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ABSTRACT

Recently deep learning has been widely used in time-series prediction tasks. Al-
though a trained deep neural network model typically performs well on the train-
ing set, performance drop significantly in a test set under slight distribution shifts.
This challenge motivates the adoption of online test-time adaptation algorithms to
update the prediction models in real time to improve the prediction performance.
Existing online adaptation methods optimize the prediction model by feeding back
the latest prediction error computed with respect to the latest observation. How-
ever, the feedback based approach is prone to forgetting past information. In this
work, we propose an online adaptation method with feedforward compensation,
which uses critical data samples from a memory buffer, instead of the latest sam-
ples, to optimize the prediction model. We prove that the proposed approach has
a smaller error bound than previously used approaches in slow time-varying sys-
tems. The experiments on several time-series prediction tasks show that the pro-
posed feedforward adaptation outperforms previous adaptation methods by 12%.
In addition, the proposed feedforward adaptation method is able to estimate an un-
certainty bound of the prediction that is agnostic from specific optimizers, while
existing feedback adaptation could not.

1 INTRODUCTION

Time-series prediction (or forecasting) has been widely studied in many fields, including control,
energy management, and financial investment Box et al. (2015); Brockwell & Davis (2002). Among
the research applications, acquiring future trends and tendencies of the time-series data is one of the
most important subjects. With the emergence of deep learning, many deep neural network models
have been proposed to solve this problem Lim & Zohren (2021), e.g., Recurrent Neural Networks
Lai et al. (2018) and Temporal Convolutional Networks Bai et al. (2018). Inspired by the great suc-
cess of Transformer in the NLP and CV community Vaswani et al. (2017); Dosovitskiy et al. (2020),
Transformer-style methods have been introduced to capture long-term dependencies in time series
prediction tasks Zhou et al. (2021). Benefiting from the self-attention mechanism, Transformers ob-
tain a great advantage in modeling long-term dependencies for sequential data Brown et al. (2020).
Although a trained Transformer model (or other big deep neural network models) typically per-
forms well on the training set, performance can significantly drop in a slightly different test domain
or under a slightly different data distribution Popel & Bojar (2018); Si et al. (2019).

In practical time-series prediction problems, there are often significant distributional discrepancies
between the offline training set and the real-time testing set. These differences may be attributed
to multiple factors. In some cases, it is too expensive to collect large unbiased training datasets,
e.g., for weather prediction or medical time-series prediction. In other cases, it may be difficult to
obtain the training instances from a specific domain. For example, in human-robot collaboration,
it is hard to collect data from all potential future users. In these cases, adaptation techniques are
applied to deal with the distribution mismatch between offline training and real-time testing Blum
(1998). Besides, some tasks require the system to adapt itself after every observation. For example,
in human-robot collaboration, the robot needs to continually adapt its behaviors to different users.
In these scenarios, online adaptation techniques are often embraced Abuduweili et al. (2019).

Online adaptation is a special case of online continual learning, which continually learns from
real-time streaming data. In online adaptation, a prediction model receives sequential observations,
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and then an online optimization algorithm (e.g. SGD) updates the prediction model according to
the prediction loss measured by the observed data. The goal of online adaptation is to improve
prediction accuracy in subsequent rounds. Online adaptation is currently applied to many kinds of
research like time-series prediction Pastor et al. (2011); Abuduweili & Liu (2020), image recognition
Lee & Kriegman (2005); Chen et al. (2022), and machine translation Martı́nez-Gómez et al. (2012).
In this paper, we mainly focus on time-series prediction tasks, but the proposed methods also can be
used for other online adaptation (or online learning) tasks.

Most existing online adaptation approaches are based on feedback compensation Tonioni et al.
(2019), analogous to feedback control. In feedback adaptation, a prediction model only utilizes
the latest received data. After observing a new sample, the online optimization algorithm updates
the prediction model according to the prediction loss measured between the last prediction and the
latest ground truth. However, this kind of passive feedback compensation is not efficient.

In this work, we propose feedforward compensation in online adaptation to maximize information
extraction from existing data, especially those that are more critical. A critical sample is more
helpful to reduce the objective (loss) of the model when the sample is selected for training. In
the proposed feedforward adaptation, we will not only have forgetting as is done in conventional
online adaptation Paleologu et al. (2008), but also enable recalling to compensate for potential short-
sighted behaviors due to forgetting. There is a balance between forgetting and recalling. On the one
hand, to rapidly learn the new function value in a time-varying system, we need to forget some of
the old data. On the other hand, too much forgetting may cause unstable and incorrect predictions
when we encounter a similar pattern with historical data. To achieve the balance between forgetting
and recalling, we design a novel mechanism for feedforward compensation using a memory buffer
similar to the functionality of the Hippocampus in the human brain Barron (2021). We will maintain
the memory buffer by storing recent L-steps observations (or hidden features) of samples. When the
prediction model experiences similar observations, it will pull the corresponding data (critical sam-
ple) from the memory buffer to enhance learning. For example, in human behavior prediction tasks,
a human subject may exhibit similar behavior patterns on different days. These would be extremely
difficult to discover if we only learn from the most recent data like conventional online adaptation
but can be identified using the feedforward adaptation methods with memory buffer. We can also use
the related information between the current sample and critical samples to measure the uncertainty
bound to the current prediction. Our main contributions can be summarized in the following points.

• By summarizing feedforward and feedback adaptation methods, we provide a general online
test-time adaptation framework and prove its error bound.

• We propose a feedforward compensation for online test-time adaptation problems. We prove
that the proposed feedforward adaptation method has a smaller error bound than previously used
feedback methods.

• We propose an uncertainty-bound estimation related to the feedforward approach, which is ag-
nostic from specific optimizers.

• We conduct extensive experiments to show that the proposed feedforward adaptation is superior
to conventional feedback adaptation.

2 PROBLEM OVERVIEW

2.1 TIME-SERIES PREDICTION

The time series prediction problem is to make inferences on future time-series data given the past
and current observations. We consider a multi-step prediction problem: using recent I steps’ ob-
servations to predict future O steps’ data. Assume the transition model is composed of a feature
extractor (or Encoder) E and a predictor (or decoder) f . At time step t, the input to the model is
Xt = [xt−I+1, xt−I+2, · · · , xt], which denotes the stack of I-step recent observations. The output
of the model is Yt+1 = [yt+1, yt+2, · · · , yt+O], which denotes the stack of O-step future predictions.
The observations xt, yt are vectors that may contain trajectory or feature, and xt = yt for some cases
(e.g. univariate prediction). The transition model for time series prediction can be formulated as

Zt = E(Xt), (1)
Yt+1 = ft(Zt), (2)

where Zt is a hidden feature representation of input Xt. Feature extractor E does not change over
time, while predictor ft changes over time. Let ft denote the ground-truth predictor, that generates
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ground-truth output Yt+1. In online adaptation, we use the parameterized model (e.g. Neural Net-
works) f̂(θt, Zt) with learnable parameters θt to estimate the ground-truth predictor ft(Zt). This
paper assumes that the encoder E is fixed in online adaptation, which could be trained offline before
online adaptation or be a non-parametric feature extractor1.

2.2 ONLINE ADAPTATION

Due to the temporal nature of time series prediction, the output (future) space in prediction tasks
is not fixed. Since the train set and test set are split in chronological order, train-test distribution
mismatch is very common in time-series prediction. Thus, online test-time adaptation is crucial to
overcome the distribution mismatch problems and make the prediction robust to time-varying and
heterogeneous behaviors.

Online adaptation also can be called adaptable prediction, since it makes an inference concurring
with updating model parameters. Online adaptation explores local overfitting to minimize the pre-
diction error: at time step t, the prediction error et+1 is to be minimized. The optimization objective
is shown below

Lerr = min
θt

et+1 = min
θt
∥Yt+1 − f̂(θt, Zt)∥p, (3)

where ft(Zt) = Yt+1 = [yt+1, yt+2, · · · , yt+O] is the ground truth observation (to be received
in the future) and f̂(θt, Zt)) = Ŷt+1 = [ŷt+1, ŷt+2, · · · , ŷt+O] is the predicted outcome from the
learned model parameter θt. The adaptation objective can be in any ℓp norm.

In conventional (feedback) online adaptation, the objective of minimizing the prediction error in the
future Eq. (3) can be approximated by minimizing the fitting error in the past, as shown below

Lfb = min
θt

1

t

t∑
i=1

λt−i∥Yi − f̂(θt, Zi)∥p, (4)

where 0 < λ ≤ 1 is a forgetting factor. The model parameter θt is updated iteratively when new
observations are received. Then a new prediction is made using the new estimate. In the next time
step, the estimate will be updated again given a new observation, and the process repeats. It is worth
noting that the observation we received at time t is yt. The other terms in Yt remain unknown.
This paper focused on adaptation methods using one-step-ahead observation. It is also possible to
conduct online adaptation with multi-step ahead observations Abuduweili & Liu (2021).

In this paper, we propose a feedforward adaptation method, whose objective is different from feed-
back adaptation. In the feedforward adaptation, the objective of minimizing the prediction error in
the future Eq. (3) can be approximated by minimizing the upper bound of the prediction error in the
future, as shown below

Lff = min
θt

Bound[et+1] = min
θt

Bound[∥Yt+1 − f̂(θt, Zt)∥p]. (5)

We will show the algorithms and effectiveness of the feedforward adaptation in section 3. In specific
adaptation algorithms, the feedback and feedforward approach differ by sample selection strategy.

Algorithm 1 General Online Adaptation Framework (Adaptable Prediction)

Input: Initial predictor f(θ0, :) with parameters θ0, Feature Extractor E, Optimizer O(:, :, :)
Output: Sequence of predictions {Ŷt+1}Tt=1
1: for t = 1, 2, · · · , T do
2: Receive the ground truth observation values xt, yt
3: Find the critical input-output pairs (Zs, ys+1) for 1 ≤ s < t, where Zs = E(Xs)

4: Adaptation: θt = O(θt−1, ŷs+1, ys+1), where Ŷs+1 = [ŷs+1, · · · , ŷs+O] = f(θt−1, Zs)

5: Prediction: Ŷt+1 = [ŷt+1, · · · , ŷt+O] = f(θt, Zt), where Zt = E(Xt)
6: end for

1In a special case, the feature extractor can be an identity mapping E(X) = X , then we adapt the end-to-
end neural network model in online adaptation
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We provide a general online adaptation framework as shown in algorithm 1, by incorporating con-
ventional feedback with the proposed feedforward adaptation. At time step t, after receiving the
current observations (xt, yt), we select the critical input-output pair (Zs, ys+1) from historical ob-
servations. The critical pair was used to adjust the parameters of the prediction model by an online
optimizer (e.g. SGD). Then we obtain the current prediction result with the adapted model. The
main difference between different adaptation algorithms lies in the critical pair selection strategy
(line 3 in algorithm 1). In feedback adaptation, the critical input-output pairs are composed by
the latest observations Zs = Zt−1. In random adaptation, the critical input-output pairs are ran-
domly sampled from historical observations Zs ∼ [Z1, · · · , Zt−1]. We will show in section 3, in
feedforward adaptation, the critical input-output pairs are the most similar samples to the current
observation Zs = argminZ ∥Zt − Z∥.

3 FEEDFORWARD ADAPTATION APPROACH

3.1 ERROR BOUND FOR GENERAL ONLINE ADAPTATION

The theoretical analysis of the paper is based on two basic conditions about the local smoothness
property of ground-truth predictors ft.

K-Lipschitz continuity condition. For a time-step t and ∀s ∈ [t − L, t − 1], we have local K
Lipschitzness for ground-truth prediction function ft and recent L steps input data:

∥ft(Zt)− ft(Zs)∥ ≤ K∥Zt − Zs∥, (6)

where K is the bound (real number) for the change of the value of the function over input space.
Intuitively, a Lipschitz continuous function is limited in how fast function value can change over
input space. It is proven that every function that has bounded first derivatives is Lipschitz continuous
Sohrab (2003). Similar to Eq. (6), we assume our parameterized function f̂t(θt, :) (e.g. Neural
Networks) has Lipschitz continuity with constant value K̂:

∥f̂(θt, Zs)− f̂(θt, Zt)∥ ≤ K̂∥Zt − Zs∥. (7)

K-Lipschitz continuity is common in machine learning because neural networks have bounded first
derivatives by proper training.

δ time-varying condition. For a time-step t and ∀s ∈ [t − L, t − 1], assume the ground-truth
prediction functions ft has bounded changes within recent L steps under the same input Zs:

∥ft(Zs)− fs(Zs)∥ ≤ δ, (8)

where δ is the bound (real number) for change of the value of the function sequences over time on a
fixed input. A bounded δ time-varying condition is a common condition in time-series tasks because
we obtain similar future time-series signals with the same input in most cases.

Theorem 1 (Error Bound of Online Adaptation). Under the K-Lipschitz continuity condition
(Eq. (6) and (7)) and δ time-varying condition (Eq. (8)), the (prior) prediction error et+1 of general
online adaptation (algorithm 1) has the following upper bound:

et+1 ≤ K∥Zt − Zs∥+ δ + ∥Ys+1 − f̂(θt, Zs)∥+ ∥f̂(θt, Zs)− f̂(θt, Zt)∥ (9)

≤ (K + K̂)∥Zt − Zs∥+ δ + ∥Ys+1 − f̂(θt, Zs)∥ (10)

Please check the proof in appendix C.1.

3.2 FEEDFORWARD ADAPTATION

As discussed in section 2.2, the goal of the online adaptation is to minimize the prediction error
in the future Eq. (3). Due to the lack of ground-truth value in the current steps, it is not feasible
to directly minimize the prediction error. Conventional online adaptation methods approximate the
original objective by minimizing the fitting error in the past Eq. (4). In this work, we approximate
the original objective by minimizing the bound of the prediction error Eq. (5). Which is equivalent
to optimizing the worst-case scenarios. The worst-case performance analysis is really useful in
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real-world applications Roughgarden (2021). We will show that, under the following assumption,
feedforward adaptation provides better results than feedback adaptation.

Temporarily Slow Time-varying Assumption. For the δ time-varying function ft, assume δ is
time-independent or it slowly changes within recent L-steps: ∂δ

∂t ≈ 0.

Note that, we only assume the ground-truth function ft varying slowly (locally) within recent L-
steps not (globally) for every step. Thus the assumption is reasonable because the major changes
in function value are caused by the change of inputs instead of the time-dependency in many real-
world prediction problems. In addition in some cases, δ is caused by random noises, then which
still follow our assumptions. Under the above assumption, we can ignore the term δ in optimization.
Then the optimization objective for the error bound is shown below:

Lff = min
θt

Bound[et+1] = min
θt,s∈[t−L,t−1]

(K + K̂)∥Zt − Zs∥+ ∥Ys+1 − f̂(θt, Zs)∥ (11)

However, we still can not directly minimize the above objective, because we do not know K, K̂.
Then a simplification is applied to the above objective to make it applicable. We change the joint
minimization over s and θt to a bi-level optimization which first minimizes the first term of objective
over sampling time-step s, then minimizes the second term of objective over parameter θt. Thus,
the simplified objective function is shown below:

Lfinal = min
θt
∥Ys⋆+1 − f̂(θt, Zs⋆)∥ (12)

s.t. s⋆ = argmin
s∈[t−L,t−1]

∥Zt − Zs∥ (13)

In a summary, the proposed feedforward adaptation method selects the most similar samples to the
current observation as critical pair (Zs⋆ , ys⋆) by Eq. (13). Then using the critical pair to optimize
the prediction model by Eq. (12).

3.3 UNCERTAINTY ESTIMATION

The error bound Eq. (9) provides uncertainty estimation of the prediction results. Here we use
estimation of K̃t and δ̃ to approximate real K and δ in Eq. (9). We use confidence factor σ ∈ (0, 1]

to decay the error bound . The uncertainty estimation Ût+1 for prediction Ŷt+1 is shown below:

Ût+1 = σ ·
(
K̃t∥Zt − Zs∥+ δ̃ + ∥Ys+1 − f̂(θt, Zs)∥+ ∥f̂(θt, Zs)− f̂(θt, Zt)∥

)
(14)

Where s = t−1 for feedback adaptation and s = s⋆ (Eq. (13)) for feedforward adaptation. The con-
fidence factor σ is a predefined hyperparameter, e.g. σ = 0.9 for 90% confidence of uncertainty. δ̃
and K̃t are also predefined hyperparameters, e.g. δ̃ = 0.001, K̃ = 1. For more accurate uncertainty
estimation, we can set δ̃ as a small fixed value, and iteratively update K̃t according to the estimated
uncertainty Ût and real error et. If the previous uncertainty estimation is much larger than the real
error then we shrink the K̃t value. If the previous uncertainty estimation is much smaller than the
real error then we enlarge the K̃t value. The K̃t estimation criteria are shown below.

K̃t =
K̃t−1

1.5
if Ût ≥ 2et, K̃t = 1.5K̃t−1 if Ût ≤ 0.5et, K̃t = K̃t−1 if 0.5et < Ût < 2et (15)

In adaptation and prediction, feedforward adaptation does not require K and δ values. In the uncer-
tainty estimation, we need to approximate K and δ or serve these as predefined hyperparameters,
but an accurate approximation is not necessary. Since we mainly consider the relative uncertainty
estimation between different samples or different optimizers. As shown in Eq. (14), the inaccuracy
of K̃ and δ̃ mainly raise a data-independent error, which is no impact on the data-selection strategy
and optimizers. The overall feedforward adaptation algorithm is shown in algorithm 2. The 1 ∼ 5
lines of algorithm 2 is corresponding to the 1 ∼ 5 lines of algorithm 1. Buffer B is used to store
recent L-step observations.
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Algorithm 2 Online Adaptation with Feedforward Compensation

Input: Initial predictor f(θ0, :) with parameters θ0, Feature Extractor E, Optimizer O(:, :, :)
Input: Empty L-size buffer B ;
Output: Sequence of predictions {Ŷt+1}Tt=1 and estimated uncertainty {Ût+1}Tt=1
1: for t = 1, 2, · · · , T do
2: Receive the ground truth observation values xt, yt; Construct input Xt = [xt−I+1, · · · , xt]
3: Find the critical (similar) input-output pairs (Zs⋆ , ys⋆+1) from buffer B by Eq. (13)
4: Adaptation by Eq. (12): θt = O(θ̃t, ŷs⋆+1, ys⋆+1), where [ŷs⋆+1, · · · , ŷs⋆+O] = f(θ̃t, Zs⋆)

5: Prediction: Ŷt+1 = [ŷt+1, · · · , ŷt+O] = f(θt, Zt), where Zt = E(Xt)

6: Uncertainty Ût+1 Estimation by Eq. (14) and Eq. (15)
7: Add current data to buffer: B.append(Zt, yt)
8: if size(B) > L then
9: B ← keep more recent samples (B,L)

10: end if
11: end for

3.4 EFFECTIVENESS OF FEEDFORWARD ADAPTATION

As described in section 3.2, under the temporarily slow time-varying assumption, feedforward adap-
tation achieves a smaller error bound than feedback adaptation. In this section, we analyze more
theoretical results on the online adaptation of some specific functions.

Linear time-variant function. Consider a function ft which can be separated into time-invariant
function g(zt) and linearly time-dependent part αt. Input zt is a random variable from the uniform
distribution U(0, 1).

ft(zt) = g(zt) + αt, zt ∼ U(0, 1) (16)

Lemma 1. We use neural network ˆf(θ, :) to learn the linear time-variant function Eq. (16). Let K
be a Lipschitz constant for the ground-truth function ft, and K̂ is a Lipschitz constant for neural
network ˆf(θ, :). Let Bfb

e and Bff
e denote the prediction error bound for feedback and feedforward

adaptation. Then we have the following results.

(a) Expectation of the error bound for feedback adaptation is E[Bfb
e ] = K+K̂

3 + α.
(b) Expectation of the error bound for feedforward adaptation is

E[Bff
e ] ≤ (K + K̂) ·max( 1t ,

1
L+1 ) + α ·min( t2 ,

L+1
2 ). With L =

√
2(K+K̂)

α − 1, we achieve

the smallest final error bound for feedforward adaptation: E[Bff
e ] ≤

√
2α(K + K̂).

(c) If time-varying factor α is smaller, specifically α ≤ α⋆ = 4−
√
12

6 (K + K̂), feedforward adapta-
tion has smaller error bound than feedback adaptation.

Time-invariant polynomial function. Consider a time-invariant polynomial ground-truth function
ft(zt) with the input of random variable sampled from the uniform distribution U(0, 1).

yt+1 = ft(zt) =

N∑
i=1

Wiz
i
t, zt ∼ U(0, 1) (17)

Lemma 2. We use linear projection f̂(Vt, zt) = Vtzt to learn the time-invariant polynomial function
Eq. (17). Then we have the following results.

(a) Expectation of the prediction error for feedback adaptation is E[efbt+1] ≥ 1
3
N−1
N2

∑N−1
i=1 Wi+1.

(b) Expectation of the prediction error for feedforward adaptation is
E[efft+1] ≤ 1

2 max( 1t ,
1

L+1 )
∑N−1

i=1 Wi+1. The final error converges limL→∞,t→∞ E(efft+1) = 0.
(c) Feedforward adaptation is provably better than feedback adaptation.

The proof of Lemma 1 and Lemma 2 are provided in appendix C.2. Thus feedforward adaptation can
be used to learn time-invariant functions and slow time-varying systems. These kinds of systems are
very common in the world. For example, the exchange rate and incidence rate for common diseases
have a slow time-dependent shift over time.
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4 EXPERIMENTS

4.1 SYNTHETIC EXPERIMENTS

To evaluate Lemma 1 in section 3.4, we consider the following time-varying function.

yt+1 = ft(zt) = sin zt + αt, zt ∼ U(0, 1) (18)

According to Lemma 1, we derive the error bound for feedback adaptation Bfb
e , and feedforward

adaptation Bff
e is shown below (please check details in appendix D.1).

E[Bfb
e ] =

5

12
+ α, E[Bff

e ] ≤ 5

4(L+ 1)
+ α

L+ 1

2
(19)

E[Bff
e ] ≤

√
5

2
α with L =

√
5

2α
− 1 (20)

Then we calculate the threshold α⋆. If α ≤ α⋆, feedforward adaptation has a smaller error bound.

α⋆ ≈ 0.1, L⋆ =

√
5

2α⋆
− 1 ≈ 3 (21)
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Figure 1: (a) Average error of feedback and feedforward adaptation with different buffer size L and
time-varying factor α. (b) Prediction output of feedforward (blue curve) and feedback adaptation
(green curve) with buffer size L = 100 and time-varying factor α = 10−3 and α = 10−2.

Figure 1a shows the average prediction error of feedback and feedforward adaptation under different
time-varying factors α. Note that, feedforward adaptation with L = 1 is the same as feedback
adaptation. We will show that the results in Fig. 1a correspond to the theoretical results from Lemma
1. (1) As can be seen, for a smaller time-varying factor α, feedforward adaptation with a larger buffer
size L achieves a smaller prediction error. Besides, if α is larger, the performance of the feedforward
adaptation drops. These are consistent with Eq. (20). For example, feedforward adaptation with
buffer size L = 100 achieves the smallest prediction error when α < 10−3. (2) If α < 0.1,
feedforward adaptation with buffer size L = 3 performs better than feedback adaptation. But if
α > 0.1, feedback adaptation is better. The threshold α⋆ ≈ 0.1 is consistent with Eq. (21).

Figure 1b illustrate the comparison between feedforward and feedback adaptation. The first row
shows the prediction results for α = 10−3 target function of feedforward adaptation with L = 100
(b.1 subfigure) and feedback adaptation (b.3 subfigure). As can be seen, feedforward adaptation
can learn the ground truth more precisely. The second row shows the prediction results for α =
10−2 target function. For this case, prediction with feedforward adaptation (b.2 subfigure) has a
significant shift from the ground truth, although it is still able to learn some input-dependent details.
Compared to feedback adaptation, feedforward adaptation is more focused on the input-dependent
part of the ground truth function and pays less attention to the time-varying shift of the function.
These empirical results validate the conclusions in section 3.4. The experimental evaluation of
Lemma 2 is shown in appendix D.2.
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4.2 EXPERIMENTS ON REAL WORLD DATA

In this section, we evaluate the proposed feedforward adaptation on four real-world benchmarks,
including ETT (Electricity Transformer Temperature), Exchange-Rate, ILI (Influenza-like Illness),
and THOR human motion trajectory dataset. We include two models as our learnable prediction
function f̂(θ, :): Informer Zhou et al. (2021) and simple MLP (multi-layer perception).

Experimental Design. First we offline train models (Informer and MLP) on a train set. After
training, we will incrementally receive the data point from the test set like in real-world applications.
At each time step, we conduct an online adaptation to optimize the model with selected previous
observations by feedback or feedforward compensation. Then the prediction output is inferred from
the updated model. We evaluate the prediction results with mean squared error (MSE) and mean
absolute error (MAE). In the experiments, we only adapt the decoder of the model and make the
encoder fixed. Please check the detailed experimental design in appendix D.3.

Baselines. We compare the proposed method with four baselines. 1) w/o adapt directly conduct pre-
diction without adaptation. Which is a lower bound for adaptation methods. 2) Feedback adaptation
is the most important baseline to us. 3) Random adaptation is a method that selects the critical pair
from the L-size buffer with random sampling. 4) Full adaptation is a method that uses all samples
from the buffer to adapt the model, which is similar to offline training.

Results. The detailed results of the experiment on SGD optimizer are shown in table 1. In table 1, the
last row denotes the performance gain of the proposed feedforward adaptation over feedback adapta-
tion in terms of average result. Feedforward adaptation achieves the best results on all four datasets.
Specifically, feedforward adaptation outperforms feedback adaptation by 12.6%, 7.4%, 22.34%, and
8.1% in terms of average MSE on four datasets respectively. Feedforward adaptation is better than
full adaptation, which means adapting models with more samples is not effective, because online
adaptation focuses on the ability to rapidly learn and adapt in the presence of non-stationarity in-
stead of generalization ability like offline learning. Feedforward adaptation is better than feedback
and random adaptation, which means the sample selection strategy based on sample similarity in
feedforward adaptation is more critical than the time-based sample selection and random sampling.

Table 1: Performance comparison between the proposed feedforward adaptation method and other
baselines. Avg denotes the average results of two models (MLP and Informer). The last row denotes
the performance gain of feedforward adaptation over feedback adaptation. We use boldface and
underline for the best and second-best average results.

Method \ Dataset ETTh1 Exchange ILI THOR
Adaptation Model MSE MAE MSE MAE MSE MAE MSE MAE

w/o
Adaptation

MLP 0.195 0.371 0.549 0.540 4.348 1.413 0.135 0.117
Informer 0.211 0.389 1.128 0.858 4.942 1.531 0.137 0.171

Avg 0.203 0.380 0.839 0.699 4.645 1.472 0.136 0.144

Full
Adaptation

MLP 0.142 0.311 0.362 0.443 3.844 1.340 0.127 0.150
Informer 0.146 0.307 0.503 0.567 3.413 1.252 0.213 0.287

Avg 0.144 0.309 0.433 0.505 3.628 1.296 0.170 0.219

Random
Adaptation

MLP 0.145 0.312 0.365 0.445 3.865 1.347 0.132 0.148
Informer 0.131 0.283 0.497 0.553 3.867 1.380 0.204 0.271

Avg 0.138 0.298 0.431 0.499 3.866 1.364 0.168 0.210

Feedback
Adaptation

MLP 0.153 0.317 0.349 0.442 3.868 1.334 0.112 0.119
Informer 0.116 0.269 0.326 0.461 4.383 1.411 0.134 0.173

Avg 0.135 0.293 0.338 0.452 4.123 1.373 0.123 0.146

Feed Forward
Adaptation

MLP 0.128 0.286 0.347 0.432 3.041 1.193 0.102 0.108
Informer 0.109 0.259 0.276 0.399 3.363 1.312 0.125 0.156

Avg 0.118 0.272 0.311 0.415 3.202 1.252 0.113 0.132
Gain of Feedforward Over Feedback 12.6% 7.2% 8.0% 8.2% 22.3% 16.1% 8.1% 9.6%

We found another interesting result by comparison between Informer and MLP on table 1. Without
adaptation, the simple MLP outperforms the Informer on average. This is caused by the overfitting
of the Informer on the training set. However, by online adaptation, especially with feedforward
adaptation, the performance of Informer is greatly increased. For example, the performance of
Informer on the ETTh1 dataset increased from 0.211 to 0.109 by 48% and outperform the MLP
model. That shows Informer has greater representation ability but may perform poorly on the test

8



Under review as a conference paper at ICLR 2023

set. Considering this case, it is embarrassing to directly use the big Transformer-like models on
real-world time-series prediction. But online adaptation may make the big Transformer-like models
powerful again. This phenomenon emphasizes the importance of online adaptation in real-world
time-series prediction.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 2: Experiments on ETTh1 data. (a) Time series output; (b) FFT period analysis; (c) Time
shift t − s between current sample Zt and selected sample Zs in feedback and random adaptation;
(d) Time shift t − s in feedforward adaptation; (e) Online prediction error. (f) Sample difference
∥Zt − Zs∥ between current sample Zt and adapted sample Zs.

Discussion. We will show that the sample selection strategy in the proposed feedforward adaptation
method could intrinsically mine the periodicity of the input data. Figure 2(a) shows the ETTh1 time-
series data, and Fig. 2(b) is the FFT (Fast Fourier Transformation) period analysis of the ETTh1
data. As can be seen ETTh1 has roughly T ≈ 500 repetition periods. Random adaptation randomly
selects samples from the buffer, then the time shift between current time-step t and the time-step
s for selected samples is (t − s) ∼ [1, L]; Feedback adaptation only selects the last time sample
to optimization, then (t − s) = 1. This can be found from the distribution of time shift (t − s)
in Fig. 2(c). For the proposed feedforward adaptation in Fig. 2(d), many samples were selected
from (t − s) ≈ 500 steps earlier, which corresponds to the repetition period of T ≈ 500. Because
feedforward adaptation selects the most similar samples to the current sample, which helps to extract
the hidden periodicity of the input signal over time. Thus the distribution of t− s is similar to FFT
period analysis. Experiments on different datasets are shown in appendix D.5. According to theorem
1 (Eq. (10)), the error bound is related to the sample difference ∥Zt−Zs∥. Figure 2(e) shows the real
prediction error for different adaptation methods over time. As can be seen, feedforward adaptation
has the smallest prediction error, because feedforward adaptation has the smallest sample difference
∥Zt − Zs∥ during adaptation, as shown in Fig. 2(f).

One of the advantages of the proposed feedforward adaptation is that it could provide uncertainty
estimation. The results of prediction output and uncertainty are shown in appendix D.6.

5 CONCLUSION

This paper studies an effective feedforward adaptation algorithm for time-series prediction tasks.
Firstly we propose the general framework for online adaptation which includes feedback and feed-
forward adaptation. Then we propose the feedforward adaptation algorithm by selecting the most
similar critical samples for optimization. We prove that, in a time-invariant or slow time-varying
system, the feedforward adaptation has a smaller error bound than conventional feedback adapta-
tion. In the experiments, we empirically validate the effectiveness of the proposed algorithm both
on synthetic and real-world data. In the end, we show that online adaptation can greatly improve the
performance of Informer or other models.
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A RELATED WORKS

Time series prediction. Time-series prediction historically has very diverse applications across
various domains Lim & Zohren (2021). These applications trigger many methods for time-series
prediction. Modern machine learning methods provide a purely data-driven manner without do-
main knowledge Ahmed et al. (2010). In recent years, deep neural networks becomes the domi-
nant approach inspired by notable achievements of deep learning in computer vision Dosovitskiy
et al. (2020) and natural language processing Vaswani et al. (2017). Among deep neural networks,
Transformer-style models are becoming more and more popular in time-series prediction tasks, since
which has the potential to capture long-term dependencies Brown et al. (2020). Most Transformer-
style models focus on long-term time series forecasting problem, including Informer Zhou et al.
(2021), Autoformer Wu et al. (2021), and Pyraformer Liu et al. (2021).

Continual Learning also known as Lifelong learning, aims at providing incrementally updated
knowledge in an ever-changing environment. From the data statistics perspective, continual learning
studies the problem of learning from non-i.i.d data, with the goal of preserving and extending the
acquired knowledge. Conventional continual learning assumes the new data arrive one task at a
time, and the data distribution for each task is stationary De Lange et al. (2021). Which is also called
offline continual learning. Different from the batch training on offline continual learning, Online
Continual Learning focuses on the more realistic problem, where data arrive one tiny batch at a
time and previously seen batches from the current or the previous tasks are not accessible Mai et al.
(2022). Therefore, online continual learning is required to efficiently learn from a single sample
from the online data stream in a single step. Recent works of continual learning can be roughly
divided into four families: dynamic architectures, regularization-based, rehearsal, and generative
replay approach Lesort et al. (2020). Among these methods, Rehearsal-based methods are more
related to our work, which use memory replays to enhance the knowledge from the previous data or
processes such as iCaRL Rebuffi et al. (2017), GEM Lopez-Paz & Ranzato (2017). However, most
of these methods focus on offline continual learning.

Test-time Adaptation is a special setting of domain adaptation and continual learning where a
trained model on the training domain has to adapt to the testing domain without accessing the train-
ing set Kundu et al. (2020). Most test-time adaptation methods for image data utilize unsupervised
domain adaptation algorithms to improve the performance on the test set such as entropy minimiza-
tion Wang et al. (2020), pseudo-labeling Li et al. (2020). For the time-series prediction task, the
input signal at the current step might be the ground-truth label of the previous step. So (partially)
supervised learning can be used for test-time adaptation on time-series tasks Abuduweili & Liu
(2021). In many real-world applications, online test time adaptation (online adaptation for short)
is more reasonable than offline adaptation. For example, in automotive driving, we only receive an
observation (sample) in an online manner at each time step, instead of batch data of offline setting.

Online Adaptation continually learns from real-time streaming data. Online adaptation is a special
case of online continual learning in that the model is always offline trained on a training dataset
(which can be very small), and then incrementally adapt its models in an online test dataset Cheng
et al. (2019). Unlike works that focus on avoiding catastrophic forgetting in offline continual learn-
ing Kirkpatrick et al. (2017), online adaptation focuses on the ability to rapidly learn and adapt in
the presence of non-stationarity. Most existing online adaptation approaches are based on feedback
compensation with SGD (Stochastic Gradient Descent) or EKF (Extended Kalman Filter) optimizers
Bhasin et al. (2012).

B ONLINE OPTIMIZERS

In algorithm 1, an online optimizer was used to adjust the model with the selected critical samples:
θt = O(θt−1, ŷs+1, ys+1). Unlike offline machine learning, online optimizers need to handle iter-
ative input-output pairs with a single sample. We assume our objective function (loss function) has
suitable smoothness properties (e.g. differentiable and locally Lipschitz continuous). SGD and EKF
are two widely used optimizers for online adaptation.

Stochastic Gradient Descent (SGD) is one of the widely used optimizers in online adaptation
Kivinen et al. (2004). SGD is memory efficient and stable. The update formula of the SGD is shown
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below:

θt = θt−1 − η

(
∂

∂θ
∥ys+1 − f̂(θ, Zs)∥2

)
|θ=θt−1

, (22)

where η is the learning rate.

Extended Kalman Filter (EKF) is another strong optimizer in online adaptation Jazwinski (2007).
In the original EKF, the object being estimated is the state value of a dynamic system. In online adap-
tation, we can apply the EKF approach to adapt model parameters by regarding model parameters
as system states. The EKF approach has a faster convergence rate than SGD, but it is very memory-
exhaustive. When optimizing small neural networks, EKF approach has been demonstrated to be
superior to the SGD-based algorithms Ruck et al. (1992); Abuduweili & Liu (2021). If the adapted
model size is not big, EKF is a strong optimizer for online adaptation. The update formula of the
EKF is shown below:

Ht =
∂f̂(θ, Zs)

∂θ
|θ=θt−1 (23)

Gt = Pt−1 ·HT
t · (Ht · Pt−1 ·HT

t + λI)−1 (24)

θt = θt−1 +Gt · (ys+1 − f̂(θt−1, Zs)) (25)

Pt = λ−1(Pt−1 −Gt ·Ht · Pt−1) (26)

where λ ∈ (0, 1] is a forgetting factor, Ht is the gradient matrix, Gt is the Kalman gain, and Pt is a
matrix representing the uncertainty in the estimates of parameters. The initial value of the matrix Pt

can be set as a diagonal matrix P0 = p0 · diag(1, 1, · · · , 1) for p0 > 0.

C THEORETICAL RESULTS ON SECTION 3

C.1 THEOREM 1 (ERROR BOUND OF ONLINE ADAPTATION)

Bound of ground-truth difference. If the sereis of ground-truth functions ft within recent L steps
follows K-Lipschitz continuity Eq. (6) and δ time-varying conditions Eq. (8), then the ground-truth
value Yt+1 and Ys+1 has the following property:

∥Yt+1 − Ys+1∥ ≤ K∥Zt − Zs∥+ δ (27)

The proof is shown below:

∥Yt+1 − Ys+1∥ = ∥ft(Zt)− fs(Zs)∥
= ∥ft(Zt)− ft(Zs) + ft(Zs)− fs(Zs)∥
≤ ∥ft(Zt)− ft(Zs)∥+ ∥ft(Zs)− fs(Zs)∥ (triangle inequality)

≤ K∥Zt − Zs∥+ ∥ft(Zs)− fs(Zs)∥ (K Lipschitzness)

≤ K∥Zt − Zs∥+ δ (δ time varying) (28)

Error Bound of Online Adaptation. For time step t, the (prior) prediction error et+1 has the
following inequality:

et+1 = ∥Yt+1 − Ŷt+1∥ = ∥Yt+1 − f̂(θt, Zt)∥
= ∥Yt+1 − Ys+1 + Ys+1 − f̂(θt, Zs) + f̂(θt, Zs)− f̂(θt, Zt)∥
≤ ∥Yt+1 − Ys+1∥+ ∥Ys+1 − f̂(θt, Zs)∥+ ∥f̂(θt, Zs)− f̂(θt, Zt)∥ (triangle inequality)

≤ K∥Zt − Zs∥+ δ + ∥Ys+1 − f̂(θt, Zs)∥+ ∥f̂(θt, Zs)− f̂(θt, Zt)∥ (Eq. (27))∥ (29)

The first two terms come from the difference between ground-truth Yt+1 − Ys+1, the third term is a
(posterior) fitting error for input-output tuple (Zs, Ys+1), and the last term is the difference between
two predictions. Combining Eq. (29) with Eq. (7), we obtain the error bound for general online
adaptation is shown below:

et+1 ≤ (K + K̂)∥Zt − Zs∥+ δ + ∥Ys+1 − f̂(θt, Zs)∥ (30)
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C.2 EFFECTIVENESS OF FEEDFORWARD ADAPTATION

C.2.1 ERROR BOUND OF ONLINE ADAPTATION ON LINEAR TIME-VARIANT FUNCTION

In this section, we compare the error bound of feedforward and feedback adaptation methods on
linear time-variant systems (functions). Consider a function ft which can be separated into time-
invariant function g(zt) and linearly time-dependent part αt. Input zt is a random variable from the
uniform distribution U(0, 1).

zt ∼ U(0, 1) (31)
ft(zt) = g(zt) + αt (32)

We use neural network ˆf(θ, :) to learn the above function. Let K be a Lipschitz constant for ft
(it is also equal to the Lipschitz constant for the function g), and K̂ is a Lipschitz constant for
neural network ˆf(θ, :). The δ time-varying condition becomes ∥ft(zs) − fs(zs)∥ = α∥t − s∥, and
time-varying factor δ = α∥t− s∥. Then we have an error bound from Eq. (10):

et+1 ≤ (K + K̂)∥zt − zs∥+ α∥t− s∥+ ∥ys+1 − f̂(θt, zs)∥ (33)
Now we consider the comparison of the error bound between feedforward and feedback adaptation.
Note that, the last term of the above equation ∥ys+1 − f̂(θt, zs)∥ is a fitting error on input-output
tuple (zs, ys+1), and the fitting error is irrelevant to feedback or feedforward compensation strategy.
Besides, in over-parameterized neural networks, the fitting error is very small, even can be zero
Allen-Zhu et al. (2019). Thus we ignore the fitting error in comparison. We now compare the
expectation of the error bound. Let Be denote the prediction error bound for online adaptation,
Be := Bound[et+1]. Then we have the expectation of the error bound for online adaptation as
shown below.

E[Be] = (K + K̂)E[∥zt − zs∥] + αE[|t− s|] (34)
Then we use Eq. (34) to derive the expectation of the error bound for feedback and feedforward
adaptation methods. The core of the proof is to estimate E[∥zt − zs∥] and E[|t− s|].
In the following sections, we compare the error bounds of four methods. 1) Feedback adaptation is
the most important baseline that selects the latest observations to optimize the model. 2) Random
adaptation is a method that randomly selects samples from the L-size buffer to optimize the model.
3) Full adaptation is a method that uses all samples from the buffer to adapt the model, which is
similar to offline training. 4) Feedforward adaptation is the proposed method, that selects the most
similar samples to optimize the model.

Expectation of the error bound for feedback adaptation. In feedback adaptation, the selected
input-output pairs are the latest observations zs = zt−1 and s = t − 1. The current sample zt and
last sample zt−1 are independent random variables from U(0, 1). The expectation of the distance
between these two independent variables is 1

3 , then E[∥zt − zs∥] = E[∥zt − zt−1∥] = 1
3 . We have

the expectation for the error bound of feedback adaptation Bfb
e as shown:

E[Bfb
e ] = (K + K̂)E[∥zt − zs∥] + αE[|t− s|]

= (K + K̂) · 1
3
+ α · 1 =

K + K̂

3
+ α (35)

Expectation of the error bound for feedforward adaptation. In feedforward adaptation,
the selected input-output pairs are the most similar samples to the current observation z⋆s =
argminzs ∥zt − zs∥ from L-size buffer, and s⋆ = argmins∈[t−L,t−1] ∥Zt − Zs∥. The expecta-
tion E[∥zt − zs∥] represents the average minimum distance between current sample zt and previous
samples. If t ≤ L, E[∥zt − zs∥] considers the minimum distance for t samples, which is no greater
than 1

t . If t > L, E[∥zt − zs∥] considers the minimum distance for L + 1 samples in the buffer,
which is no greater than 1

L+1 . Similarly, E[∥t − s∥] is an average distance between t indices for
t ≤ L, which is t

2 , or average distance from L + 1 indices for t ≥ l , which is L+1
2 . We have the

expectation for the error bound of feedforward adaptation Bff
e as shown:

E[Bff
e ] = (K + K̂)E[∥zt − zs∥] + αE[|t− s|]

≤ (K + K̂) ·max(
1

t
,

1

L+ 1
) + α ·min(

t

2
,
L+ 1

2
) (36)
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We mainly consider the final performance t > L, then the above equation can be simplified as:

E[Bff
e ] ≤ K + K̂

L+ 1
+ α

L+ 1

2
(37)

With L =

√
2(K+K̂)

α − 1, we achieve the smallest error bound for feedforward adaptation:

E[Bff
e ] ≤

√
2α(K + K̂) (38)

Expectation of the error bound for random adaptation. In random adaptation, the critical input-
output pairs are randomly sampled from historical observations zs ∼ [zt−L, · · · , zt−1] from L size
buffer. The current input zt and selected input zs are independent random variables from U(0, 1).
Similar to feedback adaptation E[∥zt−zs∥] = 1

3 . For the term E[∥t−s∥], it is similar to feedforward
adaptation, because s is randomly sampled from [t − L, · · · , t − 1]. We have that E[∥t − s∥] = t

2

if t ≤ L, and E[∥t − s∥] = L+1
2 if t > L. We have the expectation for the error bound of random

adaptation Brnd
e as shown:

E[Brnd
e ] = (K + K̂)E[∥zt − zs∥] + αE[|t− s|]

≤ (K + K̂) · 1
3
+ α ·min(

t

2
,
L+ 1

2
) (39)

We mainly consider the final performance t > L, then the above equation can be simplified as:

E[Brnd
e ] ≤ K + K̂

3
+ α

L+ 1

2
(40)

If L ≥ 2:

K + K̂

L+ 1
+ α

L+ 1

2
≤ K + K̂

3
+ α

L+ 1

2
(41)

According to Eq. (37), (40) and (41) , we have E[Bff
e ] ≤ E[Brnd

e ]. Actually if L = 1, feedfor-
ward adaptation is the same as random adaptation, because the buffer only has one sample. Thus,
feedforward adaptation has no greater error bound than random adaptation.

Expectation of the error bound for full adaptation. The full adaptation uses all samples from
the buffer [zt−L, · · · , zt−1] to adapt the model. Considering t > L, for an arbitrary sample zs ∼
[zt−L, · · · , zt−1], we have E[∥zt − zs∥] = 1

3 , because all samples in the buffer are independent
uniformly-random variables. Considering the final performance t > L, we derive the expectation
for the error bound of full adaptation Bfl

e as shown:

E[Bfl
e ] = (K + K̂)E[

1

L

t−1∑
s=t−L

∥zt − zs∥] + αE[
1

L

t−1∑
s=t−L

|t− s|]

= (K + K̂) · 1
L

t−1∑
s=t−L

E[∥zt − zs∥] + αE[
1

L

L∑
i=1

i]

= (K + K̂) · 1
L

t−1∑
s=t−L

E[∥zt − zs∥] + α
L+ 1

2

≤ (K + K̂) · 1
L

t−1∑
s=t−L

1

3
+ α

L+ 1

2

≤ (K + K̂) · 1
3
+ α

L+ 1

2
(42)

As can be seen, the expected error bound of full adaptation is the same as the error bound of ran-
dom adaptation. It is reasonable because full adaptation usually averages out individual differences
between samples. Thus we have a similar conclusion as random adaptation, that feedforward adap-
tation has no greater error bound than full adaptation. We have a conclusion below.
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Lemma 3. Given a linear time-variant function (may not be a slowly varying function) Eq. (32), the
expected error bound of the feedforward adaptation is smaller than the full adaptation and random
adaptation, with the proper buffer size (e.g. L > 2).

Therefore, in the following comparison, we only compare the feedforward and feedback adaptation.

When is feedforward better than feedback. Similar to the worst-case analysis, we derive the
conditions that feedforward adaptation has a smaller error bound than feedback adaptation. To find
the condition for E[Bff

e ] ≤ E[Bfb
e ], we solve the following inequality√

2α(K + K̂) ≤ K + K̂

3
+ α and L =

√
2(K + K̂)

α
− 1 ≥ 1 (43)

Then we obtain a δ time condition on linear time-variant function for feedforward adaptation:

α ≤ α⋆ =
4−
√
12

6
(K + K̂) ≈ 0.089(K + K̂) (44)

As summary, if time-varying factor α of linear time-variant function Eq. (32) is smaller, specifically
α ≤ 4−

√
12

6 (K + K̂), feedforward adaptation has smaller error bound than feedback adaptation.
α⋆ = 4−

√
12

6 (K + K̂) is a threshold for selecting whether feedforward or feedback. Thus, we
proved the Lemma 1 in section 3.4.

We can extend the above conclusion to a slightly larger set of functions. α can be time-dependent,
but the supremum of it needs to be small. Consider the function ft(zt) = g(zt) + h(t), and let
αt =

∂ft
∂t = ∂h

∂t . Similar to the above analysis on linear time-variant function Eq. (32), we have a
conclusion below.

Lemma 4. Given a function ft, let αt =
∂ft
∂t . Let K and K̂ denote the Lipschitz constant for ground-

truth ft and learnable function (e.g. neural networks) f̂(θ). If sup(αt) ≤ 4−
√
12

6 (K + K̂), with the
proper buffer size, feedforward adaptation achieves smaller error bound than feedback adaptation.

Combing Lemma 3 with Lemma 4, we have a conclusion about the effectiveness of the feedforward
adaptation method.

Lemma 5. Given a function ft, let αt = ∂ft
∂t . Let K and K̂ denote the Lipschitz constant for

ground-truth ft and learnable function (e.g. neural networks) f̂(θ).

(a) With a buffer size L > 2, feedforward adaptation always has a smaller error bound than full
adaptation and random adaptation.

(b) If sup(αt) ≤ 4−
√
12

6 (K + K̂), with the proper buffer size L =

√
2(K+K̂)

α − 1, feedforward
adaptation achieves a smaller error bound than feedback adaptation.

C.2.2 PREDICTION ERROR OF ONLINE ADAPTATION ON TIME INVARIANT POLYNOMIAL

In this section, we compare the error (not error bound) of feedforward and feedback adaptation
methods on time-invariant polynomial systems (functions). Consider a time-invariant polynomial
ground-truth function ft(zt) with the input of random variable sampled from the uniform distribution
U(0, 1).

zt ∼ U(0, 1) (45)

yt+1 = ft(zt) =

N∑
i=1

Wiz
i
t (46)

Assume our parameterized prediction model is a linear projection:

ŷt = f̂(Vt, zt) = Vtzt (47)

In online adaptation, we use the critical pair (zs, ys+1) to optimize the linear prediction model at
time step t. Then we have a parameter of

Vt = argmin
V

∥V zs − ys+1∥ =
ys+1

zs
=

∑N
i=1 Wiz

i
s

zs
=

N−1∑
i=0

Wi+1z
i
s (48)
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Then the absolute prediction error (l1 norm) of online adaptation is shown below:

et+1 = |yt+1 − f̂(Vt, zt)| = |yt+1 − Vtzt| = |
N∑
i=1

Wiz
i
t −

N−1∑
i=0

Wi+1z
i
s · zt|

= |zt| · |
N−1∑
i=0

Wi+1(z
i
t − zis)| = |zt| · |

N−1∑
i=0

Wi+1(

i−1∑
j=0

zi−j−1
t zjs)(zt − zs)|

= |zt| · |zt − zs| · |
N−1∑
i=0

Wi+1

i−1∑
j=0

zi−j−1
t zjs | (49)

We consider the expectation of the prediction error. We have the following property in statistics:

E(znt ) =
1

n+ 1
for zt ∼ U(0, 1) (50)

For simplicity, assume Wi > 0. The expectation of the prediction error is shown below.

E(et+1) = E(zt) · E(|zt − zs|) ·
N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−j−1
t zjs ] (51)

Then we use Eq. (51) to derive the expectation of the error for feedback and feedforward adaptation
methods. The core is measurement of E[∥zt − zs∥] and E[zi−j−1

t zjs ].

Expectation of the prediction error for feedback adaptation. In feedback adaptation, zs = zt−1

the current sample zt and the selected sample zs are independent random variables from U(0, 1).
We have E(|zt − zs|) = 1

3 (Eq. (35)). Then we derive an expectation of the prediction error for
feedback adaptation:

E(efbt+1) =
1

2
· 1
3

N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−j−1
t xj

s] =
1

6

N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−j−1
t ] · E[zjs ]

=
1

6

N−1∑
i=0

Wi+1

i−1∑
j=0

1

i− j

1

j + 1

≥ 1

6

N−1∑
i=0

Wi+1

i−1∑
j=0

2

(i+ 1)2
=

1

3

N−1∑
i=0

Wi+1
i

(i+ 1)2

≥ 1

3

N − 1

N2

N−1∑
i=1

Wi+1 (52)

As can be seen, the prediction error of feedback adaptation cannot converge. The expected prediction
error E(efbt+1) in each step is lower bounded by a non-zero constant.

Expectation of the prediction error for feedforward adaptation. In feedforward adaptation,
the selected samples zs are the most similar samples to the current observation zt. We have
E(|zt − zs|) ≤ max( 1t ,

1
L+1 ) (Eq. (37)). Then we derive an expectation of the prediction error
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for feedforward adaptation:

E(efft+1) ≤
1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−j−1
t zjs ]

≤ 1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−j−1
t zjt ]

≤ 1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−1
t ]

≤ 1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=0

Wi+1

i−1∑
j=0

1

i

≤ 1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=1

Wi+1 (53)

When we consider the final performance,

lim
L→∞,t→∞

E(efft+1) ≤ lim
L→∞,t→∞

1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=1

Wi+1 = 0 (54)

As can be seen, the expectation of the prediction error of feedforward compensation converges to
zero with a large buffer size L. Thus, we proved the Lemma 2 in section 3.4.

Expectation of the prediction error for full (or random) adaptation. For full adaptation or
random adaptation, we have E(|zt − zs|) = 1

3 (Eq. (42)), which is the same as feedback adaptation.
Then we can see that the expectation of the prediction error for full (or random) adaptation is the
same as feedback adaptation:

E(eflt+1) =
1

2
· 1
3

N−1∑
i=0

Wi+1

i−1∑
j=0

E[zi−j−1
t xj

s]

≥ 1

3

N − 1

N2

N−1∑
i=1

Wi+1 (55)

As can be seen, the prediction error of full adaptation cannot converge. Thus, feedforward adaptation
is provably better than full adaptation in the time-invariant polynomial system.

When is feedforward better than feedback. In the previous appendix C.2.1, we already know
that feedforward adaptation has a smaller error bound than feedback adaptation on approximate
time-invariant system (α ≈ 0). In this section, we furtherly prove that for the time-invariant poly-
nomial system, feedforward adaptation has a smaller expected prediction error (not an error bound)
than feedback adaptation, full adaptation, and random adaptation methods. As the result, feed-
forward adaptation is better than feedback adaptation (or full adaptation, random adaptation) for
time-invariant or slowly time-variant systems.

D ADDITIONAL EXPERIMENTS

D.1 SYNTHETIC EXPERIMENTS: LINEAR TIME-VARYING FUNCTION

To evaluate Lemma 1 in section 3.4, we consider the following time-varying function.

zt ∼ U(0, 1) (56)
yt+1 = ft(zt) = sin zt + αt (57)

Our parameterized prediction model is a one-layer perception with Sigmoid activation function.

ŷt = f̂(Vt, bt; zt) = S(Vtzt) + bt =
1

1 + e−Vtzt
+ bt (58)
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We have The Lipschitz constant K and K̂ for the ground-truth function ft and the one-layer percep-
tion f̂ :

K = sup |∂ft
∂zt
| = sup | cos(zt)| = 1 (59)

K̂ = sup(| ∂f̂
∂zt
|) = sup |Vt · S(Vtzt) · (1− S(Vtzt)) | = 0.25 sup |Vt| (60)

We use SGD as an optimizer in feedback and feedforward adaptation. During training, we keep
the ∥Vt∥ bounded, i.e. ∥Vt∥ ≤ 1, then K̂ = 1

4 . We use Lemma 1 to calculate the error bound for
feedback and feedforward adaptation:

E[Bfb
e ] =

5

12
+ α (61)

E[Bff
e ] ≤ 5

4(L+ 1)
+ α

L+ 1

2
(62)

In feedforward adaptation, when L =
√

5
2α − 1, we get the minimum error bound:

E[Bff
e ] ≤

√
5

2
α with L =

√
5

2α
− 1 (63)

Then we calculate the threshold α⋆. If α ≤ α⋆, feedforward adaptation has a smaller error bound.

α⋆ =
4−
√
12

6
(K + K̂) ≈ 0.089(K + K̂) ≈ 0.11 (64)

L⋆ =

√
5

2α⋆
− 1 ≈ 3 (65)

The experimental evaluation of the above theoretical results is shown in section 4.1.

D.2 SYNTHETIC EXPERIMENTS: TIME-INVARIANT QUADRATIC FUNCTION

To evaluate Lemma 2 in section 3.4, we consider the following quadratic function with random
input.

zt ∼ U(0, 1) (66)

yt+1 = ft(zt) = z2t (67)

Our parameterized prediction model is a linear projection:

ŷt = f̂(Vt, zt) = Vtzt (68)

Set the buffer size L = 99. According to Lemma 2, the expected prediction error for feedback and
feedforward adaptation are:

E[efbt+1] ≥
1

3

N − 1

N2

N−1∑
i=1

Wi+1 =
1

12
(69)

E(efft+1) ≤
1

2
max(

1

t
,

1

L+ 1
)

N−1∑
i=1

Wi+1 =
1

2
max(

1

t
,

1

L+ 1
) = max(

1

2t
,

1

200
) (70)

Fig. 3a shows the prediction error for feedback and feedforward adaptation. As can be seen, the
error curve for feedback adaptation is not converged. While the error curve for feedforward adap-
tation converges by the trend of 1

2t . The experimental results are consistent with Eq. (69) and (70).
Fig. 3a shows the prediction results for feedforward adaptation. The dashed blue region denotes the
estimated uncertainty in section 3.3. In the figure, the ground truth is always within the estimated
uncertainty, which validifies the proposed uncertainty estimation.
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Figure 3: Error curve and prediction results on quadratic function.

D.3 EXPERIMENTAL DESIGN FOR REAL-WORLD EXPERIMENTS

Dataset.
• ETT Zhou et al. (2021) dataset contains the data collected from electricity transformers, including

load and oil temperature that are recorded every 15 minutes between July 2016 and July 2018.
Which consists of two hourly-level datasets (ETTh) and two 15-minute-level datasets (ETTm). In
our experiments, we used the first hourly-level dataset ETTh1 as a univariance prediction task.

• Exchange-Rate Lai et al. (2018) records the daily exchange rates of eight countries from 1990 to
2016.

• ILI 2 describes the ratio of patients seen with ILI and the total number of patients. Which includes
the weekly recorded influenza-like illness (ILI) patients data from the Centers for Disease Control
and Prevention of the United States between 2002 and 2021.

• THOR Rudenko et al. (2020) is a public dataset of human motion trajectories, recorded in a
controlled indoor experiment. Which includes the motion trajectories with diverse and accurate
social human motion data in a shared indoor environment. In our experiments, we use No. 2 ∼ 6
agent’s trajectory as a train set, No. 7 ∼ 8 as a validation set, and No. 9 ∼ 10 agent’s trajectory
as a test set.

Backbone models. We include two models as our learnable prediction function f̂(θ, :): Informer
Zhou et al. (2021) and simple MLP (multi-layer perception).
• Informer Zhou et al. (2021) is a widely used transformer-based time-series prediction model.

Which extends the Transformer with KL-divergence based ProbSparse attention.
• MLP is a simple but robust baseline for time-series prediction. Our MLP consists of 2 layers.

The first layer can be considered as Encoder Zt = W · Xt. After the encoder, MLP has a layer
normalization, activation function and a final linear projection Yt+1 = V ·Relu(LayerNorm(Zt)).
The layer normalization and the final projection can be served as a decoder. Note that, we did not
flatten the input for MLP, the expression Zt = W ·Xt is a linear layer along the temporal axis.

Hyperparameters. For offline training, we follow the strategy in Zeng et al. (2022). In adaptation,
we set the learning rate of SGD as η = 0.1 and set the EKF hyperparameters as p0 = 0.1, λ = 1.
Buffer size for feedforward adaptation is L = 1000. For ETTh1 dataset, we use I = 192 step recent
observations to predict future O = 192 step output data. For the Exchange-Rate dataset, we use
I = 96 step recent observations to predict future O = 192 step output data. For the ILI dataset,
we use I = 36 step recent observations to predict future O = 36 step output data. For the THOR
dataset, we use I = 20 step recent observations to predict future O = 20 step output data. For
uncertainty estimation, we set δ̃ = 0, K̃ = 1.

D.4 EXPERIMENTAL RESULTS ON EKF OPTIMIZERS

We conduct experiments on SGD and EKF as optimizers in adaptation. The descriptions of SGD and
EKF are shown in appendix B. In this section, we report the detailed results of the experiment on the

2https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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EKF optimizer, as shown in table 2. Similar to results on the SGD on table 1, feedforward adaptation
still achieves the best results on all four datasets with EKF optimizer. Specifically, feedforward
adaptation outperforms feedback adaptation by 5.9%, 15.1%, 24.1%, and 2.6% in terms of average
MSE on four datasets respectively. The performance gain on the ILI dataset is the most obvious.
It is reasonable because the incidence rate of common diseases in a region is a slow time-varying
system, the future value is mostly dependent on the current input.

Table 2: Performance comparison between the proposed feedforward adaptation method and other
baselines with EKF optimization. Avg denotes the average results of two models (MLP and In-
former). The last row denotes the performance gain of feedforward adaptation over feedback adap-
tation.

Method \Dataset ETTh1 Exchange ILI THOR
Adaptation Model MSE MAE MSE MAE MSE MAE MSE MAE

w/o
Adaptation

MLP 0.195 0.371 0.549 0.540 4.348 1.413 0.135 0.117
Informer 0.211 0.389 1.128 0.858 4.942 1.531 0.137 0.171

Avg 0.203 0.380 0.839 0.699 4.645 1.472 0.136 0.144

Random
Adaptation

MLP 0.174 0.335 0.404 0.468 3.318 1.262 0.123 0.149
Informer 0.191 0.352 0.847 0.684 3.573 1.328 0.277 0.313

Avg 0.182 0.343 0.625 0.576 3.445 1.295 0.200 0.231

Feedback
Adaptation

MLP 0.129 0.288 0.356 0.459 3.873 1.341 0.107 0.106
Informer 0.109 0.249 0.359 0.462 4.320 1.401 0.124 0.168

Avg 0.119 0.268 0.357 0.460 4.110 1.371 0.116 0.137

Feed Forward
Adaptation

MLP 0.123 0.280 0.352 0.450 2.847 1.154 0.102 0.103
Informer 0.102 0.248 0.254 0.327 3.395 1.244 0.124 0.167

Avg 0.112 0.264 0.303 0.388 3.121 1.199 0.113 0.135
Gain of Feedforward Over Feedback 5.9% 1.5% 15.1% 15.6% 24.1% 12.5% 2.6% 1.5%

D.5 STUDY OF THE SAMPLE SELECTION STRATEGY OF DIFFERENT ADAPTATION METHODS

We will show that the sample selection strategy in the proposed feedforward adaptation method
could intrinsically extract the periodicity of the input data. The experiments on the ETTh1 dataset
were shown in Fig. 2. In this section, we show the results of ILI, Exchange, THOR datasets. In our
experiment, we set the buffer size L = 1000. We use SGD optimizer to adapt the MLP model with
different adaptation methods.

(a)

(b)

(c)

(d)

Figure 4: Experiments on ILI data. (a) Time series output; (b) FFT period analysis; (c) Time shift
t−s between current sample Zt and selected sample Zs in feedback and random adaptation; (d) Time
shift t − s in feedforward adaptation; (e) Online prediction error. (f) Sample difference ∥Zt − Zs∥
between current sample Zt and adapted sample Zs.

ILI dataset. Figure 4(a) shows the ILI time-series data (1st dimension of the output), and Fig. 4(b)
is the FFT (Fast Fourier Transformation) period analysis of the ILI data. As can be seen ETTh1
has roughly T ≈ 50 repetition periods. Random adaptation randomly selects samples from the
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buffer, then the time shift between current time-step t and the time-step for selected samples s
is (t − s) ∼ [1, L]; Feedback adaptation only selects the last time sample to optimization, then
(t − s) = 1. This can be found from the distribution of time shift (t − s) in Fig. 4(c). For the
proposed feedforward adaptation in Fig. 4(d), many samples were selected from (t− s) ≈ 50 steps
earlier, which corresponds to the repetition period of T ≈ 50. Because feedforward adaptation
selects the most similar samples to the current sample, which helps to extract the hidden periodicity
of the input signal over time. Thus the distribution of t− s is similar to FFT period analysis.

(a)

(b)

(c)

(d)

Figure 5: Experiments on Exchange data. (a) Time series output; (b) FFT period analysis; (c) Time
shift t − s between current sample Zt and selected sample Zs in feedback and random adaptation;
(d) Time shift t − s in feedforward adaptation; (e) Online prediction error. (f) Sample difference
∥Zt − Zs∥ between current sample Zt and adapted sample Zs.

Exchange dataset. Figure 5(a) shows the Exchange time-series data (6th dimension of the output),
and Fig. 5(b) is the FFT (Fast Fourier Transformation) period analysis of the Exchange data. As
can be seen Exchange has no apparent periodicity. (The intensity of the FFT signal is too low, for
example, the intensity of at the T ≈ 90 is about 0.02). In this case, Feedforward adaptation in
Fig. 5(d), is likely to select the recent samples like feedback adaptation in Fig. 5(c). Because the
most recent sample is a similar sample itself. Even for this kind of no-periodic system, feedforward
adaptation still outperforms feedback adaptation, because it has more freedom to select samples. At
least feedforward adaptation can select samples exactly the same as feedback adaptation.

(a)

(b)

(c)

(d)

Figure 6: Experiments on THOR data. (a) Time series output; (b) FFT period analysis; (c) Time
shift t − s between current sample Zt and selected sample Zs in feedback and random adaptation;
(d) Time shift t − s in feedforward adaptation; (e) Online prediction error. (f) Sample difference
∥Zt − Zs∥ between current sample Zt and adapted sample Zs.

THOR dataset. Figure 6(a) shows the THOR time-series data (1st dimension of the output), and
Fig. 6(b) is the FFT (Fast Fourier Transformation) period analysis of the THOR data. As can be seen
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THOR has roughly T ≈ 1200 repetition periods. But the buffer size is L = 1000 < T . In this case,
we only store the recent L = 1000 samples in the buffer, but the period is more largerT ≈ 1200 > L,
so the feedforward adaptation cannot extract the periodicity. In this case, Feedforward adaptation
Fig. 6(d), is likely to select the recent samples like feedback adaptation in Fig. 6(c). Because the
most recent sample is a similar sample itself within the buffer. In the future, we will investigate the
more efficient sampling and buffer storing strategy to extract the very long time-dependency and
periods.

D.6 PREDICTION OUTPUT AND UNCERTAINTY
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(a) Prediction on ETTh1 dataset
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(b) Prediction on ILI dataset
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(c) Prediction on Exchange dataset
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(d) Prediction on THOR dataset

Figure 7: Prediction output and uncertainty estimation of the proposed feedforward adaptation on (a)
ETTh1 dataset, (b) ILI dataset (1st dimension of the output), (c) Exchange dataset (6th dimension of
the output), and (d) THOR dataset (1st dimension of the output). The blue dashed region represents
the estimated uncertainty of the prediction.

One of the advantages of the proposed feedforward adaptation is it could provide uncertainty esti-
mation as shown in algorithm 2. Figure 7 shows the prediction output (blue curve), ground truth
label (red curve), and uncertainty estimation (blue dashed region) on four different datasets. As can
be seen, in most cases, the estimated uncertainty covers the real ground truth value. Which validates
the effectiveness of the proposed uncertainty estimation.
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