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Abstract

This paper introduces the Discrete Markov Prob-
abilistic Model (DMPM), a novel algorithm for
discrete data generation. The algorithm operates
in discrete space, where the noising process is a
continuous-time Markov chain that can be sam-
pled exactly via a Poissonian clock that flips labels
uniformly at random. The time-reversal process,
like the forward noise process, is a jump process,
with its intensity governed by a discrete analogue
of the classical score function. Crucially, this in-
tensity is proven to be the conditional expectation
of a function of the forward process, strengthening
its theoretical alignment with score-based gener-
ative models while ensuring robustness and effi-
ciency. We further establish convergence bounds
for the algorithm under minimal assumptions and
demonstrate its effectiveness through experiments
on low-dimensional Bernoulli-distributed datasets
and high-dimensional binary MNIST data. The
results highlight its strong performance in gener-
ating discrete structures. This work bridges the-
oretical foundations and practical applications,
advancing the development of effective and theo-
retically grounded discrete generative modeling.

Introduction
Score-based Generative Models (SGMs) have become a key
reference for generating complex data, such as images (see,
e.g., Rombach et al., 2022; Ramesh et al., 2022; Saharia
et al., 2022), audio (Chen et al., 2020; Kong et al., 2020),
and video (Ho et al., 2022; Villegas et al., 2022; Bar-Tal
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et al., 2024). In continuous time, this approach benefits
from a strong theoretical framework, and a scalable, stable
learning objective.

By contrast, discrete generative modeling continues to pose
significant challenges. Multiple diffusion-based methods
have recently been proposed for discrete spaces (Austin
et al., 2021; Hoogeboom et al., 2021; Shi et al., 2024; Camp-
bell et al., 2022; Holderrieth et al., 2024; Ren et al., 2024),
or spaces of mixed type (Bertazzi et al., 2024), but there
is still no consensus on which approach is theoretically
sound or most practically efficient. Various formulations
rely on complex forward kernels or computationally unsta-
ble ratio-based estimators for backward transitions, leading
to limited convergence guarantees and high computational
costs in high dimensions. Furthermore, recent analyses of
discrete diffusions have introduced valuable theoretical tools
(Campbell et al., 2022; Holderrieth et al., 2024; Ren et al.,
2024), yet most methods remain either overly generic or
require strong assumptions, making them difficult to scale
or to deploy with simple, stable training objectives.

Contributions. In this paper, we introduce Discrete Markov
Probabilistic Models (DMPMs), a score-based generative
models for discrete data inspired by Sohl-Dickstein et al.
(2015) and Austin et al. (2021) that bridges these gaps.
Our framework specializes the forward noising process to
a continuous-time Markov chain on the hypercube {0, 1}d.
Leveraging theoretical insights on time-reversal Markov
dynamics of this process, this choice preserves the key
strengths and structure of continuous SGMs, addressing
the issues raised in prior work. Our main results are sum-
marized as follows:

• Forward-Backward Construction. We provide a prin-
cipled derivation of the noising (forward) and denois-
ing (backward) processes.

• Score and denoiser function and stable estimation.
Our analysis reveals that the time-reversed process in-
herits a score function with an explicit conditional ex-
pectation form. By formulating the learning objective
as an L2 projection onto this score, we obtain a simple
and principled regression loss term, as opposed to the
high-variance estimators based on probability ratios
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used in some prior work. Furthermore, we introduce
a denoiser reparameterization of the score function,
closely paralleling the continuous setting, which pro-
vides an interpretable and practical target for model
training.

• Theoretical Guarantees. We prove that DMPMs con-
verge to the underlying data distribution under minimal
assumptions, providing non-asymptotic error bounds
that underscore the method’s reliability. In contrast to
many earlier works, we prove that the sampling error
grows linearly rather than exponentially with respect
to dimension.

• Empirical Performance. We demonstrate that our
approach attains competitive or superior performance
on discrete datasets, including binarized MNIST, fre-
quently with fewer function evaluations compared to
existing discrete diffusion frameworks (e.g., 2.89 vs
7.34 FID compared to Discrete Flow Matching, Gat
et al., 2024, with 2.5x fewer network calls).

Notation. Given a measurable space (E, E), we denote
by P(E) the set of probability measures on E. Given two
probability measures µ, ν ∈ P(E), the Kullback–Leibler di-
vergence (also called relative entropy) of µ with respect to ν
is defined as KL(µ|ν) :=

∫
log dµ

dν dµ if µ is absolutely con-
tinuous with respect to ν, and KL(µ|ν) = +∞ otherwise.
The total variation distance between µ and ν is defined as
∥µ − ν∥TV = supA∈E |µ(A)− ν(A)|. Consider a random
variableX , we denote by Law(X) the law ofX . We denote
by δx the Dirax mass at x.

1. Forward and backward process of DMPMs
We propose a generative modeling framework that adapts
diffusion-based methods to discrete spaces. Let (

−→
X t)t∈[0,T ]

be a forward Markov process on {0, 1}d, initialized from the
data distribution µ⋆, and evolving over a fixed time horizon
Tf > 0 toward a simple base distribution. In the continuous
setting, this role is often played by the Ornstein–Uhlenbeck
process converging to a Gaussian. We define the correspond-
ing backward process (

←−
X t)t∈[0,Tf ] as

←−
X t :=

−→
XT−t, which

reconstructs µ⋆ from the base distribution. While the back-
ward process can be Markovian too, its transition rates or
drfit terms are typically intractable and must be approxi-
mated from forward trajectories, commonly done via score
matching in continuous domains.

To adapt this idea, we introduce a forward CTMC on {0, 1}d
where each bit flips via an independent Poisson clock. We
show that its time-reversal remains a tractable CTMC with
backward rates given by conditional expectations over the
forward process, enabling efficient regression-based training
in the discrete setting.

1.1. CTMCs on discrete state-spaces

A CTMC (Xt)t∈[0,Tf ] defined over the discrete space X is a
Markovian stochastic process which is piecewise constant
with jump at random times following a non-homogeneous
Poisson process. As we shall see, under mild assumption,
a (non-homogeneous) CTMC is uniquely characterized by
a family of rate matrices (qt)t∈[0,Tf ], qt : X × X → R,
which constitutes the infinitesimal generator of the process,
and should satisfy

∑
y∈X qt(x, y) = 0, for any x ∈ X. In

particular, this object allows to define a Markov process
whose transitions are informally characterized as h→ 0 by:

P(Xt+h = y|Xt = x) = δx(y) + hqt(x, y) + o(h) , (1)

where o is the standard little-o Landau notation.

Definition and sampling procedure. When a simple char-
acterization of the transition probability matrix is not avail-
able or does not exist, it is possible to simulate the process
using the rate matrices, as suggested by equation (1). Pop-
ular sampling strategies include Gillespie’s algorithm or
τ -leaping (Gillespie, 2007). In our case, we introduce the
former which uses the jump rate and jump kernel associated
to the process, defined as:

λt(x) =
∑
y∈X

qt(x, y) , kt(x, y) = 1x ̸=y
qt(x, y)

λt(x)
. (2)

Informally, the jump rate governs the frequency of the ran-
dom jumps of the process, and the jump kernel the next
state at these jumps. More precisely, starting from a drawn
X0 from µ0 and a sequence of i.i.d. random variables dis-
tributed according to the exponential distribution with pa-
rameter 1, {Ei : i ∈ N }, we can define the jump times
(Ti)i∈N of the process and its transition by induction setting
T0 = 0. Given (Ti, XTi

), we define the next jump time as
Ti+1 = Ti +∆Ti+1, where

∆Ti+1 = inf{t ⩾ 0 :

∫ t

0

λTi+r(XTi
)dr ⩾ Ei} . (3)

Then, set Xt = XTi for t ∈ (Ti, Ti+1 ∧ Tf ), and finally
if Ti+1 < Tf , XTi+1 = Y for Y distributed according to
Cate({kTi+1

(XTi
, y)}y∈X). Note that in the case where

λt = λ > 0 for any t ∈ [0, Tf ], (Ti)i∈N simply corresponds
to the jump times a simple homogeneous Poisson process
with rate λ, defined as Nt =

∑
i>1 1Ti⩽t. Another equiva-

lent procedure for simulating the process is provided in the
supplement (see Appendix C.1). In practice, since the inte-
gral in (3) cannot be computed exactly, a time-discretized
sampling strategy must be employed. We present these
methodological considerations in Section 1.5 below.

Kolmogorov equation. As a final remark, the time-
marginal distributions of the process (Xt)t∈[0,Tf ] starting
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from X0, ν(X0)
t (x) = P(Xt = x) and identified as a tuple,

satisfy the backward Kolmogorov equation:

∂tν
(X0)
t (x) = [ν

(X0)
t ]Tqt(x) =

∑
y∈X

ν
(X0)
t (y)qt(y, x) .

(4)
Here, we identify qt as a matrix, similarly to ν(X0)

t . When
the rate matrix is simple (e.g., as we use in our forward
process in Section 1.2), we can use the Kolmogorov equa-
tion to derive the transition probability matrix pt(x0, xt) =
ν
(x0)
t (xt) = P(Xt = xt|X0 = x0), for x0, xt ∈ X, 0 ⩽
t ⩽ Tf , yielding a simulation-free procedure.

1.2. Simple case X = {0, 1}

To introduce the key ideas, we first consider the simple case
where the state space is X = {0, 1}, i.e., when d = 1. We
will then extend our method to d > 1 by factorizing the
forward process over dimensions.

Forward process. We define the forward process
(
−→
X t)t∈[0,Tf ] as the homogeneous CTMC starting from
−→
X 0 ∼ µ⋆, and driven by a simple bit-flip process associated
with the rate matrix defined for any x, y ∈ X, as

−→q 1(x, y) :=

{
λ , if y ̸= x ,

−λ , otherwise .
(5)

In the case of a constant forward rate matrix −→q 1, the transi-
tion probability matrix −→p 1

t , for 0 ⩽ t ⩽ Tf , is known to be
−→p 1
t = exp(t−→q 1) (Liggett, 2010), which we compute as:

−→p 1
t (x, y) =

{
1
2 + 1

2e
−2λt , if x = y ,

1
2 −

1
2e
−2λt , otherwise .

(6)

The detailed derivations are given in the supplementary
material B.1 and rely on equation (4). We note that us-
ing a time-dependent rate λt is a straightforward exten-
sion, as defining −→q 1

t = λt
−→q 1 yields the transition matrix

exp(−→q 1
∫ t
0
λsds) =

−→p 1∫ t
0
λsds

, and leave it to future work.

Backward process. To recover the data distribution, we
analyze the time-reversed process, which is denoted by
(
←−
X t)t∈[0,Tf ], and defined as

←−
X t =

−→
XTf−t for any t ∈

[0, Tf ]. Conforti & Léonard (2022, Theorem 2.8) show that
(
←−
X t)t∈[0,Tf ] is also a non-homogeneous CTMC, associated

with a family of generator matrices (←−q t)t∈[0,Tf ] satisfying
the time-reversal formula:

µTf−t(x)
←−q 1
t (x, y) = µTf−t(y)

−→q 1(y, x) , (7)

for any 0 ⩽ t ⩽ Tf and x ̸= y ∈ X, where for any t ∈

[0, Tf ], we denote by µt the forward marginal distribution:

µt(x) = P(
−→
X t = x) . (8)

Since our chosen rate matrix −→q is symmetric (see (5)) and
µTf−t(x) > 0 for all x ∈ X, t ∈ [0, Tf ), we deduce that
the backward generator←−q 1

t for 0 ⩽ t < Tf is given for any
x ̸= y ∈ X by

←−q 1
t (x, y) =

−→q 1(y, x)
µTf−t(y)

µTf−t(x)
. (9)

Discrete score function. Define st : X→ R for any x ∈ X
by

st(x) :=
µTf−t(x)− µTf−t(1− x)

µTf−t(x)
. (10)

st acts as a discrete derivative in X of logµt, and thus serves
as a discrete analogue of the score function in continuous
models. With this notation,←−q t(x, y) (9) can be expressed,
for any x ̸= y ∈ X, for 0 ⩽ t < Tf , as:

←−q 1
t (x, y) :=

{
λ(1− st(x)) , if y ̸= x ,

−λ(1− st(x)) , otherwise .
(11)

Access to the sequence (st)t∈[0,Tf ] is equivalent to having
access to (←−q 1

t )t∈[0,Tf ], and therefore allows to sample from
←−
X t for any t ∈ [0, Tf ] using the procedure described in
Section 1.1. However, the score function s is generally
intractable, as it depends on the unknown marginal distribu-
tions (µt)t∈[0,Tf ]. To address this, we derive an alternative
expression for st in terms of a conditional expectation over
the forward process. For x ∈ X and t ∈ [0, Tf ),

st(x) =

E

 2αTf−t

1 + αTf−t
−

4αTf−t1−→X0
(
−→
XTf−t)

1− α2
Tf−t

∣∣∣∣−→XTf−t = x

 ,
(12)

with
αt := e−2λt . (13)

Indeed, the score function can be computed as

st(x) = 1−
µTf−t(y)

µTf−t(x)
= 1−

∑
x0∈X

pTf−t|0(y|x0)
µTf−t(x)

µ⋆(x0)

= 1−
∑
x0∈X

pTf−t|0(y|x0)
pTf−t|0(x|x0)

p0|Tf−t(x0|x)

= E

[
1−

pTf−t|0(y|
−→
X0)

pTf−t|0(x|
−→
X0)

∣∣∣∣ −→XTf−t = x

]
,

and plugging in the expression for our forward transition
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matrix given in (6) we obtain equation (12). Therefore, the
function s is an L2-projection and its approximation boils
down to a regression problem.

1.3. General state space X = {0, 1}d

Forward process. We generalize the previous results for
the hypercube in Rd, i.e., the state space is X = {0, 1}d with
d ∈ N∗. We consider the homogeneous CTMC (

−→
X t)t∈[0,Tf ]

starting from
−→
X 0 ∼ µ⋆, defined with the following rate

matrix:

−→q (x, y) :=


λ , if ∥y − x∥2 = 1 ,

−λd , if y = x ,

0 , otherwise .
(14)

The corresponding sampling procedure following the one
provided in Section 1.1 is given in Appendix B.2 for com-
pleteness. Similarly to the one-dimensional case, we can
establish an explicit expression for the transition probability
matrix −→p t for 0 ⩽ t ⩽ Tf as

−→p t(x, y) =
d∏
i=1

−→p 1
t (x

i, yi) , (15)

where −→p 1
t is defined in (6) and x = (xi)di=1, y = (yi)di=1 ∈

X. The detailed computation is given in the supplementary
material B.2.1 The factorization of the transition probabil-
ity in (15) is of great practical interest, as this tells us that
the dynamic of the forward process simply consists in the
single-bit forward dynamic applied independently to each
component, as described in Section 1.2. As a consequence,
the forward marginal distribution µt of

−→
X t admits the for-

mula

µt(x) =
∑
z∈X

µ0(z)

d∏
i=1

−→p t(z, x) . (16)

Backward process and score function. Denote by
(
←−
X t)t∈[0,Tf ], the time-reversal process associated with

(
−→
X t)t∈[0,Tf ], and defined as

←−
X t =

−→
XTf−t for any t ∈

[0, Tf ]. As in the case d = 1, Conforti & Léonard
(2022, Theorem 2.8) shows that (

←−
X t)t∈[0,Tf ] is also a

non-homogeneous CTMC, with backward generator matrix
(←−q t)t∈[0,Tf ] that satisfies (7) and therefore (9), proceeding
as before. As in the case d = 1, we show that (←−q t)t∈[0,Tf ]

depends only on a discrete score function, which we now
introduce.

First, note that (9) and (14) yield←−q t(x, y) = 0, for x, y ∈ X
satisfying ∥x− y∥2 ̸= 1 and x ̸= y. Then, for 0 ⩽ t < Tf ,
define st : X→ Rd for any x ∈ X, st(x) = {sℓt(x)}dℓ=1 as

the vector in Rd, with components ℓ ∈ {1, . . . , d},

sℓt(x) :=
µTf−t(x)− µTf−t(φ

(ℓ)(x))

µTf−t(x)
, (17)

where φ(ℓ) : X → X is defined as φ(ℓ)(x) = y, with y
obtained by flipping the ℓ-th bit of x, i.e., yℓ = 1− xℓ, and
yi = xi for i ̸= ℓ. Then, for 0 ⩽ t < Tf , x ̸= y ∈ X, we
can write the backward generator←−q t(x, y), as given in (7),
as:

←−q t(x, y) =
d∑
ℓ=1

λ(1− sℓt(x))1y=φ(ℓ)(x) .

Score function. Note that the function s thus defined is an
extension to the case d ⩾ 1 of the function s defined for
d = 1 in (10). As a result, st is a conditional expectation
over the forward process, where each of its components
admits an expression similar to the 1d case (12).

Proposition 1.1. The score function can be expressed as a
conditional expectation:

sℓt(x) = E
[
f ℓt (
−→
X ℓ

0,
−→
XTf−t)|

−→
XTf−t = x

]
, (18)

where t ∈ [0, Tf ), x ∈ X, ℓ = 1, . . . , d, sℓt is the ℓ-th
component of the score function st, and

f ℓt (
−→
X ℓ

0,
−→
XTf−t) =

2αTf−t

1 + αTf−t
−
4αTf−t(

−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

.

(19)

The proof of this result is given in Appendix B.2.2. Simi-
larly to the 1d case, access to the score allows to simulate
the backward process following the procedure described in
Section 1.1 since the the non-homogeneous jump rate

←−
λ t

and jump kernel
←−
k t of the backward process are given by

←−
λ t(x) = λ

d∑
ℓ=1

(1− sℓt(x)) ,

←−
k t(x, y) = 1y=φ(ℓ)(x) · λ(1− sℓt(x))/

←−
λ t(x) ,

(20)

for x ̸= y ∈ X and t ∈ [0, Tf ].

1.4. Approximating the score function

In this section, we derive the training objective to estimate
the score function (st)t∈[0,Tf ] defined in (17), which gov-
erns the backward rate matrix. As in standard diffusion
models, our goal is to sample from the time-reversed pro-
cess, requiring approximation of the (intractable) score.
Leveraging its conditional expectation structure (Proposi-
tion 1.1), we approximate st using a parameterized family
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(t, x) 7→ sθt (x)θ∈Θ, where θ is optimized via an adapted
score-matching objective, defined as the function

LL2 : θ 7→
∫ Tf

0

E
[
∥sθTf−t(

−→
X t)− fTf−t(

−→
X 0,
−→
X t)∥2

]
dt .

(21)
Another objective function to fit θ can be derived by using
the fact that for any x ∈ X, t ∈ [0, Tf ] , ℓ ∈ {1, . . . , d},
1− sℓt(x) is non-negative. Thus, we introduce the following
entropy-based term:

θ 7→
∫ Tf

0

E

[
d∑
ℓ=1

(1− sθ,ℓTf−t)h

(
1− sℓTf−t

1− sθ,ℓTf−t

)
(
−→
X t)

]
dt ,

where h(a) = a log(a)− (a− 1). Minimizing this function
is equivalent to minimizing:

Le :θ 7→
∫ Tf

0

E

[
d∑
ℓ=1

(
− sθ,ℓTf−t(

−→
X t)

+ (f ℓTf−t(
−→
X t)− 1) log(1− sθ,ℓTf−t(

−→
X t))

)]
dt .

(22)

We further derive a discrete denoiser structure in Ap-
pendix C.3, rewriting the score function as

sℓt(x) =
2αTf−t

1 + αTf−t
−

4αTf−td
ℓ
t(x)

1− α2
Tf−t

, (23)

where dℓt(x) = P(
−→
X ℓ

0 ̸= xℓ
∣∣−→XTf−t = x) serves as a clas-

sifier referred to as a discrete denoiser. We leverage this
structure by reparameterizing our score model as:

sθ,ℓt (x) =
2αTf−t

1 + αTf−t
−

4αTf−td
θ,ℓ
t (x)

1− α2
Tf−t

. (24)

As a result, we modify our objective LL2 to Lden
L2 to fit the

conditional expectations (dt)t∈[0,Tf ] instead of the score
functions (st)t∈[0,Tf ], as follows:

Lden
L2 : θ 7→

∫ Tf

0

E

[
∥

d∑
ℓ=1

dθ,ℓTf−t(
−→
X t)− 1−→X ℓ

0
(
−→
X ℓ
t)∥2

]
dt ,

(25)

see Appendix C.4 for more details. This reparameteriza-
tion moves the approximation from a space of ratios into
probability space, which is smoother and more amenable
to learning, mitigating the instability of direct score or rate
estimation as reported in (Lou et al., 2024). To fit dθt (x) to

dt(x), we introduce an additional cross-entropy loss LCE:

LCE : θ 7→
∫ Tf

0

E
[ d∑
ℓ=1

1−→
X ℓ

0 ̸=
−→
X ℓ

Tf−t

log dθ,ℓt (
−→
X ℓ
Tf−t)

+ (1− 1−→
X ℓ

0 ̸=
−→
X ℓ

Tf−t

) log(1− dθ,ℓt (
−→
X ℓ
Tf−t))

]
dt .

Based on the previous discussions, we consider a linear com-
bination of the losses Lden

L2 , Le, LCE, respectively weighted
by factors ϖ1, ϖ2, ϖ3, which results in the loss Lϖ:

Lϖ = ϖ1L
den
L2 +ϖ2Le +ϖ3LCE . (26)

The expected value of dℓt is given by

wt = E
[
dℓt(
−→
XTf−t)

]
= (1− αTf−t)/2 , (27)

as detailed in Appendix C.4. Thus, we scale losses LL2 ,LCE
by 1/wt, ensuring a more balanced average magnitude
across timesteps; see (54) and Figure 4 in Appendix C.4.
This leads to the updated loss Lwϖ (see (56)). Detailed deriva-
tions are provided in Appendix C.4. The final training pro-
cedure is outlined in Algorithm 2.

1.5. Generative process

Alike classical continuous diffusion models, exact simula-
tions of the reverse process are not possible and face the
same challenges: i) we do not have access to i.i.d. samples
from µTf

, ii) the backward process characteristics depend
on the score function of the forward process defined in (17),
which is intractable, and iii) we have to discretize the con-
tinuous process.

Initialize the backward from the uniform distribution.
We show that (

−→
X t)t∈[0,Tf ] converges geometrically to γd,

the uniform distribution over X (see Appendix B.2.3 in the
supplementary document). This should be put in parallel
with diffusion-based models, where the stochastic process
at hand, e.g., Ornstein–Uhlenbeck, converges geometrically
fast to some Gaussian distribution. The generative model
can then be initialized to γd rather than µTf

.

Score approximation. We have access to a score ap-
proximation (sθ

⋆

t )t∈[0,Tf ], so the generative model can
then be sampled analogously to the backward process, re-
placing (st)t∈[0,Tf ] with (sθ

⋆

t )t∈[0,Tf ], leading to the non-
homogeneous jump rate and kernel approximating (20):

λθ
⋆

t (x) = λ

d∑
ℓ=1

(1− sθ
⋆,ℓ
t (x)) ,

kθ
⋆

t (x, y) = 1y=φ(ℓ)(x) · λ(1− s
θ⋆,ℓ
t (x))/λθ

⋆

t (x) ,

(28)
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for x, y ∈ X and t ∈ [0, Tf ], where we denote by sθ
⋆,ℓ
t

the ℓ-th component of sθ
⋆

t . For completeness, Algorithm 1
in Appendix C.2 provides the pseudo-code for an ideal,
continuous-time approximation of the backward process.

Time discretization. Exact integration of jump rates is in-
feasible in practice, so we discretize time and approximate
the backward rate and kernel using piecewise constant func-
tions λ̂ and k̂ based on (28). For x, y ∈ X and t ∈ [tk, tk+1),
we set:

λ̂θ
⋆

t (x) = λθ
⋆

tk
(x) , k̂θ

⋆

t (x, y) = kθ
⋆

tk
(x, y) , (29)

where {tk}Kk=0 is a time grid with step sizes hk = tk−tk−1.
This yields a tractable CTMC (

←−
X ⋆
t )t∈[0,Tf ], which can be

simulated starting from γd. Under mild conditions, its final
law converges to the target distribution. The associated
DMPM sampler is given in Algorithm 3, Appendix C.5,
with time-schedule choices listed in Table 2.

Flips sampler. The standard sampler updates one bit at
each timestep. To improve parallelism and sample diver-
sity, we propose a flip-schedule where Mtk components are
flipped simultaneously at step tk, based on the probability
distribution defined by k̂θ. We consider linear and cosine
flip-schedules (Table 3), implemented in Algorithm 4, Ap-
pendix C.5.

Denoise-renoise sampler. We also introduce a denoise-
renoise sampler based on the discrete denoiser from Equa-
tion (23). Inspired by multistep consistency models (Song
et al., 2023), this method alternates denoising from t0 = 0 to
Tf and re-noising back to t1, and so on. The full procedure
is detailed in Algorithm 5 and Appendix C.5.

2. Convergence of DMPMs algorithm
This section provides quantitative error estimates between
the generated final distribution Law(

←−
X ⋆
Tf
) and our data

distribution µ⋆ via the Kullback–Leibler divergence KL.
To this end, we consider the following assumptions on the
parameterized score and the original data distribution:
Assumption 2.1. Let h(a) := a log(a)− (a− 1) for a > 0.
There exists ϵ ∈ (0, 1) such that

max
0⩽k⩽K

E

[
d∑
ℓ=1

(1− sθ
⋆,ℓ
tk

)h

(
1− sℓtk
1− sθ⋆,ℓtk

)
(
−→
XTf−tk)

]
⩽ ϵ .

(30)

Note that Assumption 2.1 is induced by the entropic term
Le defined in (22) of the loss function we consider in prac-
tice. This condition naturally appears as we bound the KL
divergence of the path probability measures corresponding
to the approximate score sθ

⋆

and the ideal one s respec-
tively. Indeed, we prove a Girsanov type theorem which

provide an explicit expression of the density between these
two measures in Theorem F.13 in the supplement F.2.1.
While standard Girsanov theorem for diffusion implies an
L2-type approximation error condition for generative mod-
els (see, e.g., Conforti et al., 2025; Lee et al., 2023; Chen
et al., 2022a), our result naturally involve the entropic-type
condition (30) due to the discrete structure of our noising
process.

Assumption 2.2. The data distribution does not admit any
zero-value, i.e., µ⋆(x) ∈ (0, 1) for any x ∈ X.

Assumption 2.2 implies that the data distribution has the
finite Fisher-like information

βγd(µ⋆) := E

[
d∑
ℓ=1

h
(
eg(
−→
X0)−g(φ(ℓ)(

−→
X0))

)]
< +∞ ,

(31)

with g := − log(dµ⋆/dγd). Note that Assumption 2.2 is
put in parallel with the finite relative Fisher information
condition provided by Conforti et al. (2025). However,
Assumption 2.2 is much simpler as the state space is finite,
and the function h is only infinite if µ⋆ has not full support.

We are now ready to state the error’s bound of the generated
data using DMPMs given in Algorithm 3, noting that every
measure on the hypercube possesses finite entropy.

Theorem 2.3. Under Assumption 2.1 and Assumption 2.2,
the following bound holds

KL(µ⋆|Law(
←−
X ⋆
Tf
)) ⩽ e−4λTfKL(µ⋆|γd)

+ λτβγd(µ⋆) + λϵTf ,
(32)

with τ := max{hk, k = 1, . . . ,K}.

Theorem 2.3 is one of our distinguishing results, which guar-
antees the convergence of DMPMs algorithm, and makes
it stronger than other algorithms built before for discrete
target distribution.

The term ϵTf in (32) appears because the score function st
is replaced in the discretization by its approximation sθ

⋆

t sat-
isfying Assumption 2.1. The term e−4λTfKL(µ⋆|γd) repre-
sents the initialization error, as our backward dynamic starts
at γd instead of µTf

. Finally, the term τβγd(µ⋆) means that
the data distribution µ⋆ cannot be peculiar, in the sense that
µ⋆ does not admit any zero-value. The detailed proof of
Theorem 2.3 is given in the supplementary material F.4.1.

Following Conforti et al. (2025, Theorem 3), a tighter
bound on the sampling error, one that scales logarithmi-
cally rather than linearly with the discrete Fisher informa-
tion, is achieved with an appropriate sequence of step sizes
{hk}Kk=1.

Theorem 2.4. Let c ∈ (0, 1/2] and Tf ⩾ 1 + 2c. Sup-
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pose Assumption 2.1 and Assumption 2.2 hold, and L =
d−1βγd(µ⋆) ⩾ 2. Choose an exponentially decreasing
step-sizes, i.e., hk+1 = cmin {max {Tf − tk, a} , 1} for
k < K, with a = 1/L, then we have that

KL(µ⋆|Law(
←−
X ⋆
Tf
)) ≲ e−4λTfKL(µ⋆|γd) + λϵTf

+ λcd[1 + log(L)] . (33)

The proof of Theorem 2.4 benefits from the choice of the
step-size’s scheme and is postponed to Appendix F.4.2.
We deduce the following complexity result for DMPMs
to achieve an ϵ > 0 discretization error.
Corollary 2.5. Consider the sequence of step-size as in The-
orem 2.4 and suppose Assumption 2.1 and Assumption 2.2
hold. Choosing

c =
ϵ

λd[1 + log(L)]
and Tf =

1

4λ
log

KL(µ⋆|γd)
ϵ

,

(34)
we get

K ≲ d[1 + log(L)]
[
log(KL(µ⋆|γd)/ϵ) + λ log(L)

]
/ϵ ,

and makes the approximation error Õ(ϵ log(KL(µ⋆|γd)),
where the notation Õ means that logarithmic factors of d, ϵ
have been dropped.

The proof of Corollary 2.5 is provided in Appendix F.4.3.

In our next result, we get rid of Assumption 2.2 using an
early stopping strategy.
Theorem 2.6. Under Assumption 2.1, for any η ∈ (0, Tf ),
let c ∈ (0, 1/2] and Tf − η ⩾ 1+ 2c. Set L = d−1βγd(µη)
and assume that L ⩾ 2. Choose the constant and expo-
nentially decreasing sequence of step-size, i.e., satisfying
hk+1 = cmin {max {Tf − η − tk, 1/L} , 1} for k < K

and the associated discrete time scheme {tk}Kk=0 such that
t0 = 0 and tK = Tf − η. Then, the following bound holds

KL(µη|Law(
←−
X ⋆
Tf−η)) ≲ dη−1e−4λ(Tf−η) + λϵ(Tf − η)

+ λcd[1 + log(η−1)] . (35)

Theorem 2.6 is a consequence of Theorem 2.4 when the
backward dynamic stops early at µη instead of µ⋆. We
benefit from the structure of µη to obtain a bound growing
linearly with dimension, which is advantageous for high-
dimensional sampling. The full proof is deferred to Ap-
pendix F.5.1. It is worth noting that (16) ensures that µη
is always positive for any η ∈ (0, Tf ), thus the Fisher-like
information βγd(µη) is always finite. As a result, Assump-
tion 2.2 is no longer required. To obtain then a complexity
bound for DMPMs on its discretization error without As-
sumption 2.2, we bound in our next result, the total variation
distance between µ⋆ and µη for η > 0.

Proposition 2.7. For any η ∈ (0,max
{
Tf ,

1
λ

}
), the fol-

lowing holds

∥µη − µ⋆∥TV ⩽ 2− 2(1− λη)d . (36)

The proof of Proposition 2.7 is provided in the supplement
F.5.2. Combining Theorem 2.6 and Proposition 2.7, we
deduce that

Corollary 2.8. Consider the sequence of step-size as in
Theorem 2.6 and let Assumption 2.1 hold. Choosing

η =
1− (1− ϵ)1/d

λ
, c =

ϵ2

λd[1 + log(η−1)]
,

Tf = η +
1

4λ
log

d

ηϵ2
,

(37)

implies that

K ≲ d[1+log(λd/ϵ)][log(d/ϵ2)+(λ+1) log(λd/ϵ)]/ϵ2 ,

and the following bound holds

∥µ⋆ − Law(
←−
X ⋆
Tf−η)∥TV ≲ ϵ+

√
λϵ(Tf − η) .

The proof of Corollary 2.8 is given in Appendix F.5.3.

3. Existing works on diffusion-based
generative models for discrete data

We briefly review existing approaches to discrete gener-
ative modeling based on diffusion processes. Additional
discussion is provided in Appendix A.

A first class of methods maps discrete variables into continu-
ous spaces, enabling the use of classical diffusion machinery
(Dieleman et al., 2022; Chen et al., 2022b; Richemond et al.,
2022), but struggle to scale in dimensions and lacks theoret-
ical guarantees.

Other methods, such as Argmax Flows and Multinomial
Diffusion (Hoogeboom et al., 2021), operate directly in
discrete spaces and use categorical noise models or argmax
transformations to handle discrete tokens, but can impose
considerable computational overhead.

More recently, CTMC-based frameworks were introduced
(Campbell et al., 2022), upon which flow matching tech-
niques were adapted to the discrete domains (Gat et al.,
2024; Campbell et al., 2024), using conditionally con-
structed rate matrices built ad-hoc, contrasting with our
principled time-reversal derivation.

Holderrieth et al. (2024) proposed a general framework
for generator matching over arbitrary Markov processes,
assuming access to a conditional interpolating distribution,
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leaving the choice of interpolating process and loss function
to problem-specific adaptation.

Alternative directions include masked diffusion models
(Austin et al., 2021) and stochastic integral formulations
(Ren et al., 2024), aiming to balance tractability and the-
oretical soundness. Shi et al. (2024); Sahoo et al. (2024)
propose efficient training via absorbing-state kernels, opti-
mizing model parameterization and loss. Meanwhile, Lou
et al. (2024) model the score function as a density ratio
rather than a discrete denoiser. This yields an entropic regu-
larization loss equivalent to (22), missing the L2 projection
and cross-entropy terms applied to the discrete denoiser
employed in our formulation.

Concurrently with our work, Bach & Saremi (2025) propose
a discrete analogue of Gaussian smoothing, entirely forgo-
ing the continuous-time framework. Their denoising-based
method offers a static-noise alternative to CTMCs, yielding
Langevin-type sampling dynamics on the hypercube.

Theoretical results for discrete generative models are much
scarcer than for their continuous counterparts. To the best
of our knowledge, only Campbell et al. (2022); Ren et al.
(2024) provide theoretical guarantees, and these rely on
significantly stronger assumptions than those used in our
work.

Regarding Theorem 1 in Campbell et al. (2022), we note that
our approach does not require an L∞-bound on the score
approximation error, but only an L2-bound. Moreover, we
do not impose any assumptions on the marginal density of
the forward process (cf. Assumption 2), but only on the data
distribution itself. We also avoid placing assumptions on the
backward transition rates (cf. Assumption 3). In contrast
to Campbell et al. (2022), we impose no conditions on the
rates or densities of the forward and backward processes.
Additionally, their discretization error scales linearly with
the time horizon, whereas our bounds do not incur such a
cost.

Concerning Ren et al. (2024), and in particular Theorems 4.7
and 4.9, we highlight that we make no assumptions on the
score function. In their Assumption 4.4, a time-dependent
L∞-bound of the form |st(x)| ≲ 1 ∨ t−1 is imposed on
the true score st, and a time-uniform L∞-bound is assumed
for the learned score sθt . As in Campbell et al. (2022),
these assumptions are arguably unnatural, as they are not
placed directly on the data distribution but on more com-
plex transformations of it. Furthermore, Assumption 4.5 in
Ren et al. (2024) imposes a quantitative form of Lipschitz
continuity on st, and as the authors themselves state, ”As-
sumption 4.5 corresponds to the Lipschitz continuity of the
score function.” However, it is now well known that such an
assumption is unnecessary in the continuous setting.

4. Experiments
The full experimental details are available in Appendix D.
We evaluate our Discrete Markov Probabilistic Model
(DMPM) on two datasets. The first is a low-dimensional
synthetic sawtooth dataset, with dimension 4 ⩽ d ⩽ 16.
The second is binarized MNIST, with d = 32× 32. We ex-
plore various design choices, and compare DMPM against
MD4 (masked diffusion) (Shi et al., 2024) and DFM (dis-
crete flow matching) (Gat et al., 2024), two state-of-the-art
discrete generative approaches.

4.1. Experiments on Small-Dimensional Bernoulli Data

We study a discrete data distribution p such that each com-
ponent of X = (Xi)

d
i=1 ∼ p is independently distributed

as Bernoulli(pi). The map i 7→ pi forms a sawtooth pattern
(see Figure 6). We evaluate performance using a custom
Sliced Wasserstein Distance (SWD) between the learned
and true distributions (see Appendix D.3). Indeed, the state
space size 2d can get too big for traditional histogram-based
metrics like KL divergence or Hellinger distance.

Figure 1. Comparison of time-schedules (cosine, linear, quadratic)
and time horizon (Tf = 3 vs. Tf = 10).

Time horizon and time-schedule. We study the impact of
the time horizon Tf and various time-schedules—uniform,
quadratic, and cosine (see Table 2)—on model performance.
Figure 1 presents results for a model trained with the basic
LL2 loss on data with d = 16, evaluated across multiple
reverse step counts. The cosine schedule with Tf = 3 yields
the best performance in terms of sliced Wasserstein distance
(SWD), outperforming other schedules and longer horizons,
while also requiring fewer reverse steps. This indicates that
Tf = 3 is sufficient to reach near-uniformity during forward
diffusion, without excessive transitions to uniform states.
We adopt this configuration for all subsequent experiments.

Comparison with state-of-the-art methods. We compare
DMPM (with cosine schedule, Tf = 3, and LL2 loss)
against MD4 and Discrete Flow Matching (DFM). Fig-
ure 2 shows SWD scores across varying data dimensions
d. DMPM consistently outperforms both baselines, achiev-
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d 4 8 12 16

DFM 6.102 8.864 5.019 8.302
MD4 9.376 7.670 4.045 8.037
DMPM 3.174 3.308 2.342 2.515

Figure 2. SWD ↓, in 1e-3, for DMPM, MD4, and DFM across data
dimension d. Selected the best result with #steps 2 ⩽ K ⩽ 200
for each method.

Figure 3. FID↓ on MNIST, linear vs. constant flip-schedules scaled
for d total bit flips, with various loss configurations.

ing superior results with significantly fewer reverse steps
(typically 30 vs 100), highlighting its sampling efficiency.

4.2. Experiments on Higher-Dimensional Binary
MNIST

DMPM sampler and flip-schedule. We evaluate the
DMPM sampler using constant and linear flip-schedules
{Mtk}Kk=1. Empirically, performance is optimal when the
total number of flipped bits matches the input dimension,
i.e.,

∑K
k=1Mtk = d. We scale each flip-schedule accord-

ingly. Figure 3 illustrates that performance remains stable
across different values of K as long as the total number of
flips is held constant, allowing for significant speedups by
reducing the number of reverse steps and thus network calls.

Using a model trained with the weighted loss Lw1/3,1/3,1/3
and a linear flip-schedule, we achieve a best FID of 4.77
using only 25 network calls. The linear schedule consis-
tently outperforms the constant variant; flipping fewer bits
early helps guide the model toward more coherent samples,
similarly as what is reported for MD4 (Shi et al., 2024).

Loss function configuration. Among the losses we tested,
the balanced form Lw1,,1,,1 consistently yields the best results.
The weighting factor w helps normalize the scale of the
ℓ2, cross-entropy, and KL components at each timestep,
improving overall synergy. Figure 5 illustrates these effects.
Nonetheless, simpler variants such as LL2 and LwL2 already
achieve near-optimal performance in many settings.

Denoise-renoise sampler and comparison with state-of-
the-art. We further exploit the discrete denoiser struc-

Method 10 25 50 100 200 500

DFM FID 227.55 156.26 88.93 39.62 16.26 7.34
Fdc
1 0.00 0.00 0.01 0.14 0.41 0.68

MD4 FID 97.97 33.50 14.06 6.83 4.48 3.43
Fdc
1 0.04 0.29 0.57 0.76 0.83 0.86

DMPMflips
FID 16.30 9.98 11.07 9.07 7.80 10.84
Fdc
1 0.64 0.92 0.93 0.93 0.93 0.70

DMPMdenoise
FID 78.20 20.94 8.62 3.98 2.89 4.36
Fdc
1 0.13 0.67 0.87 0.96 1.00 1.00

Table 1. FID↓ (first row of each method) and Fdc
1 ↑ (second row)

on MNIST for various total reverse steps. We highlight the best
result in bold, the 2nd best in italics, and underline the 3rd best.

ture through a denoise-renoise sampler (Algorithm 5, Ap-
pendix C.4), which alternates single-step denoising and
re-noising in a multistep loop. This approach leverages
the model’s learned transitions more effectively, leading to
notable gains in sample quality.

We compare DMPM, trained with the balanced loss Lw1,1,1,
under two sampling strategies—denoise-renoise and lin-
ear flip-schedule—against state-of-the-art baselines: MD4
(masked diffusion) and DFM (discrete flow matching). Re-
sults are reported for varying numbers of reverse steps K,
using both Fréchet Inception Distance (FID) and the Fdc

1

metric, a harmonic mean of coverage and density (Naeem
et al., 2020). While FID captures overall realism, Fdc

1 re-
flects local distributional fidelity; full details are in Ap-
pendix D.3.

As shown in Table 1, both DMPM variants (rows 3 and 4)
consistently outperform the baselines. AtK = 200, DMPM
(denoise-renoise) achieves the best FID (2.89) and perfect
Fdc
1 (1.00), surpassing MD4 (4.48) and DFM (16.26). Even

with K = 50, it maintains strong results (FID 8.62, Fdc
1

0.87). Similarly, DMPM with flip-schedule achieves FID
below 10 and Fdc

1 above 0.90 at K = 25, demonstrating
excellent efficiency with minimal network calls.

Sample grids illustrating visual quality are shown in Figure 7
and Figure 8.

4.3. Conclusions

Our experiments show that DMPM consistently matches
or surpasses state-of-the-art performance on both low- and
high-dimensional discrete datasets. On binarized MNIST, it
achieves better FID and Fdc

1 than competing methods, with
fewer network calls. These gains stem from our princi-
pled reparameterization of the score function as a denoiser,
and a stable, well-structured training objective. Together,
they yield a scalable and theoretically sound framework for
discrete generative modeling.
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A. Existing works on diffusion-based generative models for discrete data
This section provides details of the recent researches on discrete generative models.

Embedding discrete structure in the continuous space. To keep the benefits of continuous representations, Dieleman
et al. (2022) and Chen et al. (2022b) mapped discrete structures into Euclidean space, while Richemond et al. (2022) placed
them into the simplex, all while continuing to use forward continuous diffusion models. In particular, Dieleman et al. (2022)
proposed a continuous diffusion model for categorical data, which has some advantages over autoregressive models, such
as the ability to perform arbitrary infilling and a more flexible sampling process. However, this method comes with an
expensive training cost and lacks of strong theoretical guarantees.

Argmax flows and Multinomial Diffusion. Hoogeboom et al. (2021) introduced two new generative models, Argmax
Flows and Multinomial Diffusion, to handle categorical data like text and image segmentation. Argmax Flows connect
discrete data with continuous models by using an argmax function combined with a probabilistic inverse, making categorical
distributions easy-learning. Multinomial Diffusion process uses a categorical distribution to add noise to discrete data and
then trains a model to reverse the process. However, both Argmax Flows and Multinomial Diffusion have some limitations:
computational costs increase due to additional steps , and the theoretical guarantee is missing.

Designing the flow processes over the discrete state space. Campbell et al. (2022) introduced the first complete
continuous-time framework for denoising diffusion models applied to discrete data. They used CTMCs to model the forward
noising process and its time-reversal dynamics. While the core idea is similar to ours, their approach is more complex
because their method consider generic CTMC and is not specialized to the noising process that we consider. As a result, their
method essentially boils down learning density ratios which can be computationally demanding and fail to offer efficient
approximation in high dimensions. They also added a correction step to bring the sample distribution closer to the desired
one, which increased the practical training cost Gat et al. (2024). By focusing on the random-walk CTMC on X, we were
able to provide a discrete counterpart to the score function that is learn in continuous diffusion models and also to establish
strong convergence guarantees for our method. Campbell et al. (2024) further extended this line of work by adapting
flow-matching techniques to discrete domains using conditionally defined rate matrices. However, their method does not
derive the reverse process from a time-reversal principle, and thus relies on hand-crafted dynamics with limited theoretical
justification.

Generator Matching. Another recent approach to handle discrete data is generative modeling with arbitrary Markov
processes using generator matching, introduced by Holderrieth et al. (2024). In this approach, the authors design an
appropriate Markov process that transforms a simple distribution into the desired data one using a generator, which can be
efficiently trained with a neural network. This method is quite flexible and can be applied to different state spaces, especially
in discrete settings. However, this method being very generic suffer from the same drawback as Campbell et al. (2022).

Masked diffusion models. One important step toward more advanced models is the “masked” diffusion process, a discrete
diffusion approach first introduced by Austin et al. (2021). Recently, Shi et al. (2024) looked into this model further,
simplifying its training objective by expressing it as a signal-to-noise ratio, which helps highlight some useful features.
However, despite these improvements, the model still lacks theoretical guarantees. Sahoo et al. (2024) improved upon this
direction by leveraging the structure of the absorbing kernel and refining the bridge-based reverse process, leading to more
efficient optimization. The model’s reliance on absorbing-state approximations and heuristic training objectives limits its
theoretical grounding.

Direct score parameterization. Lou et al. (2024) propose to learn the score function directly as a density ratio rather than a
denoising map. This formulation leads to a single entropic regularization loss equivalent to (22) in our paper. However, it
misses our discrete denoiser decomposition we use and the associated L2 projection and cross-entropy terms, which improve
training stability.

Discrete Diffusion Models via a Stochastic Integral Framework. Ren et al. (2024) introduced a new way to analyze
discrete diffusion models via Lévy-type stochastic integrals and expanded Poisson random measures. Specifically, they
established the stochastic integral expressions of the noising and denoising processes for the categorical data. They provided
a unified error analysis framework and showed the first error bound for their algorithms in KL divergence. However, their
results rely on strong assumptions in contrast to our results. Besides, our bounds are simpler and better, in particular with
respect to the time horizon.

Denoising without time dynamics. Concurrently with our work, Bach & Saremi (2025) propose a discrete denoising model
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that avoids continuous-time formulations altogether. Their method treats Bernoulli corruption as an analogue of Gaussian
smoothing, enabling a Langevin-style sampler on the hypercube. This approach is complementary to CTMC-based methods
and their dynamic interpretability.

Our paper takes a step toward bridging these gaps. By clearly describing the forward Markov process, we can express the
score function as a conditional expectation, which helps us avoid the costly signal-to-noise ratio training used in Shi et al.
(2024). This way, we not only offer a simpler and more affordable training approach, but also provide solid theoretical
guarantees for our models in practice.

B. Interpretation of DMPMs
B.1. The simple case X = {0, 1}

We start by explicitly constructing our forward process (
−→
X t)t∈[0,Tf ] starting from

−→
X 0 ∼ µ⋆. Consider the fixed jump

times (Ti)i∈{1,...,N}|N
iid∼ Unif([0, Tf ]) of a Poisson process over [0, Tf ] where N ∼ Pn(λTf ) is the number of jump,

and λ > 0 is a prescribed jump rate. Without loss of generality, we assume that 0 = T0 ⩽ T1 < . . . < TN . We define
recursively (

−→
X t)t∈[0,Tf ] over (Ti, Ti+1]. Suppose that

−→
XTi has been defined we set

−→
X t =

−→
XTi for any t ∈ (Ti, Ti+1) and

−→
XTi+1

= 1−
−→
XTi

. It is well known that (
−→
X t)t∈[0,Tf ] is a Markov jump process (Owen, 2021, Section 6) with generator

−→q 1 defined for any x, y ∈ X as

−→q 1(x, y) :=

{
λ , if y ̸= x ,

−λ , otherwise .
(38)

The transition probability matrix P(
−→
X t = y|

−→
X 0 = x) = −→p 1

t (x, y), for x, y ∈ X, 0 ⩽ t ⩽ Tf , is known to be

−→p 1
t (x, y) =

{
1
2 + 1

2e
−2λt , if x = y ,

1
2 −

1
2e
−2λt , otherwise .

(39)

Detailed calculation of the transition probability in (6). Based on the Kolmogorov equation, the transition matrix −→p 1
t for

0 ⩽ t ⩽ Tf admits the following formula
−→p 1
t = et

−→q 1

,

where −→q 1 is define in (5). Clearly, the generator −→q 1 admits two eigenvalues 0 and −2λ associated with the eigenvectors(
1 1

)T
and

(
1 −1

)T
respectively. Thus we can diagonalize −→q 1 as

−→q 1 =

(
1 1
1 −1

)(
0 0
0 −2λ

)(
1 1
1 −1

)−1
,

and the transition matrix −→p 1
t follows

−→p 1
t = et

−→q 1

=

(
1 1
1 −1

)(
1 0
0 e−2λt

)(
1 1
1 −1

)−1
=

1

2

(
1 + e−2λt 1− e−2λt

1− e−2λt 1 + e−2λt

)
.

B.2. General state space X = {0, 1}d

B.2.1. FORWARD PROCESS

We consider the jump times (Ti)i∈{1,...,N}|N
iid∼ Unif([0, Tf ]) of a Poisson process over [0, Tf ] where N ∼ Pn(λTf )

is the number of jump. Without loss of generality, we suppose that T0 = 0 ⩽ T1 < . . . < TN . We define recursively
(
−→
X t)t∈[0,Tf ] over (Ti, Ti+1] as follows. Suppose

−→
XTi

has been defined. We set
−→
X t =

−→
XTi

for t ∈ (Ti, Ti+1), and finally,

set
−→
X ℓi
Ti+1

= 1 −
−→
X ℓi
Ti

, where ℓi ∼ Unif({1, . . . , d}), with ℓi independent from the past, and
−→
X j
Ti+1

=
−→
X j
Ti

for j ̸= ℓi.
The associated generator matrix is given in (14). We now seek to obtain the associated transition matrix.
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Proof of (15). We start with a note that the generator matrix −→q can be expressed as a sum of matrices −→q ℓ as follows

−→q =

d∑
ℓ=1

−→q ℓ, with −→q ℓ(x, y) =


λ , if xi = yi for i ̸= ℓ and xℓ ̸= yℓ ,

−λ , if x = y ,

0 , otherwise .

Notice that −→q ℓ also admits the following formula with respect concerning the tensor product

−→q ℓ = I⊗ I⊗ ...⊗ I⊗
−→
A ⊗ I⊗ ...⊗ I︸ ︷︷ ︸

d times

, (40)

with I the 2 × 2 identity matrix and
−→
A =

(
−λ λ
λ −λ

)
, which is the ℓth matrix in the previous product. Indeed, by the

definition of tensor product, for any x = (xi)di=1, y = (yi)di=1 ∈ X, we observe that

(I⊗ I⊗ ...⊗ I⊗
−→
A︸︷︷︸
ℓth

⊗I⊗ ...⊗ I)(x, y) = I(x1, y1)I(x2, y2)...
−→
A (xℓ, yℓ)...I(xd, yd)

=


λ , if xi = yi for i ̸= ℓ and xℓ ̸= yℓ ,

−λ , if x = y ,

0 , otherwise .

which is exactly the expression of −→q ℓ(x, y). We now use the Kolmogorov equation combined with the expression of −→q ℓt in
(40), and apply the formula eI⊗A+B⊗I = eA ⊗ eB for any matrix A,B (Gavrilyuk et al., 2011, Appendix) to get

−→p t = et
−→q = e

∑d
ℓ=1 t

−→q ℓ

= et
−→
A ⊗ ...⊗ et

−→
A︸ ︷︷ ︸

d times

.

We are thus left with the computation of et
−→
A . It is clear that the eigenvalues of

−→
A are 0 and −2λ, with the corresponding

eigenvectors
(
1 1

)T
and

(
1 −1

)T
respectively. Consequently, we can compute et

−→
A as: for any a, b ∈ {0, 1},

−→p 1
t (a, b) := et

−→
A (a, b) =

{
1
2 + 1

2e
−2λt , if a = b ,

1
2 −

1
2e
−2λt , if a ̸= b ,

and the formula of transition probability −→p t for 0 ⩽ t ⩽ Tf follows: for any x = (xi)di=1 and y = (yi)di=1 in X,

−→p t(x, y) =
d∏
i=1

−→p 1
t (x

i, yi), with −→p 1
t (x

i, yi) =

{
1
2 + 1

2e
−2λt , if xi = yi ,

1
2 −

1
2e
−2λt , otherwise .

B.2.2. CONDITIONAL EXPECTATION EXPRESSION OF THE SCORE FUNCTION

Proof of Proposition 1.1. Fix x ∈ X and ℓ = 1, . . . , d. First note that by definition of µTf−t as the marginal distribution of
the noising process, we have

µTf−t(x)− µTf−t(φ
(ℓ)(x)) =

∑
z∈X

µ0(z)(
−→p Tf−t(z, x)−

−→p Tf−t(z, φ
(ℓ)(x))) . (41)
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The formula of transition probabilities −→p Tf−t(z, φ
(ℓ)(x)) combined with the definition of φ(ℓ)(x) lead to

−→p Tf−t(z, φ
(ℓ)(x)) =

d∏
i=1

−→p 1
Tf−t(z

i, φiℓ(x))

= −→p 1
Tf−t(z

ℓ, φℓℓ(x))

d∏
i=1
i ̸=ℓ

−→p 1
Tf−t(z

i, xi)

=

−→p 1
Tf−t(z

ℓ, φℓℓ(x))
−→p 1
Tf−t(z

ℓ, xℓ)
−→p Tf−t(z, x) .

Substituting this into (41) implies

µTf−t(x)− µTf−t(φ
(ℓ)(x)) =

∑
z∈X

µ0(z)
−→p 1
Tf−t(z, x)(1−

−→p 1
Tf−t(z

ℓ, φ(ℓ),ℓ(x))
−→p 1
Tf−t(z

ℓ, xℓ)
)

=
∑
z∈X

[
2e−2λ(Tf−t)

1 + e−2λ(Tf−t)
− 4e−2λ(Tf−t)(xℓ − zℓ)2

1− e−4λ(Tf−t)

]
P
[−→
X 0 = z,

−→
XTf−t = x

]
,

where the last equality comes from the formula of −→p 1
Tf−t and the fact that if zℓ = φ(ℓ),ℓ(x) then zℓ ̸= xℓ. Therefore, the

score function in components are

sℓt(x) =
µTf−t(x)− µTf−t(φ

(ℓ)(x))

µTf−t(x)

=
∑
z∈X

[
2e−2λ(Tf−t)

1 + e−2λ(Tf−t)
− 4e−2λ(Tf−t)(xℓ − zℓ)2

1− e−4λ(Tf−t)

]
P
[−→
X 0 = z|

−→
XTf−t = x

]

= E

 2αTf−t

1 + αTf−t
−

4αTf−t(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

∣∣∣∣∣∣−→XTf−t = x

 ,

where αt = e−2λt, and we finish the proof of Proposition 1.1.

B.2.3. INVARIANT MEASURE OF THE FORWARD PROCESS

As we have a comprehensive understanding of the forward process, we observe that its invariant measure is the uniform
distribution over X, denoted by γd. Indeed, for any x ∈ X and t ∈ [0, Tf ],

(γd−→p t)(x) =
∑
z∈X

γd(z)−→p t(z, x) =
1

2d

∑
z∈X

−→p t(z, x) =
1

2d
= γd(x) .

Furthermore, by formula of −→p given in (15), we have −→p t(x, y)
t→∞−−−→ 1

2d
for any x, y ∈ X. Consequently, the following

holds for any x ∈ X,

µt(x) =
∑
z∈X

µ0(z)
−→p t(z, x)

t→∞−−−→ 1

2d

∑
z∈X

µ0(z) =
1

2d
= γd(x) ,

meaning that the forward dynamic (
−→
X t)t∈[0,Tf ] converges geometrically fast to γd.

C. Implementation of DMPMs
C.1. Alternative ideal backward simulation

Besides the simulation of the backward process provided in Section 1.3, we can also use the following procedure to produce
the time-reversal dynamic.
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The second procedure to sample (
←−
X t)t∈[0,Tf ] is to consider a sample

←−
X 0 from µTf

and a sequence of i.i.d. random variables
distributed according to the exponential distribution with parameter 1, {Eℓi : i ∈ N , ℓ ∈ {1, . . . , d}}, we can define the
jump times (Ti)i∈N of the backward process and its transition by induction setting T0 = 0. Given (Ti,

←−
XTi

), we define the
next jump time as T ji+1 = Ti+∆T ji+1, where ∆T ji+1 = inf{t ⩾ 0 :

∫ t
0
λ(1−sj(

←−
XTi))dr ⩾ Eji }. Then, set Ti+1 = T ℓii+1,

where ℓi = argminj∈{1,...,d} T
j
i+1, and

←−
X t =

←−
XTi

for t ∈ (Ti, Ti+1 ∧ Tf ), and finally if Ti+1 < Tf ,
←−
X ℓi
Ti+1

= 1−
←−
X ℓi
Ti

for ℓi ∈ {1, . . . , d}.

C.2. Perfect backward approximation

We provide here the pseudo-code of backward approximation sampling in continuous time scheme:

Algorithm 1 DMPMs Algorithm (Continuous time scheme)
Input: a time horizon Tf ≫ 1 large enough, a prescribed jump rate λ, an approximate score function
sθ

⋆

Backward process:
Set T0 = 0 and initialize

←−
X 0 ∼ γd

i← 0
while Ti ⩽ Tf do

Draw Ei ∼ Exp(1)
Solve ∆Ti+1 = inf{t ⩾ 0 :

∫ t
0
λθ

⋆

Ti+r
(
←−
XTi)dr ⩾ Ei}, with λθ

⋆

t (x) = λ
∑d
ℓ=1(1− s

θ⋆,ℓ
t (x))

Set Ti+1 = Ti +∆Ti+1

if Ti < t < min(Ti+1, Tf ) then
Set
←−
X t =

←−
XTi

end if
if Ti+1 < Tf then

Draw ℓi ∈ {1, . . . , d} ∼ Cate({λ(1− sθ
⋆,ℓ
Ti+1

(
←−
XTi

))/λθ
⋆

Ti+1
(
←−
XTi

)}dℓ=1)

Set
←−
XTi+1

= φ(ℓi)(
←−
XTi

)
end if
i← i+ 1

end while
Output:

←−
XTf

C.3. Discrete denoiser and score reparameterization

Discrete-denoiser structure.

Recall from Proposition 1.1 that each score component admit the following conditional expectation:

sℓt(x) = E
[
f ℓt (
−→
X ℓ

0,
−→
XTf−t)|

−→
XTf−t = x

]
, (42)

where

f ℓt (
−→
X ℓ

0,
−→
XTf−t) =

2αTf−t

1 + αTf−t
−

4αTf−t(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

(43)

for t ∈ [0, Tf ), x ∈ X and ℓ = 1, . . . , d.

Remark that

E
[
f ℓt (
−→
X ℓ

0,
−→
XTf−t)|

−→
XTf−t = x

]
=

2αTf−t

1 + αTf−t
−

4αTf−tE
[
(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2|
−→
XTf−t = x

]
1− α2

Tf−t
. (44)

17



Discrete Markov Probabilistic Models

Thus we introduce the function dℓt defined as

dℓt : x 7→ E
[
(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2|
−→
XTf−t = x

]
, (45)

which can be further rewritten as

dℓt(x) = E
[(−→
X ℓ
Tf−t −

−→
X ℓ

0

)2 ∣∣∣∣−→XTf−t = x

]
= E

[
1−→
X ℓ

Tf−t ̸=
−→
X ℓ

0

∣∣∣∣−→XTf−t = x

]
= P

(
−→
X ℓ

0 ̸= xℓ
∣∣∣∣−→XTf−t = x

)
.

In some sense, this is the discrete version of the continuous denoiser E[
−→
X 0|
−→
X t] approximated by classical diffusion models

(Song et al., 2021), as obtained from the score by Tweedie’s formula. Thus we call dℓt(x) the discrete denoiser.

Score reparameterization. Based on the previous derivations, each score component sℓt(x) can be written as a function of
dℓt:

sℓt(x) =
2αTf−t

1 + αTf−t
−

4αTf−td
ℓ
t(x)

1− α2
Tf−t

, (46)

So we can reparameterize our score models sθt as

sθ,ℓt (x) =
2αTf−t

1 + αTf−t
−

4αTf−td
θ,ℓ
t (x)

1− α2
Tf−t

, (47)

where dθ,ℓt (x) aims to approximate dℓt(x).

C.4. Objective functions derived from the discrete denoiser structure

Inspired by the previous derivations, we modify our existing LL2 loss function to replace by a denoising loss equivalent. We
introduce a cross-entropy loss, and finally propose a scaling of the loss functions, based on the average output magnitude of
the discrete denoiser, thus helping with the learning, and improving synergies between loss elements.

Score-matching objective LL2 . We rewrite the objective function LL2 to fit the discrete denoiser, considered as a conditional
expectation:

Lden
L2 : θ 7→

∫ Tf

0

Lt,L2(θ)dt , Lt,L2(θ) = E
[
∥dθTf−t(

−→
X t)− (

−→
X 0 −

−→
X t)d(

−→
X 0 −

−→
X t)∥2

]
, (48)

where d is the element-wise product.

Cross-entropy objective LCE. Instead of the LL2 loss suggested by the conditional expectation structure, we can consider
a cross-entropy loss to fit our model to the correct distribution: classical derivations from the conditional log-likelihood∑d
ℓ=1 E

[
log pθ,ℓt (

−→
X ℓ
Tf−t|

−→
X ℓ

0)
]
, where

pθ,ℓt (xTf−t|x0) =

{
dθ,ℓt (xTf−t) if xTf−t ̸= x0

1− dθ,ℓt (xTf−t) else
, (49)

lead to the following cross entropy loss:

LCE(θ) =−
∫ Tf

0

Lt,CE(θ)dt , (50)

18



Discrete Markov Probabilistic Models

where

Lt,CE(θ) = E

[
d∑
l=1

Y ℓt log dθ,ℓt (
−→
X ℓ
Tf−t) + (1− Y ℓt ) log

(
1− dθ,ℓt (

−→
X ℓ
Tf−t)

)]
, Y ℓt =

{
1 if

−→
X ℓ

0 ̸=
−→
X ℓ
Tf−t ,

0 else .

Further improvements. To address training efficiency, we inspect the average magnitude of the loss across the dataset, at
each timestep. Indeed, the average value of dℓt is

wTf−t = E
[
dℓt(
−→
XTf−t)

]
= E

[
E
[
dℓt(
−→
XTf−t)

∣∣∣−→X 0

]]
(51)

= E
[
P
(−→
X ℓ

0 ̸=
−→
X ℓ
Tf−t

∣∣∣−→X 0

)]
(52)

=
1

2

(
1− αTf−t

)
, (53)

as given by the formulas for the transition kernels of the forward process. We can see that the value of wt is close to zero for
small values of t, which stalls the learning process. Empirically, we find that dividing the integrand of either loss terms LL2

or LCE by wt yields improvements. As a result, we modify the losses to counterbalance their diminishing magnitude across

timesteps: Lwt,L2 =
Ldenoiser

t,L2

wt
, Lwt,CE =

Lt,CE
wt

, and define the associated losses

LwL2(θ) =

∫ Tf

0

Lwt,L2(θ)dt , LwCE(θ) = −
∫ Tf

0

Lwt,CE(θ)dt . (54)

Comparing LL2 ,LCE,L
w
L2 ,LwCE.

In Figure 4, we plot the average loss per timestep, for a trained model on MNIST (following the specifications given in
Appendix D.2)). It shows that, on average, the LL loss effectively becomes a scaled variant of the cross-entropy objective,
which is reflected in similar performance results. This corroborates our derivation that L2 acts as an effective lower bound to
the log-likelihood. This also supports its relevancy with respect to the underlying structure of this generative model. It must
be noted that both losses still benefit from positive synergies when used together.

Importantly, dividing by wt = (1 − αt)/2 particularly helps at smaller timesteps, and keeps the loss values at the same
magnitude across timesteps, enhancing training dynamics. This is illustrated in Figure 5, where scaling the losses with the w
scale factor consistently yields improvements.

Figure 4. Comparison of LL2 ,LCE,L
w
L2 ,L

w
CE average losses over

timesteps. The two losses become scaled version of one another
only when averaged over data, but otherwise benefit from positive
synergies when mixed together.

Figure 5. FID↓, on MNIST, for models trained with Lϖ and Lw
ϖ

losses, evaluated using 200 reverse steps with the denoise-renoise
sampler. Scaling with w yields consistent improvements, with the
best loss configuration Lw

1/3,1/3,1/3 involving all the methodologi-
cal improvements we discussed.
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Final objective functions. We choose a linear combination of the previous loss objectives, weighted by positive coefficients
ϖ1, ϖ2, ϖ3:

Lϖ = ϖ1L
den
L2 +ϖ2Le +ϖ3LCE , (55)

and, if we choose their version weighted by 1/wt:

Lwϖ = ϖ1L
w
L2 +ϖ2Le +ϖ3L

w
CE . (56)

Algorithm 2 Training Algorithm for DMPM (Reparameterized Score)
Require: Dataset D of samples X ∈ {0, 1}d;

Time horizon Tf > 0 and rate λ > 0;
Parameterized discrete denoiser model {dθ,ℓt (x) : θ ∈ Θ}t,ℓ,x;

Derived score function sθt :=
2αTf−t

1+αTf−t
− 4αTf−td

θ
t

1−α2
Tf−t

(score reparameterization (24));

Define αt as in (13), ft as in (19);
Loss coefficients ϖ1, ϖ2, ϖ3 ⩾ 0;

1: while optimization has not converged do
2: Sample a batch {Xi}Bi=1 from D.

3: Draw t1, . . . , tB
iid∼ Unif([0, Tf ])

4: Forward sampling: fast simulation via pt|0 = (p1t|0)
⊗d

5: for i = 1 to B do
6:

−→
X i,0 ← Xi

7: pTf−ti ← (1− αTf−ti)/2

8: Compute
−→
X i,Tf−ti by flipping each bit of

−→
X i,0 independently with probability pTf−ti

9: if Scaling losses with average dt magnitude then
10: wi ← (1− αTf−ti)/2
11: else
12: wi ← 1
13: end if
14: end for

15: LL2(θ)← 1
B

∑B
i=1

1
wi
∥dθt (
−→
X i,Tf−ti)− (

−→
X i,Tf−ti −

−→
X i,0)d(

−→
X i,t −

−→
X i,0)∥2

16: LCE(θ)← 1
Bd

∑B
i=1

1
wi

∑d
l=1

(
1−→
X ℓ

0 ̸=
−→
X ℓ

Tf−ti

log dθ,ℓti (
−→
X ℓ
Tf−ti) + (1− 1−→

X ℓ
0 ̸=
−→
X ℓ

Tf−ti

) log(1− dθ,ℓti (
−→
X ℓ
Tf−ti)

)
17: Le(θ)← 1

B

∑B
i=1

∑d
ℓ=1

(
− sθ,ℓTf−ti(

−→
X ti) + (f ℓTf−ti(

−→
X ti)− 1) log(1− sθ,ℓTf−ti(

−→
X ti))

)
18: Lϖ(θ)← ϖ1 L

den
L2 +ϖ2 Le +ϖ3 LCE

19: Perform a gradient step on Lϖ(θ) w.r.t. θ.
20: end while
21: Return the final parameter θ⋆.

C.5. Generative process and sampling procedures

Once we obtain our neural network dθt approximating dt, we use it to produce fresh samples that closely mimic the observed
data. To do so, we first introduce a DMPM sampler based on the true reverse process. We then propose a slight modification,
leveraging the distribution on indices available at each step, by flipping multiple bits instead of just one, using a flip-schedule.
Finally, we derive a denoise-renoise sampler, solely based on the discrete denoiser structure of the problem, as inspired by
similar lines of work in conitnuous diffusion.

DMPM sampler. A first sampling procedure is given in Algorithm 3. It is designed to be as close as possible to the true
backward process, while enabling efficient parallelization when implemented. It consists in a piecewise-approximation of
the functions of interest, parameterized by the choice of a time discretization grid 0 = t0 < t1 < · · · < tK = Tf , which we
call a time-schedule.
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In Table 2, we give the different time-schedules we experiment with. We draw inspiration from numerous lines of work on
continuous and discrete diffusion (Shi et al., 2024; Karras et al., 2022), in which these are common choices.

DMPM sampler with flip-schedule In Algorithm 4, we further take advantage of the specific structure of our backward
process, by leveraging the distribution over indices given by the learned score model at each timestep t. Instead of flipping a
single bit per timestep tk, we flip a total of Mtk bits sampled without replacements from the given distribution. We call the
sequence {Mt}0⩽t⩽Tf

the flip-schedule. When a time-schedule {tk}Kk=1 has been chosen, we also call the corresponding
discrete sequence {Mtk}Kk=1 a flip-schedule.

In Table 3, we give the two flip-schedules we explore in this paper. The choice for the linear schedule is inspired from the
philosophy of the masking schedule introduced in the context of masked diffusion by Shi et al. (2024).

Time-schedule Value of tk
Linear Tf

k
K

Quadratic Tf
(
k
K

)2
Cosine Tf cos

(
(1−k/K)π

2

)
Table 2. Different time schedules (tk)Kk=1 used in our experiments.
Tf denotes the final time, and K is the number of reverse steps.

Flip-schedule Value of Mt

Constant M
Linear M t

Tf

Table 3. Different flip schedules (Mt)0⩽t⩽Tf used in our experi-
ments. In both schedules, M is a constant to be fixed and controls
the total number of bits flipped during generation.

Denoise-renoise sampler. In Algorithm 5, we introduce the following denoise/renoise cycle, interpreting the model output
dθt as the probability that each bit should be flipped at timestep t to reach timestep 0. After doing a full denoise pass (from
time Tf → 0), we noise the sample with the transition kernel of the forward process (from time 0→ Tf −∆). Then we can
do another denoise pass from (Tf −∆)→ 0, etc.

Algorithm 3 Backward sampling of DMPM with piecewise-constant score
Require: Time horizon Tf > 0 and rate λ > 0;

K > 0 number of reverse steps and time-schedule 0 = t0 < t1 < · · · < tK = Tf ;
Flip-schedule, i.e., sequence of positive integers {Mtk}Kk=1;
Discrete denoiser model dθ;

Derived score function sθt :=
2αTf−t

1+αTf−t
− 4αTf−td

θ
t

1−α2
Tf−t

(score reparameterization (24));

Define αt as in (13);

1:
←−
X θ

0 ∼ Unif(0, 1)⊗d

2: E ∼ E(1)
3: Λ← 0
4: for k = 0 to K − 1 do
5: λtk ← λ

∑d
l=1

(
1− sθ,ℓtk

)
6: ∆tk ← tk+1 − tk
7: Λ← Λ + λtk ∆tk
8: if Λ > E then

9: ℓ⋆ ∼ Cate
({λ (1− sθ,ℓtk )

λtk

}d
ℓ=1

)
10:

←−
X θ,ℓ⋆

tk
← 1−

←−
X θ,ℓ⋆

tk
11: Λ← 0
12: E ∼ E(1)
13: end if

14:
←−
X θ
tk+1
←
←−
X θ
tk

15: end for
Output:

←−
X θ
Tf
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Algorithm 4 Backward sampling of DMPM with piecewise-constant score and flip-schedule
Require: Time horizon Tf > 0 and rate λ > 0;

K > 0 number of reverse steps and time-schedule 0 = t0 < t1 < · · · < tK = Tf ;
Flip-schedule, i.e., sequence of positive integers {Mtk}Kk=0;
Discrete denoiser model dθ;

Derived score function sθt :=
2αTf−t

1+αTf−t
− 4αTf−td

θ
t

1−α2
Tf−t

(score reparameterization (24));

Define αt as in (13);

1:
←−
X θ

0 ∼ Unif(0, 1)⊗d

2: E ∼ E(1)
3: Λ← 0
4: for k = 0 to K − 1 do
5: λtk ← λ

∑d
l=1

(
1− sθ,ℓtk

)
6: ∆tk ← tk+1 − tk
7: Λ← Λ + λtk ∆tk
8: if Λ > E then

9: [ ℓ⋆1, . . . , ℓ
⋆
M ] ∼ Hypergeometric

({λ (1− sθ,ltk )
λtk

}d
l=1

, Mtk

)
10: for i = 1 to Mtk do
11:

←−
X
θ,l⋆i
tk
← 1−

←−
X
θ,l⋆i
tk

12: end for
13: Λ← 0
14: E ∼ E(1)
15: end if

16:
←−
X θ
tk+1
←
←−
X θ
tk

17: end for
Output:

←−
X θ
Tf

Algorithm 5 Denoise–Noise Cycling with a Discrete Denoiser Model
Require: Time horizon Tf > 0 and rate λ > 0;

K > 0 number of reverse steps and time-schedule 0 = t0 < t1 < · · · < tK = Tf ;
Discrete denoiser model dθ;

1:
←−
X θ

0 ∼ Unif(0, 1)⊗d {initial sample in {0, 1}d}
2: for k = 0 to K − 1 do
3: Denoise phase:
4: dtk ← dθtk

(←−
X θ
tk

)
5: Compute

←−
X θ
Tf

by flipping each component l of
←−
X θ
tk

with probability dltk
6: Noise phase:
7: Sample

←−
X θ
tk+1
∼ pTf−tk+1|0(·|

←−
X θ
Tf
), as in Algorithm 2

8: end for
Output:

←−
X θ
Tf
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D. Experiments
All experiments are conducted using PyTorch. All the training and experiments are conducted on four NVIDIA RTX8000
GPU.

We use the score parameterization introduced in (47):

sθ,ℓt (x) =
2αTf−t

1 + αTf−t
−

4αTf−td
θ,ℓ
t (x)

1− α2
Tf−t

, (57)

where the neural network dθ,ℓt (x) aims to approximate dℓt(x) = P(
−→
X ℓ

0 ̸= xℓ
∣∣−→XTf−t = x). Since the output of the neural

network is dθt (x) ∈ (0, 1)d, we add a sigmoid activation function at the last layer.

We consider various loss configurations Lϖ,Lwϖ as introduced in (26), (56), with 6 choices of coefficients (ϖ1, ϖ2, ϖ3)
normalized in the 2-simplex ∆2 ⊂ R3. We test all 23 − 1 = 7 possible non-empty combinations, minus the single Le loss
combination (ϖ2 = 1), as the latter only acts as entropic regularization and does not perform well by itself. This lets us
study the synergies between the different loss terms.

D.1. Small dimension data

We first conduct experiments on a discrete data distribution p supported on {0, 1}d. Each component of X = (Xi)
d
i=1 ∼ p

is independently distributed as a Bernoulli distribution with parameter pi:

p(x) =

d∏
i=1

pi(xi) , (58)

where the map i 7→ pi forms a sawtooth-like pattern, oscillating linearly between 0.05 and 0.95, as can be seen in Figure 6.

Figure 6. Sawtooth pattern used to define i 7→ pi, plotted with d = 16. Values oscillate linearly from 0.05 to 0.95, and back.

For training, we use 20 000 datapoints resampled at each epoch, and a batch size of 1024. We train each model for 300
epochs, using AdamW with a learning rate of 1e-3. We employ a network composed of multiple MLP blocks: 4 residual
blocks, each consisting of two feed-forward layers of width 256; layer normalization and SiLU activations in each block; a
feed-forward embedding for the timesteps, mapping R to a hidden dimension of 256, whose output is then injected into each
residual block by an additional MLP of dimension 256× 256.

For evaluation, we estimate each distribution with 20,000 samples, and draw 1000 vectors uniformly on the simplex ∆d to
compute our SWD metric (see Appendix D.3).

D.2. Image data

We work on the binarized MNIST dataset, which we scale from 28× 28 to 32× 32 in order to fit in the U-Net architecture.
We set the pixel value to 0 if its intensity is below 0.5, and to 1 otherwise.

We compare DMPM to MD4 (masked diffusion, as in Shi et al. (2024)) and DFM (discrete flow matching, as in Gat et al.
(2024)). We reimplement MD4 with the cosine schedule and the algorithms given in Appendix F of Shi et al. (2024). We
implement DFM based on the Pytorch implementation in https://github.com/gle-bellier/discrete-fm,
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and we use corrector sampling for better results.

For DMPM, we are using the cosine time-schedule and time horizon Tf = 3. For both MD4 and DFM, we set the mask
value to the integer 2.

To establish a fair comparison, we use the same network model for every method. We use a U-Net following the implemen-
tation of (Nichol & Dhariwal, 2021) available in https://github.com/openai/improved-diffusion. We
dimension the network as follows.

The first layer is an embedding layer of output dimension 32 and input dimension dinput, where dinput = 2 for DMPM (input
values are either 0 and 1) and dinput = 3 for MD4 and DFM (input values are either 0, 1 or the mask value 2).

We set the hidden layers to [128, 256, 256, 256], fix the number of residual blocks to 2 at each level, and add self-attention
block at resolution 16 × 16, using 4 heads. We use an exponential moving average with a rate of 0.99. We use the silu
activation function at every layer. Timestep t is fed to the model through the Transformer sinusoidal position embedding.

For DMPM and MD4, we set the number of output channels to 1 and add a sigmoid activation at the last layer. For DFM,
we set the output channels to 3 and apply softmax channel-wise.

The optimizer is AdamW with learning rate 5e-4. We use the StepLR scheduler which scales the learning rate by γ = .99
every 400 steps. We train on MNIST for 120 000 steps with batch size 256. A single training run on MNIST takes
approximately 6 hours per GPU, and requires about 6-12GB of VRAM for our settings.

To assess the quality of our generative models, we compute our metrics between 4 000 real images and 4 000 generated
images. Generating 4 000 images with 1 000 reverse steps takes approximately 2 hours on one GPU.

D.3. Metrics

For low-dimensional data, we use a custom sliced Wasserstein metric. For image data, in addition to the classical FID metric,
we use a FDC

1 summary score, based on the density and coverage metrics.

FDC.
1 as summary metric of density-coverage The density and coverage metrics are introduced in the setting of generative

models by (Naeem et al., 2020). They assess the overlap of sample distributions using local geometric structures. Density
measures how much the generated distribution is contained in the original data distribution (measuring quality), and coverage
measures how much of the original data distribution is covered by the generated distribution (diversity).

These metrics are improvements of the precision and recall metrics for generative models (Kynkäänniemi et al., 2019). They
offer different measures to characterize the performance of generative models. For instance they can decorrelate the negative
effect of mode collapse from the negative effect of noisy/blurry generations, each of them decreasing respectively coverage
and density, and have been of importance in recent studies, e.g., in heavy-tailed generative modeling (Shariatian et al., 2024;
Yoon et al., 2023).

We consider a single summary FDC
1 score, which we define as the harmonic mean of these two values:

FDC
1 = 2 · density · coverage

density + coverage
. (59)

Sliced Wasserstein metric SWD.

Since the state space of our dataset over {0, 1}d is of size 2d, we cannot work with histogram-based metrics, which would
require exponentially many samples when d increases.

We address this issue with our sliced Wasserstein metric SWD. This metric is defined between distributions µ, ν on {0, 1}d
as:

SWD(µ, ν) =

∫
∆d

W (u#µ, u#ν) du , (60)

where, for u ∈ ∆d, the pushforward u# is derived from the function

x ∈ {0, 1}d 7→ ⟨u, x⟩ ∈ [0, 1] . (61)

Simple Monte-Carlo averages are used to evaluate the integral with respect to the uniform distribution over the simplex ∆d,
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and we compute the Wasserstein distance between the pushforward measures with the pyemd package (Laszuk, 2017).

E. Additional results
In this section, we give grid images of generated samples for DMPM models trained on binarized MNIST, with the loss
Lw1/3,1/3,1/3.

Figure 7. Default DMPM sampler, 25 reverse steps, cosine time-
schedule, linear flip-schedule dimensioned for 1000 total bit flips.

Figure 8. Denoise-renoise sampler, 200 reverse steps, cosine time-
schedule.
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F. Convergence of DMPMs
The proof of DMPMs’ convergence requires understanding the backward dynamic under the canonical process point of view
equivalent to the transition matrix point of view we provided in Section 1. We provide first some essential preliminaries on
Poisson measures and the corresponding Itô’s formula.

F.1. Some basic facts on stochastic calculus for CTMCs

F.1.1. POINT PROCESSES AND POISSON POINT PROCESSES

Let (Ω,F , (Ft)t⩾0,P) be a filtered probability space satisfying the usual conditions. We say that a non-negative measure
µ on (Y,Y) is a counting measure if µ(A) ∈ N ∪ {+∞} for any A ∈ Y . Let (Y,Y) be a measurable space. Let MY

be the set of counting measures on (Y,Y). Let MY be the smallest σ-field on MY with respect to which the maps
µ ∈MY 7→ µ(B) ∈ N ∪ {+∞}, B ∈ Y , are measurable.

Definition F.1 (Poisson random measure). An (MY,M)-valued random variable µ (i.e., a mapping µ : Ω→MY defined
on a probability space (Ω,F ,P) which is F/M-measurable) is called a Poisson random measure if

• for each B ∈ Y , µ(B) is Poisson distributed; i.e., P(µ(B) = n) = λµ(B)
n exp[−λµ(B)]/n| for any n ∈ N where

λµ(B) = E[µ(B)],B ∈ Y .

• If B1,B2. . . . ,Bn ∈ Y are disjoint, then µ(B1),µ(B2), . . . ,µ(Bn) are mutually independent.

Remark that it is easy to show that λµ is a non-negative measure on (Y,Y) that uniquely determined the distribution of µ
by the monotone class theorem; see (Ikeda & Watanabe, 2014, Chapter I, Section 9). It is called the mean measure or the
intensity measure of the Poisson random measure µ.

Definition F.2. We say that p : Dp ⊂ (0,∞)→ Y is a point function if its domain Dp is a countable subset of (0,∞). p
defines a counting measure Np on (0,∞)× Y endowed with the product σ-field B((0,∞))× Y by

Np((0, t]× U) = Card {s ∈ Dp : s ⩽ t, p(s) ∈ U} , t > 0 , U ∈ Y .

A point process is obtained by randomizing the notion of point functions. Let ΠY be the set of point functions with values in
Y and B(ΠY) be the smallest σ-field on ΠY with respect to which all p 7→ Np((0, t]× U), t > 0,U ∈ Y , are measurable.

Definition F.3 (Point process). A point process p on X is a (ΠY,B(ΠY))-valued random variable, that is, a mapping
p : Ω→ ΠY defined on a probability space (Ω,F ,P) which is F/B(ΠY)-measurable.

A point process p is called stationary if for every t > 0, p and θtp have the same probability law, where θtp is defined by
Dθtp = {s ∈ (0,∞) : s+ t ∈ Dp} and (θtp)(s) = p(s+ t).

Definition F.4 (Poisson point process). A point process p is called Poisson ifNp is a Poisson random measure on (0,∞)×Y.
A Poisson point process is stationary if and only if its intensity measure np(dtdx) = E[Np(dtdx)] is of the form

np(dtdx) = dtn(dx)

for some measure n on (Y,Y).

F.1.2. STOCHASTIC INTEGRAL WITH RESPECT TO POINT PROCESS

Here, we review the construction and definition of stochastic integral with respect to Point Processes for completeness; see
(Ikeda & Watanabe, 2014, Chapter II, Section 3).

Let (Ω,F ,P) be a complete probability space with a right-continuous increasing family (Ft)t⩾0 of sub σ-fields of F each
containing all P-null sets. A point process p = (p(t)) on X defined on Ω is called (Ft)-adapted if for every t > 0 and
U ∈ Y , Np(t,U) =

∑
s∈Dp,s⩽t

1U(p(s)) is Ft-measurable. p is called σ-finite if there exist Un ∈ Y, n = 1, 2, . . . such
that ∪nUn = Y and E[Npt,Un)] <∞ for all t > 0 and n = 1, 2, . . .. For a given (Ft)-adapted, σ-finite point process p, let
Γp = {U ∈ Y; E[Np(t,U)] <∞ for all t > 0}. If U ∈ Γp, then t 7→ Np(t,U) is an adapted, integrable increasing process
and hence there exists a natural integrable increasing process N̂p(t,U) such that Ñp : t 7→ Ñp(t,U) = Np(t,U)− N̂p(t,U)
is a martingale.
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Definition F.5. An (Ft)-adapted point process p on (Ω,F ,P) is said to be of the class (QL) (quasi left-continuous) (w.r.t.
(Ft)) if it is σ-finite and there exists N̂p = (N̂p(t,U)) such that

1. for U ∈ Γp, t 7→ N̂p(t,U) is a continuous (Ft)-adapted increasing process,

2. for each t and a.a. ω ∈ Ω,U 7→ N̂p(t,U) is a σ-finite measure on (Y,Y),

3. for U ∈ Γp, t 7→ Ñp(t,U) = Np(t,U)− N̂p(t,U) is an (Ft)-martingale.

The random measure
{
N̂p(t,U)

}
is called the compensator of the point process p (or {Np(t,U)}).

Definition F.6. A point process p is called an (Ft)-Poisson point process if it is an (Ft)-adapted, σ-finite Poisson point
process such that {Np(t+ h,U)−Np(t,U)}h>0,U∈Y is independent of Ft.

An (Ft)-Poisson point process is of class (QL) if and only if t 7→ E[Np(t,U)] is continuous for U ∈ Γp; in this case, the
compensator N̂p is given by N̂p(t,U) = E[Np(t,U)].
Theorem F.7. Let p be a point process of class (QL) w.r.t. (Ft) on some state space (Y,Y) such that its compensator
N̂p(dtdx) is a non-random σ-finite measure on [0,∞) × Y. Then p is an (Ft)-Poisson point process. If, in particular,
N̂p(dtdx) = dtn(dx) where n(dx) is a non-random σ-finite measure on Y, p is a stationary (Ft)-Poisson point process
with n as its characteristic measure.

We are now going to discuss stochastic integrals w.r.t. a given point process of the class (QL). For this it is convenient to
generalize the notion of predictable processes.
Definition F.8. A real function f(t, x, ω) defined on [0,∞)× Y × Ω is called (Ft)-predictable if the mapping (t, x, ω) 7→
f(t, x, ω) is S/B(R)-measurable where S is the smallest σ-field on [0,∞)× Y × Ω w.r.t. which all g having the following
properties are measurable:

1. for each t > 0, (x, ω) 7→ g(t, x, ω) is Y × Ft-measurable;

2. for each (x, ω) 7→ g(t, x, ω) is left continuous.

We introduce the following classes

Fp =

{
f(t, x, ω); f is (Ft)-predictable and for each t > 0,

∫ t+

0

∫
Y

|f(s, x, ω)|Np(dsdx) <∞ a.s.
}
,

F 1
p =

{
f(t, x, ω); f is (Ft)-predictable and for each t > 0,E

[∫ t

0

∫
Y

|f(s, x, ·)|N̂p(dsdx)

]
<∞ a.s.

}
.

(62)

Definition F.9 (Stochastic integral). For f ∈ Fp, the stochastic integral
∫ t+
0

∫
Y
f(s, x, ·)Np(dsdx) is well-defined a.s. and

equals the absolutely convergent sum,∫ t+

0

∫
Y

f(s, x, ·)Np(dsdx) =
∑

s⩽t,s∈Dp

f(s,p(s), ·) .

For f ∈ F 1
p , it is known that the stochastic integral

∫ t
0

∫
Y
f(s, x, ·)N̂p(dsdx) satisfies

E
[∫ t+

0

∫
Y

|f(s, x, ·)|Np(dsdx)

]
= E

[∫ t

0

∫
Y

|f(s, x, ·)|N̂p(dsdx)

]
.

This implies, in particular, that F 1
p ⊂ Fp. Denote the stochastic integral f ∈ F 1

p w.r.t. Ñp as∫ t+

0

∫
Y

f(s, x, ·)Ñp(dsdx) =

∫ t+

0

∫
Y

f(s, x, ·)Np(dsdx)−
∫ t

0

∫
Y

f(s, x, ·)N̂p(dsdx) .

Then t 7→
∫ t+
0

∫
Y
f(s, x, ·)Ñp(dsdx) is an (Ft)-martingale.
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F.1.3. ITÔ’S FORMULA FOR POINT PROCESS

Itô’s formula is one of the most important tools in the study of semi-martingales. It provides us with the differential-integral
calculus for sample functions of stochastic processes.

Let (Ω,F ,P) with (Ft)t⩾0 be given as above. Suppose on this probability space the following are given:

1. M i(t) ∈Mc,loc
2 , i = 1, 2, . . . , d, with

Mc,loc
2 = {X = (Xt)t⩾0;X is a locally square integrable (Ft)-martingale, X0 = 0 a.s. ; t 7→ Xt is continuous a.s.} ;

2. Ai(t), i = 1, 2, . . . , d: a continuous (Ft)-adapted process whose almost all sample functions are of bounded variation
on each finite interval and Ai(0) = 0;

3. p: a point process of the class (QL) w.r.t. (Ft) on some state such that f i(t, x, ω)gj(t, x, ω) = 0, i, j = 1, 2, . . . , d;
furthermore, we assume that g(t, x, ω) is bounded, i.e.a constant M > 0 exists such that

|gi(t, x, ω)| ⩽M for all i, t, x, ω .

4. Xi(0), i = 1, 2, . . . , d: an F0-measurable random variable.

Define a d-dimensional semi-martingale X(t) = (X1(t), X2(t), . . . , Xd(t)) by

Xi(t) = Xi(0) +M i(t) +Ai(t) +

∫ t+

0

∫
Y

f i(s, x, ·)Np(dsdx) +

∫ t+

0

∫
Y

gi(s, x, ·)Ñp(dsdx) ,

for i = 1, 2, . . . , d. Denote also f = (f1, f2, . . . , fd) and g = (g1, g2, . . . , gd).
Theorem F.10 (Itô’s formula, (Ikeda & Watanabe, 2014, Chapter II, Section 5)). Let F be a function of class C2 on Rd and
(X(t)) a d-dimensional semi-martingale given above. Then the stochastic process F (X(t)) is also a semi-martingale (w.r.t.
(Ft)t⩾0) and the following formula holds:

F (X(t))− F (X(0)) =

d∑
i=1

∫ t

0

F ′i (X(s))dM i(s) +

d∑
i=1

∫ t

0

F ′i (X(s))dAi(s)

+
1

2

d∑
i,j=1

∫ t

0

F ′′ij(X(s))d⟨M i,M j⟩(s)

+

∫ t+

0

∫
Y

{F (X(s−) + f(s, x, ·))− F (X(s−))}Np(dsdx)

+

∫ t+

0

∫
Y

{F (X(s−) + g(s, x, ·))− F (X(s−))} Ñp(dsdx)

+

∫ t

0

∫
Y

{
F (X(s) + g(s, x, ·))− F (X(s))−

d∑
i=1

gi(s, x, ·)F ′i (X(s))

}
N̂p(dsdx) .

F.1.4. APPLICATION TO CTMCS

Let (Xt)t∈[0,Tf ] be a homogeneous CTMC on the state space Y associated with the jump rate λ : Y → R+ and the
kernel k(Xt−, x) determining the probability of jumping into x ∈ Y given a jump, and the generator q(Xt−, x) =
λ(Xt−)k(Xt−, x) represents the rate of jumping from the current stateXt− to the new state x ∈ Y. The CTMC (Xt)t∈[0,Tf ]

defines a Poisson point process pX = (pX(t))t∈[0,Tf ] on the measurable space (Y,Y), where

pX : DpX
⊂ (0, Tf ]→ Y , pX(t) = Xt , t ∈ DpX

,

with DpX
is the set of jump times of (Xt)t∈[0,Tf ]. We observe that pX describes the new state after jumping at time

t ∈ (0, Tf ] and it constructs a corresponding Poisson random measure NpX
(dtdx) on (0, Tf ]× Y by
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NpX
((0, t],U) = # {s ∈ DpX

: s ⩽ t,pX(s) ∈ U}

=
∑

s∈DpX

δ(s,Xs)((0, t]× U) for t > 0, U ∈ Y ,

that counts the total jumps into U ⊂ Y occurring during the time interval (0, t]. Then the compensator nq of NpX
is given by

nq(dtdx) = q(Xt−,dx)1Xt− ̸=xdt ,

since the corresponding compensated measure

Ñq
pX

(dtdx) = NpX
(dtdx)− nq(dtdx)

is an (Ft)-martingale, where (Ft) is a σ-algebra of (Xt). Indeed, we can show the martingale property of Ñq
pX

as follows.
Define first the stochastic integrals by

∫ t+

0

∫
Y

f(s, x, ·)NpX
(dsdx) =

∑
0<s⩽t
s∈DpX

f(s,pX(s), ·) ,

∫ t+

0

∫
Y

f(s, x, ·)Ñq
pX

(dsdx) =

∫ t+

0

∫
Y

f(s, x, ·)NpX
(dsdx)−

∫ t

0

∫
Y

f(s, x, ·)nq(dsdx) .

Then for 0 ⩽ s ⩽ t ⩽ Tf and for any function f ∈ F 1
p , where the class F 1

p is defined in (62), we have

E
[∫ t+

s

∫
Y

f(z, x)NpX
(dzdx)

∣∣∣∣Fs] = E

 ∑
s<z⩽t
z∈DpX

f(z,Xz)

∣∣∣∣∣∣∣∣Fs


=

∫
Y

∑
s<z⩽t
z∈DpX

f(z, x)P(Xz = x|Fs)dx

=

∫
Y2

∫ t

s

f(z, x)λ(y)
q(y, x)

λ(y)
1y ̸=xP(Xz− = y|Fs)dzdxdy

= E
[∫ t

s

∫
Y

f(z, x)q(Xz−, x)1Xz− ̸=xdxdz

∣∣∣∣Fs]
= E

[∫ t

s

∫
Y

f(z, x)nq(dzdx)

∣∣∣∣Fs] ,
meaning that nq is indeed the compensator of the Poisson random measure NpX

. With those notations in hand, we can
decompose the CTMC (Xt)t∈[0,Tf ] as

Xt = X0 +
∑

0<s⩽t
s∈DpX

(Xs −Xs−) = X0 +

∫ t+

0

∫
Y

(x−Xs−)NpX
(dsdx) .

By applying Itô’s formula to this process, for any measurable function F : Y → R, we obtain:
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F (Xt)− F (X0) =

∫ t+

0

∫
Y

{F (Xs− + x−Xs−)− F (Xs−)}NpX
(dsdx)

=

∫ t+

0

∫
Y

{F (x)− F (Xs−)}NpX
(dsdx)

Expressing the Poisson random measure as NpX
= Ñq

pX
+ nq and plugging it into the formula above yield

F (Xt)− F (X0)−
∫ t

0

∫
Y

{F (x)− F (Xs−)} nq(dsdx) =
∫ t+

0

∫
Y

f(s, x, ·)Ñq
pX

(dsdx) .

In other words, the process

(
F (Xt)− F (X0)−

∫ t

0

∫
Y

{F (x)− F (Xs−)}1Xs− ̸=xq(Xs−,dx)ds

)
t∈[0,Tf ]

is an (Ft)-local martingale as the compensated measure Ñq
pX

was shown to be an (Ft)-martingale in the previous
computation.

It follows that for the CTMC (Xt)t∈[0,Tf ] with generator q, Itô’s formula asserts that the process

(
F (Xt)− F (X0)−

∫ t

0

qF (Xs−)ds

)
t∈[0,Tf ]

is an (Ft)-local martingale for any measurable function F : Y → R. This statement is equivalent to Dynkin’s formula.

F.2. Canonical process point of view

We now want to give a description of the time reversal process as the solution of an optimal control process like in
the continuous setting in Conforti et al. (2025). To this purpose, we consider the following canonical setting. Let
DTf

= D([0, Tf ] ;X) be the canonical space of all càdlàg (right continuous and left limited) paths from [0, Tf ] to X = {0, 1}d,
endowed with its canonical filtration (Ft)t∈[0,Tf ]. With abuse of notation, we denote as (Xt)t∈[0,Tf ] the canonical process
defined by

Xt(ω) = ωt, for t ∈ [0, Tf ] , (ωt)t∈[0,Tf ] ∈ DTf
.

For any P ∈ P(DTf
) we denote by EP the corresponding expectation. For any t ∈ [0, Tf ], we denote by Pt, the distribution

of Xt under P.

We say that a process U : DTf
× [0, Tf ]× X→ R is a predictable if for any x ∈ X, (ω, t) 7→ U(ω, t, x) is predictable. As

usual convention, we simply denote the the random variable ω 7→ U(ω, t, x) as U(t, x).

For any random generator q : DTf
× [0, Tf ] × X2 → R and predictable process U : DTf

× [0, Tf ] × X → R, the new
random generator Uq : DTf

× [0, Tf ]× X2 → R is defined as (Uq)(ω, t, x, y) := U(ω, t, y)q(ω, t, x, y) for x ̸= y.

We now follow the approach for time reversal used in Léonard (2012) to characterize the distribution of (Xt)t∈[0,Tf ] as the
solution of a martingale problem.

Definition F.11 (Martingale problem). Let q : DTf
× [0, Tf ]× X2 be a non-homogeneous predictable random generator.

We say that P ∈ P(DTf
) solves the Martingale problem MP(q) with initial condition µ0, and write P ∈ MP(q), if under P,

X0 has distribution µ0 and the process(
f(Xt)− f(X0)−

∫ t

0

q(s)f(Xs−)ds

)
t∈[0,Tf ]

is an (Ft)t⩾0-local martingale for any measurable function f : X → R, where we denote q(t)f(x) =∑
y∈X q(ω, t, x, y)f(y).
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Note that by Itô formula and Appendix F.1.4, if under P, (Xt)t∈[0,Tf ] is a CTMC with generator q, then P solves MP(q). In
addition by (Ethier & Kurtz, 2009, Theorem 4.1), the following condition is automatically satisfied.

Definition F.12 (Condition (U)). One says that P ∈ MP(q) satisfies the uniqueness condition (U) if for any probability
measure P′ on DTf

such that the distributions of X0 under P and P′ coincide, P′ ≪ P and P′ ∈ MP(q), we have P = P′.

Recall that for the forward process under consideration, the generator −→q is defined as

−→q (x, y) : =


λ , if y = φ(ℓ)(x) for some ℓ ∈ {1, . . . , d} ,
−λd , if y = x ,

0 , otherwise ,
(63)

where φ(ℓ) : X → X is the function which flips the ℓ-th component for ℓ ∈ {1, . . . , d}. Note that by (15), γd = Unif(X)
is an invariant distribution for the CTMC with generator −→q , i.e., for any measurable function f ,

∑
x∈X
−→p tf(x)γd(x) =∑

x∈X f(x)γ
d(x). In fact the transition density −→p t is reversible with respect to γd for any t ∈ [0, Tf ] using (15), i.e., for

any x, y ∈ X and t ∈ [0, Tf ],

γd(x)−→p t(x, y) = γd(y)−→p t(y, x) . (64)

As a result, we get that for any 0 ⩽ t1 < . . . < tn ⩽ Tf , under
−→
R , where

−→
R denoted the distribution of the CTMC with

generator −→q started at stationarity γd, (Xt1 , . . . ,Xtn) has the same distribution as (XTf−t1 , . . . ,XTf−tn) and therefore
the reference path measure

−→
R is reversible, i.e.,

−→
R =

←−
R , where

←−
R is the distribution of (XTf−t)t∈[0,Tf ] under

−→
R .

From Appendix F.1.4, for any P ∈ P(DTf
) such that (Xt)t∈[0,Tf ] is a CTMC with generator q : [0, Tf ] × X2 → R, we

denote by pX the point process and by NX the Poisson random measure associated with (Xt)t∈[0,Tf ].

We also define for any (ωt)t∈[0,Tf ] ∈ DTf
:

n̄q((ωt)t∈[0,Tf ],dtdx) = 1ωt− ̸=xqt(ωt−,dx)dt . (65)

By convention, we denote n̄q((Xt)t∈[0,Tf ],dtdx) by n̄q(dtdx) which corresponds to the compensation of (Xt)t∈[0,Tf ]

under P, if under this distribution (Xt)t∈[0,Tf ] is a CTMC with generator q : X2 → R. Consequently, the compensated sum
of jumps Ñq

X = NX − n̄q forms a martingale under P.

F.2.1. GIRSANOV’S THEOREM

From Léonard (2012), the relative entropy of two path measures associated to two jump processes can be decomposed
with the help of the Young function ϱ(a) := ea − a− 1, for a ∈ R, as proven in Léonard (2012, Theorem 2.6-2.9) that we
report in the following. Note that the convex conjugate ϱ is equal to ϱ∗(b) = (b+ 1) log(b+ 1)− b, for b > −1, with the
convention ϱ∗(−1) = 1 and ϱ∗(b) =∞, for b < −1. We recall that the functions ϱ and ϱ∗ are respectively equivalent to
a2/2 and b2/2 near zero.

Theorem F.13 (Girsanov’s theorem). (Léonard, 2012, Theorem 2.6-2.9) Let P ∈ P(DTf
) verifying KL(P|

−→
R ) <∞. Then,

there exists a unique predictable non-negative process U : DTf
× [0, Tf ]× X→ [0,∞), U(ω, t, x) = ut(ωt−, x) for some

functions u : [0, Tf ]× X2 → [0,∞), that satisfies the integrability condition

EP

[∫
[0,Tf ]×X

ϱ∗(|U(t, x)− 1|)n̄
−→q (dtdx)

]
<∞ , (66)

and P ∈ MP(U−→q ) where (U−→q )(ω, t, x, y) = U(ω, t, y)−→q (x, y) for x ̸= y. Moreover, we have that

dP
d
−→
R

((Xt)t∈[0,Tf ]) =
dP0

d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

logU(t, x)Ñ
−→q
X (dtdx)−

∫
[0,Tf ]×X

ϱ(logU(t, x))n̄
−→q (dtdx)

)
,
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and the KL divergence reads as

KL(P|
−→
R ) = KL(P0|

−→
R 0) + EP

[∫
[0,Tf ]×X

h(U(t, x))n̄
−→q (dtdx)

]
,

with h(a) := ϱ∗(a− 1) = a log a− a+ 1. Plugging in the formula of n̄
−→q and −→q yields

KL(P|
−→
R ) = KL(P0|

−→
R 0) + λEP

[∫
[0,Tf ]

d∑
ℓ=1

h(ut(Xt, φ
(ℓ)(Xt)))dt

]
.

The proof of Theorem F.13 is based on several technical lemmas, which we introduce in the following framework. Let
P ∈ P(DTf

) such that (Xt)t∈[0,Tf ] is a CTMC with generator q : [0, Tf ] × X2 → R, i.e.,
∑
y∈X q(t, x, y) = 0 for any

(t, x) ∈ [0, Tf ]× X, and denote pX, NX, n̄q and Ñq
X as in previous Section. We define a measure nq on X by

n̄q(dtdx) = nq(t,dx)dt .

Let χ be a R-valued predictable process on DTf
× [0, Tf ] × X such that χ(ω, t, x) = χt(ωt−, x) and∫

[0,Tf ]×X ϱt(χt(Xt−, x))n̄
q(dtdx) <∞, P-a.s. Define

Zχt := exp

(∫
[0,t]×X

χs(Xs−, x)Ñ
q
X(dsdx)−

∫
[0,t]×X

ϱ(χs(Xs−, x))n̄
q(dsdx)

)
, for t ∈ [0, Tf ] .

Lemma F.14. (Léonard, 2012, Lemma 6.1) Assume that χ satisfies the integrability condition

EP

∫
[0,Tf ]×X

ϱ(χt(Xs−, x))n̄
q(dtdx) <∞ . (67)

Then
∫
[0,t]×X χs(Xs−, x)Ñ

q
X(dsdx) is a local P-martingale. Moreover, the process Zχt defined as above is a local P-

martingale and a positive P-supermartingale, which satisfies

dZχt = Zχt−

∫
X

(eχt(Xt−,x) − 1)Ñq
X(dtdx) .

Proof of Lemma F.14. This result is an adaptation of Lemma 6.1 in Léonard (2012). From its definition, we have that Ñq
X

is a P-martingale measure. Therefore the stochastic integral

Mχ
t :=

∫
[0,t]×X

χs(Xs−, x)Ñ
q
X(dsdx)

is a local P-martingale. Denote Y χt :=Mχ
t −

∫
[0,t]

βsds with βs :=
∫
X
ϱ(χs(Xs−, x))n

q(s,dx). Applying Itô’s formula
provided in Theorem F.10 for the jump process (Y χt )t∈[0,Tf ] and for a function f of class C2 on Rd implies

df(Y χt ) =

[∫
X

[
f(Y χt− + χt(Xt−, x))− f(Y χt−)−∇f(Y

χ
t−) · χt(Xt−, x)

]
nq(t,dx)

]
dt

+∇f(Y χt−) · βtdt+ dMt , P-a.s. ,

where Mt is given by

Mt =

∫
[0,t]×X

[
f(Y χs− + χs(Xs−, x))− f(Y χs−)

]
Ñq

X(dsdx)
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is a local P-martingale, since the integrand is R-valued predictable process and Ñq
X forms a martingale under P. Using this

formula for f(y) = ey , we obtain

deY
χ
t =

[∫
X

(eY
χ
t−+χt(Xt−,x) − eY

χ
t− − eY

χ
t− · χt(Xt−, x))n

q(t, dx)

]
dt− eY

χ
t−βtdt+ dMt

= eY
χ
t−βtdt− eY

χ
t−βtdt+ dMt = dMt , P-a.s. .

This implies Zχt = eY
χ
t is a local P-martingale and, since Zχt is positive, we can conclude that Zχt is a P-supermartingale

thanks to Fatou’s lemma. In addition, we have

dMt =

∫
X

(
eY

χ
t−+χt(Xt−,x) − eY

χ
t−

)
Ñq

X(dtdx) = eY
χ
t−

∫
X

(eχt(Xt−,x) − 1)Ñq
t (dtdx) ,

i.e., dZχt = Zχt−
∫
X
(eχt(Xt−,x) − 1)Ñq

t (dtdx) and we conclude the proof of Lemma F.14.

We now define the stopping time for k, j ⩾ 1,

σkj := inf

{
t ∈ [0, Tf ] ;

∫
[0,t]×X

ϱ(χ)dn̄q ⩾ k or χt(Xt−,Xt) /∈ [−j, k]

}
.

Lemma F.15. (Léonard, 2012, Lemma 6.2) Let P, Zχt , σkj be as above. For all j, k ⩾ 1, Zσ
k
j := Z

χk
j

t is a genuine
P-martingale with χkj = 1[0,σk

j ]
χ, and the measure

Qkj := Z
σk
j

Tf
Pkj

is a probability measure on DTf
which satisfies

Qkj ∈ MP(1[0,σk
j ]
eχq) .

Proof of Lemma F.15. Fix j, k ⩾ 1. We have

Z
σk
j

Tf
= exp

(∫
[0,Tf ]×X

χkjdÑ
q
X −

∫
[0,Tf ]×X

ϱ(χkj )dn̄
q

)
,

where χkj = 1[0,σk
j ]
χ is predictable since χ is predictable and 1[0,σk

j ]
is left continuous . For simplicity, we drop the

subscripts and superscripts and write χ = χkj and Z = Z
σk
j

Tf
for the rest of the proof. From the definition of σkj , we obtain∫

[0,Tf ]×X
ϱ(χ)dn̄q ⩽ k , for χ ∈ [−j, k], Pkj -a.s. (68)

First, we prove that Z is a Pkj -martingale. From Lemma F.14, Z is a local martingale, it is enough to show that

EPk
j
Zp <∞ for some p > 1 .

For all p ⩾ 0, we have

Zp = exp

(
p

∫
[0,Tf ]×X

χdÑq
X − p

∫
[0,Tf ]×X

ϱ(χ)dn̄q

)
⩽ exp

(
p

∫
[0,Tf ]×X

χdÑq
X

)
,
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and

exp

(
p

∫
[0,Tf ]×X

χdÑq
X −

∫
[0,Tf ]×X

ϱ(pχ)dn̄q

)
⩾ exp

(
p

∫
[0,Tf ]×X

χdÑq
X

)
/C(k, p) ,

for some finite deterministic constant C(k, p) > 0 since ϱ(pχ) ⩽ c(k, p)ϱ(χ) holds for all χ ⩽ k and some constant
0 < c(k, p) <∞, which yields

exp

(∫
[0,Tf ]×X

ϱ(pχ)dn̄q

)
⩽ exp

(∫
[0,Tf ]×X

c(k, p)ϱ(χ)dn̄q

)
⩽ exp(kc(k, p)) =: C(k, p) .

This implies

Zp ⩽ exp

(
p

∫
[0,Tf ]×X

χdÑq
X

)
⩽ C(k, p) exp

(
p

∫
[0,Tf ]×X

χdÑq
X −

∫
[0,Tf ]×X

ϱ(pχ)dn̄q

)
.

On the other hand, applying Lemma F.14 for pχ implies that exp
(
p
∫
[0,Tf ]×X χdÑ

q
X −

∫
[0,Tf ]×X ϱ(pχ)dn̄

q
)

is a Pkj -
supermartingale, which yields

EPk
j
exp

(
p

∫
[0,Tf ]×X

χdÑq
X −

∫
[0,Tf ]×X

ϱ(pχ)dn̄q

)
⩽ exp

(
p

∫
[0,0]×X

χdÑq
X −

∫
[0,0]×X

ϱ(pχ)dn̄q

)
= 1 .

Plugging this estimate into the previous equation gives

EPk
j
Zp ⩽ C(k, p) <∞ ,

which allow us to conclude that Z is a Pkj−martingale (see, e.g, Zitkovic, 2015). Thereby EPk
j
(ZTf

) = Z0 = 1 and it

follows that 1 =
∫
ZTf

Pkj =
∫
Qkj , i.e., Qkj is a probability measure on DTf

.

Now, we show the second claim of Lemma F.15:

Qkj ∈ MP(1[0,σk
j ]
eχq) .

Let τ be a finitely valued stopping time which will be specified later, and for any measurable function g, we denote
Ft :=

∑
0⩽s⩽t∧τ g(Xs−,Xs), with convention g(Xt−,Xt−) = 0 for all t ∈ (0, Tf ]. By Lemma F.14, the martingale Z

satisfies the followings for Pkj -a.s.

dZt = 1[0,σk
j ]
(t)Zt−

∫
X

(eχ − 1)dÑq
X and dFt = 1[0,τ ](t)g(Xt−,Xt) ,

and

d[Z,F ]t = 1[0,σk
j ∧τ ](t)Zt−(e

χt(Xt−,Xt) − 1)g(Xt−,Xt) .

Using these formulas and recalling that (Ft) is the σ-algebra generated by Xt, for 0 ⩽ η ⩽ t ∧ τ , we obtain
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EQk
j

 ∑
η⩽s⩽t∧τ

g(Xs−,Xs)

∣∣∣∣∣∣Fη


= EPk
j
[Zt∧τFt∧τ − ZηFη|Fη] = EPk

j

[∫
[η,t∧τ ]

(FsdZs + ZsdFs + d[Z,F ]s)

∣∣∣∣∣Fη
]

= EPk
j

∫
[η,t∧τ ]

FsdZs +
∑

η⩽s⩽t∧τ

Zs−g(Xs−,Xs) +
∑

η⩽s⩽t∧τ

Zs−(e
χs(Xs−,Xs) − 1)g(Xs−,Xs)

∣∣∣∣∣∣Fη


= EPk
j

 ∑
η⩽s⩽t∧τ

Zs−e
χs(Xs−,Xs)g(Xs−,Xs)

∣∣∣∣∣∣Fη
 ,

where the first integral is reduced as Zs is a Pkj -martingale (see Lemma F.15). Now using the fact that Pkj ∈ MP(q), the
calculation follows

EQk
j

 ∑
η⩽s⩽t∧τ

g(Xs−,Xs)

∣∣∣∣∣∣Fη
 = EPk

j

[∫
[η,t∧τ ]×X

Zs−g(Xs−, x)e
χs(Xs−,x)n̄q(dsdx)

∣∣∣∣∣Fη
]

= EQk
j

[∫
[η,t∧τ ]×X

g(Xs−, x)e
χs(Xs−,x)n̄q(dsdx)

∣∣∣∣∣Fη
]

= EQk
j

[∫
[η,t∧τ ]×X

g(Xs−, x)1Xs− ̸=xe
χs(Xs−,x)qs(Xs−,dx)ds

∣∣∣∣∣Fη
]
.

Recall that the random generator eχq : DTf
× [0, Tf ]× X2 → R is defined by (eχq)(ω, t, x, y) := eχ(ω,t,y)q(w, t, x, y) =

eχt(ωt−,y)q(t, x, y) for y ̸= x, since the generator q under consideration is deterministic. Denote by n̄e
χq the corresponding

jump kernel for ω = (ωt)t∈[0,Tf ] ∈ DTf
and (t, x) ∈ [0, Tf ]× X,

n̄e
χq(ω,dtdx) := 1ωt− ̸=x(e

χq)(ω, t, ωt−,dx)dt

= 1ωt− ̸=x(e
χtqt)(ωt−,dx)dt

then the previous equation rewrites

EQk
j

 ∑
η⩽s⩽t∧τ

g(Xs−,Xs)

∣∣∣∣∣∣Fη
 = EQk

j

[∫
[η,t∧τ ]×X

g(Xs−, x)n̄
eχq(dsdx)

∣∣∣∣∣Fη
]
.

Applying this identity to the function

g(Xs−, x) = f(x)− f(Xs−) ,

we obtain

EQk
j
[f(Xt∧τ )− f(Xη)|Fη] = EQk

j

[∫
[η,t∧τ ]

(eχq)(s)f(Xs−)ds

∣∣∣∣∣Fη
]

for any function f .

Choosing τ such that the above terms are meaningful, we conclude that Qkj ∈ MP(eχ
k
j q) and finish the proof.
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Proof of Theorem F.13. This proof is an adaptation of Theorem 2.6 in Léonard (2012) based on technical lemmas provided
above applying on the reference measure

−→
R ∈ MP(−→q ) defined at the beginning of Section F. By Lemma F.14, the process

ZχTf
is a
−→
R -supermartingale, thus 0 < E−→

R
ZχTf

⩽ 1 for all χ satisfies integrability condition (67). For P ∈ P(DTf
) such

that KL(P|
−→
R ) < ∞, Léonard (2012, Proposition 3.1) showed that the KL divergence admits the following variational

representation

KL(P|
−→
R ) = sup

{∫
udP− log

∫
eud
−→
R ; u :

∫
eud
−→
R <∞

}
. (69)

Choose a function u = Y χTf
and note that logE−→

R
ZχTf

⩽ log 1 = 0, we derive

EP

[∫
[0,Tf ]×X

χt(Xt−, x)Ñ
−→q
X (dtdx)−

∫
[0,Tf ]×X

ϱ(χt(Xt−, x))n̄
−→q (dtdx)

]
⩽ KL(P|

−→
R ) ,

for any χ satisfying the integrability condition (67). Therefore,

EP

[∫
[0,Tf ]×X

χdÑ
−→q
X

]
⩽ KL(P|

−→
R ) +

∫
[0,Tf ]×X

ϱ(χ)dn̄
−→q . (70)

Consider ∥.∥ϱ defined as

∥χ∥ϱ := inf

{
a > 0;EP

∫
[0,Tf ]×X

ϱ(χ/a)dn̄
−→q ⩽ 1

}
.

This norm is the Luxemburg norm of the small Orlicz space

Sϱ :=

{
χ : DTf

× [0, Tf ]× X→ R; χ(ω, t, x) = χt(ωt−, x) measurable s.t. EP

∫
[0,Tf ]×X

ϱ(b|χ|)dn̄
−→q <∞, ∀b ⩾ 0

}
,

For any function ϕ ∈ Sϱ, taking χ :=
ϕ

∥ϕ∥ϱ
in (70) implies

EP

[∫
[0,Tf ]×X

ϕdÑ
−→q
X

]
⩽ [KL(P|

−→
R ) + 1]∥ϕ∥ϱ, ∀ϕ . (71)

Consider now the space B of all bounded processes such that

EP

∫
[0,Tf ]×X

ϱ(|ϕ|)dn̄
−→q <∞ ,

respectively its subspace H ⊂ B of the predictable processes. Since B ⊂ Sϱ and any ϕ ∈ H satisfies (67), Lemma F.14

entails (71) for all ϕ ∈ H, as KL(P|
−→
R ) <∞. This implies the linear mapping ϕ 7→ EP

[∫
[0,Tf ]×X ϕdÑ

−→q
X

]
is continuous

onH equipped with the norm ∥ · ∥ϱ. Note that the convex conjugate of the Young function ϱ(|a|) is ϱ∗(|b|). Therefore, as
showed in Rao & Ren (1991, Theorem 3.1.9), the dual space of (Sϱ, ∥ · ∥ϱ) is isomorphic to the space

Lϱ∗ :=

{
K : DTf

× [0, Tf ]× X→ R; K(ω, t, x) = kt(ωt−, x) measurable s.t. EP

∫
[0,Tf ]×X

ϱ∗(|K|)dn̄
−→q <∞

}
,

that means there exists some K ∈ Lϱ∗ such that

EP

[∫
[0,Tf ]×X

ϕdÑ
−→q
X

]
= EP

∫
[0,Tf ]×X

Kϕdn̄
−→q , for any ϕ ∈ H . (72)

We now prove the uniqueness and predictability of K. Introduce the predictable projection of K ∈ Lϱ∗ as Kpr :=
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EP(K|X[0,t)), for t ∈ [0, Tf ]. Since B is dense in Sϱ, H is dense in the subspace of all the predictable processes in Sϱ.
Then, any two functions K1, K2 ∈ Lϱ∗ satisfying (72) must share the same projection, i.e., Kpr

1 = Kpr
2 . It follows that

there exists a unique predictable process K in the space

K(P ) :=

{
K : DTf

× [0, Tf ]× X→ R; K(ω, t, x) = kt(ωt−, x) predictable s.t. EP

∫
[0,Tf ]×X

ϱ∗(|K|)dn̄
−→q <∞

}
,

which satisfies (72). Moreover, for any function ϕ ∈ H,∫
[0,Tf ]×X

ϕd(Ñ
−→q
X −Kn̄

−→q ) =

∫
[0,Tf ]×X

ϕd(NX − n̄
−→q −Kn̄

−→q )

=

∫
[0,Tf ]×X

ϕd(NX − (K + 1)n̄
−→q )

=

∫
[0,Tf ]×X

ϕd(NX − U n̄
−→q ) ,

with U = K + 1, and the equation (72) is thus equivalent to

EP

[∫
[0,Tf ]×X

ϕd(NX − U n̄
−→q )

]
= 0, for any ϕ ∈ H . (73)

Thus, U n̄
−→q is a positive measure and U is nonnegative. Furthermore, we can argue analogously to obtain equation (73) on

the interval [s, t] for 0 ⩽ s ⩽ t ⩽ Tf then choose ϕ(Xs−, x) = f(x)− f(Xs−) to deduce

EP [f(Xt)− f(Xs)|Fs] = EP

[∫
[s,t]×X

(f(x)− f(Xz−))(U n̄
−→q )(dzdx)

∣∣∣∣∣Fs
]
, for any measurable function f .

Define the random generator U−→q on DTf
× [0, Tf ]× X2 by (U−→q )(ω, t, x, y) := U(ω, t, y)−→q (x, y) = ut(ωt−, y)

−→q (x, y)
for y ̸= x, then the previous equation rewrites

EP [f(Xt)− f(Xs)|Fs] = EP

[∫
[s,t]

(U−→q )(z)f(Xz−)dz

∣∣∣∣∣Fs
]
, for any measurable function f .

As a result, we conclude that P ∈ MP(U−→q ). We now show the formulation of the Radon-Nikodym density dP/d
−→
R . When

P ∼
−→
R , define the stopping time τkj as

τkj := inf

{
t ∈ [0, Tf ] ;

∫
[0,Tf ]×X

ϱ(logU)dn̄
−→q ⩾ k or logUt(Xt−,Xt) /∈ [−j, k]

}
,

which coincides with the stopping time σkj when χ = logU . By conditioning w.r.t. X0, we can assume without loss of

generality that
−→
R 0 = P0, i.e., dP0

d
−→
R0

(X0) = 1. Applying Lemma F.15 for P ∈ MP(U−→q ) and χ = − logU , we obtain

Qτ
k
j : = exp

(∫
[0,Tf ]×X

(− logU)dÑU−→q
X −

∫
[0,Tf ]×X

ϱ(− logU)d(U n̄
−→q )

)
Pτ

k
j

∈ MP(1[0,τk
j ]e
− logUU−→q ) = MP(1[0,τk

j ]
−→q ) , (74)

where ÑU−→q
X := NX − n̄U

−→q = NX − U n̄
−→q . Since

−→
R τk

j fulfills the uniqueness condition (U), using (74) and the fact that
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−→
R τk

j ∈ MP(1[0,τk
j ]
−→q ), we deduce

Qτ
k
j =
−→
R τk

j .

Now, applying Lemma F.15 with
−→
R ∈ MP(−→q ) and χ = logU , we obtain

P̃τ
k
j : = exp

(∫
[0,Tf ]×X

logUdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(logU)dn̄
−→q

)
−→
R τk

j ∈ MP(1[0,τk
j ]e

logU−→q ) = MP(1[0,τk
j ]U
−→q ) .

Secondly, applying Lemma F.15 with P̃τ
k
j ∈ MP(1[0,τk

j ]U
−→q ) and χ = − logU yields

Q̃τ
k
j : = exp

(∫
[0,Tf ]×X

(− logU)dÑU−→q
X −

∫
[0,Tf ]×X

ϱ(− logU)d(U n̄
−→q )

)
P̃τ

k
j

∈ MP(1[0,τk
j ]e
− logUU−→q ) = MP(1[0,τk

j ]
−→q ) .

From the uniqueness condition (U) satisfied by
−→
R τk

j , it follows that Q̃τ
k
j =
−→
R τk

j . Combining it with Qτ
k
j =
−→
R τk

j implies

Qτ
k
j = Q̃τ

k
j ,

which means

exp

(∫
[0,Tf ]×X

(− logU)dÑU−→q
X −

∫
[0,Tf ]×X

ϱ(− logU)d(U n̄
−→q )

)
Pτ

k
j

=exp

(∫
[0,Tf ]×X

(− logU)dÑU−→q
X −

∫
[0,Tf ]×X

ϱ(− logU)d(U n̄
−→q )

)
P̃τ

k
j .

Notice that exp
(∫

[0,Tf ]×X(− logU)dÑU−→q
X −

∫
[0,Tf ]×X ϱ(− logU)d(U n̄

−→q )
)
> 0, we finally conclude that Pτ

k
j = P̃τ

k
j

i.e.,

1[0,τk
j ∧Tf ]

dP
d
−→
R

(X·) = 1[0,τk
j ∧Tf ]

dP0

d
−→
R 0

(X0) exp

(∫
[0,τk

j ∧Tf ]×X
(1[0,τk

j ∧Tf ]
logU)dÑ

−→q
X −

∫
[0,τk

j ∧Tf ]×X
ϱ(logU)dn̄

−→q

)
.

Letting k and j tend to infinity, since τ := limk,j→∞ τkj =∞, we get

dP
d
−→
R

(X·) =
dP0

d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

logUdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(logU)dn̄
−→q

)
.

We now extend the result above to the case when P might not be equivalent to
−→
R . The idea is to approximate P by a

sequence (Pn), which satisfies Pn ∼
−→
R for all n ⩾ 1. Denoting

Pn = (1− 1

n
)P+

−→
R

n
for n ⩾ 1 , (75)

we have Pn ∼
−→
R and limn→∞KL(P|Pn) = 0. For simplicity, we write χ = logU and χn = logUn, which are well-

defined P-a.s. From the variational representation given in (69) and using P ∈ MP(U−→q ) combined with Lemma F.14, we
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obtain

KL(P|Pn) ⩾ EP

[∫
[0,Tf ]×X

(χ− χn)dÑUn−→q
X −

∫
[0,Tf ]×X

ϱ(χ− χn)d(Unn̄
−→q )

]
.

By definition, we have

ÑUn−→q
X = NX − Unn̄

−→q = NX − U n̄
−→q + (U − Un)n̄

−→q = ÑU−→q
X + (U − Un)n̄

−→q ,

which yields

KL(P|Pn) ≥ EP

[∫
[0,Tf ]×X

(χ− χn)d(ÑU−→q
X + n̄

−→q (U − Un))−
∫
[0,Tf ]×X

(
U

Un
− log

U

Un
− 1

)
Undn̄

−→q

]

= EP

[∫
[0,Tf ]×X

(χ− χn)dÑU−→q
X +

∫
[0,Tf ]×X

U log
U

Un
dn̄
−→q −

∫
[0,Tf ]×X

(
U

Un
− 1

)
Undn̄

−→q

]
.

Since P ∈ MP(U−→q ), we deduce that the stochastic integral
∫
[0,Tf ]×X(χ− χ

n)dÑU−→q
X is a local P-martingale. Therefore,

KL(P|Pn) ≥ EP

[∫
[0,Tf ]×X

(
Un − U − U log

Un

U

)
dn̄
−→q

]

= EP

[∫
[0,Tf ]×X

(
Un

U
− log

Un

U
− 1

)
Udn̄

−→q

]

= EP

∫
[0,Tf ]×X

ϱ(χn − χ)d(U n̄
−→q ) .

Since limn→∞KL(P|Pn) = 0, we obtain

lim
n→∞

EP

∫
[0,Tf ]×X

ϱ(χn − χ)d(U n̄
−→q ) = 0 .

Furthermore, as
∫
[0,Tf ]×X ϱ(χ

n − χ)d(U n̄
−→q ) ⩾ 0, the above expression implies

lim
n→∞

∫
[0,Tf ]×X

ϱ(χn − χ)d(U n̄
−→q ) = 0 P-a.s. (76)

On the other hand, the fact that Pn ∼
−→
R yields

dPn
d
−→
R

(X·) =
dPn,0
d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

χndÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(χn)dn̄
−→q

)
. (77)

To obtain the desired expression for the Radon–Nikodym density dP
d
−→
R

, we represent it as
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dP
d
−→
R

(X·) =
dP
dPn

.
dPn
d
−→
R

(X·)

(77)
=

dP
dPn

.
dPn,0
d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

χndÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(χn)dn̄
−→q

)

=
dP
dPn

.
dPn,0
dP0

(X0)
dP0

d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

χdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(χ)dn̄
−→q

)

exp

(∫
[0,Tf ]×X

(χn − χ)dÑ
−→q
X −

∫
[0,Tf ]×X

(ϱ(χn)− ϱ(χ))dn̄
−→q

)
,P-a.s.

By equation (72), we can calculate the last term as follows

exp

(∫
[0,Tf ]×X

(χn − χ)dÑ
−→q
X −

∫
[0,Tf ]×X

(ϱ(χn)− ϱ(χ))dn̄
−→q

)

= exp

(∫
[0,Tf ]×X

(χn − χ)(eχ − 1)dn̄
−→q −

∫
[0,Tf ]×X

(ϱ(χn)− ϱ(χ))dn̄
−→q

)

= exp

(∫
[0,Tf ]×X

(χn − χ)(eχ − 1)dn̄
−→q −

∫
[0,Tf ]×X

(eχ
n

− χn − eχ + χ)dn̄
−→q

)

= exp

(∫
[0,Tf ]×X

((χn − χ)eχ − eχ
n

+ eχ)dn̄
−→q

)

= exp

(∫
[0,Tf ]×X

−(eχ−χ
n

− (χ− χn)− 1)d(eχn̄
−→q )

)

= exp

(∫
[0,Tf ]×X

−ϱ(χ− χn)d(U n̄
−→q )

)
.

Therefore

dP
d
−→
R

(X·) =
dP
dPn

.
dPn,0
dP0

(X0)
dP0

d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

χdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(χ)dn̄
−→q

)

exp

(∫
[0,Tf ]×X

−ϱ(χ− χn)d(U n̄
−→q )

)
,P-a.s.

Tend n→∞ and use (75) and (76), we arrive at our desired claim

dP
d
−→
R

(X·) =
dP0

d
−→
R 0

(X0) exp

(∫
[0,Tf ]×X

logUdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(logU)dn̄
−→q

)
, P-a.s.

Consequently, the KL divergence reads as

KL(P|
−→
R ) = KL(P0|

−→
R 0) + EP

[∫
[0,Tf ]×X

logUdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(logU)dn̄
−→q

]
.
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Applying (73) to the function ϕ = logU , we get

KL(P|
−→
R ) = KL(P0|

−→
R 0) + EP

[∫
[0,Tf ]×X

(U − 1) logUdn̄
−→q −

∫
[0,Tf ]×X

ϱ(logU)dn̄
−→q

]

= KL(P0|
−→
R 0) + EP

∫
[0,Tf ]×X

[(U − 1) logU − U + logU + 1]dn̄
−→q

= KL(P0|
−→
R 0) + EP

∫
[0,Tf ]×X

(U logU − U + 1)dn̄
−→q .

Replace n̄
−→q (dtdx) = 1Xt− ̸=x

−→q (Xt−,dx)dt and U(t, x) = ut(ωt−, x) together with the formula of the generator −→q
given in (63), we arrive at

KL(P|
−→
R ) = KL(P0|

−→
R 0) + EP

∫
[0,Tf ]×X

(ut log ut − ut + 1)(Xt−, x)1Xt− ̸=x
−→q (Xt−,dx)dt

= KL(P0|
−→
R 0) + λEP

∫
[0,Tf ]

d∑
ℓ=1

(ut log ut − ut + 1)(Xt−, φ
(ℓ)(Xt−))dt .

As Xt− = Xt for Lebesgue almost all t ∈ [0, Tf ], we conclude that

KL(P|
−→
R ) = KL(P0|

−→
R 0) + λEP

∫
[0,Tf ]

d∑
ℓ=1

h(ut(Xt, φ
(ℓ)(Xt)))dt ,

with h(a) := ϱ∗(a− 1) = a log a− a+ 1 for a > 0. The proof of Theorem F.13 is then finished.

F.2.2. OPTIMAL CONTROL PROBLEM OF THE TIME REVERSAL PROCESS

In the continuous case, Conforti et al. (2025) demonstrated that the time reversal process can be formulated as a solution
to an optimal control problem. This characterization not only describes the dynamics of the process but also serves as a
powerful framework for proving convergence of algorithms simulating the backward process.

Leveraging Girsanov’s theorem (Theorem F.13), we derive an entropic formulation of this optimization problem. Let
−→
R

be the stationary measure on the path space DTf
introduced in the previous section. Then, the process

−→
R is reversible,

meaning
←−
R =

−→
R , and corresponds to the invariant measure γd = Uniform(X). Let

−→
P µ⋆

represent the forward probability
measure on the interval [0, Tf ] starting from µ⋆ and governed by the forward generator −→q given in (63). We denote the
corresponding backward probability measure ending at µ⋆ by

←−
P µ⋆

.

Proposition F.16. The time reversal process
←−
P µ⋆

satisfies the following optimization problem

←−
P µ⋆

= argmin
P∈P(DTf

): KL(P|−→R)<∞

(
KL(P|

−→
R ) +

∫
gdPTf

)
, with g = − log

dµ⋆

dγd
.

Proof of Proposition F.16. From Léonard (2012, Proposition 3.1), for P ∈ P(DTf
) verifying KL(P|

−→
R ) < ∞, the KL

divergence KL(P|
−→
R ) admits the following variational representation

KL(P|
−→
R ) = sup

f∈L1(P) s.t.
∫
efd
−→
R<∞

(∫
fdP− log

∫
efd
−→
R

)
.

For any P = Law(X·) ∈ P(DTf
) satisfying the finite KL divergence condition, taking f(X·) = −g(XTf

) implies

KL(P|
−→
R ) ⩾

∫
−gdPTf

− log

∫
e−gd

−→
RTf

= −
∫
gdPTf

− log

∫
dµ⋆ = −

∫
gdPTf

,
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since
∫
dµ⋆ = 1. As

←−
P µ⋆

is the backward process ended at µ⋆ and
−→
R is a reversible path probability measure on [0, Tf ],

i.e.,
−→
R =

←−
R , we have

d
←−
P µ⋆

d
−→
R

(
←−
X ·) =

dµ⋆

dγd
(
←−
XTf

) = e−g(
←−
XTf

) .

This implies

KL(
←−
P µ⋆

|
−→
R ) = KL(µ⋆|γd) =

∫
log

dµ⋆

dγd
dµ⋆ = −

∫
gdµ⋆ = −

∫
gd
←−
P µ⋆

Tf
.

Combining the previous results, we obtain that the time reversal
←−
P µ⋆

is the optimal solution to the following problem

←−
P µ⋆

= argmin
P∈P(DTf

): KL(P|−→R)<∞

(
KL(P|

−→
R ) +

∫
gdPTf

)
,

which is the desired conclusion.

Utilizing the expression for KL(P|
−→
R ) given by Girsanov’s Theorem F.13, we can now frame the corresponding Optimal

Control problem.

Theorem F.17. Denote by D the set of all u : [0, Tf ]× X2 → [0,∞) satisfying the integrability condition

EP

[∫
[0,Tf ]

d∑
ℓ=1

ϱ∗(|ut(
←−
Xu
t , φ

(ℓ)(
←−
Xu
t ))− 1|)dt

]
<∞ ,

which is indeed equivalent to condition (66). Then
←−
P µ⋆

is the law of
←−
Xu∗

with u∗ is the optimal solution to

inf
u∈D

E

[
λ

∫
[0,Tf ]

d∑
ℓ=1

h(ut(
←−
Xu
t , φ

(ℓ)(
←−
Xu
t )))dt+ g(

←−
Xu
Tf
)

]
,

s.t. Law(
←−
Xu
· ) ∈ MP(U−→q ) ,with (U−→q )(ω, t, x, y) := ut(ωt−, y)

−→q (x, y) for x ̸= y .

(78)

Proof of Theorem F.17. Theorem F.17 is a consequence of Theorem F.13 and Proposition F.16.

F.2.3. HAMILTON–JACOBI–BELLMAN EQUATION

The goal of this section is to characterize the previous optimization problem via the Hamilton–Jacobi–Bellman (HJB)
equation. To this purpose, we first consider the generalization of the previous control problem. Let J be the following cost

J(t, x, u) := E

[
λ

∫
[t,Tf ]

d∑
ℓ=1

h(us(
←−
X t,x,u
s , φ(ℓ)(

←−
X t,x,u
s )))ds+ g(

←−
X t,x,u
Tf

)

]
,

s.t.

{
Law(

←−
X t,x,u
· ) ∈ MP(U−→q ) ,

←−
X t,x,u
t = x ,

for (x, t, u) ∈ X× [0, Tf ]×D .

Consider V (t, x) to be the value function of the previous cost function, i.e.,

V (t, x) := inf
u∈D

J(t, x, u) .

The following Dynamic Programming Principle is the main tool to derive the HJB equation.
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Lemma F.18. (Touzi, 2012, Theorem 3.3) For any stopping time κ ∈ [t, Tf ], the Dynamic Programming Principle (DPP)
implies

V (t, x) = inf
u∈D

E

[
λ

∫
[t,κ]

d∑
ℓ=1

h(us(
←−
X t,x,u
s , φ(ℓ)(

←−
X t,x,u
s )))ds+ V (κ,

←−
X t,x,u
κ )

]
. (79)

Proof of Lemma F.18. Refer to Touzi (2012, Section 3.2).

The expression of V given in Lemma F.18 leads us to the following HJB equation, which is a characterization of the optimal
control to the problem (78).

Theorem F.19. Assume that V is continuously differentiable in time. Then, the optimal control u∗ to the problem (78) is

u∗t (x, φ
(ℓ)(x)) = eV (t,x)−V (t,φ(ℓ)(x)) for ℓ = 1, 2, . . . , d ,

with V satisfies the following HJB equation{
∂tV (t, x)− λ

∑d
ℓ=1 e

V (t,x)−V (t,φ(ℓ)(x)) = −λd ,
V (Tf , x) = g(x) = − log dµ⋆

dγd (x) ,
for (t, x) ∈ [0, Tf )× X . (80)

Proof of Theorem F.19. The proof is an adaptation of Proposition 3.5 in Touzi (2012). First, the DPP formula (79) for
t ∈ [0, Tf ) and κ = t+ α with α > 0 leads to

E

[
λ

∫
[t,t+α]

d∑
ℓ=1

h(us(
←−
X t,x,u
s , φ(ℓ)(

←−
X t,x,u
s )))ds+ V (t+ α,

←−
X t,x,u
t+α )− V (t, x)

]
⩾ 0 ,

for any admissible control u ∈ D. Using Itô’s formula on the process
←−
X t,x,u with the law

←−
P ∈ MP(U−→q ), we get

E

[∫
[t,t+α]

λ

d∑
ℓ=1

h(us(
←−
X t,x,u
s , φ(ℓ)(

←−
X t,x,u
s )))ds+

∫
[t,t+α]

(∂tV (s,
←−
X t,x,u
s ) + (us

−→q )Vs(
←−
X t,x,u
s ))ds

]
⩾ 0 .

Using the formula of −→q and multiplying the both hand sides by 1
α and pushing α→ 0, we arrive at

λ

d∑
ℓ=1

h(ut(x, φ
(ℓ)(x))) + ∂tV (t, x) + λ

d∑
ℓ=1

[
V (t, φ(ℓ)(x))− V (t, x)

]
ut(x, φ

(ℓ)(x)) ⩾ 0 ,

for any u ∈ D. Taking the infimum w.r.t. u, we get

∂tV (t, x) + λ inf
u∈D

d∑
ℓ=1

[
h(ut(x, φ

(ℓ)(x))) + [V (t, φ(ℓ)(x))− V (t, x)]ut(x, φ
(ℓ)(x))

]
⩾ 0 , for (t, x) ∈ [0, Tf )× X .

We prove next the equality by contradiction. Assume that there exists (t0, x0) ∈ [0, Tf ]× X such that

∂tV (t0, x0) + λ inf
u∈D

d∑
ℓ=1

[
h(ut0(x0, φ

(ℓ)(x0))) + [V (t0, φ
(ℓ)(x0))− V (t0, x0)]ut0(x0, φ

(ℓ)(x0))
]
> 0 .

Denote ∆V (t0, x0, φ
(ℓ)(x0)) := V (t0, φ

(ℓ)(x0))− V (t0, x0). The previous inequality implies that there exists ε > 0 such
that

∂tV (t0, x0) + λ inf
u∈D

d∑
ℓ=1

[h(u) + u∆V ] (t0, x0, φ
(ℓ)(x0)) ⩾ ε > 0 . (81)
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Take ξ > 0 small enough such that

λ

d∑
ℓ=1

(e−∆V+ξ − e−∆V )(t0, x0, φ
(ℓ)(x0)) <

ε

2
, (82)

and define the function f ⩽ V as

f(t, x) := V (t, x)− ξ
[
|t− t0|2 + δ{x0}(x)

]
, for (t, x) ∈ [0, Tf ]× X .

It is clear that

f(t0, x0) = V (t0, x0) , ∂tf(t0, x0) = ∂tV (t0, x0) , and f(t0, x)− V (t0, x) = −ξ for x ̸= x0 .

Therefore,

∂tf(t0, x0) + λ inf
u∈D

d∑
ℓ=1

[
h(ut0(x0, φ

(ℓ)(x0))) + [f(t0, φ
(ℓ)(x0))− f(t0, x0)]ut0(x0, φ(ℓ)(x0))

]
=∂tV (t0, x0) + λ inf

u∈D

d∑
ℓ=1

[
h(ut0(x0, φ

(ℓ)(x0))) +
[
V (t0, φ

(ℓ)(x0))− V (t0, x0)− ξ
]
ut0(x0, φ

(ℓ)(x0))
]

=∂tV (t0, x0) + λ inf
u∈D

d∑
ℓ=1

[h(u) + (∆V − ξ)u] (t0, x0, φ(ℓ)(x0)) .

The minimum above is attained at u such that u(t0, x0, φ(ℓ)(x0)) = e−∆V+ξ(t0, x0, φ
(ℓ)(x0)) , thus

∂tf(t0, x0) + λ inf
u∈D

d∑
ℓ=1

[
h(ut0(x0, φ

(ℓ)(x0))) + [f(t0, φ
(ℓ)(x0))− f(t0, x0)]ut0(x0, φ(ℓ)(x0))

]
= ∂tV (t0, x0) + λ

d∑
ℓ=1

[
h(e−∆V+ξ) + (∆V − ξ)e−∆V+ξ

]
(t0, x0, φ

(ℓ)(x0))

= ∂tV (t0, x0) + λ

d∑
ℓ=1

(1− e−∆V+ξ)(t0, x0, φ
(ℓ)(x0))

= ∂tV (t0, x0) + λ

d∑
ℓ=1

(1− e−∆V )(t0, x0, φ(ℓ)(x0)) + λ

d∑
ℓ=1

(e−∆V − e−∆V+ξ)(t0, x0, φ
(ℓ)(x0))

> ε− ε

2
=
ε

2
> 0 ,

where the last inequality relies on (82) and (81) with u = e−∆V . Therefore, we obtain

∂tf(t0, x0) + λ inf
u

d∑
ℓ=1

[
h(ut0(x0, φ

(ℓ)(x0))) + [f(t0, φ
(ℓ)(x0))− f(t0, x0)]ut0(x0, φ(ℓ)(x0))

]
> 0 .

From the continuity in time of the Hamiltonian, the previous inequality yields that

∂tf(t, x) + λ inf
u∈D

d∑
ℓ=1

[
h(ut(x, φ

(ℓ)(x))) + [f(t, φ(ℓ)(x))− f(t, x)]ut(x, φ(ℓ)(x))
]
⩾ 0 ,

for (t, x) ∈ (t0 − r, t0 + r)× {x0} , (83)
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for some r > 0. Defining the stopping time κu as

κu := inf
{
t ∈ (t0, Tf ] :

←−
X t0,x0,u
t− ̸= x0

}
∧ (t0 + r) ,

for an arbitrary control u, we have

f(κu,
←−
X t0,x0,u
κu ) =

{
f(t0 + r,

←−
X t0,x0,u
t0+r ) , if

←−
X t0,x0,u
κu− = x0 ,

f(κu,
←−
X t0,x0,u
κu ) , if

←−
X t0,x0,u
κu− ̸= x0 .

This implies that

f(κu,
←−
X t0,x0,u
κu )− V (κu,

←−
X t0,x0,u
κu ) =

{
−ξr2 , if

←−
X t0,x0,u
κu− = x0 ,

−ξ(|κu − t0|2 + 1) , if
←−
X t0,x0,u
κu− ̸= x0 ,

⩽ −ξr2 .

Therefore,

E

[∫
[t0,κu]

λ

d∑
ℓ=1

h(us(
←−
X t0,x0,u
s , φ(ℓ)(

←−
X t0,x0,u
s )))ds+ V (κu,

←−
X t0,x0,u
κu )

]

⩾ E

[∫
[t0,κu]

λ

d∑
ℓ=1

h(us(
←−
X t0,x0,u
s , φ(ℓ)(

←−
X t0,x0,u
s )))ds+ f(κu,

←−
X t0,x0,u
κu ) + ξr2

]

= E

[∫
[t0,κu]

λ

d∑
ℓ=1

h(us(
←−
X t0,x0,u
s , φ(ℓ)(

←−
X t0,x0,u
s )))ds+ f(κu,

←−
X t0,x0,u
κu )− f(t0, x0)

]
+ f(t0, x0) + ξr2 .

Using Itô’s formula and the fact that V (t0, x0) = f(t0, x0), we obtain

E

[∫
[t0,κu]

λ

d∑
ℓ=1

h(us(
←−
X t0,x0,u
s , φ(ℓ)(

←−
X t0,x0,u
s )))ds+ V (κu,

←−
X t0,x0,u
κu )

]

= E
∫
[t0,κu]

[
∂tf(s,

←−
X t0,x0,u
s ) + λ

d∑
ℓ=1

h(us(
←−
X t0,x0,u
s , φ(ℓ)(

←−
X t0,x0,u
s )))

+ (f(s, φ(ℓ)(
←−
X t0,x0,u
s ))− f(s,

←−
X t0,x0,u
s ))us(

←−
X t0,x0,u
s , φ(ℓ)(

←−
X t0,x0,u
s ))

]
ds+ V (t0, x0) + ξr2 .

This together with (83) yield

E

[∫
[t0,κu]

λ

d∑
ℓ=1

h(us(
←−
X t0,x0,u
s− , φ(ℓ)(

←−
X t0,x0,u
s− )))ds+ V (κu,

←−
X t0,x0,u
κu )

]
⩾ V (t0, x0) + ξr2 . (84)

Since the above control u is arbitrary, (84) is indeed a contradiction to DPP formula (79).

Consequently, we can deduce the following HJB equation satisfied by the value function for (t, x) ∈ [0, Tf )× X,{
∂tV (t, x) + λ infu∈D

∑d
ℓ=1

[
h(ut(x, φ

(ℓ)(x))) + [V (t, φ(ℓ)(x))− V (t, x)]ut(x, φ
(ℓ)(x))

]
= 0 ,

V (Tf , x) = g(x) .
(85)

Proceeding as before, we minimize (85) and directly obtain the optimal solution

u∗t (x, φ
(ℓ)(x)) = eV (t,x)−V (t,φ(ℓ)(x)) , for ℓ = 1, . . . , d .
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Replacing the formulation of u∗ into (85) boils down to{
∂tV (t, x)− λ

∑d
ℓ=1 e

V (t,x)−V (t,φ(ℓ)(x)) = −λd ,
V (Tf , x) = g(x) = − log dµ⋆

dγd (x) ,
for (t, x) ∈ [0, Tf )× X ,

which concludes the proof of Theorem F.19.

The previous HJB equation will be instrumental in the proof of our convergence bound. To do this, we first consider the
following martingale and monotone property, which follows from the above characterization of the optimal control.

Proposition F.20. With all the notations above, u∗t (
←−
Xu∗

t , φ
(ℓ)(
←−
Xu∗

t )) is a
←−
P µ⋆

-martingale for fixed ℓ = 1, . . . , d. Conse-
quently, h(u∗t (

←−
Xu∗

t , φ
(ℓ)(
←−
Xu∗

t ))) is a
←−
P µ⋆

-submartingale and the monotonicity follows:

E←−P µ⋆ [h(u∗s(
←−
Xu∗

s , φ
(ℓ)(
←−
Xu∗

s )))] ⩽ E←−P µ⋆ [h(u∗t (
←−
Xu∗

t , φ
(ℓ)(
←−
Xu∗

t )))] , for 0 ⩽ s ⩽ t ⩽ Tf .

Proof of Proposition F.20. Fix t ∈ [0, Tf ] and ℓ = 1, . . . , d, applying Itô’s formula on

f ℓ(t,
←−
Xu∗

t ) := u∗t (
←−
Xu∗

t , φ
(ℓ)(
←−
Xu∗

t )) = eV (t,
←−
Xu∗

t )−V (t,φ(ℓ)(
←−
Xu∗

t )) ,

and note that Law(
←−
Xu∗

. ) =
←−
P µ⋆

solves MP(U∗−→q ) as well as
←−
X t =

←−
X t− for Lebesgue almost all t ∈ [0, Tf ], we obtain

that the process

f ℓ(t,
←−
Xu∗

t )− f ℓ(0,
←−
Xu∗

0 )−
∫ t

0

[
∂sf

ℓ(s,
←−
Xu∗

s ) + (u∗−→q )f ℓs(
←−
Xu∗

s )
]
ds

is a
←−
P µ⋆

-martingale. Denote

bℓs := ∂sf
ℓ(s,
←−
Xu∗

s ) + (u∗−→q )f ℓs(
←−
Xu∗

s ), for s ∈ [0, t] .

We aim to prove that bℓs = 0. Indeed, by the definition of f ℓ,−→q and the HJB equation (80), we get that

bℓs = u∗s(
←−
Xu∗

s , φ
(ℓ)(
←−
Xu∗

s ))
[
∂sV (s,

←−
Xu∗

s )− ∂sV (s, φ(ℓ)(
←−
Xu∗

s ))
]

+

d∑
i=1

[
u∗s(φ

(i)(
←−
Xu∗

s ), φ(ℓ)(φ(i)(
←−
Xu∗

s )))− u∗s(
←−
Xu∗

s , φ
(ℓ)(
←−
Xu∗

s ))
]
λu∗s(

←−
Xu∗

s , φ
(i)(
←−
Xu∗

s ))

= λu∗s(
←−
Xu∗

s , φ
(ℓ)(
←−
Xu∗

s ))

[
d∑
i=1

u∗s(
←−
Xu∗

s , φ
(i)(
←−
Xu∗

s ))−
d∑
i=1

u∗s(φ
(ℓ)(
←−
Xu∗

s ), φ(i)(φ(ℓ)(
←−
Xu∗

s )))

]

+

d∑
i=1

[
u∗s(φ

(i)(
←−
Xu∗

s ), φ(ℓ)(φ(i)(
←−
Xu∗

s )))− u∗s(
←−
Xu∗

s , φ
(ℓ)(
←−
Xu∗

s ))
]
λu∗s(

←−
Xu∗

s , φ
(i)(
←−
Xu∗

s ))

= λ

d∑
i=1

[
u∗s(φ

(i)(
←−
Xu∗

s ), φ(ℓ)(φ(i)(
←−
Xu∗

s )))u∗s(
←−
Xu∗

s , φ
(i)(
←−
Xu∗

s ))

− u∗s(φ(ℓ)(
←−
Xu∗

s ), φ(i)(φ(ℓ)(
←−
Xu∗

s )))u∗s(
←−
Xu∗

s , φ
(ℓ)(
←−
Xu∗

s ))
]
.

Using the identity u∗s(x, φ
(i)(x)) = eV (s,x)−V (s,φ(i)(x)) for i = 1, 2, . . . , d in Theorem F.19, we derive
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bℓs = λ

d∑
i=1

[
eV (s,φ(i)(

←−
Xu∗

s ))−V (s,φ(ℓ)(φ(i)(
←−
Xu∗

s )))+V (s,
←−
Xu∗

s )−V (s,φ(i)(
←−
Xu∗

s ))

− eV (s,φ(ℓ)(
←−
Xu∗

s ))−V (s,φ(i)(φ(ℓ)(
←−
Xu∗

s )))+V (s,
←−
Xu∗

s )−V (s,φ(ℓ)(
←−
Xu∗

s ))

]

= λ

d∑
i=1

[
e−V (s,φ(ℓ)(φ(i)(

←−
Xu∗

s )))+V (s,
←−
Xu∗

s ) − e−V (s,φ(i)(φ(ℓ)(
←−
Xu∗

s )))+V (s,
←−
Xu∗

s )
]
= 0 ,

as φ(ℓ)(φ(i)(
←−
Xu∗

s )) = φ(i)(φ(ℓ)(
←−
Xu∗

s )) for any ℓ, i = 1, . . . , d. We thus conclude that u∗t (
←−
Xu∗

t , φ
(ℓ)(
←−
Xu∗

t )) is a
←−
P µ⋆

-
martingale. Since h is convex, it follows that h(u∗t (

←−
Xu∗

t , φ
(ℓ)(
←−
Xu∗

t ))) is a
←−
P µ⋆

-submartingale, which implies the desired
monotonicity for ℓ = 1, 2, . . . , d.

F.3. Connection between the transition matrix and canonical process point of view

As we see in previous sections, the time reversal process can be understood not only via the backward transition matrix
but also via the process corresponding to the optimal control problem. The transition matrix point of view provides an
approximation of the score to simulate the backward process, which is very useful in practice. In parallel, the canonical
process point of view gives us a better understanding of the evolution of the time reversal process, which allows us to show a
theoretical guarantee on our algorithm. These two points of view in fact have a strong relation, which will be specified in
this section.

Proposition F.21. The optimal control u∗ satisfies the following relation with respect to the score function defined in (17) as

u∗t (x, φ
(ℓ)(x)) = 1− sℓt(x) , with ℓ = 1, . . . , d and (t, x) ∈ [0, Tf )× X . (86)

Proof of Proposition F.21. The proof relies on the fact that the function ψ(t, x) = − log
dµTf−t

dγd (x), for (t, x) ∈ [0, Tf )×X
is a solution to the HJB equation (80). Indeed, for (t, x) ∈ [0, Tf )× X, we have that

∂tψ(t, x)− λ
d∑
i=1

eψ(t,x)−ψ(t,φ
(i)(x)) =

∂tdµTf−t(x)

dµTf−t(x)
− λ

dµTf−t(x)

d∑
i=1

dµTf−t(φ
(i)(x))

=
1

dµTf−t(x)
(∂tdµTf−t(x)− λ

d∑
i=1

dµTf−t(φ
(i)(x))) .

Using the Kolmogorov equation ∂tdµTf−t(x) = dµTf−t
−→q (x) =

∑
y∈X dµTf−t(y)

−→q (y, x) implies

∂tψ(t, x)− λ
d∑
i=1

eψ(t,x)−ψ(t,φ
(i)(x)) =

1

dµTf−t(x)

∑
y∈X

dµTf−t(y)
−→q (y, x)− λ

d∑
i=1

dµTf−t(φ
(i)(x))


=

1

dµTf−t(x)

(
−λddµTf−t(x)

)
= −λd ,

since −→q (x, y) = λ if y = φ(i)(x), −→q (x, y) = −λd if y = x and −→q (x, y) = 0 otherwise.

Moreover, ψ also satisfies the final condition

ψ(Tf , x) = − log
dµ⋆

dγd
(x) = g(x) ,
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meaning that ψ solves the HJB equation (80). Consequently, the optimal control is

u∗t (x, φ
(ℓ)(x)) = eψ(t,x)−ψ(t,φ

(ℓ)(x)) =
µTf−t(φ

(ℓ)(x))

µTf−t(x)
.

This implies the relation between the optimal control and the score function as

u∗t (x, φ
(ℓ)(x)) = 1− sℓt(x) for ℓ = 1, . . . , d and (t, x) ∈ [0, Tf ]× X,

which demonstrates that the transition matrix and the canonical process perspectives are indeed equivalent.

F.4. Convergence of DMPMs

Based on the canonical process perspective, we can characterize the backward evolution through martingales and optimal
control problems. These tools enable us to establish the error bounds presented in Theorem 2.3 and Theorem 2.4.

F.4.1. PROOF OF THEOREM 2.3

We first prove the curvature-dimension inequality satisfied by our forward dynamics, which is associated with the stationary
distribution γd = Uniform(X). This serves as the key estimate for deriving the entropy decay results later.

Lemma F.22 (Curvature-dimension inequality). The forward dynamic described above satisfies curvature-dimension
inequality CD(2λ,∞), i.e.,

Γ2(f) ⩾ 2λΓ(f) for any function f ,

where Γ is the carré du champ operator and Γ2 is the iterated carré du champ operator.

Proof of Lemma F.22. Recall the formulations of Γ and Γ2 for functions f and g, which are typically defined as follows:

Γ(f, g) =
1

2
[−→q (fg)− f(−→q g)− (−→q f)g] and Γ(f, f) = Γ(f) =

1

2

[−→q (f2)− 2f−→q f
]

Γ2(f) =
1

2
[−→q Γ(f)− 2Γ(−→q f, f)] ,

where −→q is the forward generator defined in (14). These quantities capture the interaction between the functions f and g
under the generator −→q and play a crucial role in establishing results related to curvature-dimension inequalities and entropy
decay. We now compute explicitly Γ(f)(x) for x ∈ X as

Γ(f)(x) =
1

2

[−→q (f2)− 2f−→q f
]

=
λ

2

[
d∑
ℓ=1

(
f2(φ(ℓ)(x))− f2(x)

)
− 2f(x)

d∑
ℓ=1

(
f(φ(ℓ)(x))− f(x)

)]

=
λ

2

d∑
ℓ=1

[
f(φ(ℓ)(x))− f(x)

]2
.

Regarding the iterated carré du champ Γ2(f), the first term can be calculated as
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−→q Γ(f)(x) = λ

d∑
i=1

[
Γ(f)(φ(i)(x))− Γ(f)(x)

]
= λ

d∑
i=1

[
λ

2

d∑
ℓ=1

(
f(φ(ℓ)(φ(i)(x)))− f(φ(i)(x))

)2
− λ

2

d∑
ℓ=1

(
f(φ(ℓ)(x))− f(x)

)2]

=
λ2

2

d∑
i=1

d∑
ℓ=1

[(
f(φ(ℓ)(φ(i)(x)))− f(φ(i)(x))

)2
−
(
f(φ(ℓ)(x))− f(x)

)2]
.

(87)

To simplify the second term of Γ2, note that

2Γ(f, g)(x) = −→q (fg)− f(−→q g)− g(−→q f)

= λ

d∑
ℓ=1

[
f(φ(ℓ)(x))g(φ(ℓ)(x))− f(x)g(φ(ℓ)(x)) + f(x)g(x)− g(x)f(φ(ℓ)(x))

]
= λ

d∑
ℓ=1

[
f(x)− f(φ(ℓ)(x))

] [
g(x)− g(φ(ℓ)(x))

]
.

Therefore

2Γ(f,−→q f)(x) = λ

d∑
ℓ=1

[
f(x)− f(φ(ℓ)(x))

] [
λ

d∑
i=1

(
f(φ(i)(x))− f(x)

)
− λ

d∑
i=1

(
f(φ(ℓ)(φ(i)(x)))− f(φ(ℓ)(x))

)]

= λ2
d∑
ℓ=1

d∑
i=1

[
f(x)− f(φ(ℓ)(x))

] [
f(φ(i)(x))− f(x)− f(φ(ℓ)(φ(i)(x))) + f(φ(ℓ)(x))

]
.

(88)

Plugging (87) and (88) into Γ2 yields

Γ2(f)(x) =
1

2
[−→q Γ(f)− 2Γ(−→q f, f)]

=
λ2

4

d∑
ℓ=1

d∑
i=1

[(
f(φ(ℓ)(φ(i)(x)))− f(φ(i)(x))

)2
−
(
f(φ(ℓ)(x))− f(x)

)2
+ 2

(
f(x)− f(φ(ℓ)(x))

)2
− 2

(
f(x)− f(φ(ℓ)(x))

)(
f(φ(i)(x))− f(φ(ℓ)(φ(i)(x)))

)]

=
λ2

4

d∑
ℓ=1

d∑
i=1

[
f(φ(ℓ)(φ(i)(x)))− f(φ(i)(x))− f(φ(ℓ)(x)) + f(x)

]2
⩾
λ2

4

d∑
ℓ=1

[
f(x)− f(φ(ℓ)(x))− f(φ(ℓ)(x)) + f(x)

]2
= λ2

d∑
ℓ=1

[
f(φ(ℓ)(x))− f(x)

]2
= 2λΓ(f)(x) , for any x ∈ X .

We conclude that the forward jump process satisfies CD(2λ,∞).

We are now prepared to analyze the key distinguishing result of this paper.
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Proof of Theorem 2.3. We begin by establishing a bound on the “distance” between the backward path measure in
continuous time,

←−
P µ∗

, associated with the controlled process
←−
Xu∗

, and the path measure
←−
P ⋆ corresponding to the simulated

backward process
←−
X ⋆ generated in Algorithm 3. For brevity, we denote the optimal control u∗ by u, the backward path

measure
←−
P µ∗

by
←−
P , and the corresponding process

←−
Xu∗

by
←−
X throughout the remainder of the paper. Using the stationary

forward path measure
−→
R = Law(Xt)t∈[0,Tf ] ∈ MP(−→q ) as the reference measure in Girsanov’s Theorem F.13, we obtain:

d
←−
P

d
−→
R

(
←−
X ·) =

d
←−
P 0

d
−→
R 0

(
←−
X 0) exp

(∫
[0,Tf ]×X

logUtdÑ
−→q
X −

∫
[0,Tf ]×X

ϱ(logUt)dn̄
−→q

)
.

With a partition 0 = t0 < ... < tK = Tf for K ⩾ 1 of [0, Tf ] associated with the sequence of step-size {hk}Kk=1 : hk+1 =
tk+1 − tk, the previous expression rewrites as

d
←−
P

d
−→
R

(
←−
X ·) =

d
←−
P 0

d
−→
R 0

(
←−
X 0) exp

K−1∑
k=0

(∫
[tk,tk+1]×X

logUtdÑ
−→q
X −

∫
[tk,tk+1]×X

ϱ(logUt)dn̄
−→q

)
.

Apply Girsanov’s theorem F.13 again for the path measure
←−
P ⋆ of the process

←−
X ⋆ in Algorithm 1, we obtain

d
←−
P ⋆

d
−→
R

(
←−
X ·) =

d
←−
P ⋆

0

d
−→
R 0

(
←−
X 0) exp

K−1∑
k=0

(∫
[tk,tk+1]×X

logUθ
⋆

tk
dÑ
−→q
X −

∫
[tk,tk+1]×X

ϱ(logUθ
⋆

tk
)dn̄
−→q

)
.

Combining the previous equations, we see that

d
←−
P

d
←−
P ⋆

(
←−
X ·) =

d
←−
P0

d
←−
P ⋆

0

(
←−
X 0) exp

K−1∑
k=0

(∫
[tk,tk+1]×X

(logUt − logUθ
⋆

tk
)dÑ

−→q
X −

∫
[tk,tk+1]×X

(ϱ(logUt)− ϱ(logUθ
⋆

tk
))dn̄

−→q

)
.

This leads to the following expression of the KL divergence

KL(
←−
P |
←−
P ⋆) = KL(µTf

|γd) +
K−1∑
k=0

E←−P

[∫
[tk,tk+1]×X

(logUt − logUθ
⋆

tk
)dÑ

−→q
X

−
∫
[tk,tk+1]×X

(ϱ(logUt)− ϱ(logUθ
⋆

tk
))dn̄

−→q

]
.
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Using equation (72) and the definition of ϱ, we derive

KL(
←−
P |
←−
P ⋆) = KL(µTf

|γd) +
K−1∑
k=0

E←−P

[∫
[tk,tk+1]×X

(
(logUt − logUθ

⋆

tk
)(Ut − 1)

− (Ut − logUt − 1) + (Uθ
⋆

tk
− logUθ

⋆

tk
− 1)

)
dn̄
−→q

]

= KL(µTf
|γd) +

K−1∑
k=0

E←−P

[∫
[tk,tk+1]×X

(
Ut
Uθ

⋆

tk

log
Ut
Uθ

⋆

tk

− Ut
Uθ

⋆

tk

+ 1

)
Uθ

⋆

tk
dn̄
−→q

]

= KL(µTf
|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

uθ
⋆

tk
h

(
ut
uθ

⋆

tk

)
dt

]

= KL(µTf
|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

utkh

(
ut
utk

)
dt

]

+ λ
K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
uθ

⋆

tk
h

(
ut
uθ

⋆

tk

)
− utkh

(
ut
utk

))
dt

]
. (89)

By definition of the function h and the tower property, the last term can be computed as

I : =

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
uθ

⋆

tk
h

(
ut
uθ

⋆

tk

)
− utkh

(
ut
utk

))
dt

]

=

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
ut log

utk
uθ

⋆

tk

+ uθ
⋆

tk
− utk

)
dt

]

=

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
log

utk
uθ

⋆

tk

E←−P
[
ut(
←−
X t, φ

(ℓ)(
←−
X t))

∣∣∣Ftk]+ uθ
⋆

tk
− utk

)
dt

]
,

with Ftk the σ-algebra of
←−
X tk . Proposition F.20 shows that ut(

←−
X t, φ

(ℓ)(
←−
X t)) is a

←−
P -martingale for ℓ = 1, . . . , d, hence

I =

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
utk log

utk
uθ

⋆

tk

+ uθ
⋆

tk
− utk

)
dt

]

=

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

uθ
⋆

tk
h

(
utk
uθ

⋆

tk

)
dt

]

=

K−1∑
k=0

(tk+1 − tk)E←−P

[
d∑
ℓ=1

uθ
⋆

tk
h

(
utk
uθ

⋆

tk

)]
.

The last quantity can be bounded by Assumption 2.1 as

I ⩽ ϵ

K−1∑
k=0

(tk+1 − tk) = ϵ(tN − t0) = ϵTf ,

since
∑K−1
k=0 (tk+1 − tk) is a telescoping sum. Replacing this into (89) yields

KL(
←−
P |
←−
P ⋆) ⩽ KL(µTf

|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

utkh

(
ut
utk

)
dt

]
+ λϵTf .
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By definition of the function h, we have

h

(
ut
utk

)
=

1

utk
(h(ut)− h(utk) + (utk − ut) log(utk)) ,

which leads to

KL(
←−
P |
←−
P ⋆) ⩽ KL(µTf

|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(h(ut)− h(utk) + (utk − ut) log(utk)) dt

]
+ λϵTf .

We now apply the tower property of conditional expectations together with the martingality results established in Proposi-
tion F.20 to bound the second term above as follows:

KL(
←−
P |
←−
P ⋆) ⩽ KL(µTf

|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(E[h(ut)|Ftk ]− h(utk) + (utk − E[ut|Ftk ]) log(utk)) dt

]
+ λϵTf

⩽ KL(µTf
|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
E[h(utk+1

)|Ftk ]− h(utk) + (utk − utk) log(utk)
)
dt

]
+ λϵTf

= KL(µTf
|γd) + λ

K−1∑
k=0

E←−P

[∫
[tk,tk+1]

d∑
ℓ=1

(
h(utk+1

)− h(utk)
)
dt

]
+ λϵTf .

Now observe that the uniform distribution γd is the invariant measure of the forward process, which satisfies the curvature-
dimension condition CD(2λ,∞) (see Lemma F.22). As a consequence, it satisfies a logarithmic Sobolev inequality by
Bakry et al. (2014, Theorem 5.10). This, in turn, implies exponential decay of entropy over time by Bakry et al. (2014,
Theorem 5.12), and thus we obtain:

KL(
←−
P |
←−
P ⋆) ⩽ e−4λTfKL(µ⋆|γd) + λ

K−1∑
k=0

hk+1

(
E←−P

[
d∑
ℓ=1

h(utk+1
)

]
− E←−P

[
d∑
ℓ=1

h(utk)

])
+ λϵTf . (90)

Defining the max step size τ = max{hk}, we then obtain a telescoping sum on the right hand side of (90), which yields

KL(
←−
P |
←−
P ⋆) ⩽ e−4λTfKL(µ⋆|γd) + λτ

(
E←−P

[
d∑
ℓ=1

h(utK )

]
− E←−P

[
d∑
ℓ=1

h(ut0)

])
+ λϵTf

= e−4λTfKL(µ⋆|γd) + λτ

(
E←−P

[
d∑
ℓ=1

h(uTf
)

]
− E←−P

[
d∑
ℓ=1

h(u0)

])
+ λϵTf .

Since h in nonnegative function, we deduce that

KL(
←−
P |
←−
P ⋆) ⩽ e−4λTfKL(µ⋆|γd) + λτE←−P

[
d∑
ℓ=1

h(uTf
)

]
+ λϵTf

= e−4λTfKL(µ⋆|γd) + λτβγd(µ⋆) + λϵTf , (91)
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where βγd(µ∗) := E←−P
[∑d

ℓ=1 h(uTf
)
]

represents a Fisher-like information functional of the data distribution µ∗, which is

finite by Assumption 2.2. Finally, noting that µ∗ = Law(
←−
Xu∗

Tf
), we conclude that

KL(µ⋆|Law(
←−
X ⋆
Tf
)) = KL(Law(

←−
Xu∗

Tf
)|Law(X⋆

Tf
)) ⩽ KL(Law(

←−
Xu∗

· )|Law(
←−
X ⋆
· )) = KL(

←−
P |
←−
P ⋆) ,

where the inequality is known as Data processing inequality for KL divergence (Nutz, 2021, Lemma 1.6). Combining this
with (91), we conclude that

KL(µ⋆|Law(
←−
X ⋆
Tf
)) ⩽ e−4λTfKL(µ⋆|γd) + λτβγd(µ⋆) + λϵTf ,

and successfully provide a theoretical guarantee for our generative models.

F.4.2. PROOF OF THEOREM 2.4

We demonstrate Theorem 2.4 through the following result:

Lemma F.23. Denoting yt = E←−P
[∑d

ℓ=1 h(ut(
←−
X t, φ

(ℓ)(
←−
X t))

]
then it holds for t ∈ [0, Tf ),

yt ≲
d

Tf − t
. (92)

Proof of Lemma F.23. Recall the definition of h(a) = a log a− a+ 1 for a > 0, and the connection between the optimal
control ut and the score function st, as provided by Proposition F.21, is given by

ut(x, φ
(ℓ)(x)) = 1− sℓt(x) for ℓ = 1, . . . , d and (t, x) ∈ [0, Tf )× X ,

with the score function admitting a conditional expectation expression as given in (18),

sℓt(x) = E

 2αTf−t

1 + αTf−t
−

4αTf−t(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

∣∣∣∣∣∣−→XTf−t = x

 , with αt = e−2t .

Using the above formulation of the score function, we estimate yt as follows
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yt = E←−P

[
d∑
ℓ=1

(1− sℓt(
←−
X t)) log(1− sℓt(

←−
X t)) + sℓt(

←−
X t)

]

⩽ E←−P

[
d∑
ℓ=1

(1− sℓt(
←−
X t))(1− sℓt(

←−
X t)− 1) + sℓt(

←−
X t)

]
(since log a ⩽ a− 1)

= E←−P

[
d∑
ℓ=1

(sℓt(
←−
X t))

2

]

=

d∑
ℓ=1

E


E

 2αTf−t

1 + αTf−t
−

4αTf−t(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

∣∣∣∣∣∣−→XTf−t = x

2


⩽
d∑
ℓ=1

E

E

 2αTf−t

1 + αTf−t
−

4αTf−t(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

2
∣∣∣∣∣∣∣
−→
XTf−t = x




=

d∑
ℓ=1

E


 2αTf−t

1 + αTf−t
−

4αTf−t(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

1− α2
Tf−t

2
 .

Expanding the last quantity and noting that (
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2 = (

−→
X ℓ
Tf−t −

−→
X ℓ

0)
4 since (

−→
X ℓ
Tf−t −

−→
X ℓ

0) ∈ {0,±1}, we
obtain that

yt ⩽
d∑
ℓ=1

E

 4α2
Tf−t

(1 + αTf−t)
2
+

16α2
Tf−t(

−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

(1 + αTf−t)(1− α2
Tf−t)

(
−1 + 1

1− αTf−t

)
=

d∑
ℓ=1

E

 4α2
Tf−t

(1 + αTf−t)
2
+

16α3
Tf−t(

−→
X ℓ
Tf−t −

−→
X ℓ

0)
2

(1− α2
Tf−t)

2


⩽

d∑
ℓ=1

 4α2
Tf−t

(1 + αTf−t)
2
+

16α3
Tf−tE

[
(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2
]

(1− α2
Tf−t)

2

 .

Note that

E
[
(
−→
X ℓ
Tf−t −

−→
X ℓ

0)
2
]
= P

(−→
X ℓ
Tf−t ̸=

−→
X ℓ

0

)
=

1

2
(1− αTf−t) .

Thus the upper bound of yt is

yt ⩽
d∑
ℓ=1

(
4α2

Tf−t

(1 + αTf−t)
2
+

8α3
Tf−t(1− αTf−t)

(1− α2
Tf−t)

2

)

=
4dα2

Tf−t

(1 + αTf−t)
2

[
1 +

2αTf−t

(1− αTf−t)

]
=

4dα2
Tf−t

1− α2
Tf−t

≲
d

e4(Tf−t) − 1
≲

d

Tf − t
,
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where the last estimate follows from the elementary inequality ea ⩾ a+ 1 for all a ∈ R. Therefore, the bound in (92) holds
for all t ∈ [0, Tf ).

Proof of Theorem 2.4. We follow the same strategy as in the proof of Theorem 2.3, the only difference being the way we
handle the following term in (90)

E3 :=

K−1∑
k=0

hk+1

(
E←−P

[
d∑
ℓ=1

h(utk+1
)

]
− E←−P

[
d∑
ℓ=1

h(utk)

])
=

K−1∑
k=0

hk+1

(
ytk+1

− ytk
)
.

Following precisely the argument structure in the proof of Theorem 3 from Conforti et al. (2025), and fixing Tf , a, and c,
we choose the sequence of step-size as

hk+1 =


Tf − tN−1 k = N − 1

ca k0 + k1 ⩽ k ⩽ k0 + k1 + k2 − 1

c(Tf − tk) k0 ⩽ k ⩽ k0 + k1 − 1

c 0 ⩽ k ⩽ k0 − 1 ,

(93)

and set the number of iterations K = k0 + k1 + k2 + 1, with

k0 = max {k ⩾ 0 : Tf − tk ⩾ 1} , k1 = max {k ⩾ 0 : Tf − tk0+k ⩾ a} and k2 = max {k ⩾ 0 : Tf − tk0+k1+k ⩾ 0} .
(94)

It is shown in Conforti et al. (2025) that

k0 = ⌊c−1(Tf − 1)⌋, k1 = ⌊log(a/(Tf − tk0))/ log(1− c)⌋ ≲ log(1/a)/c ,

K − k0 − k1 = k2 + 1 ≲ 1/c and hk+1 = c(1− c)k−k0(Tf − tk0) for k ∈ {k0, . . . , k0 + k1 − 1} .
(95)

Using (93) and the monotonicity of yt established in Proposition F.20, we can bound E3 as

E3 ⩽
K−1∑
k=0

hk+1

(
ytk+1

− ytk
)

= hKytK +

K−1∑
k=1

ytk(hk − hk+1)

= hKytK +

k0∑
k=1

ytk(hk − hk+1) +

k0+k1∑
k=k0+1

ytk(hk − hk+1)

+

k0+k1+k2−1∑
k=k0+k1+1

ytk(hk − hk+1) + ytk0+k1+k2
(hK−1 − hK)

≲ ytk0
[c− c(Tf − tk0)]︸ ︷︷ ︸

(1)

+ c

k0+k1−1∑
k=k0+1

ytkhk︸ ︷︷ ︸
(2)

+ cytk0+k1
(Tf − tk0+k1−1 − a)︸ ︷︷ ︸

(3)

+ ytKhK−1︸ ︷︷ ︸
(4)

.
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We now bound (1)− (2)− (3)− (4) one-by-one. We start with

(1) : ytk0
[c− c(Tf − tk0)] ⩽ cytk0

Lemma F.23

≲
cd

Tf − tk0

(94)
⩽ cd .

Next, we bound the second term

(2) : c

k0+k1−1∑
k=k0+1

ytkhk
Lemma F.23

≲ c

k0+k1−1∑
k=k0+1

dhk
Tf − tk

= c2d

k0+k1−1∑
k=k0+1

hk
hk+1

(95)
= c2d

k0+k1−1∑
k=k0+1

c(1− c)k−k0−1(Tf − tk0)
c(1− c)k−k0(Tf − tk0)

⩽ c2d

k0+k1−1∑
k=k0+1

1

1− c
c⩽1/2

≲ c2dk1 ≲ cd log(1/a) .

Recall that Tf − tk0+k1−1 ⩽ 1. As a result, we have

(3) : cytk0+k1
(Tf − tk0+k1−1 − a)

Lemma F.23

≲
cd

Tf − tk0+k1
(Tf − tk0+k1−1) =

cd

Tf − tk0+k1−1 − hk0+k1
(Tf − tk0+k1−1)

(93)
⩽

cd

1− c
c⩽1/2

≲ cd .

Finally, for the last term, we have by definition of L = yTf
/d,

(4) : ytKhK−1 = yTf
ca = cadL .

Plugging all the bounds of (1)− (2)− (3)− (4) into E3 gives

E3 ≲ cd[1 + log(1/a) + aL] .

Moreover, choosing a = 1/L yields the following bound on the sampling error

KL(µ⋆|Law(
←−
X ⋆
Tf
)) ≲ e−4λTfKL(µ⋆|γd) + λcd[1 + log(L)] + λϵTf ,

and this concludes the proof of Theorem 2.4.

F.4.3. PROOF OF COROLLARY 2.5

Proof of Corollary 2.5. Applying Theorem 2.4 with c, Tf chosen in (34) implies

KL(µ⋆|Law(
←−
X ⋆
Tf
)) ≲ ϵ+ ϵ log

KL(µ⋆|γd)
ϵ

.

Therefore we obtain the approximation error Õ(ϵ log(KL(µ⋆|γd)). In addition, the number of iterations is given by
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K = k0 + k1 +K − k0 − k1
(95)
≲

Tf − 1

c
+

log(1/a)

c
+

1

c
=
Tf + log(L)

c

(34)
=

λd[1 + log(L)][log(KL(µ⋆|γd)/ϵ)/λ+ log(L)]

ϵ

=
d[1 + log(L)][log(KL(µ⋆|γd)/ϵ) + λ log(L)]

ϵ
,

which grows logarithmically rather than linearly with respect to the discrete Fisher information βγd(µ⋆). We thus conclude
that this step-size sequence offers improved performance compared to the constant step-size.

F.5. Convergence of DMPMs with early stopping strategy

F.5.1. PROOF OF THEOREM 2.6

Proof of Theorem 2.6. Applying the proof of Theorem 2.4 with the target distribution µη in place of µ∗ leads to the
following analogous result:

KL(µη|Law(
←−
X ⋆
Tf−η)) ⩽ e−4λ(Tf−η)KL(µη|γd) + λcd[1 + log(L)] + λϵ(Tf − η) . (96)

Recall that the forward dynamic satisfies the curvature-dimension condition CD(2λ,∞) (see Lemma F.22) and consequently,
the logarithm Sobolev inequality holds (Bakry et al., 2014, Theorem 5.10):

KL(µη|γd) ⩽
1

4λ
E
(
dµη
dγd

, log
dµη
dγd

)
. (97)

As computed in Lemma F.22, we have

E
(
dµη
dγd

, log
dµη
dγd

)
= λ

∑
x∈X

d∑
ℓ=1

dµη
dγd

(x)

(
log

dµη
dγd

(x)− log
dµη
dγd

(φ(ℓ)(x))

)
dγd(x)

= λE

[
d∑
ℓ=1

(
log

dµη(
−→
X η)

dµη(φ(ℓ)(
−→
X η))

)]
. (98)

On the other hand, the discrete Fisher information of µη is given by
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βγd(µη) = E

[
d∑
ℓ=1

h

(
e
− log

(
dµη

dγd (
−→
Xη)

)
+log

(
dµη

dγd (φ(ℓ)(
−→
Xη))

))]

= E

[
d∑
ℓ=1

h

(
e
log

(
dµη(φ(ℓ)(

−→
Xη))

dµη(
−→
Xη)

))]

= E

[
d∑
ℓ=1

h

(
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

)]

= E

[
d∑
ℓ=1

(
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

log
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

− dµη(φ
(ℓ)(
−→
X η))

dµη(
−→
X η)

+ 1

)]

=
∑
x∈X

d∑
ℓ=1

(
dµη(φ

(ℓ)(x)) log
dµη(φ

(ℓ)(x))

dµη(x)
− dµη(φ

(ℓ)(x)) + dµη(x)

)

=
∑
x∈X

d∑
ℓ=1

(
dµη(φ

(ℓ)(x)) log
dµη(φ

(ℓ)(x))

dµη(x)

)

=
∑
x∈X

d∑
ℓ=1

(
dµη(x) log

dµη(x)

dµη(φ(ℓ)(x))

)

= E

[
d∑
ℓ=1

(
log

dµη(
−→
X η)

dµη(φ(ℓ)(
−→
X η))

)]
(98)
=

1

λ
E
(
dµη
dγd

, log
dµη
dγd

)
.

Plugging it into (97) implies that the discrete Fisher information dominates the KL divergence as

KL(µη|γd) ⩽
1

4
βγd(µη) .

To complete the proof, it remains to bound the discrete Fisher information. To this end, we employ the elementary inequality
log a ⩽ a− 1 for a > 0, and proceed using the same reasoning as in Lemma F.23, as detailed below,

βγd(µη) = E

[
d∑
ℓ=1

(
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

log
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

− dµη(φ
(ℓ)(
−→
X η))

dµη(
−→
X η)

+ 1

)]

⩽ E

[
d∑
ℓ=1

(
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

(
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

− 1

)
− dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

+ 1

)]

= E

 d∑
ℓ=1

(
dµη(φ

(ℓ)(
−→
X η))

dµη(
−→
X η)

− 1

)2


= E

[
d∑
ℓ=1

(
sℓTf−η(

−→
X η)

)2]
≲

d

Tf − (Tf − η)
=
d

η
.

It follows that

KL(µη|γd) ≲
d

η
and L = d−1βγd(µη) ≲ η−1 .

Combined with (96), this leads to the desired conclusion:
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KL(µη|Law(
←−
X ⋆
Tf−η)) ≲ dη−1e−4λ(Tf−η) + λcd[1 + log(η−1)] + λϵ(Tf − η) .

F.5.2. PROOF OF PROPOSITION 2.7

Proof of Proposition 2.7. Recall that the total variation distance between µη and µ∗ for η ∈ (0,max
{
Tf ,

1
λ

}
) is defined as

∥µη − µ⋆∥TV =
∑
x∈X

|µη(x)− µ⋆(x)| .

By the triangle inequality, we obtain

∥µη − µ⋆∥TV ⩽
∑
x∈X

|µη(x)− µ⋆(x)−→p η(x, x)|+ |µ⋆(x)− µ⋆(x)−→p η(x, x)| ,

where the transition probability −→p η is defined in (15). The two terms above are nonnegative as

µη(x) =
∑
z∈X

µ⋆(z)−→p η(z, x) ⩾ µ⋆(x)−→p η(x, x) ,

and the transition probability −→p η(x, x) ⩽ 1 for any x ∈ X. This together with the formula of −→p η in (15) yield

∥µη − µ⋆∥TV ⩽
∑
x∈X

[
µη(x) + µ⋆(x)− 2µ⋆(x)

(
1

2
+

1

2
e−2λη

)d]

⩽ 2− 2

(
1

2
+

1

2
e−2λη

)d
.

To simplify this upper bound, we apply the exponential inequality ea ⩾ a+ 1 to e−2λη and note that 1− λη > 0:

∥µη − µ⋆∥TV ⩽ 2− 2

(
1

2
+

1

2
(−2λη + 1)

)d
= 2− 2(1− λη)d ,

and thus the proof is complete.

F.5.3. PROOF OF COROLLARY 2.8

Proof of Corollary 2.8. We observe the following by applying the triangle inequality and Pinsker’s inequality,

∥µ⋆ − Law(
←−
X ⋆
Tf−η)∥TV ⩽ ∥µ⋆ − µη∥TV + ∥µη − Law(

←−
X ⋆
Tf−η)∥TV

⩽ ∥µ⋆ − µη∥TV +
√
2KL(µη|Law(

←−
X ⋆
Tf−η)) .

Then Theorem 2.6 and Proposition 2.7 together imply

∥µ⋆ − Law(
←−
X ⋆
Tf−η)∥TV ≲ 1− (1− λη)d +

√
dη−1e−4λ(Tf−η) +

√
λcd[1 + log(η−1)] +

√
λϵ(Tf − η) . (99)

The choices of η, c and Tf in (37) lead to

1− (1− λη)d = ϵ and dη−1e−4λ(Tf−η) = ϵ2 and λcd[1 + log(η−1)] = ϵ2 . (100)
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Substituting (100) into (99) gives the desired upper bound

∥µ⋆ − Law(
←−
X ⋆
Tf−η)∥TV ≲ ϵ+

√
λϵ(Tf − η) ,

with the number of iterations is

K ≲
Tf − η + log(η−1)

c

(37)
=

λd[1 + log(η−1)][log(d/ηϵ2)/λ+ log(η−1)]

ϵ2

=
d[1 + log(η−1)][log(d/ηϵ2) + λ log(η−1)]

ϵ2

=
d[1 + log(η−1)][log(d/ϵ2) + (λ+ 1) log(η−1)]

ϵ2
. (101)

Finally, the term log η−1 can be bounded from above by Bernoulli’s inequality (1− ϵ)1/d ⩽ 1− ϵ
d for ϵ ∈ (0, 1) and d ⩾ 1,

log(η−1) = log

(
λ

1− (1− ϵ)1/d

)
⩽ log

λd

ϵ
.

Plugging it into (101) concludes the proof of Corollary 2.8.
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