
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Under review as a conference paper at ICLR 2026

PCEVAL: A BENCHMARK FOR EVALUATING PHYSICAL
COMPUTING CAPABILITIES OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have demonstrated remarkable capabilities across various
domains, including software development, education, and technical assistance. Among
these, software development is one of the key areas where LLMs are increasingly adopted.
However, when hardware constraints are considered—for instance, in physical computing,
where software must interact with and control physical hardware —their effectiveness has
not been fully explored. To address this gap, we introduce PCEVAL (Physical Computing
Evaluation), the first benchmark in physical computing that enables a fully automatic
evaluation of the capabilities of LLM in both the logical and physical aspects of the
projects, without requiring human assessment. Our evaluation framework assesses LLMs
in generating circuits and producing compatible code across varying levels of project
complexity. Through comprehensive testing of 13 leading models, PCEVAL provides
the first reproducible and automatically validated empirical assessment of LLMs’ ability
to reason about fundamental hardware implementation constraints within a simulation
environment. Our findings reveal that while LLMs perform well in code generation
and logical circuit design, they struggle significantly with physical breadboard layout
creation, particularly in managing proper pin connections and avoiding circuit errors.
PCEVAL advances our understanding of AI assistance in hardware-dependent computing
environments and establishes a foundation for developing more effective tools to support
physical computing education.

1 INTRODUCTION

Physical computing is the practice of connecting software with the physical world, typically through micro-
controller platforms such as Arduino that control sensors, actuators, and displays. This connection reveals how
implemented code produces tangible effects in the physical world, effectively bridging abstract computation
and real-world objects. This unique characteristic has made physical computing a rapidly growing element
of modern STEM (Science, Technology, Engineering, and Mathematics) education, valued for fostering
creativity, problem-solving skills, and computational thinking through hands-on experiences (Chung & Lou,
2021; Kastner-Hauler et al., 2022; Araújo & Saúde, 2025). Consequently, educational institutions worldwide
are increasingly offering physical computing classes to help students interact with technology and understand
complex concepts (El-Abd, 2017; García-Tudela & Marín-Marín, 2023; Schätz et al., 2024).

Despite its educational value, physical computing remains difficult to teach and assess. In physical computing
education, teachers must have dual expertise in software and hardware, yet even experienced educators report
challenges in evaluating physical circuits with their small components and tangled wires (Hyeon et al., 2016;
Theodoropoulos et al., 2018). In addition, our interviews with eight experienced computer science educators
(Appendix A) showed that individualized feedback and circuit verification represent a widespread burden in
classroom practice.

1

047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2026

Components: [arduino uno, piezo buzzer, ...]
Physical Connections: [
["breadboard.22h", "arduino uno.9"],
["breadboard.22g", "piezo buzzer.2"], ...]

Arduino project that uses pushbutton to control piezo electric buzzer.
 ⋯ ⋯ ⋯
The test is successful when: Piezo buzzer runs when the button is pressed. The piezo buzzer doesn’t
sound when the button is not pressed.

Code
void setup() {
 pinMode(BUTTON_PIN, INPUT); pinMode(BUZZER_PIN, OUTPUT); }

void loop() {
 if (digitalRead(BUTTON_PIN) == LOW) { tone(BUZZER_PIN, 262, 250); } else noTone(BUZZER_PIN); }

Press Button
-> Generate 262Hz tone

Release Button
-> Stop tone generation

Success or Failure

+ More
Pin Conflict
 ⋯
Extraneous Component

Physical & Logical Circuit

Components: [arduino uno, piezo buzzer, ...]
Logical Connections: [
["arduino uno.9", "piezo buzzer.2"],
["arduino uno.gnd.1", "piezo buzzer.1"], ...]

Project Description

LLMs

Generated Code

Generated Circuit

Circuit Validation

Test Procedure

Figure 1: This figure illustrates the core protocols of the PCEVAL benchmark. The left panels show the input
options for LLMs, while the right panels show the evaluation workflow. There are basically two types of tasks:
code generation (blue arrow) and circuit generation (red arrow). Generated outputs undergo validation through
standardized test procedures and circuit validation metrics, measuring both logical correctness and physical
implementation feasibility in Arduino systems. (The circuit visualizations are shown to aid understanding;
they are not used as inputs to the LLMs.)

Given these persistent challenges, it is natural to ask whether recent advances in AI, such as Large Language
Models (LLMs), could provide a solution. However, although LLMs have demonstrated remarkable capabil-
ities in software development and coding assistance (Annepaka & Pakray, 2024; Wang et al., 2024), their
effectiveness in hardware-dependent environments, such as physical computing, has not been fully explored.
Prior efforts on LLMs for electronics (Jansen, 2023; Yang et al., 2024) further highlight this gap, as they
relied on labor-intensive manual expert evaluation and largely overlooked the physical layout constraints
central to educational breadboard implementations.

“In physical computing, working with circuits is absolutely essential, and that’s just something AI can’t help
with. These days, tools like Gemini in Colab can write and even suggest code, which is great. But it’s not like
an arm can suddenly pop out and build the circuit for you.”

- Public High School Computer Science Teacher C, Appendix A. Q4

To address this gap, we introduce PCEVAL (Physical Computing Evaluation), the first benchmark designed to
evaluate LLMs’ abilities in both the logical and physical aspects of physical computing tasks. PCEVAL de-
composes the challenge into four dimensions: (1) Logical Circuit Generation, (2) Physical Circuit Generation,
(3) Code from Logical Circuits, and (4) Code from Physical Circuits. This structured decomposition enables
scalable and reproducible evaluation without manual expert intervention, overcoming the subjectivity
and labor costs of prior manual assessments.

Our evaluation of leading LLM architectures on PCEVAL spans projects of varying complexity, from basic I/O
operations to intricate multi-component interactive systems. The experimental results reveal a clear disparity:
while LLMs demonstrate competence in code generation and logical circuit design, they struggle considerably
with physical circuit generation, particularly in adhering to breadboard mechanics and ensuring correct pin
configurations. Although mitigation strategies such as self-improvement and chain-of-thought prompting
provided partial improvements, substantial challenges remain, reflecting the difficulty of physical computing

2

094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2026

tasks. By illuminating these challenges, PCEVAL establishes a critical starting point for developing models
capable of truly interacting with our physical world.

This research offers several key contributions:

• New Benchmark (PCEVAL): We introduce the first comprehensive benchmark for physical computing
that systematically evaluates both logical reasoning and physical implementation capabilities.

• Scalable Automated Evaluation: Our framework eliminates subjective manual assessment through
decomposed tasks and standardized metrics, enabling reproducible evaluation at scale.

• Physical Gap Identification: We reveal limitations in current LLMs’ physical constraint reasoning,
providing actionable insights for developing more effective AI tools for hardware-dependent domains.

2 RELATED WORK

AI for Programming. Early LLM benchmarks focused on algorithmic tasks in Python, later extended
to broader domains like data science and web/mobile applications (Chen et al., 2021; Austin et al., 2021;
Hendrycks et al., 2021; Lai et al., 2023; Zheng et al., 2024). While these works advanced functional correctness
in software, they do not address the challenges of hardware interaction or physical implementation.

AI for Hardware and Physical Systems. Recent research has explored LLMs in hardware-related domains,
including Verilog/HDL generation (Liu et al., 2023; Thakur et al., 2024), analog circuit design with SPICE-
based evaluation (Lai et al., 2025), and PCB layout assistance (Liu et al., 2025). Educational contexts such
as Arduino programming have also been considered (Johnson et al., 2024; Subramanium et al., 2024), but
these studies typically limit themselves to small-scale code snippets without evaluating physical circuit
design. EmbedGenius (Yang et al., 2024) introduced hardware-in-the-loop testing for IoT systems, yet its
scope is restricted to validating code against pre-defined circuit representations, bypassing the problem of
generating physically valid circuits. MICRO25 (Jansen, 2023) is closest to our work, demonstrating that
LLMs can generate electronic device designs from text. However, its evaluation depends heavily on manual
expert judgment, raising concerns about cost, scalability, and reproducibility. Furthermore, MICRO25 does
not address physical circuit generation and assess code generation under physical constraints. In contrast,
PCEVAL introduces two key advances: (1) a fully automated and reproducible evaluation pipeline ensuring
scalability and consistency; and (2) a comprehensive focus on physical computing, uniquely covering both
logical/physical circuit generation and code generation from physical layouts. PCEVAL addresses both gaps
through automated evaluation with decomposed tasks and standardized metrics, while uniquely assessing
physical circuit generation and code generation from physical layouts—capabilities essential for physical
computing support. Thus, we believe PCEVAL is not just another benchmark, but the first tool for holistic
assessment of LLMs in physical computing, enabling scalable progress in the field.

3 PCEVAL BENCHMARK

3.1 THE INTERVIEWS AND PROBLEM DEFINITION

To develop a benchmark addressing real challenges in physical computing education, we first conducted
in-depth interviews with eight experienced CS educators (Appendix A). These discussions revealed several
obstacles in physical computing education. Educators consistently highlighted three critical challenges: (1)
time-intensive hardware setup and debugging (A, B, C, E), (2) difficulties providing individualized support
across varying student skill levels (A, C, D, E, F, G, H), and (3) the complex interplay between circuit
construction and code functionality (A, B, C). For instance, public school CS Teacher A candidly noted
the inherent manageability constraints, stating, “I think the maximum number of students one teacher can

3

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187

Under review as a conference paper at ICLR 2026

Table 1: Comparative analysis of related benchmarks, highlighting key differentiators in task scope and
evaluation. ∗∗∗For VerilogEval and ResBench, code generation itself constitutes the logical circuit description
(HDL). †††EmbedTask’s automated evaluation via HIL testing requires physical hardware setup. §§§PCEVAL’s
code generation assessment uniquely includes tasks for generating code from detailed physical circuit layouts.

Benchmark Target Domain Code
Generation

Logical Circuit
Generation

Physical Circuit
Generation

Automated
Evaluation Validation Method

HumanEval (Chen et al., 2021)
MBPP (Austin et al., 2021) General SW ✓ ✗ ✗ ✓ Unit Testing

✓ ✗ ✗ ✓ Unit Testing

VerilogEval (Liu et al., 2023)
ResBench (Guo & Zhao, 2025) HDL Design ✓ ✓∗∗∗ ✗ ✓ HDL Simulation

✓ ✓∗∗∗ ✗ ✓ HDL Sim. & Synthesis

EmbedTask (Yang et al., 2024)
MICRO25 (Jansen, 2023)
PCEVAL

Physical Computing
✓ ✗ ✗ ✓††† HIL Testing
✓ ✓ ✗ ✗ Manual Evaluation
✓§§§ ✓ ✓ ✓ HW/SW Sim.

handle in physical computing class is about 15.” These firsthand accounts indicate that while physical
computing offers immense educational potential (Appendix A.Q4), its practical implementation is fraught
with significant, persistent hurdles. Addressing these hurdles effectively may require new forms of assistance,
potentially from AI, but this first necessitates a clear understanding of current AI capabilities and limitations
within this specific context.

In particular, the interviews reveal that practical challenges in physical computing directly shape the technical
problems of PCEVAL, the benchmark designed to evaluate LLMs in this domain. While current LLMs are
adept at software tasks (Chen et al., 2021), they struggle to integrate abstract instructions with tangible,
constrained hardware in physical computing. Key deficiencies include reasoning about physical constraints
(e.g., layouts, pinouts) and ensuring coherence between circuit designs and corresponding code. Accordingly,
PCEVAL systematically assesses LLMs not only on isolated code or schematic generation but, crucially,
on producing physically viable layouts and hardware-compatible code, providing guidance for AI tool
development in this domain.

3.2 DATASET STRUCTURE

Each PCEVAL project instance is defined by five components: (D)escription, a natural language specification
of objectives and requirements; (L)ogical circuit, an abstract pin-to-pin connection map; (P)hysical circuit,
a breadboard-level implementation with wiring constraints; (C)ode, an executable program aligned with the
given circuit; and (T)est procedure, a set of automated checks that assert expected outputs under simulated
inputs. This decomposition enables controlled evaluation of specific LLM capabilities while maintaining
realistic educational scenarios.

3.3 TASK DEFINITIONS

The PCEVAL benchmark is designed to rigorously assess the capabilities of LLMs in physical computing
through four distinct generation tasks. As illustrated in Figure 1, each task challenges an LLM to produce a
specific target artifact (either a circuit representation or code) based on a designated set of input components
from our dataset structure. These tasks systematically probe different facets of an LLM’s understanding, from
logical design to physical implementation and code-hardware compatibility. The four tasks are defined as
follows:

1. Logical Circuit Generation (D, C → L): Given a natural language project description D and the
corresponding code C, the LLM is tasked with generating a complete logical circuit specification L. This
task primarily evaluates the LLM’s ability to infer necessary hardware components and their abstract,

4

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

Under review as a conference paper at ICLR 2026

pin-to-pin logical connections based on functional requirements and program logic, without concern for
physical layout details.

2. Physical Circuit Generation (D, C → P): Using the same inputs as the previous task, the project
description D and code C, the LLM must generate a detailed physical circuit layout P suitable for
breadboard implementation. This task assesses the LLM’s understanding of practical hardware integration,
including valid wire routing adhering to breadboard mechanics and physical constraints.

3. Code Generation from Logical Circuit (D, L → C): In this task, the LLM is provided with the project
description D and a logical circuit specification L. Its objective is to generate a functional code C that
correctly implements the project requirements using the provided logical hardware structure. This tests the
ability to translate a conceptual circuit design into working code.

4. Code Generation from Physical Circuit (D, P → C): Similar to the preceding task, the LLM receives
the project description D, but in this case, it is accompanied by a physical circuit layout P. The LLM
must generate the code C that is compatible with this specific physical hardware configuration, including
adherence to the explicit pin assignments dictated by the breadboard layout.

For each project in PCEVAL, we evaluate all four tasks using a controlled methodology that isolates the
specific generation capability being assessed. As shown in the right panel of Figure 1, we pair each type of
LLM-generated artifact with one of the reference components (L, P, or C) to construct complete, testable
systems. When evaluating circuit generation capabilities, we connect the generated circuit with the reference
code. For code generation tasks, we pair the generated code with the corresponding reference circuit. This
structured evaluation approach allows us to execute the Test Procedure (T) within the simulation environment
(Shaked, 2020) and precisely measure performance on each distinct capability. By systematically controlling
one aspect while testing another, we can accurately determine whether the integrated system functions
correctly according to project requirements, ensuring a focused assessment of the LLM’s performance across
the physical computing spectrum.

3.4 PROJECT DESIGN

Table 2: Summary statistics for the PCEval benchmark
dataset, categorized by complexity level, showing project
counts, code and circuit complexity metrics.

Statistic Level 1 Level 2 Level 3 Level 4

Num. Projects 12 13 14 11

(C) Lines of Code 14.00 18.92 19.89 27.00
(C) Cyclomatic Complexity 3.58 5.92 5.93 7.18

(L) Num. Components 3.83 3.77 6.43 8.18
(L) Num. Connections 7.25 7.00 15.64 16.36

(P) Num. Components 4.83 4.77 7.43 9.18
(P) Num. Connections 15.42 15.85 35.86 35.0

The PCEVAL benchmark comprises 50 projects
designed to reflect authentic educational scenar-
ios in physical computing, covering commonly
utilized components such as LEDs, sensors, and
displays. To facilitate systematic evaluation of
LLM capabilities, we categorize projects into
four complexity levels (Table 2), ranging from
single-component control (Level 1) to multi-
component system design (Level 4). This struc-
ture ensures that the dataset not only spans a
broad technical spectrum but also aligns with
typical physical computing curricula in middle
and high school settings, where teachers often
cover only two to three projects per semester.
By encompassing representative tasks across all levels of difficulty, the 50 projects provide sufficient breadth
and depth to approximate the scope of a full semester course, while remaining tractable for reproducible
evaluation. Detailed project descriptions and examples are provided in Appendix E, along with additional
discussion of dataset scale.

5

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2026

Table 3: Comparative performance (success rate %) of various LLMs on PCEVAL benchmark tasks, high-
lighting differential capabilities across circuit generation and code generation domains.

Model Param. Circuit Gen. Code Gen. Total Overall
D, C → L D, C → P Overall D, L → C D, P → C Overall

Closed Source LLMs
GPT-4o-mini - 48.0 1.2 24.6 49.2 51.2 50.2 37.4
Claude 3.5 Haiku - 47.6 1.6 24.6 60.0 55.6 57.8 41.2
Gemini-2.0-Flash-Lite - 50.0 2.4 26.2 54.8 56.4 55.6 40.9
Gemini-2.0-Flash - 58.4 19.6 39.0 54.4 50.4 52.4 45.7
GPT-4.1 - 50.4 12.0 31.2 65.2 63.2 64.2 47.7
GPT-4o - 58.0 26.8 42.4 61.2 56.4 58.8 50.6
Claude 3.7 Sonnet - 65.6 13.6 39.6 62.8 64.0 63.4 51.5
o3-mini - 66.0 45.2 55.6 67.6 68.0 67.8 61.7
Open Source LLMs
LLaMA 3.1 8B 21.6 2.0 11.8 25.6 24.0 24.8 18.3
DeepSeek-Coder-V2 16B 26.0 1.2 13.6 30.0 20.8 25.4 19.5
Gemma 3 27B 45.2 2.4 23.8 32.4 28.4 30.4 27.1
Phi 4 14B 30.0 2.8 16.4 44.8 35.6 20.1 28.3
Mistral-Small 3 24B 46.4 13.6 30.0 45.6 30.8 38.2 34.1

3.5 EVALUATION

We assess LLM performance across all PCEVAL tasks using a multi-faceted approach that prioritizes both
functional correctness and implementation feasibility. Our primary evaluation metric for all tasks is simulation
success, which verifies whether the generated artifacts operate correctly according to the project specifications
by executing test procedures within a simulation environment (Shaked, 2020). Our circuit validation protocol
identifies errors (redundant connections, extraneous/missing components, isolated components) in logical
and physical circuit designs. For physical circuit generation specifically, success requires both passing the
simulation test procedure and avoiding implementation errors (pin conflicts and breadboard bypasses) that
would make physical construction impossible despite simulation success. To ensure statistical reliability, we
conduct five independent trials for each task-model combination and report averaged results. We provide
detailed evaluation metrics in Appendix C.

4 EXPERIMENTAL RESULTS

4.1 SETUP

We evaluated a diverse set of closed- and open-source LLMs, including GPT-4o, Claude 3.7 Sonnet, o3-mini,
Gemini-2.0-Flash, as well as leading open-source models such as LLaMA 3.1, Mistral-Small, and Phi 4
(Team et al., 2025; Grattafiori et al., 2024; Zhu et al., 2024; Abdin et al., 2024; Jiang et al., 2023). For each of
the four benchmark tasks, we used standardized prompts with explicit output specifications (Appendix F).

4.2 ANALYSIS OF MODEL PERFORMANCE AND TASK CHARACTERISTICS

Circuit Gen. vs. Code Gen. Table 3 shows that most models achieve higher success in code tasks than in
circuit tasks. For example, Claude 3.7 Sonnet reaches 63.4% on code overall vs. 39.6% on circuit overall;
GPT-4.1 reaches 64.2% vs. 31.2%. Even the strongest model (o3-mini) records 45.2% on physical-circuit
generation (D,C →P) vs. 66.0% on logical-circuit generation (D,C → L). Overall, generating physically valid
layouts remains substantially harder than generating code.

6

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

Under review as a conference paper at ICLR 2026

Table 4: Detailed success rates (%) of selected high-performing LLMs across project complexity levels,
demonstrating performance degradation with increasing project complexity.

Model D, C → L D, C → P D, L → C D, P → C
L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4 L1 L2 L3 L4

Gemini-2.0-Flash 81.7 61.5 35.7 58.2 36.7 33.8 1.4 7.3 71.7 63.1 45.7 36.4 61.7 53.8 45.7 40.0
Claude 3.7 Sonnet 86.7 63.1 58.6 54.5 33.3 15.4 1.4 5.5 81.7 61.5 64.3 41.8 83.3 56.9 71.4 41.8
GPT-4o 78.3 55.4 37.1 65.5 56.7 30.8 8.6 12.7 76.7 63.1 50.0 56.4 75.0 63.1 44.3 43.6
o3-mini 85.0 69.2 54.3 56.4 65.0 60.0 28.6 25.5 78.3 70.8 61.4 60.0 76.7 70.8 64.3 25.5
Mistral-Small 3 66.7 50.8 35.7 32.7 36.7 15.4 0.0 3.6 56.7 56.9 28.6 41.8 50.0 43.1 20.0 9.1

Logical Circuit Gen. and Physical Circuit Gen. The most striking finding, evident in Table 3, is the
substantial performance gap between logical and physical circuit generation. Across all models, success
rates for Physical Circuit Generation (D, C → P) are markedly lower than for Logical Circuit Generation (D,
C → L). Many models, including several prominent ones, achieved success rates below 10% for physical
circuit generation. Even top performers like o3-mini (45.2%) and Claude 3.7 Sonnet (13.6%) found this task
considerably more challenging than logical circuit design (where they scored 66.0% and 65.6%, respectively).
This highlights the profound difficulty LLMs face in translating conceptual project requirements and code
into physically valid and implementable breadboard layouts while considering pin assignments.

Figure 2: Impact of physical-constraint filters in D,
C → P: success rates are shown under progressively
stricter criteria— blue: functional correctness only;
orange: functional correctness and no breadboard by-
pass; green: functional correctness and no pin conflict;
red: functional correctness and no breadboard bypass
and no pin conflict. The drop from blue to red high-
lights how bypasses and pin conflicts drive failures in
physical layout generation.

Sensitivity to Complexity. The difficulty com-
pounds with project complexity (Table 4). For physi-
cal circuit generation, success commonly drops from
Level 1 (L1) to Level 4 (L4): o3-mini 65.0% →
25.5%, GPT-4o 56.7% → 12.7%, Claude 3.7 33.3%
→ 5.5%, Mistral-Small 3 36.7% → 3.6%. Logical
circuit and code tasks also degrade with level, but
far less precipitously. This aligns with the dataset’s
complexity gradient (Table 2): higher levels intro-
duce more components and denser interconnections,
stressing spatial reasoning and pin-allocation consis-
tency.

Dominant Failure Causes in D, C→P. Physi-
cal circuit generation errors are not merely logi-
cal inconsistencies; they reflect violations of bread-
board mechanics. Figure 2 summarizes two pri-
mary constraints—pin conflicts and breadboard by-
passes—that most strongly depress success. Average
pin-conflict counts per sample are highest among all
error types (e.g., Claude 3.7: 7.52, o3-mini: 4.20,
GPT-4o: 2.07), while bypasses vary by model (e.g.,
Gemini-2.0-Flash: 2.73 vs. o3-mini: 0.01; see de-
tails in Appendix C. Other integrity issues (extraneous/isolated/missing components) occur in both logical
and physical circuit tasks, but their magnitudes are smaller and less predictive of outright failure than pin
conflicts. Implication: the core weakness is physical-constraint reasoning, especially allocating/routeing
connections without violating shared nodes and board topologies.

7

329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

Under review as a conference paper at ICLR 2026

Figure 3: Qualitative examples of LLM-generated physical circuits for a traffic light project (level 4),
illustrating successful and failed attempts with corresponding error analyses.

4.3 EXPLORATORY MITIGATION STRATEGIES

Self-improvement. Our error analysis revealed that many LLM failures stemmed from surprisingly simple
issues such as missing connections and incorrect pin number. Motivated by this, we explored a multi-turn
self-improvement strategy. When the initial output failed, the LLM received structured failure logs and
iteratively refined its solution (up to five turns) to correct such minor errors. Applied across all four tasks, this
approach yielded consistent gains, (e.g., o3-mini improved from 61.7% to 76.5%; see Appendix D).

Chain-of-thought prompting. For tasks which use physical circuit, we hypothesized that explicit in-
termediate reasoning could help bridge logical design and physical implementation. We therefore guided
models to first generate an intermediate Logical Circuit representation before producing the final code or
physical layout—mirroring the human process of reasoning from abstract connections to concrete breadboard
placement. This chain-of-thought strategy produced notable improvements for some models (e.g., GPT-4o:
+10.4%, Mistral-Small 3: +18.0% on physical code task), highlighting its promise as a complementary
technique, though its impact was not uniform across all models (Appendix D).

5 EDUCATIONAL USABILITY AND PEDAGOGICAL IMPLICATIONS

Our findings suggest that LLMs hold considerable promise for physical computing education, but their
integration must be guided by careful pedagogical considerations. Prior studies already caution that students
may rely on LLMs for “ready-made answers,” which can hinder deeper engagement and learning (Anson,
2024; Jošt et al., 2024). This concern was also raised in our initial interviews with eight experienced CS
teachers, which we conducted at the outset to identify the central pain points in physical computing education
(Appendix A). Educators emphasized that while LLMs can generate working Arduino solutions, students
may bypass essential reasoning processes if guidance is not structured. This challenge is amplified by known
factors such as automation bias (Li & Wu, 2025) and the moderating role of prior knowledge (Lee et al.,
2025), where learners with limited foundational skills may be less able to critically assess AI outputs.

8

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Under review as a conference paper at ICLR 2026

To complement these design-stage insights, we conducted post-benchmark validation studies after developing
PCEVAL. Specifically, we organized a small focus group with two physical computing educators (8 and
10 years of experience, 30 minutes each) and a survey with three pre-service CS teachers (Appendix B).
Unlike the initial interviews, these sessions were conducted with the benchmark and model outputs in hand,
enabling participants to directly assess educational potential and limitations. Both groups highlighted tangible
benefits—particularly the use of automated circuit verification to reduce instructor workload and assist
less-experienced teachers. At the same time, they noted practical barriers for classroom use: the lack of
step-by-step assembly guidance, declining readability in complex layouts, and the absence of pedagogical
conventions such as consistent wire colors. Notably, pre-service teachers rated low-complexity projects as
highly usable in classrooms, but their educational value dropped sharply at higher complexity levels.

Taken together, these findings suggest a dual imperative. First, LLMs should be positioned not merely as
answer generators but as scaffolding tools that structure learning, encourage exploration, and maintain student
agency in problem-solving. Second, benchmarks like PCEVAL should evolve beyond functional correctness
to incorporate educational usability metrics—including readability conventions, step-by-step guidance, and
pedagogical clarity—to help shape AI systems that genuinely complement classroom needs. Our work
establishes the technical foundation for this evolution, while future extensions must bridge the gap between
computational correctness and instructional effectiveness.

6 LIMITATIONS

Educational Focus and Scope. PCEVAL prioritizes educational contexts, focusing on introductory-level
projects common in STEM classrooms. While valuable for teaching applications, this scope excludes
professional physical computing scenarios involving advanced constraints (e.g., power optimization, real-time
requirements, EMI considerations). Therefore, our findings primarily inform educational AI tools rather than
industrial or research-grade embedded systems.

Platform Scope and Generalizability. We focus on Arduino Uno due to its prevalence in introductory
physical computing curricula (El-Abd, 2017; García-Tudela & Marín-Marín, 2023; Schätz et al., 2024).
While this narrows the scope, PCEVAL’s task decomposition (logical/physical circuit and code generation)
and component-agnostic I/O specifications are platform-independent by design. To empirically check
portability, we conducted a cross-platform validation using ESP32 microcontroller; automated checks
confirmed equivalent functional behavior without changes to tasks or metrics (Appendix G).

7 CONCLUSIONS

We introduced PCEVAL, a benchmark for systematically evaluating LLM capabilities in physical computing
tasks. Our evaluation of 13 models reveals that while LLMs perform reasonably well in code generation and
logical circuit design, they struggle significantly with physical circuit generation, particularly in managing pin
conflicts and breadboard layout constraints. This performance gap indicates that current LLMs have difficulty
reasoning about spatial and physical implementation details that are essential for educational physical
computing. While mitigation strategies like self-improvement and chain-of-thought prompting provided
partial improvements, the challenges remain most pronounced in tasks requiring precise pin assignments and
adherence to breadboard mechanics—areas where students typically need the most guidance. Educational
validation through focus groups confirmed that effective classroom deployment requires consideration of
pedagogical factors beyond technical correctness, including step-by-step guidance and visual clarity. These
findings suggest that AI support tools for physical computing education must balance automation with
learning objectives.

9

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

Under review as a conference paper at ICLR 2026

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael
Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. arXiv
preprint arXiv:2412.08905, 2024.

Yadagiri Annepaka and Partha Pakray. Large language models: A survey of their development, capabilities,
and applications. Knowledge and Information Systems, pp. 1–56, 2024.

Daniel WJ Anson. The impact of large language models on university students’ literacy development: A
dialogue with lea and street’s academic literacies framework. Higher Education Research & Development,
43(7):1465–1478, 2024.

José Luís Araújo and Isabel Saúde. Exploring arduino programming in non-formal education context:
enhancing middle school students’ interest and motivation. Research in Science & Technological Education,
pp. 1–18, 2025.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

Chih-Chao Chung and Shi-Jer Lou. Physical computing strategy to support students’ coding literacy: an
educational experiment with arduino boards. Applied Sciences, 11(4):1830, 2021.

Mohammed El-Abd. A review of embedded systems education in the arduino age: Lessons learned and future
directions. International Journal of Engineering Pedagogy, 7(2), 2017.

Pedro Antonio García-Tudela and José-Antonio Marín-Marín. Use of arduino in primary education: a
systematic review. Education Sciences, 13(2):134, 2023.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Ce Guo and Tong Zhao. Resbench: Benchmarking llm-generated fpga designs with resource awareness.
arXiv preprint arXiv:2503.08823, 2025.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence with apps. arXiv
preprint arXiv:2105.09938, 2021.

Seong-Eun Hyeon, Seungyun Lee, Hyoung Jun Kim, et al. A study on the development of teacher training
programme for maker education. European Proceedings of Social and Behavioural Sciences, 2016.

Peter Jansen. From words to wires: Generating functioning electronic devices from natural language
descriptions. In Findings of the Association for Computational Linguistics: EMNLP 2023, pp. 12972–
12990, 2023.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

10

https://arxiv.org/abs/2310.06825

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2026

Donald M Johnson, Will Doss, and Christopher M Estepp. Using chatgpt with novice arduino programmers:
Effects on performance, interest, self-efficacy, and programming ability. Journal of Research in Technical
Careers, 8(1):1, 2024.

Gregor Jošt, Viktor Taneski, and Sašo Karakatič. The impact of large language models on programming
education and student learning outcomes. Applied Sciences, 14(10):4115, 2024.

Oliver Kastner-Hauler, Karin Tengler, Barbara Sabitzer, and Zsolt Lavicza. Combined effects of block-based
programming and physical computing on primary students’ computational thinking skills. Frontiers in
Psychology, 13:875382, 2022.

Yao Lai, Sungyoung Lee, Guojin Chen, Souradip Poddar, Mengkang Hu, David Z Pan, and Ping Luo.
Analogcoder: Analog circuit design via training-free code generation. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 39, pp. 379–387, 2025.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel
Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data science code generation.
In International Conference on Machine Learning, pp. 18319–18345. PMLR, 2023.

Hao-Ping Hank Lee, Advait Sarkar, Lev Tankelevitch, Ian Drosos, Sean Rintel, Richard Banks, and Nicholas
Wilson. The impact of generative ai on critical thinking: Self-reported reductions in cognitive effort and
confidence effects from a survey of knowledge workers. 2025.

Rui Li and Tong Wu. Delving into the practical applications and pitfalls of large language models in medical
education: Narrative review. Advances in Medical Education and Practice, pp. 625–636, 2025.

Bingyang Liu, Haoyi Zhang, Xiaohan Gao, Zichen Kong, Xiyuan Tang, Yibo Lin, Runsheng Wang, and
Ru Huang. Layoutcopilot: An llm-powered multi-agent collaborative framework for interactive analog
layout design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2025.

Mingjie Liu, Nathaniel Pinckney, Brucek Khailany, and Haoxing Ren. Verilogeval: Evaluating large language
models for verilog code generation. In 2023 IEEE/ACM International Conference on Computer Aided
Design (ICCAD), pp. 1–8. IEEE, 2023.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis. arXiv preprint
arXiv:2009.10297, 2020.

Eric Schätz, Lutz Hellmig, and Alke Martens. Analysis of student-problems while working with physical
computing devices. In CSEDU (1), pp. 322–329, 2024.

Uri Shaked. Wokwi - online arduino and esp32 simulator, 2020. URL https://wokwi.com/. Accessed:
2025-05-09.

Priti Subramanium, Dr. Gajanan Uttam Patil, Gajanan Uttam Patil, and Anilkumar Dulichand Vishwakarma.
Application of ai chat gpt with arduino and micropython. International Journal of Innovations in Engineer-
ing and Science, 2024. URL https://api.semanticscholar.org/CorpusID:272212710.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah
Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Shailja Thakur, Baleegh Ahmad, Hammond Pearce, Benjamin Tan, Brendan Dolan-Gavitt, Ramesh Karri,
and Siddharth Garg. Verigen: A large language model for verilog code generation. ACM Transactions on
Design Automation of Electronic Systems, 29(3):1–31, 2024.

11

https://wokwi.com/
https://api.semanticscholar.org/CorpusID:272212710

517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563

Under review as a conference paper at ICLR 2026

Anastasios Theodoropoulos, Prokopis Leon, Angeliki Antoniou, and George Lepouras. Computing in the
physical world engages students: Impact on their attitudes and self-efficacy towards computer science
through robotic activities. In Proceedings of the 13th workshop in primary and secondary computing
education, pp. 1–4, 2018.

Tianyu Wang, Nianjun Zhou, and Zhixiong Chen. Enhancing computer programming education with llms: A
study on effective prompt engineering for python code generation. arXiv preprint arXiv:2407.05437, 2024.

Huanqi Yang, Mingzhe Li, Mingda Han, Zhenjiang Li, and Weitao Xu. Embedgenius: Towards automated
software development for generic embedded iot systems. arXiv preprint arXiv:2412.09058, 2024.

Dewu Zheng, Yanlin Wang, Ensheng Shi, Hongyu Zhang, and Zibin Zheng. How well do llms generate code
for different application domains? benchmark and evaluation. arXiv preprint arXiv:2412.18573, 2024.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo Gao,
Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models in code intelligence.
arXiv preprint arXiv:2406.11931, 2024.

A INTERVIEWS WITH COMPUTER SCIENCE EDUCATORS

To gain comprehensive insights into the practical challenges encountered in physical computing education,
interviews were conducted with eight educators. This group included six in-service computer science teachers
from public middle and high schools (Teacher A, B, C, D, E, F) and two instructors with experience in private
educational settings (Instructor G, H). The interviews aimed to identify common difficulties in areas such as
class preparation, managing diverse student needs, providing individualized support, the inherent benefits and
drawbacks of physical computing, and the need for better tools and resources. All educator names have been
anonymized. Each interview lasted approximately 30 minutes.

A.1 KEY INTERVIEW QUESTION AREAS

• Q1: What are the primary challenges and time-consuming aspects encountered when preparing for and
conducting physical computing or practical coding classes?

• Q2: How do diverse student skill levels and the need for individualized support impact the flow of physical
computing classes, and what difficulties arise in providing this support?

• Q3: What are the perceived benefits and drawbacks of physical computing classes, particularly regarding
hardware integration (like Arduino) with software?

• Q4: What kind of additional support, tools, or resources do educators feel are needed to conduct physical
computing classes more effectively, including the potential role of LLMs?

A.2 THEMATIC SUMMARY OF INTERVIEW RESPONSES WITH EXCERPTS

Q1: What are the primary challenges and time-consuming aspects encountered when preparing for and
conducting physical computing or practical coding classes?

Educators consistently highlighted the significant time investment required for both preparing and
conducting physical computing classes. Key challenges include the initial setup of hardware and
software, creation or sourcing of suitable teaching materials, and managing the wide range of student
skill levels.

12

564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

Under review as a conference paper at ICLR 2026

• Teacher A: “Well, I think all teachers would agree that the most difficult stage is the connection stage.”
“Each time, firmware and installed programs disappear, which is a challenge.” “So, I think it’s not
easy for teachers to change teaching aids every year.” “During class, well, connection is something I
prepare beforehand, but we always connect when class starts. So, in a way, that causes delays in the
class progression.”

• Teacher B: “First, the initial setup takes longer than expected.” “But just as students need time to get
used to new equipment or software they are handling for the first time, understanding the machine
or physical computing device and how to connect it takes quite some time, which often takes longer
than the essential programming part.” “But for physical computing, the order and structure need to be
slightly rearranged by the teacher depending on the task.”

• Teacher C: “First, when the practical exercise begins, I try to create reference materials that are as
detailed as possible for the students.” “And when we actually start, many unexpected errors appear.
Among them are the students’ lack of experience with circuits, and also the stability of the boards.”
“Compatibility boards often perform poorly. So, I always prepare plenty of spares.” “Driver installation
and such, for compatibility boards, sometimes require installing separate drivers. There are many
such environmental factors. And if students bring their own laptops, the number of things to set up
increases significantly.” “So, initially, when we did the camp with the Digital Sprout (CS Camp)
[Anonymous] University side, even following the manuals they sent, files wouldn’t upload at all... I
remember digging through English manuals, manually setting everything up, and working on that
continuously for a week before the class.”

• Teacher E: “Then, the initial setup actually takes the longest time. In the case of Micro:bit, the
setup environment doesn’t take that extremely long, but anyway, when using any new teaching aid, I
anticipate it will probably take a very long time.” “Even simple things like having to sign up for a
new environment, each little thing becomes a hurdle.”

• Teacher F: “In the case of specialized high schools, since I’m not teaching the subjects I expected,
I have to prepare for classes anew every time.” “The content isn’t light either, so I have to study
while preparing for class, and I also have to create materials.” “However, for specialized high school
subjects, there aren’t many materials, so I think the biggest difficulty is that I have to create everything
myself.” “Even in those, as I mentioned earlier, since class materials are not widely shared, I think
creating examples for the students to do is the most difficult part.”

• Instructor G: “Yes, robot coding was quite difficult. Since I can’t use the robot at home, it’s an item
that’s only at the academy. So even if I studied a lot before going, there were times when it didn’t
work well in practice.” “So, I really wanted to go to the academy a bit late, but once I went about an
hour early to try it out myself.”

• Instructor H: “The step that took a lot of time in the preparation process was that we usually had
to continuously check the mini-cars for any malfunctions or charging status before and after class.”
“Also, for auxiliary teaching aids like partitions or obstacles, we had to continuously check if there
were any issues, and that process seemed to take a lot of time.”

Q2: How do diverse student skill levels and the need for individualized support impact the flow of physical
computing classes, and what difficulties arise in providing this support?

A major recurring theme was the challenge of managing diverse student abilities. Instructors find it
difficult to cater to both fast learners and those who struggle, often leading to class delays and an

13

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

Under review as a conference paper at ICLR 2026

inability to provide equal support to all students. Troubleshooting individual student issues, whether
hardware or software, consumes significant class time.

• Teacher A: “Individual understanding varies much more with these teaching aids. So, I have to walk
around a lot. (To support students)” “If a connection is lost mid-class, that team gets delayed, and
all other teams have to wait for that team to reconnect.” “I think students ask more questions when
their understanding of the tool is lacking.” “Yes, yes, yes, I definitely think so [that there isn’t enough
time for one teacher to help all students].” “I think the maximum number of students one teacher can
handle is about 15.” “If all four members lack aptitude or are all struggling and fall behind, I end up
focusing on those students and can’t provide much feedback to other teams. The other teams might
have finished and are just playing around.”

• Teacher B: “Even with the same code, the sensors and other physical computing components differ
slightly, so things often don’t operate as desired.” “Motors might suddenly break down, sensors might
fail, or physical connections might come loose. When such things happen, spending time addressing
them means less time for the actual lesson... losing a lot of time that way happens frequently.” “The
variation among students is also very large, so it’s always good to prepare one or two advanced tasks
or tasks that students can do according to their level.”

• Teacher C: “Once you exceed about 10 students, practical physical computing classes become
very difficult.” “First, students find building circuits quite challenging... many kids lack a high
understanding of electrical circuits... Then, we also had to check if the code was written correctly
accordingly, so that was a somewhat difficult part.” “When the friend next to them has it working, but
theirs isn’t... their sense of achievement can diminish quickly... feedback needs to be fast, there need
to be many people available to help, and peer learning... need to be utilized much more.” “Over 60%
[of class time is spent giving feedback].”

• Teacher D: “Since the class pace is extremely fast, students who grasp things well and those who
already have some basic knowledge... follow along well. But students who are encountering the
language for the first time seem to take some time to apply concepts and write code. So, there’s quite
a bit of difference in level.” “It’s rather a very small minority, so those kids can’t confidently ask for
help like this. During class time.” “If you start helping one student with their question, you have to
keep helping that student, and then you can’t cover all the material.”

• Teacher E: “First, the students have a very hard time keeping up. Initially, when using something
new, they really struggle.” “I do one step, then go around and check everyone, then do another step,
go around and check everyone again. This keeps repeating... eventually, I have to go around and
check on everyone.” “The class gets significantly delayed.”

• Teacher F: “The biggest thing is the difference in level among the students.” So, some students finish
too quickly and are playing around after about 10 minutes, while some students don’t understand
until the very end, so I have to stand next to them and help them continuously.” “As I explain it more
simply and easily, the time spent with one student becomes longer. So, the overall class time becomes
loose.’

• Instructor G: “The students’ levels are really so different.” “To match their levels, I tried many
activities. First, I tried teaching them one-on-one... but that was too hard for me.” “Because the
students’ levels were so different, if the number of students increased, it seemed very difficult to
match each student’s progress or solve each student’s problems.”

• Instructor H: “Some students who didn’t listen properly to the theory class didn’t understand the
meaning or main activity of the practical exercise. So, for these students, we had the difficulty of
having to explain the theory class content again while helping them with the practical activity.” “Since
there were 15 teams of middle school students, there were parts that students didn’t understand,

14

658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704

Under review as a conference paper at ICLR 2026

and also students who couldn’t proceed properly, so we had to help them one by one. There were
several times when I felt that one main instructor and two assistant instructors were not enough to
support 15 teams.” “Explaining the theory to each team, explaining what the practical content was,
and helping them... usually meant that the practical exercise time... would often exceed 1 minute per
team. Therefore, there was a shortage of time to guide all 15 teams.”

Q3: What are the perceived benefits and drawbacks of physical computing classes, particularly regarding
hardware integration (like Arduino) with software?

Educators see significant value in physical computing for its ability to engage students and make
abstract concepts tangible. However, they also point out the inherent difficulties in debugging hardware,
managing unpredictable component behavior, and the financial and maintenance burden of hardware
kits.

• Teacher A: “Advantages, well, the kids definitely enjoy it. I think it’s one of the classes they find
most fun.” “they can actually see it with their own eyes, and I think that generates a lot of interest.”
“The disadvantage... Students who find it difficult find this more challenging than programming.”
“First, many students struggle with the connection stage.” “If they’ve written the code perfectly, but it
doesn’t run as expected, it could actually be a flaw in the physical computing tool itself... I think the
difficulty also lies in having to consider two things [hardware and software].”

• Teacher B: “For classes using physical computing, kids often only work in virtual environments like
Python, so they don’t know how it’s actually used... But when they actually see something move... I
think they feel, ‘Ah, this is why it’s necessary.”’ The biggest disadvantage is, firstly, it’s not easy for
schools to provide the budget for this.” “Secondly... managing it continuously is difficult. Especially
for Arduino, sensors and similar items are often disposable.”

• Teacher C: “The advantage is that it seems to foster interest in the various electrical appliances and
many tools in our actual daily lives.” “The problem is, they need continuous success to maintain
interest.” “As for disadvantages, it consumes too much time [for teacher preparation].” “Acquiring or
purchasing such hardware in Korea is quite cumbersome... things sold as kits, are often too expensive.”

• Teacher E: “The biggest advantage seems to be capturing the students’ concentration and interest.”
“However, the disadvantages could be that teaching aids can break, and that students get too distracted
by them and don’t focus properly on the lesson.” “First, there’s no equipment. Primarily, there’s no
equipment.” “Last year, our school had absolutely no budget for the computer science subject.”

• Teacher F: “The biggest advantage is that it’s not just theory; students can try things out and internalize
them.” “The disadvantage seems to be... it takes a lot of time, and the direction I planned for the class
and the direction the students actually follow are different.” “And the biggest disadvantage in terms of
teaching aids is that they cost a lot of money.”

• Instructor G: “In the case of robot coding, using LEGOs definitely sparks students’ interest. So,
because it’s fascinating, they become more immersed, more focused, and more participative.” “[Dis-
advantage:] If students drop them, it seems to result in a very large financial loss.” “If the number of
LEGOs for robot coding we are using is limited, if it breaks or an error occurs, there have been cases
where that student could hardly proceed with the class.”

• Instructor H: “Classes using teaching aids... have the advantage of consolidating the theoretical
content once more and allowing students to understand it better by directly experiencing the theory
with their hands.” “When students use physical teaching aids... their concentration level increases,
and they don’t get bored.” “The biggest disadvantage... is that since it’s an activity conducted after

15

705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751

Under review as a conference paper at ICLR 2026

the theory class, for students who don’t understand the theoretical content, both the theory class and
the teaching aid class feel rather meaningless.” “There were students who would damage the teaching
aids, such as by pressing that sensor part with their hands, scribbling on the teaching aids, or trying to
break them.”

Q4: What kind of additional support, tools, or resources do educators feel are needed to conduct physical
computing classes more effectively, including the potential role of LLMs?

There’s a clear call for better support systems, including more accessible and detailed guidelines for
students, improved teacher training, larger budgets for hardware, and tools that can help bridge the gap
between software and hardware. The potential of LLMs is recognized, but their current limitations in
addressing physical hardware challenges are also noted.

• Teacher A: “I wish there were more opportunities for the creators of the tools, or for places that
professionally train teachers on these tools, to provide regular training.” “Sharing of teaching materials
that teachers can use easily.” “The connection methods need to be developed to be easy, and those
developed connection methods should be widely distributed so that students can understand them at
their level.” “[Regarding LLMs for students] First-year middle school students can’t use GPT, so I’ve
never tried it, and their Googling skills are also lacking... So, if there were a platform or something
that summarized this kind of information, I would refer to that platform.”

• Teacher B: “Students learn Python, but to actually learn Arduino, they might need to be taught C++,
which presents a double cognitive load. So, finding a way to reduce that seems to be the first necessity.”
“Secondly, many teachers perceive physical computing as difficult... I think teacher training or similar
initiatives are needed to reduce those perceptions.” “For Arduino, yes, there have been times like that
[using ChatGPT]. but... often they just end up asking ’make it for me.’... a lack of understanding of
the coding itself tends to occur.”

• Teacher C: “Feedback needs to be fast, there need to be many people available to help, and peer
learning... need to be utilized much more.” “For the code parts, naturally, these days... using various
AI like ChatGPT, you can catch errors, get help with code writing for connections, etc. But in the
physical aspect, giving students quick feedback on various errors is really necessary. Especially in
physical computing, the circuit part is crucial, and this is something AI absolutely cannot do for you...
An arm doesn’t suddenly pop out from there to build the circuit.” “Nowadays, like Collab, Jemaine
just wrote the code and recommended it to me, and it’s like this.” “I wish schools had more budget to
purchase such things.” “To do physical computing, you need a small makerspace-like area... but those
are often lacking.”

• Teacher D: “[When using LLMs for class preparation] I still don’t think the quality and completeness
are high enough to be immediately used in practice... Since it can’t be used directly, I figure it’s easier
to just quickly make the blanks myself.” “[When do I use GPT?] When showing short code examples
for practice during class.”

• Teacher E: “First, there’s no equipment. Primarily, there’s no equipment.” “Last year, our school had
absolutely no budget for the computer science subject.” “The entire budget for teaching aid purchase
was 1 million won.”

• Teacher F: “First, I hope the Ministry of Education provides a lot of budget.” “I think it would be
good if there was a tool or service that could organize information about such teaching aids or share it
with teachers.” “[Regarding LLMs] since I can’t code, I always use GPT to search.”

16

752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

Under review as a conference paper at ICLR 2026

• Instructor G: “I think the guidelines given to students are too few.” “If we could distribute guidelines
to each student on how they can actually use them... if detailed guidelines were available through a
platform on those laptops, it would be a huge help during class.” “If they could model what they’re
building with their hands at home before coming to the academy, if they could try to fit the pieces
together and implement it in software beforehand, it would be a huge help.”

• Instructor H: “In the case of teaching aids, malfunctions are frequent, and I believe that continuously
developing new teaching aids is more helpful for students’ classes. Therefore, I think financial support
is obviously necessary.” “If there was a management system or a communication tool, instructors
could communicate better, and it would be convenient to have a community where we can report and
inform each other about problematic teaching aids or tools.”

Table 5: Comprehensive circuit validation results showing average error frequency across all evaluated models,
categorized by error type and circuit representation.

Model Circuit Type
Logical / Physical Errors Physical Only Errors

Redundant
Connection

Extraneous
Component

Missing
Component

Isolated
Component

Pin
Conflict

Breadboard
Bypass

GPT-4o-mini Logical 0.01 1.19 0.26 0.29 - -
Physical 0.01 0.18 0.23 0.61 4.49 5.15

Claude 3.5 Haiku Logical 0.08 0.06 0.30 0.07 - -
Physical 0.07 0.68 0.13 0.50 3.56 5.60

Gemini-2.0-Flash-Lite Logical 0.16 0.56 0.03 0.35 - -
Physical 0.20 0.63 0.03 0.21 5.18 3.72

GPT-4.1 Logical 0.0 0.03 0.03 0.03 - -
Physical 0.27 0.18 0.0 0.12 7.27 0.02

Gemini-2.0-Flash Logical 0.0 0.12 0.09 0.09 - -
Physical 0.0 0.46 0.13 0.32 3.53 2.73

Claude 3.7 Sonnet Logical 0.0 0.33 0.02 0.02 - -
Physical 0.0 1.45 0.0 1.15 7.52 0.17

GPT-4o Logical 0.0 0.08 0.08 0.03 - -
Physical 0.03 0.20 0.01 0.51 2.07 1.16

o3-mini Logical 0.02 0.39 0.06 0.02 - -
Physical 0.0 0.21 0.02 0.06 4.20 0.01

Gemma 3 Logical 0.09 0.67 0.30 0.58 - -
Physical 0.0 0.32 0.15 0.90 3.63 1.26

Phi 4 Logical 0.0 0.03 0.03 0.03 - -
Physical 0.01 0.13 0.39 0.21 3.47 2.94

Mistral-small Logical 0.45 0.75 0.13 0.03 - -
Physical 0.59 0.01 0.19 0.04 2.35 1.01

Deepseek-Coder-v2 Logical 0.05 0.33 0.60 0.53 - -
Physical 0.02 0.09 1.69 0.08 0.53 3.93

LLaMA3.1 Logical 0.07 0.42 0.73 0.45 - -
Physical 0.04 0.1 0.44 0.07 1.15 2.23

17

799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Under review as a conference paper at ICLR 2026

Table 6: CodeBLEU quality assessment of LLM-generated code, comparing scores between successful and
unsuccessful simulation outcomes for different code generation tasks.

Model
D, L → C D, P → C

CodeBLEU CodeBLEU
Success Failure Success Failure

GPT-4o-mini 0.48 0.38 0.47 0.37
Claude 3.5 Haiku 0.49 0.41 0.48 0.43
Gemini-2.0-Flash-Lite 0.55 0.47 0.53 0.47
GPT-4.1 0.53 0.52 0.52 0.50
Gemini-2.0-Flash 0.54 0.49 0.57 0.47
Claude 3.7 Sonnet 0.52 0.46 0.51 0.46
GPT-4o 0.52 0.45 0.53 0.43
o3-mini 0.50 0.43 0.48 0.44
Gemma 3 0.50 0.42 0.56 0.34
Phi 4 0.47 0.42 0.49 0.36
Mistral-Small 3 0.59 0.48 0.59 0.38

B EDUCATIONAL VALIDATION THROUGH EXPERT FOCUS GROUPS

B.1 PARTICIPANTS AND PROCEDURE

We conducted two semi-structured interviews with physical computing educators (8 and 10 years of teaching
experience, respectively; 30 minutes each) and collected responses from three pre-service CS teachers (senior
undergraduates who had completed teacher certification) via a short online survey.

B.2 KEY FINDINGS FROM EDUCATORS

• Step-by-step guidance: Educators emphasized that students require sequential assembly instructions
(e.g., “now connect the red wire to pin 13”), which current LLM outputs do not provide.

• Multiple candidate solutions: Presenting alternative layouts was highlighted as pedagogically
valuable for teaching breadboard principles, compared to providing only one “answer.”

• Readability principles: Practical design habits (e.g., consistent wire colors, left-oriented layouts)
were noted as essential for teaching, yet absent from current benchmarks.

• Reducing capability gaps: Educators noted that LLMs could help less-experienced teachers identify
circuit problems and provide richer feedback to students.

• Validation of automated simulation: Simulation-based verification was recognized as a major
strength, reducing teacher workload by ensuring functional correctness before classroom use.

B.3 FINDINGS FROM PRE-SERVICE TEACHERS

Survey participants rated educational value across project complexity levels:

• Low-complexity projects: Readability 4.67/5, Correctness 5.0/5, Educational Value 4.0/5.

• Medium-complexity: Readability 1.67/5, Correctness 4.67/5, Educational Value 2.0/5.

• High-complexity: Readability 1.0/5, Correctness 2.33/5, Educational Value 1.0/5.

They consistently identified excessive jumper wires, convoluted routing, and overlapping components as
barriers to classroom usability.

18

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892

Under review as a conference paper at ICLR 2026

B.4 IMPLICATIONS

These findings confirm that while functional correctness is a prerequisite, true educational utility also requires
readability, process guidance, and layout simplicity. PCEVAL provided the systematic framework to reveal
these limitations, highlighting directions for future benchmarks and LLM evaluation methods.

C EVALUATION METRIC DETAILS

This appendix details the metrics used to evaluate the outputs generated by LLMs in the PCEVAL benchmark.
We assess both the structural integrity of generated circuits and the quality of the generated code, providing a
comprehensive view of LLM capabilities in physical computing tasks.

C.1 SIMULATOR

Reference implementations were validated across real hardware and multiple simulators (Wokwi, Tinkercad,
Virtual Breadboard, SimulIDE), ensuring cross-platform consistency. We ultimately selected Wokwi for
automated evaluation due to its API accessibility and component coverage, while the framework itself remains
simulator-agnostic.

C.2 CIRCUIT VALIDATION

Our circuit validation protocol identifies structural errors in both logical and physical circuit designs generated
by LLMs. This involves six distinct error checks:

Four metrics apply to both logical and physical circuits:

• Redundant Connection: Duplicate connections between the same two component pins (e.g., listing both
[A, B] and [B, A]).

• Extraneous Component: A component included in the LLM-generated circuit that is not present in the
ground truth (reference) circuit.

• Missing Component: A component present in the ground truth circuit but omitted from the LLM-generated
circuit.

• Isolated Component: A component correctly included in the generated circuit but lacking any necessary
electrical connections.

For physical circuit evaluation, two additional metrics specifically address implementation constraints on a
breadboard:

• Pin Conflict: Assigning multiple connections to a single, indivisible breadboard hole or a component pin
that cannot accept multiple direct connections.

• Breadboard Bypass: Creating direct pin-to-pin connections between components without utilizing the
breadboard, violating standard physical prototyping practices for the given tasks.

Table 5 presents the comprehensive circuit validation results, showing the average frequency of these errors
across all evaluated models and circuit types.

19

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2026

Table 7: Full results of self-improvement experiments (success rates, %).

Model Score D, L → C D, P → C D, C → L D, C → P

o3-mini 65.3 → 76.5 71.6 → 83.6 71.6 → 84.8 70.0 → 79.6 48.0 → 58.0
Gemini-2.0 Flash 49.0 → 57.2 58.0 → 72.8 54.4 → 66.0 62.4 → 73.2 21.2 → 16.8

Table 8: Full results of CoT prompting experiments (success rates, %).

Model D, P → C D, C → P

Mistral-Small 24B 30.8 → 48.8 13.6 → 11.6
GPT-4o 56.4 → 66.8 26.8 → 29.6
GPT-4o-mini 51.2 → 52.0 1.2 → 2.4
Phi-4 35.6 → 47.2 2.8 → 3.2
LLaMA 3.1 24.0 → 22.4 2.0 → 5.2
Gemma 3 28.4 → 45.2 2.4 → 2.8
DeepSeek Coder V2 20.8 → 32.4 1.2 → 0.0

C.3 CODE QUALITY VALIDATION

Beyond functional correctness determined by simulation success, we assess the quality of LLM-generated
Arduino code using CodeBLEU (Ren et al., 2020). Table 6 presents the CodeBLEU scores for both code
generation tasks (D, L → C and D, P → C), comparing outputs that led to simulation success versus those
that failed.

An interesting observation from these scores is that functionally successful code did not always achieve
substantially higher CodeBLEU scores than code that failed simulation. In some instances, the scores were
comparable (e.g., GPT-4.1 on D, L → C: Success 0.53, Failure 0.52; o3-mini on D, P →C: Success 0.48,
Failure 0.44). This phenomenon may suggest that LLMs can generate code that is structurally or syntactically
similar to the correct solution, thus achieving a comparable CodeBLEU score, yet still fail functionally due
to subtle but critical errors, such as incorrect pin number assignments. Such errors might not significantly
penalize the CodeBLEU score, which primarily assesses aspects like n-gram matching, syntactic correctness,
and dataflow similarity, but are critical for the successful execution of physical computing projects.

D ADDITIONAL RESULTS: SELF-IMPROVEMENT AND CHAIN-OF-THOUGHT

Tables 7 and 8 present the complete results for our self-improvement and CoT prompting experiments. As
discussed in Section 4.3, the main trends are consistent across models: (1) self-improvement yields robust
and steady performance gains, especially in code-related tasks, while (2) CoT exhibits more variable benefits,
occasionally even degrading performance on hardware tasks.

E PCEVAL BENCHMARK PROJECTS

This appendix provides a detailed overview of all projects included in the PCEval benchmark dataset. The
projects are categorized by complexity level, outlining the specific tasks and hardware components involved
in each.

20

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

Under review as a conference paper at ICLR 2026

While the absolute number of projects (50) may appear modest in isolation, the design of PCEVAL ensures a
sufficiently large and diverse evaluation space. Each project supports four distinct generation tasks, resulting
in 200 unique evaluation samples. This scale is comparable to established software benchmarks such as
HumanEval, which includes 164 problems for code-only tasks (Chen et al., 2021). In physical computing,
dataset construction is substantially more complex than in code-only settings, since each instance requires
not only executable code but also consistent logical and physical circuit specifications, validated across both
simulation environments and real hardware.

The most directly related prior work, MICRO25 (Jansen, 2023), introduced 25 projects with natural language
descriptions. However, MICRO25 provides no reference implementations (code or circuits) and relies entirely
on manual expert evaluation, limiting reproducibility and scalability. In contrast, PCEVAL doubles the number
of projects (50), and each project includes complete reference implementations—code, logical circuits, and
physical circuits—supporting fully automated and reproducible evaluation across 200 task instances.

Table 9: Overview of PCEval Benchmark Projects by Level

Level Project Name Description
Level 1 7 segment display basic Connect a 7-segment display to Arduino and write code to

show the number 5.
bar led basic Connect a bar graph LED to Arduino and write code to turn

on LEDs 1 through 6.
buzzer basic Connect a piezo buzzer to Arduino and write code to play a

sound.
distance sensor basic Connect an ultrasonic distance sensor to Arduino and write

code to measure the distance and print it to the serial monitor.
humidity sensor basic Connect a DHT22 sensor to Arduino and write code to mea-

sure the humidity and print it to the serial monitor.
LCD display basic Connect an ILI9341 LCD display to Arduino and write code

to show “Hello World!” on the display.
led blink basic Connect an LED to Arduino and write code to repeatedly turn

the LED on and off with delays.
led RGB basic Connect an RGB LED to Arduino and write code to turn on

only the blue segment.
photoresistor basic Connect a photoresistor sensor module to Arduino and write

code to detect light intensity and print it to the serial monitor.
RTC module basic Connect an RTC module to Arduino and write code to read

the current time and print it to the serial monitor.
servo motor basic Connect a servo motor to Arduino and write code to repeatedly

move the servo to 0° and 180°.
temperature sensor basic Connect a DHT22 sensor to Arduino and write code to mea-

sure the temperature and print it to the serial monitor.

Level 2 7 segment display counter Connect a 7-segment display to Arduino and write code to
show 1, 2, and 3 based on elapsed time.

accelerometer Connect an MPU6050 accelerometer to Arduino and write
code to measure acceleration on the X, Y, and Z axes and print
the values to the serial monitor.

Continued on next page

21

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

Table 9 – continued from previous page
Level Project Name Description

button duration Connect a push button to Arduino and write code to measure
how long the button is pressed and print the duration to the
serial monitor.

button pulldown Connect a push button to Arduino with a pulldown resistor
and write code to monitor the button state and print it to the
serial monitor.

button pullup Connect a push button to Arduino with a pullup resistor and
write code to monitor the button state and print it to the serial
monitor.

distance sensor Connect an ultrasonic distance sensor to Arduino and write
code to measure the distance and compare it with a threshold.

gyroscope Connect an MPU6050 gyroscope to Arduino and write code
to measure rotation on the X, Y, and Z axes and print the
values to the serial monitor.

humidity sensor Connect a DHT22 sensor to Arduino and write code to mea-
sure the humidity and compare it with a threshold.

serial bar led Connect a bar graph LED to Arduino and write code to read
serial input and light up the corresponding number of LEDs.

serial LCD display Connect an ILI9341 LCD display to Arduino and write code
to read serial input and display it on the LCD.

serial monitor Connect nothing to Arduino and write code to read serial
input and print it back to the serial monitor.

serial RGB led Connect an RGB LED to Arduino and write code to read
serial input and turn on the corresponding RGB segment.

temperature sensor Connect a DHT22 sensor to Arduino and write code to mea-
sure the temperature and compare it with a threshold.

Level 3 4 digit 7 segment display Connect a 4-digit 7-segment display to Arduino and write
code to show 1, 2, and 3 based on elapsed time.

7 segment display serial Connect a 7-segment display to Arduino and write code to
show serial input on the display.

button buzzer Connect a push button and piezo buzzer to Arduino and write
code to play a sound when the button is pressed.

button LCD display Connect a push button and ILI9341 display to Arduino and
write code to show the button state on the LCD.

button led Connect a push button and LED to Arduino and write code to
turn on the LED when the button is pressed.

button RGB led Connect three push buttons (red, green, blue) and an RGB
LED to Arduino and write code to turn on the corresponding
color segment when each button is pressed.

button RTC timezone Connect a push button and RTC module to Arduino and write
code to print the time in different timezones based on the
button state.

button servo motor Connect a push button and servo motor to Arduino and write
code to change the servo motor angle using the button.

Continued on next page

22

1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080

Under review as a conference paper at ICLR 2026

Table 9 – continued from previous page
Level Project Name Description

dht22 LCD display Connect a DHT22 sensor and an ILI9341 LCD display to
Arduino and write code to show humidity and temperature
values on the LCD.

multiplexer photoresistor Connect six photoresistors to Arduino via a 16-channel analog
multiplexer and write code to print each sensor’s value.

multiplexer potentiometer Connect five potentiometers to Arduino via a 16-channel ana-
log multiplexer and write code to print each potentiometer’s
value.

photoresistor bar led Connect a bar graph LED and photoresistor to Arduino and
write code to light up the bar LEDs based on the mapped
value of the photoresistor.

potentiometer bar led Connect a bar graph LED and potentiometer to Arduino and
write code to light up the bar LEDs based on the mapped
value of the potentiometer.

potentiometer servo motor Connect a potentiometer and servo motor to Arduino and
write code to set the servo motor angle based on the mapped
potentiometer value.

Level 4 alarm Connect a piezo buzzer and RTC module to Arduino and write
code to play a sound when the specified time is reached.

binary led Connect five LEDs to Arduino and write code to show the
binary representation of serial input using the LEDs.

calendar display Connect an RTC module, an ILI9341 display, and two push
buttons to Arduino and write code to show the current date on
the LCD. Use the buttons to navigate between dates.

clock Connect a 4-digit 7-segment display and RTC module to
Arduino and write code to show the current time in HH:MM
format.

dday counter Connect an RTC module to Arduino and write code to read a
date from serial input and print the number of days remaining
until that date.

exercise counter Connect an MPU6050 sensor and 7-segment display to Ar-
duino and write code to count each time the Y-axis rotation
exceeds a threshold, then show the count on the display.

multiple timezone Connect an RTC module and four push buttons to Arduino
and write code to display different timezones depending on
which button is pressed.

parking spot monitor Connect an ultrasonic distance sensor and RGB LED to Ar-
duino and write code to measure distance and switch from
green to red light if the distance is below a threshold.

piano keyboard Connect four push buttons and four piezo buzzers to Arduino
and write code to play a tone when the corresponding button
is pressed.

smart led system Connect five LEDs and five photoresistors to Arduino and
write code to turn on each LED when its corresponding pho-
toresistor reads below a threshold.

Continued on next page

23

1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Under review as a conference paper at ICLR 2026

Table 9 – continued from previous page
Level Project Name Description

traffic light Connect a push button and three LEDs to Arduino and write
code to turn on the green LED by default, then switch to
yellow and red in order when the button is pressed.

F PROMPT DETAILS

This appendix provides the specific prompts used for each of the four core generation tasks in the PCEVAL
benchmark. Each prompt was carefully designed to clearly articulate the task objectives to the LLMs and to
specify the required output format. For tasks involving physical circuit generation or code generation from
physical circuits, prompts included detailed explanations of breadboard mechanics and electrical connectivity
rules to ensure LLMs had the necessary contextual information.

Code Generation Task (Logical Hardware)

Arduino Code Generation Task (Logical Hardware)

Task
Please generate Arduino code (main.ino) that will work with this logical
hardware configuration and produce the expected behavior.
The code should fulfill all requirements and pass all test steps in the
scenario.

Note that this is a LOGICAL circuit diagram, meaning it shows the direct
connections between components at a conceptual level, NOT physical layout
with breadboard positions.

Output Format
Please provide only the code without explanations or markdown formatting.

Project Description
{Project Description Text}

Hardware Configuration (Logical Circuit)
Below is the JSON diagram describing the logical hardware circuit:
‘‘‘json
{Standardized Logical Diagram JSON}
‘‘‘

Code Generation Task (Physical Hardware)

Arduino Code Generation Task (Physical Hardware)

Task

24

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174

Under review as a conference paper at ICLR 2026

Please generate Arduino code (main.ino) that will work with this physical
hardware configuration and produce the expected behavior.
The code should fulfill all requirements and pass all test steps in the
scenario.

Note that this is a PHYSICAL circuit diagram, meaning it shows the actual
breadboard layout with specific component placements and wire connections
using breadboard positions.

Output Format
Please provide only the code without explanations or markdown formatting.

Project Description
{Project Description Text}

Hardware Configuration (Physical Breadboard Layout)

Pin and Position Naming Conventions
- Component pins: "arduino1.pin13", "led1.anode", "resistor1.pin1", etc.
- Breadboard positions (main area): "breadboard.COLUMN_ROW"

- Column: A number from 1-60
- Row: A letter from a-j
- Rows a-e are on the top half, rows f-j are on the bottom half
- Example: "breadboard.10a" refers to column 10, row a (top half)

- Breadboard power rail positions: "breadboard.RAIL_TYPE.COLUMN_NUMBER"
- RAIL_TYPE: tp (top positive), tn (top negative), bp (bottom positive)
, bn (bottom negative)
- COLUMN_NUMBER: A number, typically referring to segments or positions
along the rail (e.g., 1 up to 50)

- Example: "breadboard.tp.1" refers to position 1 on the top positive
(+) rail
- Example: "breadboard.bn.12" refers to position 12 on the bottom
negative (-) rail

Breadboard Explanation
A breadboard is divided into two halves separated by a central gap:
- Top half: 5 rows of holes, commonly labeled a, b, c, d, e
(from top to bottom for each column segment).

- Bottom half: 5 rows of holes, commonly labeled f, g, h, i, j
(from top to bottom for each column segment).

- The columns are typically numbered 1-60 from left to right.
So, for each column number, there’s a set of ’a-e’ holes and
a set of ’f-j’ holes.

Electrical Connections:
- Terminal Strips (the main area with rows a-e and rows f-j):

- Within each half (top or bottom), and for each column number, the 5
holes in that column segment are electrically connected vertically.

- Example: ‘breadboard.1a‘, ‘breadboard.1b‘, ‘breadboard.1c‘, ‘
breadboard.1d‘, and ‘breadboard.1e‘ are all connected.
- Example: ‘breadboard.1f‘, ‘breadboard.1g‘, ‘breadboard.1h‘, ‘
breadboard.1i‘, and ‘breadboard.1j‘ are all connected.

- Holes in different columns are NOT connected. (e.g., ‘breadboard.1a‘
is not connected to ‘breadboard.2a‘)

25

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221

Under review as a conference paper at ICLR 2026

- The top half (holes a-e) and the bottom half (holes f-j) are
electrically separated by the central gap. (e.g., ‘breadboard.1e‘ is
not connected to ‘breadboard.1f‘)

- Power Rails (tp, tn, bp, bn):
- All holes in a single power rail (e.g., the ’tp’ rail) are
electrically connected horizontally along the length of that entire
rail.

- Example: All positions along "breadboard.tp" (e.g., ‘breadboard.
tp.1‘, ‘breadboard.tp.2‘, ..., ‘breadboard.tp.50‘) are connected.

- Typically, the positive (+) and negative (-) rails are electrically
separate from each other.
- The top set of power rails (e.g., ’tp’ and ’tn’) are electrically
separate from the bottom set of power rails (e.g., ’bp’ and ’bn’),
unless explicitly connected by external wires.

Below is the JSON diagram describing the physical hardware circuit
with breadboard layout:
‘‘‘json
{Standardized Physical Diagram JSON}
‘‘‘

Circuit Generation Task (Logical)

Arduino Hardware Design Task

Task
Based on the Arduino code and project description, create a logical circuit
diagram that will work correctly with this code.

Focus on the direct connections between components at a conceptual level,
NOT physical layout with breadboard positions.

Output Format
Provide your answer in JSON format with two main sections:
1. "components": A list of all hardware components needed
2. "connections": A list of all connections between components

Components Format
Each component should have:
- "id": A unique, meaningful identifier with a number appended (e.g., "
arduino1", "led2", "resistor1"), that is consistently used in the
connections section
- "type": Component type ("Arduino Uno", "LED", "Resistor", "Button", etc.)
- "properties": Optional object with properties specific to the component
type

Connections Format
Each connection is simply an array with exactly two elements, each being a
connection point formatted as "componentId.pinName".
For example: ["arduino1.pin13", "led2.anode"]

26

1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268

Under review as a conference paper at ICLR 2026

Pin Naming Conventions
- Arduino pins: "pin2", "pin13", "a0", "a1", "5v", "3.3v", "gnd1", "gnd2",
"gnd3", etc.
- LED pins: "anode", "cathode"
- Resistor pins: "pin1", "pin2"
- Button pins: "pin1.l", "pin1.r", "pin2.l", "pin2.r"

Example
‘‘‘json
{
"components": [
{"id": "arduino1", "type": "Arduino Uno"},
{"id": "ntc_sensor1", "type": "NTC temperature sensor",
"properties": {"temperature": "24"}}

],
"connections": [
["arduino1.pin13", "resistor2.pin1"],
["ntc_sensor1.VCC", "arduino1.5v"],
["ntc_sensor1.GND", "arduino1.gnd2"],
["ntc_sensor1.OUT", "arduino1.A0"]

]
}
‘‘‘

Based on the code, provide a complete JSON with all components and direct
logical connections to create a functional circuit.

Project Description
{Project Description Text}

Arduino Code
‘‘‘cpp
{Sketch Code Text}
‘‘‘

Circuit Generation Task (Physical)

Arduino Hardware Design Task

Task
Based on the Arduino code and project description, create a physical
breadboard layout that will work correctly with this code.

Include a breadboard and show how components would be physically placed and
connected on it.

Output Format
Provide your answer in JSON format with two main sections:
1. "components": A list of all hardware components needed
2. "connections": A list of all connections between components

27

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315

Under review as a conference paper at ICLR 2026

Components Format
Each component should have:
- "id": A unique, meaningful identifier with a number appended (e.g., "
arduino1", "led2", "resistor1") that is consistently used in the
connections section
- "type": Component type ("Arduino Uno", "LED", "Resistor", "Button", "
Breadboard", etc.)
- "properties": Optional object with properties specific to the component
type

Connections Format
Each connection is simply an array with exactly two elements, which can be
component pins or breadboard positions.
For example: ["arduino1.pin13", "breadboard1.10a"]

Pin and Position Naming Conventions
- Component pins: "arduino1.pin13", "led1.anode", "resistor1.pin1", etc.
- Arduino pins: "pin2", "pin13", "a0", "a1", "5v", "3.3v", "gnd1", "gnd2",
"gnd3", etc.
- LED pins: "anode", "cathode"
- Resistor pins: "pin1", "pin2"
- Button pins: "pin1.l", "pin1.r", "pin2.l", "pin2.r"
- Breadboard positions (main area): "breadboard.COLUMN_ROW"

- Column: A number from 1-60
- Row: A letter from a-j
- Rows a-e are on the top half, rows f-j are on the bottom half
- Example: "breadboard.10a" refers to column 10, row a (top half)

- Breadboard power rail positions: "breadboard.RAIL_TYPE.COLUMN_NUMBER"
- RAIL_TYPE: tp (top positive), tn (top negative), bp (bottom positive)
, bn (bottom negative)
- COLUMN_NUMBER: A number, typically referring to segments or positions
along the rail (e.g., 1 up to 50)

- Example: "breadboard.tp.1" refers to position 1 on the top positive
(+) rail
- Example: "breadboard.bn.12" refers to position 12 on the bottom
negative (-) rail

Breadboard Explanation
A breadboard is divided into two halves separated by a central gap:
- Top half: 5 rows of holes, commonly labeled a, b, c, d, e
(from top to bottom for each column segment).

- Bottom half: 5 rows of holes, commonly labeled f, g, h, i, j
(from top to bottom for each column segment).

- The columns are typically numbered 1-60 from left to right.
So, for each column number, there’s a set of ’a-e’ holes and a set of ’f-
j’ holes.

Electrical Connections:
- Terminal Strips (the main area with rows a-e and rows f-j):

- Within each half (top or bottom), and for each column number, the 5
holes in that column segment are electrically connected vertically.

- Example: ‘breadboard.1a‘, ‘breadboard.1b‘, ‘breadboard.1c‘, ‘
breadboard.1d‘, and ‘breadboard.1e‘ are all connected.
- Example: ‘breadboard.1f‘, ‘breadboard.1g‘, ‘breadboard.1h‘, ‘
breadboard.1i‘, and ‘breadboard.1j‘ are all connected.

28

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362

Under review as a conference paper at ICLR 2026

- Holes in different columns are NOT connected.
(e.g., ‘breadboard.1a‘ is not connected to ‘breadboard.2a‘)

- The top half (holes a-e) and the bottom half (holes f-j) are
electrically separated by the central gap.
(e.g., ‘breadboard.1e‘ is not connected to ‘breadboard.1f‘)

- Power Rails (tp, tn, bp, bn):
- All holes in a single power rail (e.g., the ’tp’ rail) are
electrically connected horizontally along the length of that entire
rail.

- Example: All positions along "breadboard.tp" (e.g., ‘breadboard.
tp.1‘, ‘breadboard.tp.2‘, ..., ‘breadboard.tp.50‘) are connected.

- Typically, the positive (+) and negative (-) rails are electrically
separate from each other.
- The top set of power rails (e.g., ’tp’ and ’tn’) are electrically
separate from the bottom set of power rails (e.g., ’bp’ and ’bn’),
unless explicitly connected by external wires.

Example
‘‘‘json
{
"components": [
{"id": "arduino1", "type": "Arduino Uno"},
{"id": "breadboard1", "type": "Breadboard"},
{"id": "ntc_sensor1", "type": "NTC temperature sensor",
"properties": {"temperature": "24"}}

],
"connections": [
["breadboard1.29g", "arduino1.gnd3"],
["ntc_sensor1.VCC", "breadboard1.28f"],
["ntc_sensor1.GND", "breadboard1.29f"],
["ntc_sensor1.OUT", "breadboard1.27f"],
["breadboard1.28g", "arduino1.5v"],
["breadboard1.27g", "arduino1.A0"]

]
}
‘‘‘

Important Constraints
- Each Arduino pin can only have ONE connection assigned to it.
- Each breadboard hole can only have ONE connection assigned to it.
- Direct pin-to-pin connections between components without using a
breadboard are not permitted for circuit construction involving a
breadboard. All such connections must be routed via breadboard positions.

Pay attention to the internal connections of the breadboard.
Based on the code, provide a complete JSON with all components and
connections to create a functional physical circuit with breadboard layout.

Project Description
{Project Description Text}

Arduino Code
‘‘‘cpp
{Sketch Code Text}
‘‘‘

29

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

Under review as a conference paper at ICLR 2026

Addressing these limitations in subsequent research will contribute to a more holistic understanding of LLM
capabilities in the multifaceted domain of physical computing and further guide the development of AI tools
that can support both novice learners and experienced practitioners.

G ADDITIONAL EXPERIMENTS ON ESP32

To verify the platform portability of PCEVAL, we conducted additional experiments on ESP32, which is
also a well-known physical computing platform similar to Arduino Uno. Among the projects conducted on
Arduino, 24 projects were selected for experiments across four tasks, and they were evaluated under the same
simulation environment (Shaked, 2020).

Table 10: Test results of LLM-generated code and circuit on the ESP32 platform, compared with Arduino
scores. For the fairness, Arduino scores were computed solely from the subset of projects used in the ESP32
experiments.

Model D, C → L D, C → P D, L → C D, P → C Overall
Arduino ESP32 Arduino ESP32 Arduino ESP32 Arduino ESP32 Arduino ESP32

Gemini-2.0-Flash-Lite 58.3 50.0 5.0 3.3 60.0 58.3 61.7 60.8 46.3 43.2
Gemini-2.0-Flash 71.7 57.5 30.0 11.7 72.5 62.5 70.0 56.7 61.1 47.1
DeepSeek-Coder-v2 35.0 46.7 0.0 0.0 28.3 44.2 25.8 22.5 22.3 17.4
LLaMA 3.1 27.5 27.5 1.7 0.8 30.8 38.3 28.3 29.2 22.1 24.0
Phi 4 44.2 45.8 0.8 0.8 51.6 51.6 42.5 40.8 34.8 34.8
Mistral-Small 3 57.5 55.0 13.3 14.2 56.7 50.8 40.8 45.0 42.1 41.2

Table 10 represents the test results of ESP32 code and circuit generated by six open and closed source LLMs.
When comparing the ESP32 scores with those of Arduino, they showed clearly similar trends and values.
This experimental results indicates that PCEval is not confined to the Arduino platform but can be extended
to multiple platforms.

H SYSTEM SPECIFICATIONS FOR EVALUATION

The primary evaluations of Large Language Models (LLMs) for the PCEVAL benchmark were conducted by
querying their respective APIs. For any local processing, data analysis, and interaction with these APIs, the
following system configuration was utilized:

• CPU: AMD EPYC 9354 32-Core Processor (1 Socket, 32 Cores, 64 Threads).

• GPU: NVIDIA RTX 6000 Ada Generation.

– GPU Memory: 49140 MiB
– NVIDIA Driver Version: 535.230.02
– CUDA Version: 12.2

• System Memory (RAM): 125 GiB.

• Operating System Environment: Linux-based (x86_64 architecture).

This configuration provided a stable and capable environment for managing the data, running evaluation
scripts, and interfacing with the LLM APIs. The specific computational requirements for querying each LLM
API varied depending on the model provider and were not a limiting factor in this local setup.

30

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456

Under review as a conference paper at ICLR 2026

Figure 4: Qualitative examples of LLM-generated physical circuits for a servo motor basic project (level 1),
illustrating successful and failed attempts with corresponding error analyses.

Figure 5: Qualitative examples of LLM-generated physical circuits for a potentiometer servo motor project
(level 3), illustrating successful and failed attempts with corresponding error analyses.

I MORE QUALITATIVE RESULTS

This section presents additional qualitative results to provide a more nuanced understanding of LLM perfor-
mance in physical circuit generation. The figures below showcase visual examples from specific PCEVAL
projects, illustrating both successful circuit implementations and common failure modes encountered by the
LLMs. These examples serve to complement the quantitative evaluations by offering concrete instances of
the models’ outputs and the challenges they face.

31

1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

J VISUALIZING THE IMPACT OF PROJECT COMPLEXITY METRICS ON LLM
PERFORMANCE

We present a visual analysis of the relationship between project complexity metrics and LLM performance
across four physical computing tasks (Figure 6). The visualizations plot LLM success rates (0.0–1.0) against
two complexity metrics, number of connections and lines of code. We visualized average performance of top
performer LLMs (o3-mini, GPT-4o, Claude 3.7 Sonnet, Gemini-2.0-Flash, Mistral-small 3). Each project
appears as a data point color-coded by complexity level (1–4), with linear regression lines (in red) indicating
performance trends.

J.1 CIRCUIT GENERATION TASKS

Figures 6a and 6b present results for Logical Circuit Generation (D, C → L) and Physical Circuit Generation
(D, C → P), respectively. Both tasks exhibit negative correlations between success rates and complexity
metrics, with connection count demonstrating a stronger negative influence than code length. This suggests
that structural complexity of the output circuit presents a greater challenge to LLMs than interpreting input
code specifications. The effect is particularly pronounced in physical circuit generation, where models must
additionally account for breadboard layouts and physical wiring constraints.

J.2 CODE GENERATION TASKS

For Code Generation from Logical Circuit (D, L → C) and Code Generation from Physical Circuit (D, P →
C) (Figures 6c and 6d), the number of code lines correlates with a steeper decline in success rates compared to
circuit complexity metrics. This pattern indicates that generating longer, more complex code poses a greater
challenge to LLMs than interpreting circuit designs, regardless of whether the input specifications are logical
or physical in nature.

J.3 SUMMARY

Our analysis reveals that LLMs exhibit task-specific sensitivities to different dimensions of complexity. The
critical limiting factor appears to be the structural complexity of the artifact being generated rather than the
complexity of the artifact being interpreted.

K VISUALIZING THE IMPACT OF PROJECT LEVEL ON LLM PERFORMANCE

Figure 7 visualizes the distribution of success rates across the four PCEVAL tasks, revealing important
patterns in how LLM performance varies both within and across complexity levels.

K.1 CIRCUIT GENERATION TASKS

Logical Circuit Generation (Figure 7a): Level 1 shows the highest and most consistent performance
(median ≈ 0.98, narrow IQR), followed by a sharp drop at Level 2 (median ≈ 0.76) with increased variance.
Interestingly, Levels 3 and 4 show similar median performance (≈ 0.50 and ≈ 0.68 respectively) but with
very large IQRs. The unexpected slight recovery at Level 4 suggests certain complex projects may have more
standardized patterns that LLMs can recognize.

Physical Circuit Generation (Figure 7b): This task exhibits the most dramatic performance collapse
across levels. Even at Level 1, the median (≈ 0.54) is substantially lower than other tasks. Level 2
shows further decline (median ≈ 0.20) with high variance, while Levels 3 and 4 demonstrate near-floor

32

1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

Under review as a conference paper at ICLR 2026

performance (medians ≈ 0.08 and ≈ 0.04). The compressed box plots at higher levels indicate consistently
poor performance with minimal variance.

K.2 CODE GENERATION TASKS

Code Generation from Logical Circuit (Figure 7c): The box plot shows a clear downward trend in median
performance from Level 1 (median ≈ 0.96) to Level 4 (median ≈ 0.40). Levels 1 and 2 maintain relatively
high medians with compact interquartile ranges (IQRs), while Levels 3 and 4 exhibit increased variance with
IQRs spanning approximately 0.70. The presence of both perfect scores (1.0) and complete failures (0.0) at
each level suggests binary success/failure patterns rather than gradual degradation.

Code Generation from Physical Circuit (Figure 7d): This task demonstrates similar degradation patterns
but with slightly lower overall performance. The Level 1 median (≈ 0.88) remains high but shows more
variance than its logical circuit counterpart. The progressive decline is more pronounced, with the Level 4
median dropping to ≈ 0.36. Outliers at 0.0 across all levels indicate that physical circuit interpretation can
fail completely even for simpler projects.

L ANALYSIS OF OUTLIER PROJECTS

To understand the factors driving performance variability, we examined two notable outlier projects that
deviate significantly from their complexity level expectations.

L.1 BAR LED BASIC (LEVEL 1)

The “Bar LED Basic” project (Figure 8) achieves 0% success across all tasks despite its Level 1 classification.
While conceptually simple—lighting a bar graph LED—the implementation requires:

• 10 LED connections, each with its own resistor

• Coordinated control of multiple pins

• Understanding of the bar graph LED’s internal structure

This multiplicative complexity in connections (20 total for a “single” component) overwhelms LLMs’ pattern
recognition capabilities, causing complete failure even in logical circuit generation.

L.2 4 DIGIT 7 SEGMENT DISPLAY (LEVEL 3)

The “4 Digit 7 Segment Display” project (Figure 9) represents Level 3 complexity but achieves near-zero
performance across all models. The project compounds multiple challenging aspects:

• 13 pins requiring precise connection mapping

• Multiplexing logic to control four digits with shared segments

• Complex timing requirements for digit switching

• Abstract pattern representation (displaying “1, 2, 3, 4”)

The combination of high connectivity, multiplexing concepts, and timing constraints creates a complexity that
current LLMs hard to navigate.

33

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597

Under review as a conference paper at ICLR 2026

M USE OF LARGE LANGUAGE MODELS

In accordance with ICLR 2026 policy, we disclose the use of Large Language Models in preparing this
manuscript. We used LLMs to assist with grammar checking, sentence restructuring, and language polishing
during the revision process. The LLM was primarily used to improve clarity and conciseness of technical
descriptions, particularly in the methodology and results sections. All scientific content, experimental design,
analysis, and interpretations are the original work of the authors. The LLM served solely as a writing aid and
did not contribute to the research conception, or core intellectual contributions of this work.

34

1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644

Under review as a conference paper at ICLR 2026

(a) Logical Circuit Generation (D, C → L)

(b) Physical Circuit Generation (D, C → P)

(c) Code Generation from Logical Circuit (D, L → C)

(d) Code Generation from Physical Circuit (D, P → C)

Figure 6: Test procedure success rates across different tasks and complexity metrics, arranged vertically.
Subfigure (a) shows Logical Circuit Generation, (b) Physical Circuit Generation, (c) Code Generation from
Logical Circuit, and (d) Code Generation from Physical Circuit. Each subplot details performance against the
number of connections and lines of code relevant to the task.

35

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

Under review as a conference paper at ICLR 2026

(a) Logical Circuit Gen. (D, C → L) (b) Physical Circuit Gen. (D, C → P)

(c) Code Gen. from Logical Circuit (D, L → C) (d) Code Gen. from Physical Circuit (D, P → C)

Figure 7: Test procedure success rates across different tasks and complexity metrics. Subfigure (a) shows
Logical Circuit Generation, (b) Physical Circuit Generation, (c) Code Generation from Logical Circuit, and (d)
Code Generation from Physical Circuit. Each subplot details performance against the number of connections
and lines of code relevant to the task.

36

1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738

Under review as a conference paper at ICLR 2026

Figure 8: Reference code, logical circuit and physical circuit of “Bar LED Basic" project.

const int segmentPins[8] = {2, 3, 4, 5, 6, 7, 8, 9};
const int digitPins[4] = {10, 11, 12, 13};

const byte digits[10][8] = {
 {1,1,1,1,1,1,0,0},
 {0,1,1,0,0,0,0,0},
 {1,1,0,1,1,0,1,0},
 {1,1,1,1,0,0,1,0},
 {0,1,1,0,0,1,1,0},
 {1,0,1,1,0,1,1,0},
 {1,0,1,1,1,1,1,0},
 {1,1,1,0,0,0,0,0},
 {1,1,1,1,1,1,1,0},
 {1,1,1,1,0,1,1,0}
};

void setup() {
 for (int i = 0; i < 8; i!++) pinMode(segmentPins[i], OUTPUT);
 for (int i = 0; i < 4; i!++) {
 pinMode(digitPins[i], OUTPUT);
 digitalWrite(digitPins[i], LOW);
 }
}

void loop() {
 int nums[4] = {1, 2, 3, 4};

 for (int i = 0; i < 4; i!++) {
 for (int j = 0; j < 8; j!++) digitalWrite(segmentPins[j],
digits[nums[i]][j] ? LOW : HIGH);
 digitalWrite(digitPins[i], HIGH);
 delay(800);
 digitalWrite(digitPins[i], LOW);
 }
}

Code

Logical Circuit

Physical Circuit

Figure 9: Reference code, logical circuit and physical circuit of “4 Digit 7 Segment Display" project.

37

	Introduction
	Related Work
	PCEval Benchmark
	The Interviews and Problem Definition
	Dataset Structure
	Task Definitions
	Project Design
	Evaluation

	Experimental Results
	Setup
	Analysis of Model Performance and Task Characteristics
	Exploratory Mitigation Strategies

	Educational Usability and Pedagogical Implications
	Limitations
	Conclusions
	Interviews with Computer Science Educators
	Key Interview Question Areas
	Thematic Summary of Interview Responses with Excerpts

	Educational Validation through Expert Focus Groups
	Participants and Procedure
	Key Findings from Educators
	Findings from Pre-service Teachers
	Implications

	Evaluation Metric Details
	Simulator
	Circuit Validation
	Code Quality Validation

	Additional Results: Self-Improvement and Chain-of-Thought
	PCEval Benchmark Projects
	Prompt Details
	Additional Experiments on ESP32
	System Specifications for Evaluation
	More Qualitative Results
	Visualizing the Impact of Project Complexity Metrics on LLM Performance
	Circuit Generation Tasks
	Code Generation Tasks
	Summary

	Visualizing the Impact of Project Level on LLM Performance
	Circuit Generation Tasks
	Code Generation Tasks

	Analysis of Outlier Projects
	Bar LED Basic (Level 1)
	4 Digit 7 Segment Display (Level 3)

	Use of Large Language Models

