
Runtime Analysis of Evolutionary NAS for Multiclass Classification

Zeqiong Lv 1 Chao Qian 2 Yun Liu 1 Jiahao Fan 1 Yanan Sun� 1

Abstract

Evolutionary neural architecture search (ENAS)
is a key part of evolutionary machine learning,
which commonly utilizes evolutionary algorithms
(EAs) to automatically design high-performing
deep neural architectures. During past years, var-
ious ENAS methods have been proposed with
exceptional performance. However, the theory
research of ENAS is still in the infant. In this
work, we step for the runtime analysis, which is
an essential theory aspect of EAs, of ENAS upon
multiclass classification problems. Specifically,
we first propose a benchmark to lay the ground-
work for the analysis. Furthermore, we design a
two-level search space, making it suitable for mul-
ticlass classification problems and consistent with
the common settings of ENAS. Based on both de-
signs, we consider (1+1)-ENAS algorithms with
one-bit and bit-wise mutations, and analyze their
upper and lower bounds on the expected runtime.
We prove that the algorithm using both mutations
can find the optimum with the expected runtime
upper bound of O(rM ln rM) and lower bound
of Ω(rM lnM). This suggests that a simple one-
bit mutation may be greatly considered, given that
most state-of-the-art ENAS methods are labori-
ously designed with the bit-wise mutation. Em-
pirical studies also support our theoretical proof.

1. Introduction
Neural architecture search (NAS) can automate the design
of effective deep neural architectures (Elsken et al., 2019),
making itself a crucial step in automating machine learn-
ing (He et al., 2021). Evolutionary NAS (ENAS) (Real et al.,
2017; Liu et al., 2018; Real et al., 2019; Ünal & Başçiftçi,

1College of Computer Science, Sichuan University, China
2National Key Laboratory for Novel Software Technology, and
School of Artificial Intelligence, Nanjing University, China. Cor-
respondence to: Yanan Sun <ysun@scu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

2022; Liu et al., 2023; Miikkulainen et al., 2024) employs
evolutionary techniques, primarily evolutionary algorithms
(EAs), for the automation and has been widely used in real-
world applications (Sun et al., 2019b; So et al., 2021; Liu
et al., 2023; Yang et al., 2023; Yan et al., 2024). However,
the theoretical research of ENAS is still underdeveloped.

Generally, the theoretical research of ENAS follows the con-
ventional theory of EAs. One essential topic in this aspect
is the runtime analysis (Auger & Doerr, 2011; Neumann &
Witt, 2010; Zhou et al., 2019; Doerr & Neumann, 2020),
which represents the expected number of fitness evaluations
until an optimal or approximate solution is found for the
first time. In practice, the runtime analysis is very chal-
lenging, primarily due to the randomized nature of EAs.
Therefore, the community typically begins with (1+1)-EA
with various mutations upon benchmark problems which
have mathematically formulated fitness functions. For ex-
ample, theoreticians (Droste et al., 2002; Doerr et al., 2008;
Doerr & Goldberg, 2013; Witt, 2013) have analyzed the
runtime of (1+1)-EA with one-bit mutation or bit-wise mu-
tation on ONEMAX and LEADINGONES functions. These
analyses further provide theoretical insights for configuring
EAs to solve complex problems like the dynamic makespan
scheduling problem, where (1+1)-EA with bit-wise mu-
tation efficiently maintains a good discrepancy when the
processing time of a job changes dynamically (Neumann &
Witt, 2015).

In the context of runtime analysis, mathematically formu-
lated fitness function plays the role of directly assessing
the progress of the search process of EAs (Auger & Doerr,
2011; Neumann & Witt, 2010; Zhou et al., 2019; Doerr
& Neumann, 2020). However, constructing such a math-
ematically formulated fitness function for ENAS is very
challenging. This is because the fitness of a neural architec-
ture is obtained by training itself with learning algorithms,
of which the whole process is difficult to be mathematically
formulated since it is inherently black-box.

In the literature, there is only rare work making attempts
to mathematically formulate fitness functions for machine
learning tasks. Fischer et al. (2023) considered the classi-
fication of points on the unit hypersphere and constructed
a fitness function that quantitatively reflects the proportion
of correctly classified points. This is done by leveraging

1

Runtime Analysis of Evolutionary NAS for Multiclass Classification

𝑤(𝑀−1)(𝑀−2)

𝑤(𝑀−1)(𝑀−1)

28

⋯

Input

𝑥 ∈ ℝ2
ORBlocks

ORBlocks

ORBlocks

Three Types of Blocks:

Select

from (A-type block)

𝑥 0 / 1

(B-type block)

AND

𝑥

𝑥

0 / 1

(C-type block)

AND

𝑥

𝑥

𝑥

0 / 10
/ 1⋯

An A-type, B-type, or C-type block that can output a binary set

A binary neuron with binary threshold activation function, which can output 0 or 1

An AND neuron that can compute the Boolean AND and output 0 or 1

Notes:
⋯

⋯

S
o

ftm
ax

Output
Layer

𝑁1

𝑁2

𝑁𝑀−1

𝑁𝑀

Cell 1:

Cell 2:

Cell M-1:

𝑤11
𝑤12

𝑤21

𝑤22

𝑤(𝑀−1)𝑀

𝑤23

A neuron 𝑁𝑚 with weight 𝑤𝑚𝑚 = 1 and bias 𝑏𝑚 = 0 (except for 𝑏𝑀 = 0.1 when
𝑚 = 𝑀) that can output value ℎ𝑚 to the Softmax layer

ℎ1
ℎ2

…

ℎ𝑀−1

ℎ𝑀

Blocks

𝑏𝑀
= 0.1

𝑏1
= 0

𝑏2
= 0

𝑏𝑀−1
= 0

𝑃1

𝑃2

𝑃𝑀

𝑃𝑀−1

⋯

An OR neuron that can compute the Boolean OR and output 0 or 1

AND

OR

Figure 1. The neural architecture skeleton, including a set of cells where each of them consists of a set of blocks. There are three types of
blocks: A-type, B-type, and C-type. Each block receives the input x and outputs a binary bit (1 or 0). Thus, M − 1 cells will output a
binary set for each neuron in {N1, N2, . . . , NM}. Each neuron Nm computes a value hm, which is then normalized by the Softmax
layer to yield the probability Pm. The class label corresponding to the highest probability is chosen as the final classification result.

the hyperplane parameters representing a neural network,
thus providing a way to evaluate the neural networks. Upon
this, Fischer et al. (2024) introduced a bending hyperplane
and used its parameters to mathematically formulate a more
advanced fitness function. However, the fitness functions in
these works evaluate neural networks with a fixed architec-
ture, which is in contrast to ENAS, where the architectures
are varied through evolution. To this end, Lv et al. (2024b)
developed an intuitive fitness function for the evolved neu-
ral architectures. This function incorporates polytope-based
decision boundaries alongside hyperplanes and mathemati-
cally quantifies the volume of the correct decision regions.
However, this work only focused on binary classification
problems. In practice, many real-world applications, such
as image recognition, speech recognition, and medical diag-
nosis, require distinguishing between multiple classes.

On the other hand, the representation of the search space
in the current theoretical works also hinders the runtime
analysis of ENAS for multiclass classification. So far, only
one related work has been conducted (Lv et al., 2024b), but
the search space considered has some limitations. Specif-
ically, it is unable to handle multiclass classification prob-
lems, since the design of the neural architecture’s skeleton
only enables distinguishing between two decision spaces
corresponding to two classes. Moreover, the search space
restricted the analysis of ENAS algorithms with common
evolutionary strategies, such as the bit-wise mutation op-
erator, as it resulted in a solution of length three. To start
the runtime analysis of ENAS for multiclass classification
problems, a more powerful and practical search space is
urgently needed.

This work makes an initial attempt for the runtime analy-
sis of the ENAS algorithm for a multiclass classification
problem. The main contributions are summarized below:

1) We propose a multiclass classification benchmark prob-

lem MCC with M classes, based on which a fitness func-
tion is mathematically formulated to evaluate the quality
of any given neural architecture in solving this problem.
The fitness function can serve as a benchmark for other
theoretical aspects of ENAS, which then can help en-
hance the understanding of ENAS and provide insight for
designing better ENAS algorithms.

2) We design a more practical search space with two inter-
related levels, where the first level is cell-based and the
second level is block-based. This search space with solu-
tion length M is consistent with the common setting of
ENAS and supports the theoretical analysis of ENAS for
multiclass classification problems.

3) We analyze the expected runtime bounds of (1+1)-ENAS
algorithms with one-bit and bit-wise mutations in search-
ing for the optimal neural architecture of MCC. The
proven runtime bounds (Theorems 4.1 to 4.4) show that
one-bit and bit-wise mutations achieve nearly the same
performance for (1+1)-ENAS. We also conduct empirical
analysis to verify the theoretical proofs. To the best of
our knowledge, this is the first theoretical work of ENAS
for multiclass classification problems.

2. Preliminaries
This section presents the foundations of considered neu-
ral architectures for multiclass classification, followed by
introducing the ENAS algorithm.

2.1. Considered Neural Architectures

We consider a neural architecture for multiclass classifica-
tion. This architecture reduces the multiclass classification
to multiple binary classifications (Friedman et al., 2000),
each is solved by a binary classifier. The final classifica-
tion result is then obtained by aggregating the weighted
outcomes from these binary classifiers (Aly, 2005).

2

Runtime Analysis of Evolutionary NAS for Multiclass Classification

The skeleton of the neural architecture is shown in Figure 1.
The input instance is fed into M − 1 cells, each of which is
treated as a binary classifier that outputs either 0 or 1. The
outputs of these M − 1 cells are then fed into a hidden layer
consisting of M neurons. The hidden layer is designed to
collect the results from each of the M − 1 binary classifiers
and integrate them to prepare for computing the probabilities
of the input belonging to each class. We fix the biases and
weights of the M neurons as follows: 1) except for the last
neuron NM , whose bias is bM = 0.1, all other neurons have
a bias of 0; 2) the weights satisfy{

∀i : wi,i = 1, wi,i−1 = 0.5, wi,i+1 = 0.4,

∀j /∈ {i− 1, i, i+ 1} : wi,j = 0.

Such settings make the output of NM be maximized when
the cells output 0M−1, thereby correctly classifying the
M -th class. For any output hi ∈ {h1, h2, . . . , hM} from
the M neurons, the softmax activation function (Sharma
et al., 2017) is applied to compute ehi/

∑M
j=1 e

hj as the
probability Pi of the input instance belonging to class i.
Finally, the classification result is class argmaxi∈[1..M] Pi.

The core of the considered neural architecture is cell, which
serves as a fundamental building unit commonly used in
the ENAS community (Elsken et al., 2019; Liu et al., 2023;
Zoph et al., 2018; Real et al., 2019). Each cell consists
of l blocks and one OR neuron, allowing for flexible and
intricate topological structures (Sun et al., 2019a; Zhong
et al., 2018). Each block will output a binary bit. Then, the
OR neuron in the cell will receive l bits from the l blocks
and output either 0 or 1.

Three types of block are sufficient to build a neural archi-
tecture that can tackle most classification problems: A-type,
B-type, and C-type blocks, as suggested in (Lv et al., 2024b)
and shown in the top-right of Figure 1. Each block contains
at least one binary neuron with binary step function (Sharma
et al., 2017), and at most one AND neuron to compute
the Boolean AND of the binary outputs from the previ-
ous neurons. Based on this, these three types of blocks
allow the neural architecture with 2-dimensional input to
form decision regions (Gibson & Cowan, 2002; Nguyen
et al., 2018) in the shape of segment, sector, and triangle,
respectively. These decision regions are representatives of
half-space, unbounded polyhedron, and bounded polyhe-
dron, and most classification problems can be described as
their disjoint union (Bertsimas & Tsitsiklis, 1997). Further
details about the considered neural architecture are provided
in Appendix A.

2.2. ENAS Algorithm

ENAS algorithms aim to search for an optimal or approxi-
mate neural architecture from a search space consisting of
all potential solutions (Elsken et al., 2019; Liu et al., 2023).

As detailed in Section 2.1, a neural architecture consists of
M − 1 cells, each of which includes A-type, B-type, and C-
type blocks. We let the number of these blocks in the m-th
cell be nm

A , nm
B , and nm

C , respectively. Then, we encode a
neural architecture using M − 1 triplets of integers, where
each triplet corresponds to the counts of each block type in
a cell. The encoding of a neural architecture is given by:

x = {(n1
A, n

1
B , n

1
C), . . . , (n

M−1
A , nM−1

B , nM−1
C)}.

Based on this encoding mechanism, the search space is
S = {Z × Z × Z}M−1. This is a two-level search space
with cells at the first level and blocks at the second level.
By following the convention in EA’s runtime analysis, we
consider the (1+1)-ENAS algorithm based on (1+1)-EA
with mutation only, which serves as a theoretical foundation
for runtime analysis and algorithm design. Its main steps
are:

1. Randomly sample nm
z (m ∈ [1..M − 1], z ∈

{A,B,C}) in the initial solution according to the
uniform distribution U [1, s], where s ∈ N+ is an
algorithm-specific parameter.

2. Generate offspring by executing mutation on a parent.
3. Select the solution with higher fitness to enter into the

next iteration. In case of ties, the offspring is preferred
to the parent by the selection operator.

4. Repeat Steps 2 and 3 until an optimal solution is found.

In the above steps, mutation plays a key role in guiding the
search process, with two commonly used types in the ENAS
community: the one-bit mutation that changes only one po-
sition, and the bit-wise mutation that changes each position
with a certain probability. These two mutations typically
affect the runtime of the algorithm, which will be separately
examined in the (1+1)-ENAS algorithm. Specifically, we
employ a “two-level” mutation process: an outer-level mu-
tation that selects cells for mutation and an inner-level mu-
tation that alters blocks within the selected cells. The outer-
level mutation can be either one-bit mutation, which mutates
one randomly selected cell, or bit-wise mutation, which mu-
tates each cell independently with probability 1/(M − 1).
The inner-level mutation, executed after the outer-level mu-
tation, can be either local (mutating each selected cell once)
or global (mutating K times, with K ∼ Pois(1)) (Kratsch
et al., 2010; Durrett et al., 2011; Qian et al., 2015; 2023)
mutation. For each time of mutation, the algorithm applies
the operation defined in Definition 2.1.
Definition 2.1 (Mutation Operation). Given any cell
(nm

A , nm
B , nm

C) of a solution, the algorithm randomly se-
lects a block type V ∈ {A,B,C} and applies one of
the following operations uniformly at random: (1) Addi-
tion: adds a V -type block (i.e., nm

V ← nm
V + 1); (2) Dele-

tion: deletes a V -type block (i.e., nm
V ← nm

V − 1) when

3

Runtime Analysis of Evolutionary NAS for Multiclass Classification

𝐒𝐞𝐜 Regions

𝐓𝐫𝐢 and 𝐒𝐞𝐠
Regions

𝑆sec
1

𝑆sec
4

𝑆tri
10

𝑆tri
7

𝑆1

𝑆2
𝑆3𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9 𝑆10
𝑆11

𝑆12

class 1

class 2

class 3

𝑆seg
11 is incorrectly

classified as class 2

✓: correctly
 : incorrectly

𝑆seg
7 is correctly

fitted by A-type
block in 2nd cell

✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

(a) MCC with M = 3

𝐒𝐞𝐜 Regions

𝐓𝐫𝐢 and 𝐒𝐞𝐠
Regions

𝑆sec
1

𝑆sec
4

𝑆tri
10

𝑆tri
7

𝑆1

𝑆2
𝑆3𝑆4

𝑆5

𝑆6

𝑆7

𝑆8

𝑆9 𝑆10
𝑆11

𝑆12

class 1

class 2

class 3

𝑆seg
11 is incorrectly

classified as class 2

✓: correctly
 : incorrectly

𝑆seg
7 is correctly

fitted by A-type
block in 2nd cell

✓ ✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

✓

(b) Decision Regions

Cell 1

Cell 2

𝑏2
= 0

𝑏1
= 0

𝑁1

𝑁2

B-type → 0

B-type → 0

B-type → 0

A-type → 0

B-type → 1

B-type → 0

B-type → 0

𝑁3

Neural Architecture

𝑃1 = 𝑃 𝑦 = ′1′ = 0.25

𝑃2 = 𝑃 𝑦 = ′2′ = 0.45

𝑃3 = 𝑃 𝑦 = ′3′ = 0.30
S

o
ftm

ax

ℎ1 = 0.4
Input Instance Output Probabilities

0

1

ℎ2 = 1.0

𝑏3
= 0.1

ℎ3
= 0.5 + 0.1
= 0.6

𝑤11 = 1

𝑤21 = 0.5

𝑤12 = 0.4

𝑤22 = 1

𝑤23 = 0.5

𝑥 = (0.5, 0.5)

(c) Classification Example

Figure 2. Illustration of neural architecture solving MCC. (a) MCC with M = 3 and r = 2, depicting a 3-class classification problem. The
points labeled as class 1, 2, and 3 are colored off-white, yellow, and khaki, respectively. Each class (e.g., class 1) has two segments (e.g.,
S9
seg ∪ S12

seg), two sectors (e.g., S1
sec ∪ S4

sec), and two triangles (e.g., S7
tri ∪ S10

tri). (b) Decision regions produced by neural architecture
{(0, 3, 0), (1, 3, 0)}: blue arrows point to class 1 (excluding the red-arrow regions), red arrows point to class 2, and the remaining regions
to class 3. The regions marked with a “✓” are correctly classified. (c) Classification example for input instance (0.5, 0.5) ∈ S2

Sec

using neural architecture {(0, 3, 0), (1, 3, 0)}. The first cell outputs 0 since it has no block to cover the region S2
Sec, while the second

cell outputs 1 since it has a B-type block to cover the region S2
Sec. The neurons {N1, N2, N3} then output values of 0.4, 1.0, and 0.6,

respectively. The softmax layer converts these into probabilities of 0.25, 0.45, 0.3, and class 2 (0.45) is chosen as the classification result.

nm
V > 0; (3) Modification: randomly selects a block type

W ∈ {A,B,C}\V and then performs Deletion on V while
performs Addition on W when nm

V > 0 (i.e., nm
V → nm

V −1
and nm

W → nm
W + 1); otherwise, nm

V and nm
W remain un-

changed.

Notably, there is a sequence in the two-level mutation pro-
cess, i.e., first selecting the cell to mutate (outer-level muta-
tion) and then applying the mutation (inner-level mutation)
to the selected cell. Reversing the sequence would make the
algorithm infeasible, as the index of the cell to be mutated
would be unknown, making it unclear where the inner-level
mutation should be applied. Specifically, given a solution
x, which is encoded by M − 1 triplets of integers, i.e.,
x = {(n1

A, n
1
B , n

1
C), . . . , (n

M−1
A , nM−1

B , nM−1
C)}, the al-

gorithm must first select the cell index m ∈ {1, . . . ,M−1},
and then apply the inner-level mutation to modify the se-
lected cell (nm

A , nm
B , nm

C).

3. A Multiclass Classification Problem
The differences of the classification problem and the bi-
nary classification problem (Lv et al., 2024b) for ENAS
algorithms include the following: 1) decision regions: mul-
ticlass classification divides input space into M decision
regions (vs. two in binary classification), increasing neural
architectural demands; 2) classification accuracy: multiclass
classification aggregates per-class accuracy across all M re-
gions, amplifying the complexity of the fitness evaluation; 3)
search space: the neural architecture for solving multiclass
classification is a combination of multiple binary classifiers
or a more complex architecture (vs. binary classification’s
binary classifier), exponentially expanding the search space.

These differences introduce three challenges: 1) problem
definition: accurately modeling inter-class dependencies
and region-specific sample distributions; 2) fitness function:
mathematically formulating the fitness (i.e., classification
accuracy) of neural architectures from geometric properties;
3) search space partition: partitioning the search space by
analyzing the interactions between architectural components
(e.g., blocks, cells).

To tackle the above challenges, this section defines a multi-
class classification problem named MCC and a fitness func-
tion that evaluates the quality of neural architectures solving
it. The search space of the problem is then partitioned to
facilitate runtime analysis.

3.1. Problem Definition

We propose a multiclass classification benchmark problem
MCC that captures essential properties of real-world multi-
class classification tasks, including both linearly and non-
linearly divisible decision regions (e.g., half-space region,
unbounded/bounded polyhedra region). As defined in Defi-
nition 3.1, the input is a 2-dimensional input vector as sug-
gested in the binary classification benchmark problems (Fis-
cher et al., 2023; Lv et al., 2024b); the output label (class)
takes on one of M labels.

Definition 3.1 (MCC Problem). Let the inputs consist of
the points on the unit circle S := {x ∈ R2 | ∥x∥2 ≤ 1},
with each point labeled as class y ∈ [1..M], where M ≥ 2.
The unit circle S is evenly divided into n = 2rM sectors
with angle 2π

n , where r ≥ 2. Thus, S = ∪nk=1S
k
sec, with

Sk
sec representing the k-th sector. Each sector Sk

sec can be
further divided into a triangle Sk

tri with area 1
2 sin(

2π
n) and

4

Runtime Analysis of Evolutionary NAS for Multiclass Classification

a segment (a segment is cut from a sector by a chord) Sk
seg

with area π
n −

1
2 sin(

2π
n). Let the points with label m be

distributed across r segmenets, r sectors, and r triangles,
with the corresponding regions denoted as Segm, Secm, and
Trim, respectively. These regions are defined as follows:

Secm =

r⋃
k=1

Sm+(k−1)M
sec , Trim =

2r⋃
k=r+1

S
m+(k−1)M
tri ,

Segm̸=1 =

2r⋃
k=r+1

S(m−1)+(k−1)M
seg ,Seg1 =

2r⋃
k=r+1

SkM
seg .

Then, the set of points with label m ∈ [1..M] is

Lm = Segm ∪ Secm ∪ Trim.

An example of MCC (M = 3, r = 2, n = 12) is shown
in Figure 2(a). The problem has the following characteris-
tics: (1) The decision region of a class is the disjoint union
of r half-spaces (segments), r unbounded polyhedra (sec-
tors), and r bounded polyhedra (triangles). (2) Triangles
and sectors of the same class are never connected. For ex-
ample, in Figure 2(a), triangle S7

tri of class 1 is bordered by
a sector of class 2 and a triangle of class 3. (3) Segment
Si
seg connected to triangle Si

tri of class m must belong to
class (m + 1) mod M . For example, S7

tri in Figure 2(a)
belongs to class 1, whereas S7

seg belongs to class 2. In our
work, we explore how fast does the ENAS algorithm can
find an optimal neural architecture that correctly forms all
of the decision regions in the MCC problem.

We consider the neural architecture described in Section 2.1
to solve the MCC problem. Figure 2(b) depicts the deci-
sion regions of the neural architecture {(n1

A = 0, n1
B =

3, n1
C = 0), (n2

A = 1, n2
B = 3, n2

C = 0)}, which visually
demonstrates how neural architecture solves the problem
shown in Figure 2(a). The decision region for class 1 ex-
cludes S7

seg due to the use of an A-type block in the second
cell, which leads to this region being classified as class 2.
This highlights how the neural architecture addresses the
complex inter-class relationship in multi-class classification.
Based on the above, Figure 2(c) presents an example of how
the neural architecture classifies a specific input instance,
with detailed computation from input to output. Additional
classification examples can be found in Appendix B.

The classification accuracy acc(H) of a parameterized neu-
ral architecture H can be defined as the ratio of correctly
classified points by H to the total number of points in the
unit circle S, which is intuitive, easy to understand, and
suitable for balanced datasets because it does not consider
the class distribution (Grandini et al., 2020). Thus, we have

acc(H) =
vol((

⋃M−1
m=1 (Cm∩Lm))∪(

⋂M−1
m=1 Cm∩LM))

vol(S) , (1)

where Cm is the set of points that are covered by the blocks
in the m-th cell of the neural architecture, Lm represents
the set of points with label m, Cm = R2\Cm, and vol(·)
denotes the area.

⋃M−1
m=1 (Cm ∩ Lm) represents the set of

points that are correctly classified in classes 1 to M − 1,
and

(⋂M−1
m=1 Cm ∩ LM

)
is the set of points that are cor-

rectly classified in class M . For example, in the case of
Figure 2(b), we have

(⋂M−1
m=1 Cm ∩ LM

)
= LM\S11

seg, as

the second cell misclassifies S11
seg of class 3; the classifica-

tion accuracy can be calculated according to Eq. (1), i.e.,
((4 ·Arsec + 2 ·Artri + 1 ·Arseg) + (2 ·Arsec + 2 ·Artri +
1 ·Arseg))/π ≈ 0.83.

In general, three kinds of regions need to be fit in each class:
(1) a = r segment regions (A-type), (2) b = r sector re-
gions (B-type, or A-type plus C-type), and (3) c = r triangle
regions (C-type). From the perspective of neural architec-
ture optimization, there are six important block counts to
consider in each cell of neural architecture:

1) n′
A: Number of A-type blocks that classify segments.

2) n′′
A: Number of A-type blocks that classify sectors (to-

gether with a C-block).

3) n′
B : Number of B-type blocks that classify sectors alone.

4) n′
C : Number of C-type blocks that classify sectors (to-

gether with an A-type block).

5) n′′
C : Number of C-type blocks that classify triangles.

6) n′′
B : Number of B-type blocks that correctly classify the

triangles but incorrectly classify the segments.

For the (M − 1)-th cell, when nB < b, the missing b− nB

B-type blocks need to be compensated by A-type and C-
type blocks. In this case, we need n′′

A ≥ b − nB (i.e.,
nA ≥ a+b−nB) and n′

C ≥ b−nB (i.e., nC ≥ c+b−nB).
In addition, if nB > b and nC < c, then there must be
n′′
B > 0 segments in SegM that are misclassified as class

M − 1, due to insufficient C-type blocks. To avoid this, we
must ensure n′′

B = 0, i.e., we need nC ≥ n′′
C ≥ c to ensure

that all triangles of class M − 1 are correctly classified by
C-type blocks. Overall, the (M − 1)-th cell of the optimum
needs to satisfy the following conditions:

• nA ≥ a+max{0, b− nB} = max{r, 2r − nB},

• nB + nC ≥ b+ c = 2r,

• nC ≥ c = r.

These conditions must also be satisfied for the other cells;
otherwise, some points will be misclassified as class M .

5

Runtime Analysis of Evolutionary NAS for Multiclass Classification

3.2. Mathematically Formulated Fitness Function

ENAS primarily focuses on the evolution of neural architec-
ture, leaving the fitness evaluation of architecture to learning
algorithms (such as the gradient-based algorithm) (Elsken
et al., 2019). However, the practical optimization methods
may not guarantee the achievement of the optimal parame-
ters. To analyze ENAS purely, we assume that the optimal
or approximate parameters of each evolved architecture can
be achieved in fitness evaluation, as we discussed in Sec-
tion 2.1. Based on this assumption, we can mathematically
formulate a fitness function to describe how the basic units
(i.e., cells and blocks) of neural architecture influence its
fitness on the MCC problem.

Before formulating the fitness function, we define two key
quantities related to the solution x, which reflect the number
of decision regions that the solution can form. One is the
number of decision regions shaped as triangles that can be
correctly formed by the m-th cell of x, which is denoted as
Imx and can be calculated by

Imx = min{nm
B + nm

C , b+ c} ∈ [0..2r]. (2)

The other is the number of decision regions shaped as seg-
ments that can be correctly formed by the m-th cell of x,
which is denoted as Jm

x and can be calculated by

Jm
x = min{nm

B , b}+min{nm
A , a+max{b− nm

B , 0}},
(3)

where the first term represents up to b B-type blocks for
classifying the segments within the sectors Secm, and the
second term indicates that at most a + max{b − nm

B , 0}
A-type blocks are used to classify the segments in Segm

and the segments within the sectors Secm. Consequently,
Jm
x ∈ [0..2r].

Next, we establish the relationship between the decision
regions and the classification accuracy of a solution, based
on the classification accuracy calculation shown in Eq. (1).
The first term in the numerator of Eq. (1) reflects how many
points belonging to class [1..M − 1] are correctly classified
by x. This is related to the number of correctly classified
triangles and segments (including those within sectors) that
belong to classes [1..M − 1], respectively, denoted as

Ix =

M−1∑
m=1

Imx ∈ [0..n− 2r],

Jx =

M−1∑
m=1

Jm
x ∈ [0..n− 2r].

(4)

The second term in the numerator of Eq. (1) reflects how
many points belonging to class M can be classified correctly
by x. Any point in SecM ∪ TriM can always be correctly
classified. This is because no blocks in x cover these points,

resulting in all cells outputting 0-bits, which allows only the
neuron NM with a non-zero bias to output a value greater
than 0 (specifically, 0.1). However, point in SegM may
be misclassified by the (M − 1)-th cell. Specifically, if
the value n′′

B of the (M − 1)-th cell is greater than 0, then
min{(nM−1

B − b), (c− nM−1
C)} segments of class M will

be incorrectly classified; otherwise, all segments of class
M are correctly classified. Let ϵx denote the number of
misclassified segments of class M . Then, we have

ϵx = max{0,min{(nM−1
B − b), (c− nM−1

C)}} ∈ [0..r].
(5)

Consequently, b+c = 2r triangles and a+b−ϵx = 2r−ϵx
segments of class M − 1 can be correctly classified.

By combining the two terms in the numerator of Eq. (1), we
can derive the number of triangles and segments (including
those within sectors) that can be correctly classified by x.
Specifically, Ix + 2r triangles and Jx + 2r − ϵx segments
are correctly classified. Additionally, we have Jx + 2r −
ϵx ∈ [2r, n], where the lower bound of 2r holds because
Jx−ϵx ≥ JM−1

x −ϵx ≥ 0. Then, we introduce Lemma 3.2
to evaluate the fitness of any given neural architecture.
Lemma 3.2 (Fitness Function). Given a neural architecture
x, its fitness value for solving MCC can be calculated by

F(x) = (Artri · (Ix + 2r) + Arseg · (Jx + 2r − ϵx)) /π,
(6)

where Artri and Arseg denote the area of a triangle and a
segment, respectively, and π is the area of the unit circle.

Proof of Lemma 3.2. Let F(x) denote the fitness value of
architecture x. According to the formulation for the calcu-
lation of classification accuracy (i.e., Eq. (1) in the main
paper), we have

F(x) =
(∑M−1

m=1 fm + (π/M −Arϵ)
)
/π, (7)

where fm represents the area of regions that are correctly
classified by the m-th cell of x, π is the area of the unit
circle, and π/M−Arϵ denotes the area of regions belonging
to class M minus the area of regions that are misclassified
by the (M − 1)-th cell.

According to the parameter settings (as discussed in Section
2.1 of the main paper), the area of the regions that can be
correctly classified by an A-type, B-type, and C-type block
is {0,Arseg}, {0,Artri,Arsec}, and {0,Artri}, respectively.
We note that a sector can be divided into a triangle and
a segment, as Arsec = Arseg + Artri. Since Imx and Jm

x

represent the number of correctly covered triangles and
segments, respectively, ∀m ∈ [1..M − 1], we have

fm = Imx ·Artri + Jm
x ·Arseg.

In addition, there are ϵx segments in class M that can be
misclassified by the (M − 1)-th cell, so we have Arϵ =

6

Runtime Analysis of Evolutionary NAS for Multiclass Classification

ϵx ·Arseg. Therefore, Eq. (7) can be expressed as

F(x) =

M−1∑
m=1

Imx ·Artri + Jm
x ·Arseg

π
+

1

M
− Arϵ

π

=Ix ·
Artri
π

+ Jx ·
Arseg
π

+
1

M
− ϵx ·

Arseg
π

=
1

M
+ (Ix ·Artri + (Jx − ϵx) ·Arseg)

1

π
,

where Ix =
∑M−1

m=1 Imx and Jx =
∑M−1

m=1 Jm
x . Since n =

2Mr and Artri +Arseg = π/n, the lemma holds.

To illustrate how the fitness function defined in Eq. (6)
evaluates a solution, we provide a calculation example by
using the neural architecture shown in Figure 2(b) as x.
In this case, we have ϵx = 1, Ix = 6, Jx = 6, and
Arsec = Artri + Arseg = π/n. By substituting these
into Eq. (6), we can yield the same accuracy of 0.83.

The mathematically formulated fitness function in Eq. (6)
demonstrates that the fitness of x can be improved by ap-
propriately increasing the number of A-type, B-type, and
C-type blocks in each cell, as these contribute positively to
both Ix+2r and Jx+2r−ϵx, which correspond to the num-
ber of correctly classified triangles and segments (including
those within sectors) for classes 1 to M , respectively. This
behavior is somewhat similar to the ONEMAX benchmark
function for EAs, allowing it to play the role of ONEMAX
in ENAS.

3.3. Search Space Partition

In the runtime analysis of EAs, it is common to construct
a distance function to investigate the progress of the algo-
rithm (Auger & Doerr, 2011; Neumann & Witt, 2010; Zhou
et al., 2019; Doerr & Neumann, 2020). The partitioning
of the search space plays a key role in defining the dis-
tance function. The runtime analysis of ENAS follows the
conventional analysis approach. Therefore, we present a
partition of the search space designed in Section 2.2, which
can facilitate the runtime analysis of ENAS solving MCC.

Let S denote the search space, which also refers to the
solution space. According to the first term in Eq. (6), i.e.,
Ix + 2r ∈ [2r..n], S can be partitioned into n − 2r + 1
subspaces that are denoted as ∪n−2r

i=0 Si, where Si = {x ∈
S | Ix + 2r = i + 2r}. The following relationship exists
between the subspaces:

S0 <F S1 <F S2 < · · · <F Sn−2r,

where Si <F Si+1 represents that F(x) < F(y) for all
x ∈ Si and all y ∈ Si+1. The basis for the partition is that
the fitness function in Eq. (6) is dominated by the Ix-term,
as Artri > (n − 2r) · Arseg, where n ≥ 8 in the MCC
problem.

In addition, according to the second term in Eq. (6), i.e.,
Jx+2r−ϵ ∈ [2r..n], Si can be partitioned into (n−2r+1)
sub-subspaces that are denoted as ∪n−2r

j=0 S
j
i , where Sji =

{x ∈ S | Ix = i, Jx + 2r − ϵx = j + 2r}. The following
relationship exists between different sub-subspaces of Si:

S0i <F S1i <F S2i < · · · <F Sn−2r
i ,

where Sji <F Sj+1
i represents that F(x) < F(y) for all

x ∈ Sji and all y ∈ Sj+1
i .

4. Runtime Analysis
In this section, we analyze the expected runtime of (1+1)-
ENAS for solving MCC. As the (1+1)-ENAS algorithm
generates only one offspring solution in each generation, its
expected runtime equals the expected number T of genera-
tions to reach the optimum, which is denoted as E[T].

4.1. One-bit Mutation

We prove in Theorems 4.1 and 4.2 that the upper and
lower bounds on the expected runtime of (1+1)-ENASonebit

solving MCC are E[T] = O (rM ln(rM)) and E[T] =
Ω(rM lnM), respectively. Note that (1+1)-ENASonebit

refers to (1+1)-ENAS using one-bit outer-level mutation
and either local or global inner-level mutation.

Theorem 4.1. (Upper bound) The (1+1)-ENASonebit algo-
rithm needs E[T] = O (rM ln(rM)) to find the optimum
for MCC.

Theorem 4.2. (Lower bound) When the upper bound s
on the number of each type of block in the initial solu-
tion is r, the (1+1)-ENASonebit algorithm needs E[T] =
Ω(rM lnM) to find the optimum for MCC.

Before proving Theorem 4.1, we briefly outline the main
idea of the proof. We divide the optimization procedure
into two phases, where the first aims at finding one solution
that belongs to Sn−2r, and the second aims at finding one
optimal solution that belongs to Sn−2r

n−2r . For each phase, we
utilize the multiplicative drift analysis (Doerr et al., 2012) to
derive its expected runtime. This widely used mathematical
tool is well-suited for cases where the expected progress
is proportional to the current objective value, as observed
during the proof process. To utilize this tool, we construct a
distance function V (·) for each phase to measure how far
a solution is from the target solution of the phase. For the
simplicity of presentation, we let n− 2r = 2r(M − 1) be
expressed as N , γi,i′ denote the probability that Imx = i
changes to Imx = i′ after the inner-level mutation, and ηz,z′

be the probability that Jx − ϵx increases by z′ − z after the
inner-level mutation.

In addition, to identify which cells contribute to progress
toward the optimum, we utilize a bit-string of length M − 1

7

Runtime Analysis of Evolutionary NAS for Multiclass Classification

to characterize whether each cell’s Imx (or Jm
x) matches

the optimum or not, denoted as o = {o1, . . . , oM−1} ∈
{0, 1}M−1, where om (m < M − 1) can be expressed by

om =

{
1 if (Ix < N, Imx = 2r) or (Ix = N, Jm

x = 2r),

0 if (Ix < N, Imx < 2r) or (Ix = N, Jm
x < 2r),

and oM−1 = 1 when (Ix < N, IM−1
x = r) or (Ix =

N, JM−1
x = 2r, ϵx = 0); otherwise, oM−1 = 0. The

number of cells that match the optimum is given by the
number of 1-bits in the binary string o, denoted as |o|1 =∑M−1

m=1 om. Then, |o|0 denotes the number of 0-bits. Given
any neural architecture with Ix = i, we have the bounds of
|o|1, i.e.,

max{i− (M − 1)(2r − 1), 0} ≤ |o|1 ≤
i

2r
, (8)

where the upper bound holds by the maximum value of Imx
being 2r, and the lower bound is occured when ∀m : Imx ≥
2r−1. Given Jx = j and Jx−ϵx = z, we have |o|1 ≤ ⌊(j−
JM−1
x)/(2r)⌋+ ⌊(JM−1

x − (j − z))/(2r)⌋ ≤ z/(2r). The
bounds will be utilized in the proofs of Theorems 4.1– 4.4.
Next, we proceed to establish the proof for Theorem 4.1.

Proof of Theorem 4.1. According to the partition of search
space, we divide the optimization procedure into two phases,
and we pessimistically assume that the solution with Jx > 0
is not found in the first phase.

• Phase 1: This phase starts after initialization and ends
when a solution x with Ix = n − 2r is found, i.e.,
x ∈ Sn−2r.

• Phase 2: This phase starts after Phase 1 and ends when
a solution x ∈ Sn−2r

n−2r is found.

Phase 1. We define the distance function V1(x) = N −
Ix =

∑M−1
m=1 (2r − Imx) to measure the progress towards

the optimum in the first phase. It is easy to verify that
V1(x) = 0 iff Ix = N . To make progress, it is sufficient to
select one cell with om = 0 and make the value Imx increase
by executing the inner-level mutation (local or global). The
probability of the former event (selecting one cell with om =
0) equals |o|0/(M −1) since there are |o|0 cells with om =
0. Hence, the probability of making progress is at least
(|o|0/(M − 1)) · γi,i+1. In this case, the distance V1 can
decrease by at least 1.

Then, we analyze the expectation of the one-step progress
(i.e., drift) towards the target solution in the first phase. We
have

E[V1(xt)− V1(xt+1) | V1(xt)]

≥ |o|0
M − 1

· γi,i+1 · 1 ≥
(
1− Ixt

N

)
· 2
9
,

(9)

where the second inequality holds by |o|0 = M−1−|o|1 ≥
M − 1 − Ixt/(2r) (derived by Eq. (8)) and γi,i+1 ≥ 2/9
(Lv et al. (2024b) showed that: if the inner-level mutation
adopts the local mutation, γi,i+1 ≥ 2/9 as shown in their
Lemma 3; if the inner-level mutation adopts the global
mutation, γi,i+1 ≥ 0.23 as shown in their Lemma 5). In
other words, the drift of V1(xt) is bounded from below by
σ · V1(xt) with σ = 2/(9N). Note that V1(xt) = N − Ixt .

Owing to 0 < Ix < N during the first phase, the distance
of the initial individual is V1(x0) ∈ [1..N − 1]. By the mul-
tiplicative drift theorem (Doerr et al., 2012), the expected
runtime of finding a solution with V1 = 0 (i.e., Ix = N) is
O((1 + lnV1(x0))/σ) = O(N lnN).

Phase 2. After the aforementioned phase, we pessimistically
assume that the searched solution with Jx = 0, which
means that |o|1 = 0. As the goal of the second phase is to
reach Jx − ϵx = N , we construct a new distance function
V2(x) = N − (Jx− ϵx). It is easy to verify that V2(x) = 0
if and only Jx − ϵx = N .

The analysis is similar to phase 1. One difference is the
constant probability ηz,z′ , which is lower bounded by 1/9
as shown in Lemmas 4 and 5 of (Lv et al., 2024a). Similar
to the calculation in Eq. (9), the expected one-step progress
in V2(xt) is at least (Vx(xt)/N) · (1/9) since |o|0 = M −
1 − |o|1 ≥ M − 1 − (Jxt

− ϵxt)/(2r). By utilizing the
multiplicative drift, the expected runtime for the second
phase is O(N lnN). By combining the two phases, we get
E[T] ∈ O (rM ln(rM)) because N = 2r(M − 1).

The proof idea of Theorem 4.2 is that the initial solution
has (M − 1)/r 0-bits in o with probability at least 1/2,
and then (1+1)-ENASonebit requires at least Ω(rM lnM)
expected runtime to find the solution belonging to Sn−2r.
This is because the probability that at least one of these
0-bits in o of the initial solution remains unchanged over
t = max{1,M − 2} · ln(M − 1) · r generations is lower
bounded by 1− e−1. The complete proof of Theorem 4.2 is
provided in Appendix C.1.

4.2. Bit-wise Mutation

Next, we will show that by replacing one-bit with bit-
wise mutation, the (1+1)-ENAS algorithm can achieve a
similar runtime. In particular, we prove in Theorems 4.3
and 4.4 that the upper and lower bounds on the expected
runtime of (1+1)-ENASbitwise solving MCC are E[T] =
O(rM ln(rM)) and E[T] = Ω(rM lnM), respectively.
Note that (1+1)-ENASbitwise denotes that (1+1)-ENAS uses
bit-wise outer-level mutation and either local or global inner-
level mutation.

Theorem 4.3. (Upper bound) The (1+1)-ENASbitwise algo-
rithm needs E[T] = O(rM ln(rM)) to find the optimum

8

Runtime Analysis of Evolutionary NAS for Multiclass Classification

for MCC.
Theorem 4.4. (Lower bound) When the upper bound s
on the number of each type of block in the initial solu-
tion is r, the (1+1)-ENASbitwise algorithm needs E[T] =
Ω(rM lnM) to find the optimum for MCC.

The main proof idea of Theorem 4.3 is similar to that of
Theorem 4.1, i.e., partition the optimization procedure into
two phases and analyze the runtime of each phase. One dif-
ference is the calculation of the bound on the probability of
generating a better offspring solution than a parent solution.
The probability of each cell selected by the outer-level muta-
tion in one round is p = 1/(M − 1). Thus, we have that the
algorithm can decrease the distance V1 (or V2) by at least
one with probability at least p · γi,i+1 · (1− p)M−1−1 · |o|0
(or p · ηz,z′ · (1− p)M−1−1 · |o|0). Then we can derive the
one-step progress for each phase, and conclude that the ex-
pected runtime to find the target solution is O(rM ln(rM)).
The proof of Theorem 4.4 is similar to that of Theorem 4.2.
The complete proofs of Theorems 4.3 and 4.4 are provided
in Appendix C.2 and Appendix C.3.

5. Experiments
In this section, we investigate the empirical performance
of the (1+1)-ENAS algorithm with four different mutation
settings for solving MCC. We set the problem classes M
from 2 to 24, with a step of 2, and the problem parameter r
from 2 to 10, with a step of 2. Figure 3 presents the average
number of generations of 1,000 independent runs for find-
ing an optimal solution. It shows that both local and global
inner-level mutations can achieve similar performance. Fur-
thermore, using one-bit or bit-wise outer-level mutations
has little effect on performance, typically resulting in a con-
stant factor difference. These empirical results are generally
consistent with Theorems 4.1 to 4.4.

5 10 15 20 25
Problem classes M

0

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 r = 10
onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
r values

0

2

4

6

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 M = 20
onebit+local
onebit+global
bitwise+local
bitwise+global

(a) Fixed r = 10, varying M

5 10 15 20 25
Problem dimension M

0

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 r = 10
onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

0

2

4

6

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 M = 20
onebit+local
onebit+global
bitwise+local
bitwise+global

(b) Fixed M = 20, varying r

Figure 3. Average number of generations of the (1+1)-ENAS algo-
rithm with different mutations for solving the MCC problem. The
legend identifies mutation types: the term before the symbol “+”
denotes the outer-level mutation, and the term after the symbol
represents the inner-level mutation.

The above experiment results also offer practical guidance
for mutation design in ENAS. In particular, many ENAS
algorithms adopt bit-wise mutation (also called bit-flip mu-
tation) (Xie & Yuille, 2017; Pan et al., 2024; Yan et al.,
2024), which requires manual setting of an appropriate flip-
ping probability; whereas the one-bit mutation, which is
simpler in use, can be initially considered in the design
of ENAS algorithms. This finding is particularly effective
for block/cell-based search spaces, where one-bit mutation
could achieve significant changes in neural architectures.
This helps explain its adoption in practical ENAS methods
like AE-CNN (Sun et al., 2019b), which utilize single-step
mutation (functionally analogous to one-bit mutation) as
their core search operator. To further strengthen our find-
ing, we extend our experiments to population-based ENAS
algorithms with crossover. Due to space limitations, the
experiment results are included in Appendix D.

6. Conclusion
In this paper, we take the first step towards the runtime anal-
ysis of the ENAS algorithm for solving multiclass classifi-
cation problems. We begin by proposing a multiclass clas-
sification problem MCC, and mathematically formulating
a fitness function for this problem to serve as a benchmark
for the runtime analysis of ENAS. Furthermore, we design a
two-level search space with cells at the first level and blocks
at the second, which is consistent with the practical ENAS
algorithms and also enables theoretical research. Based on
both designs, we analyze the expected runtime bounds of
the (1+1)-ENAS algorithm with one-bit or bit-wise mutation
for solving MCC, and prove that the algorithm using both
mutations can achieve the same expected runtime bounds.
The results suggest that a simple one-bit mutation can be ini-
tially considered in the ENAS community. As a foundation
for the above theoretical research, the proposed benchmark
MCC narrows the gap between previous theoretical analyses
and practice.

Building on this work, more theoretical works on ENAS are
left to be done, including but not limited to the following
aspects: 1) analyzing more advanced evolutionary mecha-
nisms/operators, such as population mechanisms, crossover
operators, and stochastic selection mechanisms, to help
the design of more efficient ENAS algorithms; 2) consid-
ering more realistic scenarios, such as noisy optimization,
dynamic optimization, and multi-objective optimization;
3) extending to more challenging multi-class classification
with richer decision boundaries, such as diverse polyhe-
dra regions beyond sectors or triangles, to assess ENAS’s
capability in constructing blocks with diverse topologies.

9

Runtime Analysis of Evolutionary NAS for Multiclass Classification

Impact statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

Acknowledgments
The authors want to thank the anonymous reviewers for
their helpful comments and suggestions. This work was
supported by the National Natural Science Foundation of
China (No. 62276175 and No. 62276124) and Innovative
Research Group Program of Natural Science Foundation of
Sichuan Province (No. 2024NSFTD0035).

References
Aly, M. Survey on multiclass classification methods. Neural

Netw, 19(1-9):2, 2005.

Auger, A. and Doerr, B. Theory of Randomized Search
Heuristics - Foundations and Recent Developments.
World Scientific, Singapore, 2011.

Bertsimas, D. and Tsitsiklis, J. N. Introduction to Linear
Optimization. Athena Scientific, 1997.

Doerr, B. and Goldberg, L. A. Adaptive drift analysis.
Algorithmica, 65:224–250, 2013.

Doerr, B. and Neumann, F. Theory of Evolutionary Com-
putation: Recent Developments in Discrete Optimization.
Springer, Cham, Switzerland, 2020.

Doerr, B., Jansen, T., and Klein, C. Comparing global
and local mutations on bit strings. In Proceedings of the
10th Annual Conference on Genetic and Evolutionary
Computation (GECCO’08), pp. 929–936, Atlanta, GA,
2008.

Doerr, B., Johannsen, D., and Winzen, C. Mul-
tiplicative drift analysis. Algorithmica, 64(4):
673–697, 2012. ISSN 0178-4617. doi: 10.1007/
s00453-012-9622-x. URL https://doi.org/10.
1007/s00453-012-9622-x.

Droste, S., Jansen, T., and Wegener, I. On the analysis of
the (1+1) evolutionary algorithm. Theoretical Computer
Science, 276(1-2):51–81, 2002.

Durrett, G., Neumann, F., and O’Reilly, U.-M. Compu-
tational complexity analysis of simple genetic program-
ming on two problems modeling isolated program se-
mantics. In Proceedings of the 11th Workshop on Foun-
dations of Genetic Algorithms (FOGA’11), pp. 69–80,
Schwarzenberg, Austria, 2011.

Elsken, T., Metzen, J. H., and Hutter, F. Neural architecture
search: A survey. Journal of Machine Learning Research,
20(1):1997––2017, 2019.

Fischer, P., Larsen, E. L., and Witt, C. First steps towards a
runtime analysis of neuroevolution. In Proceedings of the
17th International Workshop on Foundations of Genetic
Algorithms (FOGA’23), pp. 61–72, Potsdam, Germany,
2023.

Fischer, P., Warwicker, J. A., and Witt, C. A runtime analy-
sis of bias-invariant neuroevolution and dynamic fitness
evaluation. In Proceedings of the 26th Annual Conference
on Genetic and Evolutionary Computation (GECCO’24),
pp. 1560–1568, Melbourne, VIC, Australia, 2024.

Friedman, J., Hastie, T., and Tibshirani, R. Additive logistic
regression: A statistical view of boosting (with discussion
and a rejoinder by the authors). The Annals of Statistics,
28(2):337–407, 2000.

Gibson, G. J. and Cowan, C. F. On the decision regions of
multilayer perceptrons. Proceedings of the IEEE, 78(10):
1590–1594, 2002.

Grandini, M., Bagli, E., and Visani, G. Metrics for
multi-class classification: An overview. arXiv preprint
arXiv:2008.05756, 2020.

He, X., Zhao, K., and Chu, X. Automl: A survey of the
state-of-the-art. Knowledge-Based Systems, 212:106622,
2021.

Kratsch, S., Lehre, P. K., Neumann, F., and Oliveto, P. S.
Fixed parameter evolutionary algorithms and maximum
leaf spanning trees: A matter of mutation. In Proceedings
of the 11th International Conference on Parallel Problem
Solving from Nature (PPSN’10), pp. 204–213, Kraków,
Poland, 2010. Springer Berlin Heidelberg.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and
Kavukcuoglu, K. Hierarchical representations for ef-
ficient architecture search. In Proceedings of the 6th
International Conference of Learning Representation
(ICLR’18), Vancouver, BC, Canada, 2018.

Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan,
K. C. A survey on evolutionary neural architecture search.
IEEE Transactions on Neural Networks and Learning
Systems, 34(2):550–570, 2023.

Lv, Z., Bian, C., Qian, C., and Sun, Y. Runtime analysis of
population-based evolutionary neural architecture search
for a binary classification problem. In Proceedings of
the 26th Annual Conference on Genetic and Evolution-
ary Computation (GECCO’24), pp. 358–366, Melbourne,
VIC, Australia, 2024a.

10

https://doi.org/10.1007/s00453-012-9622-x
https://doi.org/10.1007/s00453-012-9622-x

Runtime Analysis of Evolutionary NAS for Multiclass Classification

Lv, Z., Qian, C., and Sun, Y. A first step towards run-
time analysis of evolutionary neural architecture search.
arXiv:2401.11712, 2024b. URL https://arxiv.
org/abs/2401.11712.

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink,
D., Francon, O., Raju, B., Shahrzad, H., Navruzyan, A.,
Duffy, N., et al. Evolving deep neural networks. In Artifi-
cial Intelligence in the Age of Neural Networks and Brain
Computing (Second Edition), pp. 269–287. Academic
Press, 2024.

Neumann, F. and Witt, C. Bioinspired Computation in
Combinatorial Optimization - Algorithms and Their Com-
putational Complexity. Springer, Berlin, Germany, 2010.

Neumann, F. and Witt, C. On the runtime of randomized
local search and simple evolutionary algorithms for dy-
namic makespan scheduling. In Proceedings of the 24th
International Joint Conference on Artificial Intelligence
(IJCAI’15), pp. 3742–3748, Buenos Aires, Argentina,
2015.

Nguyen, Q., Mukkamala, M. C., and Hein, M. Neural
networks should be wide enough to learn disconnected
decision regions. In Proceedings of the 35th International
Conference on Machine Learning (ICML’18), pp. 3737–
3746, Stockholm, Sweden, 2018. PMLR.

Pan, W., Zhao, F., Shen, G., Han, B., and Zeng, Y.
Brain-inspired multi-scale evolutionary neural architec-
ture search for deep spiking neural networks. IEEE Trans-
actions on Evolutionary Computation, 2024.

Qian, C., Yu, Y., and Zhou, Z.-H. Variable solution structure
can be helpful in evolutionary optimization. Science
China: Information Sciences, 58(11):1–17, 2015.

Qian, C., Liu, D.-X., Feng, C., and Tang, K. Multi-objective
evolutionary algorithms are generally good: Maximizing
monotone submodular functions over sequences. Theo-
retical Computer Science, 943:241–266, 2023.

Real, E., Moore, S., Selle, A., Saxena, S., Suematsu, Y. L.,
Tan, J., Le, Q. V., and Kurakin, A. Large-scale evolution
of image classifiers. In Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML’17), pp.
2902–2911, Sydney, Australia, 2017. PMLR.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regular-
ized evolution for image classifier architecture search. In
Proceedings of the 33th AAAI Conference on Artificial In-
telligence (AAAI’19), pp. 4780–4789, Honolulu, Hawaii,
USA, 2019.

Sharma, S., Sharma, S., and Athaiya, A. Activation func-
tions in neural networks. International Journal of En-
gineering Applied Sciences and Technology, 4(12):310–
316, 2017.

So, D., Mańke, W., Liu, H., Dai, Z., Shazeer, N., and Le,
Q. V. Searching for efficient transformers for language
modeling. In Advances in Neural Information Processing
Systems 34 (NeurIPS’21), pp. 6010–6022, virtual, 2021.

Sudholt, D. A new method for lower bounds on the running
time of evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 17(3):418–435, 2013.

Sun, Y., Xue, B., Zhang, M., and Yen, G. G. Completely au-
tomated CNN architecture design based on blocks. IEEE
Transactions on Neural Networks and Learning Systems,
31(4):1242–1254, 2019a.

Sun, Y., Xue, B., Zhang, M., and Yen, G. G. Evolving deep
convolutional neural networks for image classification.
IEEE Transactions on Evolutionary Computation, 24(2):
394–407, 2019b.

Ünal, H. T. and Başçiftçi, F. Evolutionary design of neural
network architectures: a review of three decades of re-
search. Artificial Intelligence Review, 55(3):1723–1802,
2022.

Wegener, I. Methods for the analysis of evolutionary al-
gorithms on pseudo-Boolean functions. In Evolutionary
Optimization, pp. 349–369. Springer, 2003.

Witt, C. Tight bounds on the optimization time of a random-
ized search heuristic on linear functions. Combinatorics,
Probability and Computing, 22:294–318, 2013.

Xie, L. and Yuille, A. Genetic CNN. In Proceedings of
the IEEE International Conference on Computer Vision
(ICCV’17), pp. 1379–1388, Venice, Italy, 2017.

Yan, X., Huang, H., Jin, Y., Wang, Z., and Hao, Z. Neural
architecture search based on bipartite graphs for text clas-
sification. IEEE Transactions on Neural Networks and
Learning Systems, 2024.

Yang, S., Yu, X., Tian, Y., Yan, X., Ma, H., and Zhang, X.
Evolutionary neural architecture search for transformer
in knowledge tracing. In Advances in Neural Information
Processing Systems 36 (NeurIPS’23), pp. 19520–19539,
New Orleans, LA, USA, 2023.

Zhong, Z., Yan, J., Wu, W., Shao, J., and Liu, C.-L. Practical
block-wise neural network architecture generation. In
Proceedings of the 35th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’18), pp. 2423–
2432, 2018.

Zhou, Z.-H., Yu, Y., and Qian, C. Evolutionary Learning:
Advances in Theories and Algorithms. Springer, Singa-
pore, 2019.

11

https://arxiv.org/abs/2401.11712
https://arxiv.org/abs/2401.11712

Runtime Analysis of Evolutionary NAS for Multiclass Classification

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. Learning
transferable architectures for scalable image recognition.
In Proceedings of the 35th IEEE Conference on Computer
Vision and Pattern Recognition (CVPR’18), pp. 8697–
8710, Salt Lake City, UT, USA, 2018.

12

Runtime Analysis of Evolutionary NAS for Multiclass Classification

A. Neural Architecture
A.1. Details of Parameter Settings

Parameters of the binary neurons within the block. The weight φ and bias of a binary neuron corresponds to the angle
of the unit normal vector for the hyperplane and the distance from the origin, respectively (Fischer et al., 2023). We assume
that the parameters, i.e., the weight φ and bias, satisfy the following conditions:

• The bias of the neuron in an A-type block is set as cos(π/n).

• The bias of the neurons in a B-type block is set as 0, and the difference in φ between these neurons is (π + 2π/n) or
(π − 2π/n).

• Two neurons in a C-type block have a bias of 0, with φ difference of (π+2π/n) or (π− 2π/n), while the third neuron
has a bias of cos(π/n) and a φ difference with the other two neurons of (π/2 + π/n) or (3π/2− π/n).

• Existing an optimization method can theoretically guarantee the optimality of the remaining parameters, e.g., φ of each
binary neuron and φ difference.

Parameters for each type of block are depicted in Figure 4.

A B

Blue line Yellow lines

C

Red lines

cos(
𝜋

𝑛
)

2𝜋

𝑛

𝜑2 − 𝜑1 = 𝜋 +
2𝜋

𝑛
=
7𝜋

6

𝜑1

𝜑2

𝜑

𝜑2 − 𝜑3 =
3𝜋

2
−
𝜋

𝑛

𝑏𝑖𝑎𝑠 = cos
𝜋

12

𝜑2

𝜑1

𝜑3

𝜑1 − 𝜑3 =
𝜋

2
+
𝜋

𝑛

|𝜑2 − 𝜑1| = 𝜋 −
2𝜋

𝑛

𝜑 =
7𝜋

12

Figure 4. Visualization of the parameter settings for A-type, B-type, and C-type blocks, along with the corresponding decision regions
generated by each block type, upon the MCC problem (M = 3, r = 2, n = 12). The red arrow represents the unit normal vector of
a hyperplane (line), with weight φ as its angle. The bias is the distance of the hyperplane to the circle’s center. Each block’s arrows
collectively point to the region produced (covered/bounds) by that block. The black-shaded regions are incorrectly classified by the
specific block. (a) Top-left: The decision region (a segment region S4

sec) produced by an A-type block with its single binary neuron’s bias
of cos(π/n) and φ of 7π/12. (b) Top-right: The decision region (a sector region S2

sec) produced by a B-type block, where both neurons
have a bias of 0, and the φ difference between the neurons is |φ2 − φ1| = π + 2π/n = 7π/6. This decision region is generated by (c)
Bottom: The decision region (a triangle region S8

tri) produced by a C-type block, where the two binary neurons, each with a bias of 0, have
a φ difference of |φ2 − φ1| = π − 2π/n = 5π/6, and their φ differences with the third binary are |φ1 − φ3| = π/2 + π/n = 7π/12
and |φ2 − φ3| = 3π/2− π/n = 17π/12, respectively.

Parameters of the neurons {N1, N2, . . . , NM} in hidden layer. Figure 5 shows the weights and biases of these neurons.
Specifically, neuron N1 has two inputs with weights of {1, 0.4}, neuron NM has a single input with a weight of 0.5, and
each of the remaining neurons (i.e., N2, ..., NM−1) has three inputs with weights of {0.5, 1, 0.4}. Additionally, the bias for
neuron NM is 0.1, whereas all other neurons in {N1, N2, . . . , NM} have a bias of 0.

13

Runtime Analysis of Evolutionary NAS for Multiclass Classification

𝑏3
= 0

𝑏2
= 0

𝑏𝑀−1
= 0

1

0.5

⋯

0.4

1

1

𝑏𝑀
= 0.1

0.5

⋯

𝑏1
= 0

𝑁1

𝑁2

𝑁𝑀−1

𝑁𝑀

Cell 1

Cell 2

Cell 𝑀− 1

𝑁3

0.5
Cell 3 1

0.5

0.4

0.5

0.4

0.4

⋯

Figure 5. Parameters (weight and bias) of the neurons in {N1, N2, . . . , NM}.

A.2. Decision Regions

Based on the above parameter settings, it is clear that when the dataset is on the unit circle, three types of blocks in the neural
architecture generate decision regions with distinct shapes. Specifically, an A-type block in the neural architecture produces
a sector-shaped decision region, as shown in the top-left example of Figure 4; a B-type block produces a sector-shaped
decision region, as shown in the top-right example of Figure 4; and a C-type block produces a triangle-shaped decision
region, as shown in the bottom example of Figure 4. Overall, A-type blocks can only produce the segments (including
the segments within the sectors), B-type blocks can produce the triangles and sectors, and C-type blocks can produce the
triangles (including the triangles within the sectors).

In addition, since the utilization of hidden layers (i.e., neurons {N1, N2, . . . , NM}), each block in the m-th cell will only
form decision regions belonging to class m, except for the segment region that might be incorrectly classified as class
(M +m − 1) mod M . This exception occurs because, in the ((M +m − 1) mod M)-th cell, a B-type block is used
to form the triangle region Si

tri ∈ Tri(M+m−1) mod M instead of a C-type block, which leads to the incorrect coverage of
the segment region Si

seg connected with Si
tri, where Si

seg belongs to class m (according to the third characteristic of MCC

shown in Section 3.1 of the main paper). However, once an A-type block in the m-th cell is used to cover Si
seg, the neural

architecture can ultimately classify all of the points in Si
seg correctly. For further discussion on how the neural network

classifies correctly in this case, please refer to the classification examples provided in Appendix B, particularly for the case
where the input instance is x ∈ S7

seg.

B. Examples for Neural Architecture Solving MCC

To detail how the neural architecture solves MCC, we utilize the example of MCC (M = 3 and r = 2) in the main paper to
give an explanation. Table 1 illustrates several input instances along with the corresponding classification process and results.
Specifically, this table includes the outputs of cells, neurons in {N1, N2, . . . , NM}, softmax layer, the final classification
results, and whether classifications are right or not for seven input instances. Rows 1–2 present the classification process
and results for input instance labeled as class 1, with three regions whose points will be misclassified; rows 3–5 show the
classification process and results for input instance labeled as class 2, with two regions misclassified; rows 6–7 display

14

Runtime Analysis of Evolutionary NAS for Multiclass Classification

Table 1. Examples for testing the performance of neural architecture {(0, 3, 0), (1, 3, 0)}, including classification tests for seven input
instances in MCC (M = 3, r = 2). The first column lists the case number, while the second and third columns display the seven input
instances and their corresponding labels, respectively. Columns 4–7 provide the outputs from cells, neurons in {N1, N2, . . . , NM},
softmax, and the final classification results. The bolded numbers in columns 5 and 6 represent the maximum values among its output. For
each case, the output of the softmax layer is a set of probabilities (i.e., {P1, P2, P3}), with the class corresponding to the maximum value
being the classification result. Column 8 presents whether the neural architecture correctly classified the input instance; it shows “!” if
the classification is correct (i.e., its label and classification result are the same), and “%” if it is not.

Input Instance x Label Cells
Output

{N1, N2, N3}
Output

Softmax Layer
Output

Classification
Result Right?

1 x ∈ S1
Sec ∪ S4

Sec ∪ S7
tri Class 1 10 {1.0, 0.5, 0.1} {0.50, 0.30, 0.20} Class 1 !

2 x ∈ S9
seg ∪ S10

tri ∪ S12
seg 00 {0.0, 0.0, 0.1} {0.32, 0.32, 0.36} Class 3 %

3 x ∈ S2
Sec ∪ S5

Sec ∪ S11
tri

Class 2
01 {0.4, 1.0, 0.6} {0.25, 0.45, 0.30} Class 2 !

4 x ∈ S8
tri ∪ S10

seg 00 {0.0, 0.0, 0.1} {0.32, 0.32, 0.36} Class 3 %

5 x ∈ S7
seg 11 {1.4, 1.5, 0.6} {0.39, 0.43, 0.18} Class 2 !

6 x ∈ S3
Sec ∪ S6

Sec ∪ S9
tri ∪ S12

tri ∪ S8
seg Class 3 00 {0.0, 0.0, 0.1} {0.32, 0.32, 0.36} Class 3 !

7 x ∈ S11
seg 01 {0.4, 1.0, 0.6} {0.25, 0.45, 0.30} Class 2 %

the classification process and results for input instance labeled as class 3, with one region misclassified. The classification
accuracy, calculated as the ratio of the area of correctly classified points to the area of the circle, is approximately 0.83.

C. Proofs
C.1. Proof of Theorem 4.2

Proof of Theorem 4.2. Similar to the proof of Theorem 4.1, we begin the proof by analyzing phase 1.

We first show that the expected number of 0-bits and 1-bits in the initial solution x0 is E[|ox0 |0] = (M − 1)(1− 1/r2) and
E[|ox0

|1] = (M − 1)/r2, respectively, where ox0
represents o of x0.

Let P (om = 1) be the probability that the m-th cell of the initial solution has Imx0
= 2r B-type and C-type blocks. Since

both nm
B and nm

C drawn from the uniform distribution U [1, r], the probability of nm
B + nm

C = 2r (i.e., om = 1 for the
initial solution since Imx0

= 2r) is 1/r2, and the probability of nm
B + nm

C < 2r (i.e., omx0
= 0) is 1− 1/r2. Then, we have

P (om = 1) = 1/r2 and P (om = 0) = 1− 1/r2 for the initial solution. Thus, the expectation of |o|1 for the initial solution
is (M − 1)/r2.

By Markov’s inequality, an initial solution has at least g = (M − 1)/r 0-bits in ox0
with probability

P (|ox0
|0 ≥ g) = P (|ox0

|1 < (M − 1)− g)

= 1− P (|ox0
|1 ≥ (M − 1)− g)

≥ 1− E[|ox0
|1]

(M − 1)− g

≥ 1− (M − 1)/r2

(M − 1)− g
= 1− 1

r2 − r
≥ 1/2,

(10)

where the last inequality holds by r ≥ 2.

15

Runtime Analysis of Evolutionary NAS for Multiclass Classification

Next, we show the expected runtime for finding a solution in subspace Sn−2r, i.e.,

E[T1] =

(M−1)−1∑
d=0

E[T1 | |ox0 |0 = d] · P (|ox0 |0 = d)

≥
(M−1)−1∑

d=g

E[T1 | |ox0 |0 = d] · P (|ox0 |0 = d)

≥E[T1 | |ox0 |0 = g] · P (|ox0 |0 ≥ g)

=E[T1 | |ox0 |0 = g] · 1/2 ≥ t · P (T1 > t)/2,

(11)

where P (T1 > t) is the probability that the generations for finding a solution in Sn−2r is greater than t.

Let G denote the event that at least one of these g 0-bits in ox0 is never changed in t = max{1,M − 2} · ln(M − 1) · r. We
show that the event G happens with probability lower bounded by 1− e−1. Let 1− γi,i+1/(M − 1) describe the probability
that a new B or C-type block would not be generated for the cell with om = 0 in one round (i.e., value Imx is not increased),
where γi,i+1 is a constant probability which detailed in the proof of Theorem 4.1. Then, the probability that the value Imx
of a specific cell with om = 0 in the initial solution x0 is never increased in t generations is (1− γi,i+1/(M − 1))t. So,
the value Imx of a specific cell with om = 0 in the initial solution x0 is increased by at least once in t generations with a
probability 1− (1− γi,i+1/(M − 1))t. Furthermore, any of these cells corresponding to a 0-bit in ox0

is increased by one
at least once in t generations with a probability of (1− (1− γi,i+1/(M − 1))t)g . Thus, we have

P (G) = 1−

(
1−

(
1− γi,i+1

M − 1

)t
)g

≥ 1−

(
1−

(
1− 1

M − 1

)max{1,M−2}·ln(M−1)·r
)M−1

r

≥ 1− e−1.

Combining with Eq. (11), the lower bound of the expected runtime for the first phase can be derived by

E[T1] ≥ t · P (T1 > t)/2

≥ max{1,M − 2} · ln(M − 1) · r · P (G)/2

≥ max{1,M − 2} · ln(M − 1) · r · (1− e−1)/2

∈ Ω(rM lnM).

Because the generations T1 of phase 1 is a lower bound on the generations T of the whole process for finding an optimal
solution belonging to Sn−2r

n−2r , we have E[T] = Ω(rM lnM).

C.2. Proof of Theorem 4.3

Proof of Theorem 4.3. Since the one-bit and bit-wise mutations have the same lower bound for the probability of increasing
the value of Ix (or Jx) by 1, we can obtain the same lower bound for the expected one-step progress (drift). Specifically, the
drift of V1(xt) (or V2(xt)) is bounded from below by σ · V1(xt) (or σ · V2(xt)) with σ = 2/(9N) (or σ = 1/(9N)). These
results lead to the same upper bound results for the expected runtime, i.e., O(rM ln(rM)), by utilizing the multiplicative
drift analysis (Doerr et al., 2012). Therefore, a similar proof refers to the proof of Theorem 4.1 in the main paper.

Here, we present the proof with another approach that uses the fitness-level technique (Wegener, 2003; Sudholt, 2013),
which also yields the same theoretical result.

Let pI denote the lower bound on the probability of the algorithm creating a new solution in
⋃n−2r

I′=I+1 SI′ , provided the
algorithm is in SI . The most optimistic assumption is that the algorithm makes it rise one level (i.e., SI+1). To make
jumping from SI to SI+1 successful, it is sufficient to select one 0-bit (denote as the m-th cell) from o by bit-wise mutation
and mutate the m-th cell to increase its value Imx by one through inner-level mutation, which happens with a probability

16

Runtime Analysis of Evolutionary NAS for Multiclass Classification

of 1
M−1 · |o|0 · γi,i+1. Meanwhile, the other 0 and 1 bits are either not selected or their corresponding Imx values remain

unchanged after being mutated, which happens with a probability of at least (1− 1
M−1)

(M−1)−1 ≥ 1/e. Thus, we have

pI ≥ γi,i+1

M − 1
· |o|0 ·

1

e
≥
(
1− I

N

)
· 2
9e

,

where the last inequality holds by |o|0 ≥M −1−I/(2r) (derived by Eq. (3) in the main paper), N = n−2r = 2r(M −1),
and γi,i+1 ≥ 2/9. Thus, the expected runtime for the first phase is

E[T1] ≤
N−1∑
I=0

1

pI
≤ 9e

2
·
N−1∑
I=0

1

1− I/N

≤ 9e

2
·N

N−1∑
I=0

1

N − I
≤ 9e

2
N lnN ∈ O (rM ln(rM)) .

Then, we analyze the second phase. Before beginning the analysis, it is important to note that Jx − ϵx ≥ 0 for any solution
x. This is because ϵx will only be positive if the (M − 1)-th cell contains more than r B-type blocks (leading to Jx ≥ r
since JM−1

x ≥ r), which allows for n′′
B > 0 B-type blocks to cover triangles belonging to class M − 1, making ϵx > 0. In

this case, we have Jx − ϵx ≥ 0 since Jx ≥ r and ϵx ≤ r. In all other cases, where ϵx = 0, we have Jx − ϵx ≥ 0 since
Jx ≥ 0. Therefore, we have Jx − ϵx = J − r ≥ 0, given that the algorithm is in SJN (i.e., x ∈ SJN).

Next, we continue the analysis of the runtime for the second phase. Since ηz,z+1 ≥ 1/9 as shown in the proof of Theorem 4.1,
we can derive that the lower bound on the probability of jumping from SJN to SJ+1

N is ηz,z+1/(M − 1) · |o|0/e ≥
(1 − (J − r)/N)/(9e), where |o|0 = M − 1 − |o|1 ≥ M − 1 − (J − r)/(2r) and J − r ≥ 0. Then, similar to the first
phase, we have the expected runtime for the second phase is E[T2] ∈ O(rM ln(rM)).

By combining the two phases, we get E[T] ∈ O (rM ln(rM)).

C.3. Proof of Theorem 4.4

Proof of Theorem 4.4. Similar to the proof of Theorem 4.2, the probability of the event that the algorithm generates an initial
individual x0 with (M − 1)/r 0-bits in o is lower bounded by 1/2. For a specific cell with om = 0, the probability of the
event that the number of B-type and C-type blocks in this cell increased is bounded by

∑2r
i′=i+1 γi,i′/(M−1) ≤ 1/(M−1).

Then, the proof follows a similar approach to that of Theorem 4.2. The event that at least one of the cells with om = 0 in
x0 is never changed in t = max{1,M − 2} · ln(M − 1) · r generations happens with probability exceeding (1 − e−1).
Thus, the probability of the event that the generations for finding a solution in Sn−2r is greater than t is lower bounded
by (1 − e−1). Starting from the initial individual x0, the algorithm finds a solution in subspace Sn−2r is O(rM lnM)
according to Eq. (11). Because the generations of phase 1 is a lower bound on the generations T of the whole process for
finding an optimal solution belonging to Sn−2r

n−2r , we have E[T] = Ω(rM lnM).

D. Extended Experiments
To further strengthen our findings, we extend the experiments in Section 5 to three SOTA ENAS algorithms: (λ+λ)-ENAS
with mutation only (λ ∈ {2, 4, 10}), which is adopted in methods like LEIC (Real et al., 2017) and AmoebaNet (Real et al.,
2019); one-point crossover-based ENAS, which is adopted in CNN-GA (Sun et al., 2019a) and ENAS-kT (Yang et al.,
2023); and uniform crossover-based ENAS, which is adopted in Genetic CNN (Xie & Yuille, 2017). All experiments follow
the same problem settings as in Section 5, and the results are presented in Figure 6 and Figure 7. The results show that
one-bit mutation achieves comparable runtime performance to bit-wise mutation on the MCC problem.

17

Runtime Analysis of Evolutionary NAS for Multiclass Classification

5 10 15 20 25
Problem classes M

0

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (2+2)-ENAS (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (2+2)-ENAS_onePointCrossover (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (2+2)-ENAS_UniformCrossover (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (4+4)-ENAS (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (4+4)-ENAS_onePointCrossover (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (4+4)-ENAS_UniformCrossover (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (10+10)-ENAS (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (10+10)-ENAS_onePointCrossover (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

5 10 15 20 25
Problem classes M

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (10+10)-ENAS_UniformCrossover (r = 10)

onebit+local
onebit+global
bitwise+local
bitwise+global

Figure 6. Average number of generations of the ENAS algorithms with population and crossover for solving the MCC problem (r = 10,
varying M). The ENAS algorithms include (λ+λ)-ENAS algorithm (with mutation only), (λ+λ)-ENAS algorithm with one-point
crossover, and (λ+λ)-ENAS algorithm with uniform crossover, where λ ∈ {2, 4, 10}.

18

Runtime Analysis of Evolutionary NAS for Multiclass Classification

2 4 6 8 10
Value r

1

2

3

4

5

6

7

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (2+2)-ENAS (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

1

2

3

4

5

6

7

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (2+2)-ENAS_onePointCrossover (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

0

1

2

3

4

5

6

7

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (2+2)-ENAS_UniformCrossover (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (4+4)-ENAS (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (4+4)-ENAS_onePointCrossover (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (4+4)-ENAS_UniformCrossover (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

0.2

0.4

0.6

0.8

1.0

1.2

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (10+10)-ENAS (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×104 (10+10)-ENAS_onePointCrossover (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

2 4 6 8 10
Value r

2

4

6

8

Av
er

ag
e

nu
m

be
r o

f g
en

er
at

io
ns

×103 (10+10)-ENAS_UniformCrossover (M = 20)

onebit+local
onebit+global
bitwise+local
bitwise+global

Figure 7. Average number of generations of the ENAS algorithms with population and crossover for solving the MCC problem (M = 20,
varying r). The ENAS algorithms include (λ+λ)-ENAS algorithm (with mutation only), (λ+λ)-ENAS algorithm with one-point crossover,
and (λ+λ)-ENAS algorithm with uniform crossover, where λ ∈ {2, 4, 10}.

19

