
[Andriushchenko and Flammarion, 2022].

• When ρ = 0, we recover the well-known convergence rate for SGD in the interpolated regime [Bassily et al., 2018].

• This result does not require the bounded variance assumption [Andriushchenko and Flammarion, 2022] since the
interpolation provides necessary guarantees. This suggests that overparameterization can ease the convergence of SAM.

We prove the convergence for an unnormalized mini-batch SAM given as

xt+1 = xt − ηgB
t (xt + ρgB

t (xt)),

where gB
t (x) =

1
B

∑
i∈IB

t
∇fi(x) and IBt ⊆ {1, ..., n} is a set of indices for data points in the mini-batch of size B sampled

at step t. This is a more general stochastic variant of SAM where a stochastic SAM in Section 6.2 is a particular case of a
mini-batch SAM with mini-batch size B = 1.

We first make the following assumptions:

(A1) (β-smothness of fi). There exists β > 0 s.t. ∥∇fi(x)−∇fi(y)∥ ≤ β∥x− y∥ for all x, y ∈ Rd,

(A2) (λ-smothness of f). There exists λ>0 such that ∥∇f(x)−∇f(y)∥ ≤ λ∥x− y∥ for all x, y ∈ Rd,

(A3) (α-PLness of f). There exists α > 0 s.t. ∥∇f(x)∥2 ≥ α(f(x)− f(x⋆)) for all w, v ∈ Rd,

(A4) (Interpolation). If f(x⋆) = 0 and ∇f(x⋆) = 0, then fi(x
⋆) = 0 and ∇fi(x

⋆) = 0 for i = 1, . . . , n, where n is the
number of training data points.

Before we prove the main theorem, we first introduce two lemma important to the proof.

Lemma H.1. Suppose that Assumption (A1) holds. Then

⟨∇fi(xt+1/2),∇f(xt)⟩ ≥ ⟨∇fi(xt),∇f(xt)⟩ −
βρ

2
∥∇fi(xt)∥2 −

βρ

2
∥∇f(xt)∥2, (10)

where xt+1/2 = xt + ρ∇fi(xt).

This lemma shows how well a stochastic SAM gradient ∇fi(xt+1/2) aligns with the true gradient ∇f(xt). The two gradients
become less aligned as β and ρ grow bigger, i.e. for sharper landscape and larger perturbation size.

Proof. We first add and subtract ∇fi(xt) on the left side of the inner product

⟨∇fi(xt+1/2),∇f(xt)⟩ = ⟨∇fi(xt+1/2)−∇fi(xt),∇f(xt)⟩︸ ︷︷ ︸
τ1

+⟨∇fi(xt),∇f(xt)⟩. (11)

We here bound the term τ1 so that it becomes an equality when ρ = 0. To achieve this, we start with the following binomial
square, which is trivially lower bounded by 0.

0 ≤ 1

2
∥∇fi(xt+1/2)−∇fi(xt) + βρ∇f(xt)∥2

We then expand the above binomial square so that the term containing τ1 appears.

0 ≤ 1

2
∥∇fi(xt+1/2)−∇fi(xt)∥2 + ⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩︸ ︷︷ ︸

βρτ1

+
1

2
∥βρ∇f(xt)∥2

We subtract the term βρτ1 on both sides of the inequality which gives

−⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩ ≤
1

2
∥∇fi(xt+1/2)−∇fi(xt)∥2 +

β2ρ2

2
∥∇f(xt)∥2.

Then we upper bound the right-hand side using the Assumption (A1):

−⟨∇fi(xt+1/2)−∇fi(xt) , βρ∇f(xt)⟩ ≤
β2

2
∥xt+1/2 − x∥2 + β2ρ2

2
∥∇f(xt)∥2

=
β2ρ2

2
∥∇fi(xt)∥2 +

β2ρ2

2
∥∇f(xt)∥2.

We divide both sides with βρ, obtaining:

−⟨∇fi(xt+1/2)−∇fi(xt),∇f(xt)⟩ ≤
βρ

2
∥∇fi(xt)∥2 +

βρ

2
∥∇f(xt)∥2.

Applying this to (11) gives the bound in the lemma statement.

Lemma H.2. Suppose that Assumption (A1) holds. Then∥∥∇fi(xt+1/2)
∥∥2 ≤ (βρ+ 1)2∥∇fi(xt)∥2, (12)

where xt+1/2 = xt + ρ∇fi(xt).

This second lemma shows that the norm of a stochastic SAM gradient is bounded by the norm of the stochastic gradient.
Similar to the Lemma H.1, as β and ρ grow bigger the norm for a stochastic SAM gradient can become larger than the norm
of the true gradient.

Proof. We use the following binomial squares:

∥∇fi(xt+1/2)∥2

= ∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2⟨∇fi(xt+1/2)−∇fi(xt),∇fi(xt)⟩+ ∥∇fi(xt)∥2.

We bound the right-hand side using Cauchy-Schwarz inequality and Assumption (A1), which gives∥∥∇fi(xt+1/2)
∥∥2

= ∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2⟨∇fi(xt+1/2)−∇fi(xt),∇fi(xt)⟩+ ∥∇fi(xt)∥2

≤
C.S.

∥∇fi(xt+1/2)−∇fi(xt)∥2 + 2∥∇fi(xt+1/2)−∇fi(xt)∥∥∇fi(xt)∥+ ∥∇fi(xt)∥2

≤
(A1)

β2∥xt+1/2 − xt∥2 + 2β∥xt+1/2 − xt∥∥∇fi(xt)∥+ ∥∇fi(xt)∥2

= β2ρ2∥∇fi(xt)∥2 + 2βρ∥∇fi(xt)∥2 + ∥∇fi(xt)∥2

= (βρ+ 1)2∥∇fi(xt)∥2

These two lemmas essentially show how similar a stochastic SAM gradient is to the stochastic gradient, where the two
become more similar as β and ρ decrease, which aligns well with our intuition. Using Lemma H.1 and H.2, we provide the
convergence result in the following theorem.

Theorem H.3. Suppose that Assumptions (A1-4) holds. For any mini-batch size B ∈ N and ρ ≤ 1
(β/α+1/2)β , unnormalized

mini-batch SAM with constant step size η⋆B
def
= 1−(κB+1/2)βρ

2λκB(βρ+1)2 gives the following guarantee at step t:

E
xt

[f(xt)] ≤
(
1− αη⋆B

2

(
1−

(
κB +

1

2

)
βρ

))t

f(x0),

where κB = 1
B

(
B−1
2 + β

α

)
.

This theorem states that mini-batch SAM converges at a linear rate under overparameterization.

Proof. Proof can be outlined in 3 steps.

step 1. Handle terms containing mini-batch SAM gradient gB
t (xt + ρgB

t (xt)) using bounds from (A1).
step 2. Take conditional expectation E[· |xt] and substitute expectation of function of mini-batch gradient gB

t with
terms containing ∥∇f(xt)∥ and E

[
∥∇fi(xt)∥2

∣∣∣ xt

]
.

step 3. Bound the two terms from step 2, one using Assumptions (A1) and (A4) and the other using Assumption (A3)
and (A4) which results in all the terms to contain f(xt). Then finally we take total expectations to derive the final
runtime bound.

We start from the quadratic upper bound derived from Assumption (A2);

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+
λ

2
∥xt+1 − xt∥2.

Applying mini-batch SAM update, we then have

f(xt)− f(xt+1) ≥ η
〈
∇f(xt) , gB

t (xt+1/2)
〉
− η2λ

2

∥∥gB
t (xt+1/2)

∥∥2 ,
where xt+1/2 = xt + ρgB

t (xt).

step 1. We can see that there are two terms that contain a mini-batch SAM gradient gB
t (xt+1/2). We see that each can be

bounded directly using Lemma H.1 and H.2, which gives

f(xt)− f(xt+1)

≥ η

(
⟨gB

t (xt),∇f(xt)⟩ −
βρ

2
∥gB

t (xt)∥2 −
βρ

2
∥∇f(xt)∥2

)
− η2λ

2
(βρ+ 1)2 ∥gB

t (xt)∥2

= η⟨gB
t (xt),∇f(xt)⟩ −

ηβρ

2
∥∇f(xt)∥2 −

η

2

(
ηλ (βρ+ 1)2 + βρ

)
∥gB

t (xt)∥2.

step 2. Now we apply E[· |xt] to all the terms.

E
[
f(xt)− f(xt+1)

∣∣ xt

]
= f(xt)− E

[
f(xt+1)

∣∣ xt

]
≥ ηE

[
⟨gB

t (xt),∇f(xt)⟩
∣∣∣ xt

]
− ηβρ

2
E
[
∥∇f(xt)∥2

∣∣ xt

]
− η

2

(
ηλ (βρ+ 1)2 + βρ

)
E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
= η

(
1− βρ

2

)
∥∇f(xt)∥2 −

η

2

(
ηλ (βρ+ 1)2 + βρ

)
E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
.

Here we expand the term E
[
∥gB

t (xt)∥2
∣∣∣ xt

]
by expanding the mini-batched function into individual function estimators as

follows.

EgB
t

[
∥gB

t (xt)∥2
∣∣∣ xt

]
= EIB

t

〈 1

B

∑
i∈IB

t

∇fi(xt) ,
1

B

∑
j∈IB

t

∇fj(xt)

〉 ∣∣∣∣∣ xt



=
1

B2


∑
i∈IB

t

Efi

[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

∑
i∈IB

t

∑
j∈IB

t
(j ̸=i)

Efi,fj

[
⟨∇fi(xt),∇fj(xt)⟩

∣∣∣ xt

]
=

1

B
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

B − 1

B
∥∇f(xt)∥2 .

(13)

Using (13), we get

f(xt)− E
[
f(xt+1)

∣∣ xt

]
(14)

≥ η

(
1− βρ

2

)
∥∇f(xt)∥2

− η

2

(
ηλ (βρ+ 1)2 + βρ

)(1

B
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
+

B − 1

B
∥∇f(xt)∥2

)
= η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
∥∇f(xt)∥2

− η

2B

(
ηλ(βρ+ 1)2 + βρ

)
E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
. (15)

step 3. In this step, we bound the two terms and take the total expectation to derive the final runtime bound.

We first derive a bound for E
[
∥∇fi(xt)∥2

∣∣∣ xt

]
. We start from the following bound derived from Assumption (A1):

∥∇fi(xt)−∇fi(x
⋆)∥2 ≤ 2β(fi(xt)− fi(x

⋆)).

By Assumption (A4), this reduces to

∥∇fi(xt)∥2 ≤ 2βfi(xt).

Applying this to (15) gives

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
∥∇f(xt)∥2

− ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
E[fi(xt)|xt]

= η

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
︸ ︷︷ ︸

τ2

∥∇f(xt)∥2

− ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
f(xt). (16)

Next, to bound ∥∇f(xt)∥2, we use the following bound derived from applying f(x∗) = 0 from (A4) to (A3):

∥∇f(x)∥2 ≥ αf(x). (17)

Assuming τ2 ≥ 0 which we provide a sufficient condition at the end of the proof, we apply (17) to (16) which gives

f(xt)− E
[
f(xt+1)

∣∣ xt

]
≥ ηα

((
1− βρ

2

)
− B − 1

2B

(
ηλ(βρ+ 1)2 + βρ

))
f(xt)−

ηβ

B

(
ηλ(βρ+ 1)2 + βρ

)
f(xt)

= η

α− α

(
1

B

(B − 1

2
+

β

α

)
︸ ︷︷ ︸

κB

+
1

2

)
βρ− η(βρ+ 1)2

λ

B

(
α
B − 1

2
+ β

)
︸ ︷︷ ︸

λακB

 f(xt)

= ηα

(
1−

(
κB +

1

2

)
βρ− ηλ(βρ+ 1)2κB

)
f(xt).

Hence, we get

E
[
f(xt+1)

∣∣ xt

]
≤

(
1− ηα

(
1−

(
κB +

1

2

)
βρ

)
+ η2αλ(βρ+ 1)2κB

)
f(xt).

Applying total expectation on both sides gives

E[f(xt+1)] ≤
(
1− ηα

(
1−

(
κB +

1

2

)
βρ

)
+ η2αλ(βρ+ 1)2κB

)
E[f(xt)]. (18)

Optimizing the multiplicative term in (18) with respect to η gives η = 1−(κB+1/2)βρ
2λκB(βρ+1)2 , which is η⋆B in the theorem statement.

With assumption of ρ ≤ 1
(β/α+1/2)β so that we have η⋆B ≥ 0, applying this to (18) gives

E [f(xt+1)] ≤
(
1− αη⋆B

2

(
1−

(
κB +

1

2

)
βρ

))
E [f(xt)] ,

which provides the desired convergence rate.

Last but not least, we calculate the upper bound for ρ to satisfy the assumption τ2 ≥ 0 by substituting η for η⋆B in τ2,
yielding ρ ≤ 2BκB+2β/α

(2B−1)κB+β/α
1
β . Minimizing this upper bound with respect to B gives ρ ≤ 1

β , which is a looser bound than
ρ ≤ 1

(β/α+1/2)β .

I TEST ERROR OF SAM CAN DECREASE WITH OVERPARAMETERIZATION

Recent works have shown that overparameterization can even improve generalization both empirically and theoretically
[Neyshabur et al., 2017, Brutzkus and Globerson, 2019]. Here, we present that overparameterization also improves
generalization for SAM in the sense that test error can decrease with larger network widths (and thus more parameters).

We follow the same setting of Allen-Zhu et al. [2019]. Specifically, we consider a risk minimization over some unknown
data distribution D using a one-hidden-layer ReLU network with a smooth convex loss function (e.g., cross entropy). The
network is assumed to be initialized with Gaussian and take bounded inputs. Then, we characterize a generalization property
of a stochastic SAM as below.

Theorem I.1. (Informal) Suppose we train a network having m hidden neurons with training data sampled from D. Then,
for every ε in some open interval, there exists M ∝ 1/ε such that for every m ≥ M , with appropriate values of η, ρ, T , a
stochastic SAM gives the following guarantee on the test loss with high probability:

E
x0,··· ,xT−1

[
1

T

T−1∑
t=0

ED[f(xt)]

]
≤ ε.

We present a formal version of the theorem and its proof in Appendix J.

This result suggests that to achieve ε-test accuracy from running T iterations of SAM requires a minimum width M propor-
tional to 1/ε. This indicates that a network with a larger width can achieve a lower test error, and hence, overparameterization
can improve generalization for SAM.

1 5 10 50 100 500
of neurons(×102)

5.0

7.5

10.0

12.5

15.0

Te
st

 e
rro

r

Synth / 2-layer MLP

Figure 22: Generalization of SAM.
Test error keeps on decreasing with a
larger number of neurons.

Experiment We support this result empirically on synthetic data for a simple
regression task. Specifically, following the setup of Allen-Zhu et al. [2019], we
train 2-layer ReLU networks with synthetic data. Here, each element of the input
x = (x1, x2, x3, x4) ∈ R4 for synthetic data is sampled from random Gaussian
distribution and then normalized to satisfy ∥x∥2 = 1, and target y is calculated as
y = (sin(3x1) + sin(3x2) + sin(3x3)− 2)2 · cos(7x4). The weights and biases
of the first layer are initialized from N (0, 1/m) where m is the number of hidden
neurons, and the weights of the second layer are initialized from N (0, 1). We only
train the weights of the first layer for 800 epochs, while the biases of the first layer
and the weights of the second layer are frozen to initialized values. We use 1000
and 5000 data points for training and testing respectively. We use a batch size of 50
without weight decay and decay learning rate by 0.1 after 50% of the total epochs.
We perform the grid search over learning rate and ρ from {10−k|2 ≤ k ≤ 7} and
{10−k|1 ≤ k ≤ 5} respectively.

J PROOF OF THEOREM I.1

In this section, we provide the formal version of Theorem I.1 and its proof.

J.1 NOTATION AND SETUP

Throughout this section, we use the same notations and setups as Allen-Zhu et al. [2019]. We remark that the notations are
different from those used in Appendices G to I.

First, let us assume the unknown data distribution D where each data z = (x, y) consists of the input x ∈ Rd and the
corresponding label y ∈ Y . We also assume, without loss of generality, that ∥x∥2 = 1 and xd = 1/2. The loss function
L : Rk × Y → R is assumed to be non-negative, convex, 1-Lipschitz continuous, and 1-smooth with respect to its first
argument.

Next, we define the target network F ∗ = (f∗
1 , · · · , f∗

k) : Rd → Rk as

f∗
r (x)

def
=

p∑
i=1

a∗r,iϕi(⟨w∗
1,i, x⟩)⟨w∗

2,i, x⟩ (19)

where each ϕi : R → R is an infinite-order smooth function. Here, we assume that ∥w∗
1,i∥2 = ∥w∗

2,i∥2 = 1, |a∗r,i| ≤ 1 hold
for all i ∈ {1, · · · , p}. We denote the sample and network complexity of ϕ as Cs and Cϵ respectively (see Section 2 of
Allen-Zhu et al. [2019] for the formal definitions). Suppose we have a concept class C that consists of all functions F ∗ with
bounded number of parameters p and complexity C. We also denote the population risk achieved by the best target function
F ∗ in this concept class as OPT, i.e., OPT = min

F⋆∈C
E(x,y)∼D[L(F

∗(x), y]

Then, we define the learner network F = (f1, · · · , fk) : Rd → Rk as below.

fr(x)
def
=

m∑
i=1

a
(0)
r,i ReLU(⟨wi, x⟩+ b

(0)
i). (20)

Note that the learner network is a 2-layer ReLU network with m neurons. We train the network with n sampled data
sampled from D and denote it as Z = {z1, · · · , zN}. We only train the weights W = (w1, · · · , wm) ∈ Rm×d and freeze
the values of a, b during the training. We denote the initial value of the weight and its value at time t as W (0) and W (0)+Wt

respectively. Each element of W (0) and b(0) are initialized from N (0, 1/m) while each element of a(0)r are initialized from
N (0, ε2a) for some fixed εa ∈ (0, 1]. At each step t, we sample a single data point z = (x, y) from Z and update W using
un-normalized version of SAM:

Wt+1 = Wt − η∇L(F (x;W (0) +Wt+1/2), y)

= Wt − η∇L(F (x;W (0) + ρ∇L(F (x;W (0) +Wt), y)), y). (21)

J.2 FORMAL THEOREM

Now, we are ready to present the formal version of Theorem I.1 below.

Theorem J.1. (SAM version of Theorem 1 in Allen-Zhu et al. [2019]) For every ε ∈
(
0, 1

pkCs(ϕ,1)

)
, there exists M0 =

poly(Cϵ(ϕ, 1), 1/ε) and N0 = poly(Cs(ϕ, 1), 1/ε) such that for every m ≥ M0 and every N ≥ Ω̃(N0), by choosing

εa = ε/Θ̃(1) for the initialization and η = Θ̃(1
εkm), ρ = Θ̃(1

ε3km3), T = Θ̃
(

(Cs(ϕ,1))
2·k3p2

ε2

)
, running T iterations of

stochastic SAM defined in Equation (21) gives the following generalization bound with high probability over the random
initialization.

ESAM

[
1

T

T−1∑
t=0

E(x,y)∼DL(F (x;W (0) +Wt), y)

]
≤ OPT + ε. (22)

Here, the notation of Õ(·) ignores the factor of polylog(m).

J.3 PROOF OF THEOREM J.1

We here present the proof of Theorem J.1.

First, note that we can directly use the algorithm-independent part from Allen-Zhu et al. [2019]. Thus, it is sufficient to show
that the similar version of Lemma B.4 in Allen-Zhu et al. [2019] also holds for SAM.

We first define the function G = (g1, · · · , gk) : Rd → Rk as similar to Allen-Zhu et al. [2019].

gr(x;Wt)
def
=

m∑
i=1

a
(0)
r,i (⟨w

(t)
i , x⟩+ b

(0)
i)1[⟨w(0)

i , x⟩+ b
(0)
i ≥ 0]. (23)

Then, the following corollary holds for a stochastic SAM from Lemma B.3 of Allen-Zhu et al. [2019]. The corollary presents
an upper bound on the norm of differences between ∂

∂W L(F (·), y) and ∂
∂W L(G(·), y).

Corollary J.2. (SAM version of Lemma B.3 in Allen-Zhu et al. [2019]) Let τ = εa(η + ρ)t. Then, for every x satisfying
∥x∥2 = 1, and for every time step t ≥ 1, the following are satisfied with high probability over the random initialization.
(a) For every r ∈ [k], ∣∣∣fr(x;W (0) +Wt)− gr(x;W

(0) +Wt)
∣∣∣ = Õ(εakτ

2m3/2)

(b) For every y ∈ Y ,∥∥∥∥ ∂

∂W
L(F (x;W (0) +Wt), y)−

∂

∂W
L(G(x;W (0) +Wt), y)

∥∥∥∥
2,1

≤ Õ(εakτm
3/2 + ε2ak

2τ2m5/2) (24)

Next, we present the key lemma integral to our proof. The part (c) will be directly used in the proof and presents an upper
bound on the norm of differences between SAM gradient and SGD gradient for F .

Lemma J.3. For every x satisfying ∥x∥2 = 1, and for every time step t ≥ 1, the following are satisfied with high probability
over the random initialization.
(a) For at most Õ(εaρ

√
km) fraction of i ∈ [m]: we have

1[⟨w(t+1/2)
i , x⟩+ b

(0)
i ≥ 0] ̸= 1[⟨w(t)

i , x⟩+ b
(0)
i ≥ 0].

(b) For every r ∈ [k], ∣∣∣fr(x;W (0) +Wt+1/2)− fr(x;W
(0) +Wt)

∣∣∣ = Õ(ε3akρ
2m3/2 + ε2a

√
kρm)

(c) For every y ∈ Y , ∥∥∥∥ ∂

∂W
L(F (x;W (0) +Wt+1/2), y)−

∂

∂W
L(F (x;W (0) +Wt), y)

∥∥∥∥
2,1

≤ Õ(ε2akρm
3/2 + ε4ak

2ρ2m5/2 + ε3ak
3/2ρm2) (25)

Proof. Recall that the following hold from the definition of F (see Lemma B.3 of Allen-Zhu et al. [2019] for the details).∥∥∥∥ ∂

∂wi
fr(x;W

(0) +Wt)

∥∥∥∥
2

≤ εaB and
∥∥∥∥ ∂

∂wi
L(F (x;W (0) +Wt), y)

∥∥∥∥
2

≤
√
kεaB (26)

(a) Let τ = εaρ and define H def
=

{
i ∈ [m]

∥∥∥∥ ∣∣∣⟨w(t)
i , x⟩+ b

(0)
i

∣∣∣ ≥ 2
√
kBτ

}
. Then, the lemma is a direct corollary from

Lemma B.3 (a) of Allen-Zhu et al. [2019].
(b) We divide i into two cases. First, when i /∈ H, we can directly utilize Lemma B.3.(b) of Allen-Zhu et al. [2019] and the
total difference from these i’s is Õ(ε3akρ

2m3/2). Next, we consider the differences from i ∈ H.∣∣∣a(0)r,i

(〈
w

(t+1/2)
i , x

〉
+ b

(0)
i

)
1

[〈
w

(t+1/2)
i , x

〉
+ b

(0)
i ≥ 0

]
−a

(0)
r,i

(〈
w

(t)
i , x

〉
+ b

(0)
i

)
1

[〈
w

(t)
i , x

〉
+ b

(0)
i ≥ 0

]∣∣∣
≤

∣∣∣a(0)r,i

(〈
w

(t+1/2)
i − w

(t)
i , x

〉)∣∣∣
=

∣∣∣∣a(0)r,i

(〈
ρ · ∂

∂wi
L(F (x;W (0) +Wt), y), x

〉)∣∣∣∣
≤ ρ

∣∣∣a(0)r,i

∣∣∣ · ∥∥∥∥ ∂

∂wi
L(F (x;W (0) +Wt), y)

∥∥∥∥
2

· ∥x∥2

≤ ρ(εaB) · (
√
kεaB)

= Õ(ε2a
√
kρ)

The first inequality is from the fact that i ∈ H and thus 1
[〈

w
(t+1/2)
i , x

〉
+ b

(0)
i ≥ 0

]
= 1

[〈
w

(t)
i , x

〉
+ b

(0)
i ≥ 0

]
. Then,

we have utilized the definition of SAM (21) and Cauchy-Schwartz inequality. Since there can be at most m number of i ∈ H,
the total differences from i ∈ H amount to Õ(ε2a

√
kρm). Combining the two cases proves the (b).

(c) By the chain rule, we have

∂

∂wi
L(F (x;W (0) +Wt), y) = ∇L(F (x;W (0) +Wt), y)

∂

∂wi
F (x;W (0) +Wt).

Since L is 1-smooth, applying the above lemma (b) gives∥∥∥∇L(F (x;W (0) +Wt+1/2), y)−∇L(F (x;W (0) +Wt), y)
∥∥∥
2

≤
∥∥∥F (x;W (0) +Wt+1/2)− F (x;W (0) +Wt)

∥∥∥
2

≤ Õ
(
ε3ak

3/2ρ2m3/2 + ε2akρm
)
. (27)

For i ∈ H, we have 1[⟨w(t+1/2)
i , x⟩ + b

(0)
i ≥ 0] = 1[⟨w(t)

i , x⟩ + b
(0)
i ≥ 0] and thus ∂

∂wi
F (x;W (0) + Wt+1/2) =

∂
∂wi

F (x;W (0) +Wt). Then, combining (27) with (26) and using the fact that there can be at most m number of i ∈ H, this

amounts to Õ
(
ε4ak

2ρ2m5/2 + ε3ak
3/2ρm2

)
.

Next, for i /∈ H, we can directly use the result from Lemma B.3.(c) of Allen-Zhu et al. [2019] and this contributes to
Õ(ε2akρm

3/2). Summing these together, we prove the bound.

Finally, we show that the following lemma holds, which is a SAM version of Lemma B.4 in Allen-Zhu et al. [2019]. Combined
with the algorithm-independent parts presented in Allen-Zhu et al. [2019], proving the following lemma concludes the proof
of Theorem J.1. We use the notation of LF (Z;W) for LF (Z;W)

def
= 1

|Z|
∑

(x,y)∈Z L(F (x;W +W (0)), y) and similarly
define LG(Z;W).

Lemma J.4. (SAM version of Lemma B.4 in Allen-Zhu et al. [2019]) For every ε ∈
(
0, 1

pkCs(ϕ,1

)
, letting εa = ε/Θ̃(1),

η = Θ̃(1
εkm), and ρ = Θ̃(1

ε3km3), there exists M = poly(Cϵ(ϕ, 1), 1/ε) and T = Θ
(

k3p2·Cs(ϕ,1)
2

ε2

)
such that if m ≥ M ,

the following holds with high probability over random initialization.

1

T

T−1∑
t=0

LF (Z,Wt) ≤ OPT + ε. (28)

Proof. Let W ※ be the weights constructed from the Corollary B.2 in Allen-Zhu et al. [2019]. By the convexity of L and
Cauchy-Schwartz inequality, we have

LG(Z,Wt)− LG(Z;W ※) ≤ ⟨∇LG(Z;Wt),Wt −W ※⟩
= ⟨∇LG(Z;Wt)−∇LF (Z;Wt),Wt −W ※⟩
+ ⟨∇LF (Z;Wt)−∇LF (Z;Wt+1/2),Wt −W ※⟩
+ ⟨∇LF (Z;Wt+1/2),Wt −W ※⟩

≤ ∥∇LG(Z;Wt)−∇LF (Z;Wt)∥2,1∥Wt −W ※∥2,∞
+ ∥∇LF (Z;Wt)−∇LF (Z;Wt+1/2)∥2,1∥Wt −W ※∥2,∞
+ ⟨∇LF (Z;Wt+1/2),Wt −W ※⟩

From the SAM update rule (21), we have the following equality.

∥Wt+1 −W ※∥2F = ∥Wt − η∇LF (z
(t),Wt+1/2)−W ※∥2F

= ∥Wt −W ※∥2F − 2η⟨∇LF (z
(t),Wt+1/2),Wt −W ※⟩+ η2∥∇LF (z

(t),Wt+1/2)∥2F .

Thus, we have

LG(Z;Wt)− LG(Z;W ※) ≤ ∥∇LG(Z;Wt)−∇LF (Z : Wt)∥2,1∥Wt −W ※∥2,∞︸ ︷︷ ︸
(A)

+ ∥∇LF (Z;Wt)−∇LF (Z;Wt+1/2)∥2,1∥Wt −W ※∥2,∞︸ ︷︷ ︸
(B)

+
∥Wt −W ※∥2F − Ez(t) [∥Wt+1 −W ※∥2F]

2η

+
η

2
∥∇LF (Wt+1/2, z

(t))∥2F︸ ︷︷ ︸
(C)

.

Since ∥Wt −W ※∥2,∞ = Õ(
√
kεa(η + ρ)t+ kpC0

εam
), (A) is bounded as

(A) = Õ

(√
kεa(η + ρ)T∆+

kpC0

εam
∆

)
where ∆ = Õ

(
ε2ak(η + ρ)Tm3/2 + ε4ak

2(η + ρ)2T 2m5/2
)
.

Next, we can bound (B) from Lemma J.3(c) as follows.

(B) = Õ(
√
kεa(η + ρ)T∆′ +

kpC0

εam
∆′),

where ∥∇LF (Z;Wt)−∇LF (Z;Wt+1/2)∥2,1 ≤ ∆′ = ε2akρm
3/2 + ε4ak

2ρ2m5/2 + ε3ak
3/2ρm2.

We also have
(C) = Õ(ηε2akm)

since the norm of ∇LF is always bounded as ∥∇LF (·, z(t))∥2F = Õ(ε2akm).

Then, by telescoping, we have

1

T

T−1∑
t=0

ESAM[LG(Z;Wt)]− LG(Z;W ※) ≤ Õ

(√
kεa(η + ρ)T∆+

kpC0

εam
∆

)
+ Õ

(√
kεa(η + ρ)T∆′ +

kpC0

εam
∆′

)
+

∥W0 −W ※∥2F
2ηT︸ ︷︷ ︸
(D)

+Õ(ηε2akm).

We can bound (D) in the same way as Allen-Zhu et al. [2019],

(D) =
∥W0 −W ※∥2F

2ηT
= Õ

(
k2p2Cs(ϕ, 1)

2

ε2am
· 1

ηT

)
.

By setting η = Θ̃(ε
kmε2a

), ρ = Θ̃(ε
km3ε4a

), T = Θ̃(k3p2Cs(ϕ, 1)
2/ε2), we have ∆ = Õ(k

6p4Cs(ϕ,1)
4

m3/2ε4
) and ∆′ = Õ(1

m3/2ε
+

√
k

m). Hence, with large enough m, we obtain the following inequality and prove Lemma J.4, combined with the remaining
parts from Allen-Zhu et al. [2019].

1

T

T−1∑
t=0

ESAM[LG(Z;Wt)]− LG(Z;W ※) ≤ O(ε). (29)

	Introduction
	Background
	Key observation: SAM improves with overparameterization
	Understanding why SAM improves with overparameterization
	Enlarged solution space allows SAM to find simpler and flatter solutions
	Implicit bias of SAM increases with overparameterization

	Further merits and caveats of overparameterization
	Other effects of overparameterization: Theoretical aspects
	SAM escapes sharp minima with non-uniform Hessian
	Stochastic SAM converges much faster with overparameterization

	Conclusion
	Experimental details
	Experiments for Section 3
	Experiments for Section 4
	Experiments for Section 6

	Absolute validation metric for Section 3
	Full results on optimal perturbation bound
	Additional results for Section 5
	Label noise
	Sparse overparameterization
	Regularization

	Ablation
	Effect of depth
	SAM vs. weight decay
	Results on SAM under Linearized Regime
	SGD with twice the epochs

	Empirical Measurement of Lipschitz Smoothness and PL Constants
	Proof of Theorem 6.3
	Proof of Theorem 6.6
	Test error of SAM can decrease with overparameterization
	Proof of Theorem I.1
	Notation and Setup
	Formal Theorem
	Proof of Theorem J.1

