
Probabilistic Soundness Guarantees in LLM
Reasoning Chains

Anonymous Author(s)
Affiliation
Address
email

Abstract

In reasoning chains generated by large language models (LLMs), initial errors often1

propagate and undermine the reliability of the final conclusion. Current LLM-based2

error detection methods often fail to detect propagated errors because earlier errors3

can corrupt judgments of downstream reasoning. To better detect such errors, we4

introduce Autoregressive Reasoning Entailment Stability (ARES), a probabilistic5

framework that evaluates each reasoning step based solely on previously-verified6

premises. We find that ARES can reliably detect propagated reasoning errors that7

other baselines fail to find with probabilistic guarantees.8

1 Introduction9

Large Language Models (LLMs) often produce reasoning chains with errors that propagate, under-10

mining the final outputs [Huang et al., 2025, Lyu et al., 2024]. An error can be ungrounded statements,11

invalid derivations, or propagated errors as illustrated in Figure 1. For example, deriving x = 5 from12

5x = 9x− 20 is logically valid [Lee and Hockenmaier, 2025], but can be a propagated error if the13

premise 5x = 9x− 20 differs from the context [Tyagi et al., 2024].. These errors compromise the14

reliability LLMs in high-stakes domains [Agarwal et al., 2024, Chen and Mueller, 2023].15

Current error detection methods typically aim to identify all errors at once. For example, LLM judges16

are prompted to evaluate the entire chain and assess each step for correctness [Tyagi et al., 2024, He17

et al., 2025]. Similarly, Process Reward Models (PRMs) are language models trained with step-level18

classification heads on this same objective [Lightman et al., 2023].19

However, existing error detection methods often fall short. Specifically, they are often distracted by20

the presence of propagated errors [He et al., 2025, Turpin et al., 2023, Dhuliawala et al., 2023]. In the21

example from Figure 1, if steps 3, 4, and 5 are evaluated together, an LLM may incorrectly mark22

step 5 as sound by incorrectly relying on step 4, which is invalid. This highlights the need for robust23

methods that can assess the soundness of each step without being adversely distracted by prior errors.24

To address this issue, we draw inspiration from human reasoning. Humans typically review claims25

sequentially, and disregard previously unsound statements when evaluating subsequent ones [Johnson-26

Laird, 2010, Mukherjee et al., 2025]. In contrast, LLMs struggle to ignore prior errors, which causes27

naive detection methods to fail at simultaneously identifying and localizing all errors in a reasoning28

chain [Wu et al., 2024, Song and Tavanapong, 2024]. To overcome this limitation, we develop29

Autoregressive Reasoning Entailment Stability (ARES), a probabilistic framework that evaluates30

the soundness of each reasoning step based on its expected entailment probability, conditioned only31

on previously-occurring, sound claims (Figure 2). We iteratively evaluate each claim as follows:32

entailed claims are retained as premises for subsequent steps, while non-entailed claims are discarded.33

For uncertain claims, retention is probabilistic based on the entailment model. This adaptation not34

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

Context
Base Claim 1: The denominator of a fraction is 7 less than 3 times the numerator.
Base Claim 2: If the fraction is equivalent to 2/5, what is the numerator?

Correct Reasoning Chain

Claim 1: Let the numerator be x.
Claim 2: The denominator is 3x-7.
Claim 3: We know that x/(3x-7) = 2/5.
Claim 4: Therefore, 5x = 6x-14.
Claim 5: Finally, we get x = 14. (Correct)

Unsound Steps

Claim 1: Let the numerator be x.
Claim 2: The denominator is 3x-7.
Claim 3: We know that x/(3x-7) = 3/5.
Claim 4: Therefore, 5x = 9x-20.
Claim 5: Finally, we get x = 5. (Incorrect)

Figure 1: Faulty LLM reasoning due to propagated errors from ungrounded and invalid steps.
An unsound step is a step that is either ungrounded (incorrect with respect to the context), invalid
(logically incorrectly derived), or contains propagated errors. In this example, Step 3 is ungrounded
because it contains information different from the base claim 2. Step 4 is invalid because it contains
an incorrect mathematical computation. Step 5 is a propagated error, even though it is logically
correct from Step 4. This figure is adapted from an example in Lee and Hockenmaier [2025].

Base Claims
The denominator of a

fraction is 7 less than 3
times the numerator.

The fraction is
equivalent to 2/5.

Claim 2
The denominator is 3x-7.

Claim 3
We know that x/(3x-7) = 3/5.

Claim 4
Therefore, 5x = 9x-20.

Sound
Unsound

Autoregressive
soundness checking

Claim 1

Claim 2

Claim 3

Claim 4

Base Claims
The denominator of a fraction is 7 less

than 3 times the numerator.
The fraction is equivalent to 2/5.

LLM Reasoning Chain
Claim 1: Let the numerator be x.
Claim 2: The denominator is 3x-7.
Claim 3: We know that x/(3x-7) = 3/5.
Claim 4: Therefore, 5x = 9x-20.
Claim 5: Finally, we get x=5.

Claim 1
Let the numerator be x.Premises for entailment

Figure 2: (Autoregressive Soundness Checking) When we verify an LLM generated reasoning
chain, we can break the context and reasoning chain down to base claims and derived claims. An
autoregressive soundness checker can then check each derived claim step-by-step, using only claims
already identified to be sound as the premise.

only improves error detection but also enables us to give certified guarantees on the robustness of a35

reasoning chain.36

Our contributions are highlighted as follows.37

• We introduce Autoregressive Reasoning Entailment Stability (ARES), a novel probabilistic38

framework for evaluating claims in LLM reasoning chains. This framework uniquely39

assesses each step by conditioning only on previously verified sound claims, ensuring a40

robust and adaptable evaluation.41

• We design a computationally and sample-efficient autoregressive algorithm for entailment42

estimation within this framework. Crucially, this algorithm provides sample-efficient cer-43

tifications of entailment with rigorous statistical guarantees, a capability absent in prior44

methods.45

• We demonstrate that ARES accurately certifies both sound and unsound reasoning steps, par-46

ticularly excelling in long chains prone to error propagation. ARES significantly surpasses47

existing approaches and generalizes across diverse reasoning tasks.48

2 Soundness in Reasoning Chains49

We aim to identify and certify errors within LLM-generated chain-of-thought (CoT) reasoning. To50

this end, this section formalizes reasoning chains in terms of their constituent claims (Section 2.1),51

introduces the concept of probabilistic entailment between these claims (Section 2.2), and defines a52

notion of soundness that incorporates internal groundedness, validity, and the entailment of a final53

hypothesis (Section 2.3).54

2

2.1 Claims and Sequences of Claims55

A reasoning chain is conceptualized as a sequence of claims, where a claim is the assertion of a56

proposition. For instance, “The denominator is 3x − 7” is a claim regarding a component of an57

algebraic expression, while “We know that x
3x−7 = 2

5” is a claim that synthesizes prior information58

about an equation. The granularity of claims is domain-dependent; it is permissible for a claim59

to range from an atomic statement or a single sentence (e.g., “We can simplify x
3x−7 = 2

5 to60

5x = 6x− 14.”) to more extensive segments like entire theorems or proofs.61

For a more formal discussion of our method, we let C denote the set of all possible claims, and C⋆62

represent the set of all possible sequences of claims. An example of such a sequence is as follows:63 (
“Let the numerator be x”, “The denominator is 3x− 7”, “We know that x

3x−7 = 2
5”
)
∈ C⋆

which consists of the following individual claims:64

“Let the numerator be x” ∈ C, “The denominator is 3x− 7” ∈ C, “We know that x
3x−7 = 2

5” ∈ C.
This distinction between individual claims and sequences of claims is important for discussing the65

inclusion and exclusion of items from a premise during logical entailment, which we define next.66

2.2 Probabilistic Entailment of Claims67

To capture the notion of logical entailment between claims expressed in natural language, we introduce68

probabilistic entailment models. This approach is motivated by the inherent fuzziness and ambiguity69

often present in natural language reasoning [Zadeh, 2008, Yu et al., 2024]. Formally, a probabilistic70

entailment model E : C⋆ × C → [0, 1] accepts a sequence of claims as a premise, P ∈ C⋆, and a71

single claim as a hypothesis, H ∈ C. It then returns a scalar value representing the probability that72

the premise P entails the hypothesis H . For instance, consider the premise and hypothesis pair73

P =
(
“Sarah put on her running shoes.”, “She stretched by the sidewalk.”, “The sun was setting.”

)
H = “Sarah is going for an evening run.”

A probabilistic entailment model might output E(P,H) = 0.85. This score reflects the linguistic74

and social ambiguity in inferring the certainty of an “evening run” from the actions of “donning75

running shoes and stretching”. Such a fuzzy, probabilistic approach generalizes classical Boolean76

logic, where the output is strictly 1 for entailment and 0 for non-entailment. 177

2.3 Reasoning Chains and Soundness78

To analyze the step-by-step reasoning of LLMs, particularly in CoT processes, we conceptualize79

the output as a reasoning chain. This chain initiates with a set of provided statements or contextual80

information, designated as base claims. Following these, the LLM autoregressively produces a81

sequence of subsequent statements, which we term derived claims. This entire sequence is formally82

represented as:83

(C1, . . . , Cn, Cn+1, . . . , Cn+m) ∈ C⋆ (1)
where C1, . . . , Cn are the base claims, and Cn+1, . . . , Cn+m are the derived claims.84

This partition is methodologically crucial. Base claims (C1, . . . , Cn) serve as the foundational85

premises for a given reasoning task; their factual accuracy is considered out of scope for the present86

analysis and is assumed to be handled by external mechanisms. We focus on assessing whether each87

derived claim (Cn+i for i = 1, . . . ,m) is soundly inferred from the set of preceding statements. We88

begin by defining a deterministic (i.e., “hard”) version of soundness, where the entailment model E is89

assumed to be binary-valued.90

Definition 2.1 (Hard Soundness). Consider a reasoning chain (C1, . . . , Cn+m) with base claims91

C1, . . . , Cn and derived claims Cn+1, . . . , Cn+m. Then, this reasoning chain is hard-sound with92

respect to the deterministic entailment model E if93

E((C1, . . . , Cn+i−1), Cn+i) = 1, (2)

for all derived claims indexed by i = 1, . . . ,m.94

1We distinguish between a non-entailed claim (not logically following premises) and a provably false claim
(factually incorrect). For instance, “Sarah lives in Philadelphia” is not entailed but not demonstrably false.

3

Claim 1

Claim 2

Claim 3

Claim 4

Inclusion

Claim 1

Claim 2

Claim 3

Claim 4

Claim 5

Inclusion

Premise:
Claim 1,3,4

Hypothesis:
Claim 5

 Entailment Prob:
0.279

0

Bernoulli Sample

0.279

Claim 5

Claim 6

Claim 2Claim 1 Claim 5Claim 3 Claim 4

N

Claim 2Claim 1 Claim 5Claim 4

...

Claim 3

Figure 3: (Estimating ARES) (Left) The entailment rate of each derived claim is autoregressively
computed. We first randomly initialize a premise (denoted by α) according to the base priors
p1, . . . , pn. Then, for each derived claim, we compute its entailment rate with respect to the premise
set. Finally, we add this derived claim to the premise set with probability equal to its entailment rate.
(Right) This is run in parallel across N instances.

The concept of hard soundness provides a precise, albeit strict, benchmark for evaluating the logical95

integrity of a reasoning chain because it requires every derived claim to be perfectly entailed by its96

predecessors. However, LLM-generated reasoning chains often deviate from this ideal. Therefore,97

while hard soundness serves as an important theoretical standard of correctness, it cannot give98

nuanced measures of error, particularly in long reasoning chains. This necessitates more flexible99

methods for measuring claim soundness even in the presence of errors, which we address next.100

3 Soundness Checks via Autoregressive Reasoning Entailment Stability101

We now consider the practical certification of LLM-generated reasoning chains. These chains are102

formed autoregressively: starting from an initial sequence of base claims C1, . . . , Cn, the LLM103

iteratively generates the derived claims Cn+1, . . . , Cn+m where each104

Cn+k = LLM(C1, . . . , Cn+k−1),

for reasoning steps k = 1, . . . ,m. We aim to quantify the reliability of this process using a sequence105

of entailment stability scores: τ1, . . . , τm ∈ [0, 1], where each τk denotes how reliably the k-th derived106

claim (Cn+k) is entailed with respect to its preceding claims (C1, . . . , Cn+k−1). The connection107

between entailment and error detection is straightforward: a claim Cn+k is likely to be erroneous if108

τk is low.109

While the notion of reliability is general, a rigorous definition of each τk is challenging due to110

probabilistic uncertainty and unreliable preceding claims in the reasoning chain. Critically, determin-111

istic hard soundness (Definition 2.1) cannot account for premises with uncertainty. Autoregressive112

Reasoning Entailment Stability addresses this: Section 3.1 motivates probabilistic entailment using113

insights from human psychology, LLM empirics, and mathematical logic. Subsequently, Section 3.2114

formalizes our approach, defines Autoregressive Reasoning Entailment Stability, and details its115

efficient Monte Carlo estimation.116

3.1 Entailment with Probabilistic Premises117

The key challenge lies in accurately assessing entailment when premises are probabilistically uncertain.118

To address this, our main insight is to calculate an overall likelihood by averaging across various119

probable combinations of that uncertain information.120

Our approach is motivated by several observations. In human cognition, people naturally discount121

or ignore dubious statements when reasoning [Johnson-Laird, 2010]. Similarly, lengthy contexts122

are often filtered to remove irrelevant and erroneous claims to improve LLM performance on123

reasoning tasks [Mukherjee et al., 2025]. These observations collectively motivate our development124

of a probabilistic entailment framework based on premise subsets.125

To measure the reliability of a hypothesis H with respect to a premise P containing k claims with126

uncertain soundness, we consider all 2k configurations of inclusion and exclusion for P ’s claims.127

Each configuration is represented by a binary vector α ∈ {0, 1}k, where αi = 1 indicates inclusion128

of claim Ci and αi = 0 indicates exclusion. This leads to the following natural measure of stability129

for H with respect to P and E :130

4

τ(E , P,H) =
∑

α∈{0,1}k

E(P (α), H) · Pr[α], (3)

where Pr[α] is the probability of this specific configuration of premise claim inclusions, and depends131

on the base and derived claims, as well as the entailment model E , which we discuss next.132

3.2 Autoregressive Reasoning Entailment Stability with Efficient Sampling133

In the previous section, we established a method for calculating the entailment of a single hypothesis134

based on a set of premises that might be uncertain (Equation (3)). Now, we will extend this concept135

to evaluate an entire LLM-generated reasoning chain, which consists of multiple, sequential steps.136

Our goal is to compute a sequence of entailment stability scores, denoted as τ1, . . . , τm, where each137

score τk quantifies the reliability of the k-th derived claim, Cn+k.138

The core challenge remains the same: how do we reliably judge a claim when the preceding claims139

it relies on are themselves not entirely trustworthy? Our approach, Autoregressive Reasoning140

Entailment Stability (ARES), solves this by autoregressively assessing each claim while accounting141

for the soundness of previous claims. In particular, when we evaluate the k-th derived claim, we142

consider all possible combinations of soundness for the preceding n+k−1 claims. The stability score,143

τk, is then the expected entailment of the current claim, averaged across all sound combinations.144

To formalize this, we represent a particular combination of inclusion or exclusion of previous claims145

using a binary vector α ∈ {0, 1}n+k−1, where let αi = 1 denote the inclusion of claim Ci and let146

αi = 0 denote its exclusion. The probability of this combination Pr[α] is calculated recursively as147

follows:148

• Base Case (k = 1): For the first derived claim, Cn+1, the premises are the initial base149

claims C1, . . . , Cn. We assume that each base claim Ci is associated with a prior probability150

of soundness pi that is given. Therefore, let:151

Pr[α1:n] =

n∏
i=1

pαi
i (1− pi)

αi (4)

• Inductive Case (k > 1): For any derived claim after the first, the probability of a specific152

premise combination α1:n+k depends on two factors: the probability of the preceding153

combination (Pr[α1:n+k−1]) and the entailment probability of the new claim given that154

preceding combination. In other words, a claim is added to our set of “sound” premises for155

the next step based on how strongly the currently accepted set entails it:156

Pr[α1:n+k] = Pr[α1:n+k−1] · E(C(α1:n+k−1), Cn+k) (5)
where C(α1:n+k−1) denotes the subset of claims indexed by α1:n+k−1 ∈ {0, 1}n+k−1.157

Using the above definition for Pr[α], we may quantify how likely each combination of previous158

claims may affect the current entailment. In particular, we naturally define the entailment stability159

score τk for the k-th derived claim as a marginalization over all combinations of its predecessors:160

τk =
∑

α∈{0,1}n+k−1

E(C(α), Cn+k) · Pr[α] (6)

However, directly computing τk is highly inefficient, as it requires summing over 2n+k−1 possible161

premise combinations. Instead, we estimated it by sampling the premise combinations:162

τ̂k =
1

N

N∑
i=1

E(C(α(i)), Cn+k), (7)

where let α(1), . . . , α(N) ∼ {0, 1}n+k−1 be i.i.d. sampled according to Algorithm 1 and Figure 3.163

Additionally, note that τ̂k converges rapidly to τ as the number of samples N grows, allowing us to164

obtain a rigorous statistical guarantee on our stability scores as a function of the number of samples.165

Theorem 3.1. Let N ≥ log(2m/δ)
2ε2 for any ε > 0 and δ > 0. Given an entailment model E and166

a reasoning chain with m derived claims, use N i.i.d. samples to estimate each τk. Then, with167

probability at least 1− δ, we have |τ̂k − τk| ≤ ε for all k.168

Proof. See Appendix A.169

5

Dataset / Method GPT-4o-mini Qwen3-4B

Recall Precision F1 Recall Precision F1

PRMBench
ARES 0.680 ± 0.024 0.627 ± 0.021 0.640 ± 0.023 0.688 ± 0.020 0.623 ± 0.011 0.636 ± 0.011
Entail-Prev 0.639 ± 0.032 0.602 ± 0.016 0.596 ± 0.024 0.698 ± 0.016 0.626 ± 0.015 0.641 ± 0.017
Entail-Base 0.524 ± 0.022 0.511 ± 0.011 0.484 ± 0.016 0.631 ± 0.016 0.558 ± 0.007 0.530 ± 0.011
ROSCOE-LI-Self 0.672 ± 0.012 0.575 ± 0.007 0.489 ± 0.022 0.458 ± 0.011 0.478 ± 0.006 0.446 ± 0.006
ROSCOE-LI-Source 0.676 ± 0.014 0.584 ± 0.008 0.570 ± 0.011 0.497 ± 0.003 0.496 ± 0.004 0.495 ± 0.004
ReCEval-Intra 0.563 ± 0.012 0.581 ± 0.014 0.568 ± 0.013 0.550 ± 0.007 0.573 ± 0.013 0.554 ± 0.007
ReCEval-Inter 0.664 ± 0.012 0.573 ± 0.007 0.465 ± 0.022 0.449 ± 0.004 0.476 ± 0.003 0.433 ± 0.004
LLM-Judge 0.647 ± 0.011 0.645 ± 0.019 0.643 ± 0.013 0.695 ± 0.017 0.662 ± 0.016 0.675 ± 0.016

DeltaBench
ARES 0.702 ± 0.024 0.728 ± 0.022 0.708 ± 0.026 0.513 ± 0.013 0.512 ± 0.013 0.498 ± 0.010
Entail-Prev 0.698 ± 0.032 0.709 ± 0.029 0.699 ± 0.031 0.523 ± 0.011 0.522 ± 0.010 0.506 ± 0.009
Entail-Base 0.614 ± 0.010 0.596 ± 0.004 0.594 ± 0.005 0.580 ± 0.008 0.586 ± 0.008 0.579 ± 0.009
ROSCOE-LI-Self 0.579 ± 0.006 0.664 ± 0.027 0.571 ± 0.013 0.555 ± 0.007 0.638 ± 0.039 0.522 ± 0.003
ROSCOE-LI-Source 0.471 ± 0.006 0.456 ± 0.009 0.453 ± 0.005 0.484 ± 0.013 0.472 ± 0.021 0.457 ± 0.017
ReCEval-Intra 0.500 ± 0.000 0.357 ± 0.012 0.416 ± 0.009 0.530 ± 0.006 0.529 ± 0.005 0.528 ± 0.005
ReCEval-Inter 0.503 ± 0.007 0.508 ± 0.012 0.483 ± 0.010 0.507 ± 0.006 0.508 ± 0.006 0.505 ± 0.007
LLM-Judge 0.498 ± 0.002 0.371 ± 0.026 0.381 ± 0.027 0.548 ± 0.010 0.563 ± 0.016 0.494 ± 0.009

ClaimTrees
ARES 0.914 ± 0.012 0.921 ± 0.013 0.903 ± 0.020 0.731 ± 0.006 0.755 ± 0.009 0.723 ± 0.006
Entail-Prev 0.587 ± 0.012 0.704 ± 0.025 0.491 ± 0.020 0.580 ± 0.013 0.760 ± 0.006 0.480 ± 0.022
Entail-Base 0.645 ± 0.018 0.647 ± 0.019 0.619 ± 0.021 0.586 ± 0.019 0.630 ± 0.018 0.521 ± 0.026
ROSCOE-LI-Self 0.528 ± 0.005 0.569 ± 0.016 0.430 ± 0.011 0.568 ± 0.009 0.732 ± 0.005 0.473 ± 0.017
ROSCOE-LI-Source 0.540 ± 0.012 0.543 ± 0.013 0.511 ± 0.016 0.491 ± 0.004 0.484 ± 0.006 0.448 ± 0.008
ReCEval-Intra 0.500 ± 0.000 0.254 ± 0.006 0.336 ± 0.005 0.500 ± 0.000 0.252 ± 0.003 0.335 ± 0.003
ReCEval-Inter 0.546 ± 0.013 0.548 ± 0.013 0.513 ± 0.016 0.495 ± 0.003 0.489 ± 0.005 0.451 ± 0.007
LLM-Judge 0.687 ± 0.018 0.780 ± 0.016 0.628 ± 0.027 0.602 ± 0.026 0.769 ± 0.013 0.502 ± 0.034

CaptainCookRecipes
ARES 0.636 ± 0.010 0.657 ± 0.011 0.633 ± 0.010 0.532 ± 0.012 0.532 ± 0.012 0.517 ± 0.009
Entail-Prev 0.468 ± 0.004 0.462 ± 0.004 0.428 ± 0.010 0.511 ± 0.005 0.529 ± 0.014 0.384 ± 0.008
Entail-Base 0.591 ± 0.007 0.598 ± 0.008 0.589 ± 0.007 0.500 ± 0.000 0.290 ± 0.005 0.367 ± 0.005
ROSCOE-LI-Self 0.555 ± 0.005 0.703 ± 0.018 0.483 ± 0.011 0.619 ± 0.007 0.711 ± 0.012 0.601 ± 0.010
ROSCOE-LI-Source 0.500 ± 0.000 0.283 ± 0.009 0.361 ± 0.007 0.500 ± 0.000 0.290 ± 0.006 0.367 ± 0.004
ReCEval-Intra 0.515 ± 0.008 0.540 ± 0.022 0.396 ± 0.010 0.500 ± 0.000 0.290 ± 0.006 0.367 ± 0.004
ReCEval-Inter 0.500 ± 0.000 0.283 ± 0.009 0.361 ± 0.007 0.500 ± 0.000 0.290 ± 0.005 0.367 ± 0.004
LLM-Judge 0.560 ± 0.023 0.569 ± 0.024 0.530 ± 0.028 0.500 ± 0.000 0.289 ± 0.005 0.366 ± 0.004

Table 1: (Benchmark Results) ARES is top-performing in majority of settings (5/8), with no other
single method being a consistent challenger. For each dataset+model group, Bold is the best and
underline is the second best.

Error Detection. Recall the connection between entailment stability and error detection: the lower170

a claim’s entailment stability, the greater its error. Consider a simple thresholding mechanism: if171

some τ̂k falls below a prescribed error threshold, then we mark the derived claim Cn+k as erroneous.172

In the following, we demonstrate the empirical effectiveness of this procedure.173

4 Evaluating ARES for Estimating Probabilistic Soundness174

ARES performs error detection by estimating the entailment stability of each derived claim and175

applying a thresholding mechanism. We next run experiments to validate the performance of ARES176

against multiple baselines on diverse benchmarks.177

Experiment Setup. We compare ARES with baselines including LLM-Judge, Entail-Prev, Entail-178

Base, and pairwise comparison methods from ROSCOE [Golovneva et al., 2023] and ReCEval [Prasad179

et al., 2023]. Our experiments used proprietary (GPT-4o-mini [OpenAI, 2024]) and open-source180

(Qwen3-4B [Yang et al., 2025], Qwen2.5-Math-PRM-7B [Zhang et al., 2025]) models. We tested on181

established benchmarks (PRMBench [Song et al., 2025], DeltaBench [He et al., 2025]) and two new182

synthetic datasets, ClaimTrees and CaptainCookRecipes, designed to isolate error propagation. Per-183

formance was measured using Macro-F1 score with a 5-fold cross-validation setup (see Appendix C184

for full details).185

6

5 10 20 30 50
Linear chain length

0.0

0.2

0.4

0.6

0.8

1.0

M
ac

ro
-F

1

ARES (Ours)
Entail-Prev
Entail-Base
ROSCOE-LI-Self
ROSCOE-LI-Source
ReCEval-Intra
ReCEval-Inter
LLM-Judge

Figure 4: (ClaimTrees) GPT-4o-mini. ARES
can robustly identify error propagations in long
reasoning chains, whereas other methods fail.

Method Step Avg Final Step

ARES 0.730 0.660
Entail-Prev 0.790 0.240
Entail-Base 0.540 0.300
ROSCOE-LI-Self 0.540 0.210
ROSCOE-LI-Source 0.630 0.310
ReCEval-Intra 0.480 0.060
ReCEval-Inter 0.480 0.190
LLM-Judge 0.570 0.250

Figure 5: (PRMBench Best-of-N) ARES is the
best at choosing the best sequence for down-
stream task performance. Bold: best within boot-
strap standard error.

Method PRMBench DeltaBench ClaimTrees-10 CaptainCookRecipes

ARES-ε0.1 0.640 0.708 0.931 0.633
ARES-ε0.2 0.599 0.697 0.926 0.631
ARES-ε0.3 0.582 0.694 0.919 0.621
ARES-ε0.4 0.595 0.687 0.922 0.640

Table 2: (GPT-4o-mini) Performance Convergence with Samples ARES is able to achieve high
accuracy even when using a smaller number of samples. When ε =0.1, 0.2, 0.3, 0.4, a sequence
of length m = 10 needs 265, 67, 30, 17 samples per step respectively. We can see that there is
no significant performance change when we increase the ϵ to 0.4 and thus decrease the number of
samples 15x.

4.1 RQ1: Does ARES work better than baseline methods on Benchmarks?186

On natural reasoning chains in PRMBench and DeltaBench, ARES consistently achieves the best187

Macro-F1 scores (Table 1). Baselines struggled with specific challenges; for instance, DeltaBench’s188

long reasoning chains appeared to confuse LLM-Judge’s holistic judgments, while Entail-Base189

underperformed on PRMBench. Additional experiments show ARES also improves the performance190

of PRM backbones (Appendix C.9).191

4.2 RQ2: In what setting does ARES identify more errors than baselines?192

To pinpoint where ARES excels, we created two synthetic datasets designed to test error propagation.193

By intentionally removing a key base claim in each—such as a logical rule or an ingredient—we194

created unsound derivations to precisely track how errors propagate. The performance gap is most195

pronounced on these datasets; as shown in Figure 4, ARES maintains a high Macro-F1 score (over196

89%) on chains up to 50 steps long, while baseline performance collapses. This confirms that ARES197

uniquely satisfies the key desiderata for detecting propagated errors (Appendix B).198

4.3 RQ3: Is ARES computationally efficient?199

Our analysis shows that ARES’s performance remains stable even with significantly fewer samples,200

indicating its efficiency and potential for further computational savings (Table 2). On synthetic bench-201

marks, performance is consistent for ε from 0.1 to 0.4, while more variance is seen on PRMBench202

and DeltaBench.203

4.4 RQ4: Is ARES useful for selecting Best-of-N generations?204

In a best-of-n selection task on PRMBench, ARES was significantly better at identifying the correct205

reasoning chain when using the final step’s score—a strict metric on which simpler approaches206

like Entail-Prev collapse (Figure 5). This highlights its reliability and robustness as a predictor for207

practical applications.208

7

4.5 Ablations209

We performed several ablations on ClaimTrees to analyze ARES’s strengths, testing its robustness210

against irrelevant claims and benign, non-propagating errors.211

Irrelevant Claims and Benign Errors. ARES maintains high performance on both deep and wide212

reasoning trees, effectively ignoring irrelevant claims that degrade the performance of other methods213

(Table A8). In cases with benign errors that do not affect subsequent reasoning steps, all methods214

perform equally well (Table A9).215

Choice of p and Entailment Model Granularity. Our ablations show that using a probabilistic216

entailment model with p = 1 (including all base claims) consistently yields the best and most217

computationally efficient performance for ARES. A binary entailment model, in contrast, sometimes218

benefits from a slightly lower p = 0.95 (Table A7).219

4.6 Discussion of Errors220

Our error analysis reveals specific baseline failure modes. Methods like Entail-Base and LLM-Judge221

struggle with long, complex reasoning chains, while Entail-Prev fails to detect the propagated errors222

present in our synthetic data. Pairwise methods are limited to simple errors requiring few premises.223

Ultimately, ARES’s effectiveness is bounded by the capability of its underlying entailment model.224

5 Related Work225

Reasoning Chain Verifiers. Approaches to verifying reasoning chains include LLM Judges [Tyagi226

et al., 2024, He et al., 2024, 2025] and Process Reward Models (PRMs) [Lightman et al., 2023].227

While recent verifiers incorporate logic, they have limitations: ROSCOE [Golovneva et al., 2023]228

and ReCEval [Prasad et al., 2023] use pairwise contradiction, which is less effective with complex229

premises, and PARC [Mukherjee et al., 2025] provides only a binary soundness classification. Our230

work differs by introducing a probabilistic framework for a more nuanced assessment of each claim.231

Evaluating Reasoning Error Detectors. While many benchmarks exist for evaluating CoT error de-232

tectors—including GridPuzzle [Tyagi et al., 2024], REVEAL [Jacovi et al., 2024], PRMBench [Song233

et al., 2025], ProcessBench [Zheng et al., 2024], and DeltaBench [He et al., 2025]—they lack a234

consistent definition of error. We establish a clear standard by adopting a unified definition of235

soundness, incorporating concepts of validity and groundedness from Lee and Hockenmaier [2025]236

and propagated error from Mukherjee et al. [2025]. We define a step as unsound if it is not logically237

entailed by correct preceding claims. Since existing benchmarks do not uniformly apply this standard,238

we created synthetic datasets for a more robust evaluation.239

Probabilistic Guarantees. Our work applies statistical guarantees for reliability—a practice com-240

mon in high-stakes domains [Fayyad et al., 2024, McShane et al., 2023, Lindemann et al., 2023] and241

explainable AI [Jin et al., 2025]—to natural language reasoning. We provide soundness guarantees242

over the entire directed acyclic graph (DAG) of a reasoning chain. This holistic approach contrasts243

with frameworks like BIRD [Feng et al., 2025], which calibrate individual components (e.g., the244

entailment model), whereas we provide formal guarantees for the multi-step process itself. As a245

model-agnostic framework, our method is complementary and can leverage improved, calibrated246

models to enhance its own certification reliability.247

6 Conclusion248

Current methods cannot reliably detect LLM reasoning errors that propagate. To overcome these249

limitations, we introduce Autoregressive Reasoning Entailment Stability (ARES), a model-agnostic250

framework for the probabilistic certification of LLM reasoning. Theoretically, ARES offers a novel251

probabilistic approach to inductively assess reasoning soundness by considering only previously252

validated claims, mirroring human-like error checking that discards incorrect intermediate steps.253

Experimentally, ARES demonstrates superior performance in robustly identifying errors in lengthy254

and complex reasoning chains, outperforming existing methods that degrade under error propagation.255

8

References256

Chirag Agarwal, Sree Harsha Tanneru, and Himabindu Lakkaraju. Faithfulness vs. plausibility: On257

the (un) reliability of explanations from large language models. arXiv preprint arXiv:2402.04614,258

2024.259

Jiuhai Chen and Jonas Mueller. Quantifying uncertainty in answers from any language model and260

enhancing their trustworthiness. arXiv preprint arXiv:2308.16175, 2023.261

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and262

Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv preprint263

arXiv:2309.11495, 2023.264

Jamil Fayyad, Shadi Alijani, and Homayoun Najjaran. Empirical validation of conformal prediction265

for trustworthy skin lesions classification, 2024. URL https://arxiv.org/abs/2312.07460.266

Yu Feng, Ben Zhou, Weidong Lin, and Dan Roth. BIRD: A trustworthy bayesian inference framework267

for large language models. In The Thirteenth International Conference on Learning Representa-268

tions, 2025. URL https://openreview.net/forum?id=fAAaT826Vv.269

Olga Golovneva, Moya Peng Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam270

Fazel-Zarandi, and Asli Celikyilmaz. ROSCOE: A suite of metrics for scoring step-by-step271

reasoning. In The Eleventh International Conference on Learning Representations, 2023. URL272

https://openreview.net/forum?id=xYlJRpzZtsY.273

Hangfeng He, Hongming Zhang, and Dan Roth. Socreval: Large language models with the socratic274

method for reference-free reasoning evaluation, 2024. URL https://arxiv.org/abs/2310.0275

0074.276

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng,277

Zhaoxiang Zhang, Zhicheng Zheng, Wenbo Su, and Bo Zheng. Can large language models detect278

errors in long chain-of-thought reasoning?, 2025. URL https://arxiv.org/abs/2502.19361.279

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong280

Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language281

models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information282

Systems, 43(2):1–55, 2025.283

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan Herzig, Or Honovich, Michael Tseng, Michael284

Collins, Roee Aharoni, and Mor Geva. A chain-of-thought is as strong as its weakest link: A285

benchmark for verifiers of reasoning chains. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,286

editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics287

(Volume 1: Long Papers), pages 4615–4634, Bangkok, Thailand, August 2024. Association for288

Computational Linguistics. doi: 10.18653/v1/2024.acl-long.254. URL https://aclanthology289

.org/2024.acl-long.254/.290

Helen Jin, Anton Xue, Weiqiu You, Surbhi Goel, and Eric Wong. Probabilistic stability guarantees291

for feature attributions. arXiv preprint arXiv:2504.13787, 2025.292

Phil Johnson-Laird. Deductive reasoning. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1):293

8–17, 2010.294

Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey, 2025. URL295

https://arxiv.org/abs/2502.12289.296

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan297

Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL298

https://arxiv.org/abs/2305.20050.299

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J. Pappas. Safe planning in dynamic300

environments using conformal prediction, 2023. URL https://arxiv.org/abs/2210.10254.301

Qing Lyu, Marianna Apidianaki, and Chris Callison-Burch. Towards faithful model explanation in302

NLP: A survey. Computational Linguistics, 50(2):657–723, June 2024. doi: 10.1162/coli_a_00511.303

URL https://aclanthology.org/2024.cl-2.6/.304

9

https://arxiv.org/abs/2312.07460
https://openreview.net/forum?id=fAAaT826Vv
https://openreview.net/forum?id=xYlJRpzZtsY
https://arxiv.org/abs/2310.00074
https://arxiv.org/abs/2310.00074
https://arxiv.org/abs/2310.00074
https://arxiv.org/abs/2502.19361
https://aclanthology.org/2024.acl-long.254/
https://aclanthology.org/2024.acl-long.254/
https://aclanthology.org/2024.acl-long.254/
https://arxiv.org/abs/2502.12289
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2210.10254
https://aclanthology.org/2024.cl-2.6/

Staffan Arvidsson McShane, Ulf Norinder, Jonathan Alvarsson, Ernst Ahlberg, Lars Carlsson, and305

Ola Spjuth. Cpsign-conformal prediction for cheminformatics modeling. bioRxiv, pages 2023–11,306

2023.307

Sagnik Mukherjee, Abhinav Chinta, Takyoung Kim, Tarun Anoop Sharma, and Dilek Hakkani-Tür.308

Premise-augmented reasoning chains improve error identification in math reasoning with llms,309

2025. URL https://arxiv.org/abs/2502.02362.310

OpenAI. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4311

o-mini-advancing-cost-efficient-intelligence/, July 2024. Accessed: 2025-05-19.312

Rohith Peddi, Shivvrat Arya, Bharath Challa, Likhitha Pallapothula, Akshay Vyas, Bhavya313

Gouripeddi, Qifan Zhang, Jikai Wang, Vasundhara Komaragiri, Eric Ragan, Nicholas Ruozzi,314

Yu Xiang, and Vibhav Gogate. Captaincook4d: A dataset for understanding errors in procedural315

activities. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,316

editors, Advances in Neural Information Processing Systems, volume 37, pages 135626–135679.317

Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/pap318

er/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmar319

ks_Track.pdf.320

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. ReCEval: Evaluating reasoning321

chains via correctness and informativeness. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,322

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages323

10066–10086, Singapore, December 2023. Association for Computational Linguistics. doi: 10.186324

53/v1/2023.emnlp-main.622. URL https://aclanthology.org/2023.emnlp-main.622/.325

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained326

and challenging benchmark for process-level reward models, 2025. URL https://arxiv.org/327

abs/2501.03124.328

Seok Hwan Song and Wallapak Tavanapong. How much do prompting methods help llms on329

quantitative reasoning with irrelevant information? In Proceedings of the 33rd ACM International330

Conference on Information and Knowledge Management, pages 2128–2137, 2024.331

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always332

say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural333

Information Processing Systems, 36:74952–74965, 2023.334

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin Rrv, Nisarg Patel, Mutsumi Nakamura,335

Arindam Mitra, and Chitta Baral. Step-by-step reasoning to solve grid puzzles: Where do LLMs336

falter? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024337

Conference on Empirical Methods in Natural Language Processing, pages 19898–19915, Miami,338

Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/20339

24.emnlp-main.1111. URL https://aclanthology.org/2024.emnlp-main.1111/.340

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai Zhang, and Yanghua Xiao. How easily do341

irrelevant inputs skew the responses of large language models? arXiv preprint arXiv:2404.03302,342

2024.343

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang344

Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,345

Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin346

Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,347

Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui348

Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang349

Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger350

Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan351

Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.352

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.353

ACM Computing Surveys, 56(12):1–39, 2024.354

Lotfi A Zadeh. Fuzzy logic. Scholarpedia, 3(3):1766, 2008.355

10

https://arxiv.org/abs/2502.02362
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://aclanthology.org/2023.emnlp-main.622/
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://aclanthology.org/2024.emnlp-main.1111/

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,356

Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical357

reasoning, 2025. URL https://arxiv.org/abs/2501.07301.358

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-359

gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,360

2024. URL https://arxiv.org/abs/2412.06559.361

A Proofs362

Theorem 3.1. Let N ≥ log(2m/δ)
2ε2 for any ε > 0 and δ > 0. Given an entailment model E and363

a reasoning chain with m derived claims, use N i.i.d. samples to estimate each τk. Then, with364

probability at least 1− δ, we have |τ̂k − τk| ≤ ε for all k.365

Proof. Let Ai denote the event that |τ̂i− τi| < ε for each i ∈ {n+1, . . . , n+m}. We want to prove366

that367

Pr

(
n+m⋂
i=n+1

Ai

)
= 1− Pr

(
n+m⋃
i=n+1

Āi

)
≥ 1− δ. (8)

According to Boole’s inequality and Hoeffding’s inequality,368

Pr

(
n+m⋃
i=n+1

Āi

)
≤

n+m∑
i=n+1

Pr (Āi) (Boole’s)

=

n+m∑
i=n+1

Pr (|τ̂i − τi| ≥ ε) (9)

≤
n+m∑
i=n+1

2 exp(−2Nε2) (Hoeffding’s)

= 2m exp(−2Nε2) (10)

≤ δ when N ≥ log(2m/δ)

2ε2
, (11)

with the estimation error of each stability rate bounded by δi =
δ
m .369

B Method370

There are three important desiderata for error detection methods:371

1. Robust: Previous errors do not adversely affect current step.372

2. Causal: Downstream steps do not affect current step.373

3. Sufficient: All relevant claims included as premise for detection.374

Appendix B shows that only ARES satisfies all desiderata while none of the baseline methods does.375

Algorithm details is shown in Algorithm 1.376

C Experiments377

C.1 Entailment Model378

We instantiate the entailment model by prompting LLMs to judge the entailment of a hypothesis379

given a premise, where there can be multiple claims in the premise. The LLM’s output is either380

YES/NO in the binary case, or a 7-point Likert scale converted to a real value between 0 and 1.381

11

https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2412.06559

Method Robust Causal Sufficient
ARES (ours) ✓ ✓ ✓
Entail-Prev ✗ ✓ ✓
Entail-Base ✓ ✓ ✗
ROSCOE-LI-Self ✗ ✓ ✗
ROSCOE-LI-Source ✗ ✓ ✗
ReCEval-Intra ✓ ✓ ✗
ReCEval-Inter ✗ ✓ ✗
LLM-Judge ✗ ✗ ✓

Table A3: (Desiderata for methods) Robust: Previous errors do not adversely affect current step.
Causal: Downstream steps do not affect current step. Sufficient: All relevant claims included as
premise for detection.

Algorithm 1 Estimating ARES
Require: Reasoning chain (C1, . . . , Cn+m), tolerance (ε, δ), base priors p1, . . . , pn, and entailment model E .
1: N ← log(2m/δ)

2ε2

2: for i = 1, . . . , N do
3: α

(i)
1 ∼ Bernoulli(p1), . . . , α

(i)
n ∼ Bernoulli(pn)

4: for k = 1, . . . ,m do
5: p

(i)
n+k ← E(C(α

(i)
1:n+k−1), Cn+k)

6: α
(i)
n+k ∼ Bernoulli(p

(i)
n+k)

7: end for
8: end for
9: for k = 1, . . . ,m do

10: τ̂k = 1
N

∑N
i=1 p

(i)
n+k

11: end for

C.2 Hyperparameters for ARES382

In our experiments, we used δ = 0.1 and ε = 0.1 for ARES, which determines the number of samples383

to take. We use p = 0.95 for the inclusion rate for base claims to allow buffer for information384

overload.385

C.3 Experiment Details386

We use a subset of examples for each experiment. Experiment results are computed using 5-fold387

cross-validation. For each split, the thresholds are picked for the best Macro-F1 on the validation388

split, and the final numbers are on the test split, averaged over the 5 folds.389

C.4 Controllable Datasets390

ClaimTrees. One is ClaimTrees, a synthetic dataset in which the reasoning chain reasons starts391

from a state A, and reason all the way to another state, say T. All the reasoning rules are provided392

in the premise, except one, so that from that point on we know that all the claims are unsound: An393

example of a chain of reasoning is shown in Figure A7. In this example, rule B -> C does not actually394

exist, and thus the reasoning steps starting from the second derived step are unsound claims. We can395

construct reasoning chains with arbitrary length and errors occurring at different places.396

CaptainCookRecipes. CaptainCookRecipes is derived from the recipe graphs in Captain-397

Cook4D [Peddi et al., 2024], where certain actions must follow other actions. We then construct398

base claims using edges in the graph as rules, similar to how we construct the ones in ClaimTrees. In399

addition, we add ingredients to the base claims and randomly drop an ingredient. Then, all the claims400

that require the ingredient and claims that follow them become unsound. We extract the ingredients401

from the claims using GPT-4o-mini.402

An example of results for CaptainCookRecipes is shown in Table A4. With propagated errors present,403

only ARES is able to capture all errors.404

12

0 50 100 150 200 250 300 350
Average Samples per Derived Claim

ClaimTrees-5
ClaimTrees-10
ClaimTrees-20
ClaimTrees-30
ClaimTrees-50

CaptainCook4D
PRMBench

DeltaBench

0.03x
0.06x

0.10x
0.12x
0.11x
0.12x

0.10x
0.31x

Actual
Theoretical

Figure A6: (Per-Claim Samples) ARES in practice only uses 0.03x to 0.31x of theoretical number
of samples on average for each derived claim.

Long Chain Example.

Base Claims:
Rule: AZ -> DG (meaning that if I have AZ, I can derive DG)
Rule: SG -> H3 (meaning that if I have SG, I can derive H3)
I have AZ
Rule: DG -> SG (meaning that if I have DG, I can derive SG)
Reasoning Steps:
I have AZ, I use rule (AZ -> DG) to derive DG, now I have DG
I have DG, I use rule (DG -> SG) to derive SG, now I have SG
I have SG, I use rule (SG -> H3) to derive H3, now I have H3
I have H3, I use rule (H3 -> VD) to derive VD, now I have VD

Figure A7: Long Chain Example for ClaimTrees

C.5 Computing Resources405

We used an NVIDIA A100 GPU with 80GB of memory for the Qwen3-4B model. For GPT-4o-mini,406

we used approximately 600 USD in total for prototyping and experiments.407

C.6 Additional Computational Efficiency Analysis408

ARES’s computational efficiency stems from a two-tiered optimization. First, ARES uses a sampling-409

based strategy for soundness checking, which is inherently more efficient than an exhaustive approach.410

Second, we add another layer of efficiency by eliminating redundant LLM calls for the same premise-411

hypothesis pairs. This dual approach dramatically reduces computational overhead, as shown by the412

gap between theoretical and actual samples in Figure A6. The result is a highly efficient process: on413

shorter chains (ClaimTrees-5), we require only 0.03x the theoretical samples. Even on DeltaBench,414

which needs more sampling due to model uncertainty, the method remains effective at 0.31x the415

theoretical maximum.416

C.7 Probabilistic Entailment Model Output417

To obtain probabilistic entailment model output, we instruct LLM to output one of the following:418

Very Likely, Likely, Somewhat Likely, Neutral, Somewhat Unlikely, Unlikely, Very Unlikely and419

convert them to 1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0, respectively.420

C.8 Best-of-N Results421

For best-of-N result with standard deviations, see Table A5.422

13

C.9 ARES Also Improves PRMs423

Process Reward Models (PRMs) can sometimes rival LLMs, and can also provide a non-binary424

soundness score. We run additional experiments using a SOTA PRMs, Qwen2.5-Math-PRM-7B, as425

the base entailment model. The results show that ARES can help significantly improve upon PRM on426

reasoning chains with propagated errors.427

The results in Table A6 show that, while the specialized PRM is a strong baseline on its in-domain428

dataset (PRMBench), applying ARES significantly improves performance on the abstract ClaimTrees429

dataset which has many propagated errors. On out-of-domain (non-math) CaptainCook4D, ARES430

achieves on par performance with PRM. This demonstrates ARES’s value as a flexible, general-431

purpose framework that adds robustness, especially on tasks with propagated errors.432

C.10 Discussion of Errors433

Our inspection of the data and error detection outputs reveals some insights. Entail-Base fails on434

PRMBench because judging entailment in long math derivations is challenging. Both LLM-Judge and435

Entail-Base fail in DeltaBench, with Entail-Base struggling to judge entailment in very long reasoning436

chains. In naturally occurring datasets, error propagation is limited and not always annotated, so437

Entail-Prev performs close to ARES. However, synthetic data shows Entail-Prev fails with propagated438

errors. LLM-Judge sometimes fails to follow instructions, outputting incorrect numbers of scores439

relative to claims being judged. Pairwise methods in ROSCOE and ReCEval cannot detect complex440

errors that need multiple claims as premise. ARES can only improve upon entailment models that441

can already do correct entailment.442

14

Claim ARES
(Ours)

Entail
-Prev

Entail
-Base

ReCEval
-Inter

ReCEval
-Intra

ROSCOE
-LI-Source

ROSCOE
-LI-Self

LLM
-Judge

Ground
Truth

sent1: Only after the necessary preceding steps (put-put tomatoes on a serving plate), And if
we have all the ingredients, we can then Pour-Pour the egg mixture into the pan.

– – – – – – – – –

sent2: Only after the necessary preceding steps (Take-Take a tomato), And if we have all the
ingredients, we can then Cut-Cut tomato into two pieces.

– – – – – – – – –

sent3: Only after the necessary preceding steps (Stop-Stop stirring when it’s nearly cooked
to allow it to set into an omelette), And if we have all the ingredients, we can then Transfer-
Transfer omelette to the plate and serve with the tomatoes.

– – – – – – – – –

sent4: Only after the necessary preceding steps (Chop-Chop 2 tbsp cilantro), And if we have
all the ingredients, we can then add-add the chopped cilantro to the bowl.

– – – – – – – – –

sent5: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then add-1/2 tsp ground black pepper to the bowl.

– – – – – – – – –

sent6: We have ground black pepper. – – – – – – – – –
sent7: We have oil. – – – – – – – – –
sent8: Only after the necessary preceding steps (Scoop-Scoop the tomatoes from the pan),
And if we have all the ingredients, we can then put-put tomatoes on a serving plate.

– – – – – – – – –

sent9: Only after the necessary preceding steps (Pour-Pour the egg mixture into the pan),
And if we have all the ingredients, we can then stir-stir gently with a wooden spoon so the
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space.

– – – – – – – – –

sent10: Only after the necessary preceding steps (Transfer-Transfer omelette to the plate and
serve with the tomatoes), And if we have all the ingredients, we can then END.

– – – – – – – – –

sent11: Only after the necessary preceding steps (add-add the chopped cilantro to the bowl,
and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl), And if
we have all the ingredients, we can then Beat-Beat the contents of the bowl.

– – – – – – – – –

sent12: Only after the necessary preceding steps (Heat-Heat 1 tbsp oil in a non-stick frying
pan), And if we have all the ingredients, we can then cook-cook the tomatoes cut-side down
until they start to soften and colour.

– – – – – – – – –

sent13: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then crack-crack one egg in a bowl.

– – – – – – – – –

sent14: Only after the necessary preceding steps (cook-cook the tomatoes cut-side down until
they start to soften and colour), And if we have all the ingredients, we can then Scoop-Scoop
the tomatoes from the pan.

– – – – – – – – –

sent15: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then Take-Take a tomato.

– – – – – – – – –

sent16: Only after the necessary preceding steps (Beat-Beat the contents of the bowl, and
Cut-Cut tomato into two pieces), And if we have all the ingredients, we can then Heat-Heat 1
tbsp oil in a non-stick frying pan.

– – – – – – – – –

sent17: We have egg. – – – – – – – – –
sent18: Only after the necessary preceding steps (START), And if we have all the ingredients,
we can then Chop-Chop 2 tbsp cilantro.

– – – – – – – – –

sent19: Only after the necessary preceding steps (stir-stir gently with a wooden spoon so the
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space),
And if we have all the ingredients, we can then Stop-Stop stirring when it’s nearly cooked to
allow it to set into an omelette.

– – – – – – – – –

sent20: We have tomato. – – – – – – – – –
sent21: We now START. – – – – – – – – –
int1: Because we have completed all previous steps (START), and have all necessary in-
gredients (cilantro), we can now do the step Chop-Chop 2 tbsp cilantro. And now we have
completed this step Chop-Chop 2 tbsp cilantro.

0.35× 0.00× 0.00× 0.00× 1.00✓ 0.00× 1.00✓ 1.00✓ ×

int2: Because we have completed all previous steps (START), and have all necessary in-
gredients (egg), we can now do the step crack-crack one egg in a bowl. And now we have
completed this step crack-crack one egg in a bowl.

0.85✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ✓

int3: Because we have completed all previous steps (START), and have all necessary ingredi-
ents (tomato), we can now do the step Take-Take a tomato. And now we have completed this
step Take-Take a tomato.

0.98✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ✓

int4: Because we have completed all previous steps (START), and have all necessary ingredi-
ents (ground black pepper), we can now do the step add-1/2 tsp ground black pepper to the
bowl. And now we have completed this step add-1/2 tsp ground black pepper to the bowl.

0.80✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 1.00✓ 1.00✓ ✓

int5: Because we have completed all previous steps (Chop-Chop 2 tbsp cilantro), and have
all necessary ingredients (cilantro), we can now do the step add-add the chopped cilantro to
the bowl. And now we have completed this step add-add the chopped cilantro to the bowl.

0.00× 0.00× 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int6: Because we have completed all previous steps (Take-Take a tomato), and have all
necessary ingredients (tomato), we can now do the step Cut-Cut tomato into two pieces. And
now we have completed this step Cut-Cut tomato into two pieces.

0.96✓ 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ✓

int7: Because we have completed all previous steps (add-add the chopped cilantro to the
bowl, and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl),
we can now do the step Beat-Beat the contents of the bowl. And now we have completed this
step Beat-Beat the contents of the bowl.

0.01× 0.00× 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int8: Because we have completed all previous steps (Beat-Beat the contents of the bowl, and
Cut-Cut tomato into two pieces), and have all necessary ingredients (oil), we can now do the
step Heat-Heat 1 tbsp oil in a non-stick frying pan. And now we have completed this step
Heat-Heat 1 tbsp oil in a non-stick frying pan.

0.00× 0.00× 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int9: Because we have completed all previous steps (Heat-Heat 1 tbsp oil in a non-stick frying
pan), and have all necessary ingredients (tomatoes), we can now do the step cook-cook the
tomatoes cut-side down until they start to soften and colour. And now we have completed
this step cook-cook the tomatoes cut-side down until they start to soften and colour.

0.01× 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int10: Because we have completed all previous steps (cook-cook the tomatoes cut-side down
until they start to soften and colour), we can now do the step Scoop-Scoop the tomatoes from
the pan. And now we have completed this step Scoop-Scoop the tomatoes from the pan.

0.21× 1.00✓ 1.00✓ 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int11: Because we have completed all previous steps (Scoop-Scoop the tomatoes from
the pan), we can now do the step put-put tomatoes on a serving plate. And now we have
completed this step put-put tomatoes on a serving plate.

0.18× 1.00✓ 1.00✓ 0.00× 0.00× 0.00× 0.00× 1.00✓ ×

int12: Because we have completed all previous steps (put-put tomatoes on a serving plate),
we can now do the step Pour-Pour the egg mixture into the pan. And now we have completed
this step Pour-Pour the egg mixture into the pan.

0.18× 1.00✓ 0.00× 0.00× 0.00× 0.00× 0.00× 1.00✓ ×

int13: Because we have completed all previous steps (Pour-Pour the egg mixture into the
pan), we can now do the step stir-stir gently with a wooden spoon so the egg that sets on the
base of the pan moves to enable the uncooked egg to flow into the space. And now we have
completed this step stir-stir gently with a wooden spoon so the egg that sets on the base of
the pan moves to enable the uncooked egg to flow into the space.

0.19× 1.00✓ 0.00× 0.00× 0.00× 0.00× 0.00× 1.00✓ ×

int14: Because we have completed all previous steps (stir-stir gently with a wooden spoon so
the egg that sets on the base of the pan moves to enable the uncooked egg to flow into the
space), we can now do the step Stop-Stop stirring when it’s nearly cooked to allow it to set
into an omelette. And now we have completed this step Stop-Stop stirring when it’s nearly
cooked to allow it to set into an omelette.

0.19× 1.00✓ 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int15: Because we have completed all previous steps (Stop-Stop stirring when it’s nearly
cooked to allow it to set into an omelette), we can now do the step Transfer-Transfer omelette
to the plate and serve with the tomatoes. And now we have completed this step Transfer-
Transfer omelette to the plate and serve with the tomatoes.

0.00× 1.00✓ 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

int16: Because we have completed all previous steps (Transfer-Transfer omelette to the plate
and serve with the tomatoes), we can now do the step END. And now we have completed
this step END.

0.00× 1.00✓ 0.00× 0.00× 1.00✓ 0.00× 0.00× 1.00✓ ×

Table A4: (CaptainCookRecipes Example) Only ARES is able to correctly judge all steps for
soundness. Checks ✓ indicate that a method classifies the step as sound after thresholding, and
crosses × indicate that the method judges that step to be erroneous. Bold: Correctly judged soundness.

15

Method Using Step Average (acc±std) Using Final Step (acc±std)

ARES 0.730±0.045 0.660±0.049
Entail-Prev 0.790±0.043 0.240±0.042
Entail-Base 0.540±0.049 0.300±0.046
ROSCOE-LI-Self 0.540±0.051 0.210±0.041
ROSCOE-LI-Source 0.630±0.049 0.310±0.043
ReCEval-Intra 0.480±0.050 0.060±0.024
ReCEval-Inter 0.480±0.048 0.190±0.038
LLM-Judge 0.570±0.050 0.250±0.044

Table A5: (PRMBench Best-of-N) ARES is a strong and robust predictor of downstream task
performance. Bold is the best and underline is the second best.

Dataset / Method Qwen2.5-Math-PRM-7B

Recall Precision F1

PRMBench
ARES 0.751 ± 0.017 0.733 ± 0.020 0.736 ± 0.014
Entail-Prev 0.751 ± 0.016 0.733 ± 0.020 0.736 ± 0.013
Entail-Base 0.643 ± 0.022 0.632 ± 0.024 0.624 ± 0.018
ROSCOE-LI-Self 0.651 ± 0.013 0.598 ± 0.013 0.592 ± 0.006
ROSCOE-LI-Source 0.670 ± 0.020 0.621 ± 0.019 0.623 ± 0.013
ReCEval-Inter 0.644 ± 0.014 0.597 ± 0.013 0.596 ± 0.009
PRM 0.763 ± 0.020 0.743 ± 0.017 0.749 ± 0.016

ClaimTrees-10
ARES 0.739 ± 0.013 0.743 ± 0.012 0.733 ± 0.010
Entail-Prev 0.722 ± 0.016 0.725 ± 0.017 0.715 ± 0.011
Entail-Base 0.611 ± 0.013 0.616 ± 0.013 0.597 ± 0.017
ROSCOE-LI-Self 0.655 ± 0.005 0.662 ± 0.005 0.644 ± 0.008
ROSCOE-LI-Source 0.604 ± 0.020 0.612 ± 0.020 0.591 ± 0.024
ReCEval-Inter 0.629 ± 0.020 0.628 ± 0.019 0.624 ± 0.020
PRM 0.607 ± 0.012 0.622 ± 0.013 0.594 ± 0.017

CaptainCook4D
ARES 0.551 ± 0.012 0.556 ± 0.014 0.543 ± 0.012
Entail-Prev 0.553 ± 0.011 0.560 ± 0.014 0.546 ± 0.010
Entail-Base 0.531 ± 0.016 0.533 ± 0.017 0.519 ± 0.014
ROSCOE-LI-Self 0.546 ± 0.008 0.563 ± 0.016 0.529 ± 0.008
ROSCOE-LI-Source 0.469 ± 0.015 0.464 ± 0.018 0.457 ± 0.017
ReCEval-Inter 0.469 ± 0.015 0.465 ± 0.018 0.461 ± 0.017
PRM 0.560 ± 0.013 0.569 ± 0.017 0.552 ± 0.013

Table A6: (Benchmark Results on Qwen2.5-Math-PRM-7B) ARES performs the best across
various datasets and backbone entailment models. For each dataset+model group, Bold is the best
and underline is the second best.

16

Dataset / Method Recall Precision F1

ClaimTrees-5
ARES-1 0.881 0.900 0.873
ARES-0.95 0.861 0.889 0.854
ARES-bin-1 0.898 0.913 0.891
ARES-bin-0.95 0.909 0.919 0.902
Entail-Prev 0.704 0.813 0.673
Entail-Base 0.830 0.832 0.824
ROSCOE-LI-Self 0.499 0.500 0.351
ROSCOE-LI-Source 0.647 0.650 0.640
ReCEval-Intra 0.500 0.250 0.332
ReCEval-Inter 0.645 0.648 0.638
LLM-Judge 0.811 0.864 0.803

ClaimTrees-10
ARES-1 0.937 0.943 0.936
ARES-0.95 0.931 0.936 0.931
ARES-bin-1 0.960 0.965 0.962
ARES-bin-0.95 0.947 0.951 0.948
Entail-Prev 0.608 0.783 0.538
Entail-Base 0.626 0.636 0.616
ROSCOE-LI-Self 0.524 0.589 0.420
ROSCOE-LI-Source 0.544 0.548 0.533
ReCEval-Intra 0.500 0.247 0.330
ReCEval-Inter 0.566 0.573 0.555
LLM-Judge 0.767 0.839 0.750

ClaimTrees-20
ARES-1 0.979 0.979 0.978
ARES-0.95 0.971 0.971 0.971
ARES-bin-1 0.964 0.966 0.963
ARES-bin-0.95 0.968 0.970 0.968
Entail-Prev 0.551 0.760 0.440
Entail-Base 0.533 0.537 0.522
ROSCOE-LI-Self 0.521 0.580 0.414
ROSCOE-LI-Source 0.508 0.509 0.480
ReCEval-Intra 0.500 0.248 0.331
ReCEval-Inter 0.513 0.516 0.482
LLM-Judge 0.640 0.788 0.586

ClaimTrees-30
ARES-1 0.973 0.972 0.971
ARES-0.95 0.931 0.934 0.929
ARES-bin-1 0.967 0.973 0.969
ARES-bin-0.95 0.957 0.960 0.956
Entail-Prev 0.530 0.731 0.387
Entail-Base 0.531 0.539 0.499
ROSCOE-LI-Self 0.543 0.595 0.460
ROSCOE-LI-Source 0.498 0.498 0.461
ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.506 0.509 0.464
LLM-Judge 0.581 0.757 0.482

ClaimTrees-50
ARES-1 0.895 0.899 0.890
ARES-0.95 0.871 0.871 0.867
ARES-bin-1 0.887 0.904 0.886
ARES-bin-0.95 0.892 0.892 0.888
Entail-Prev 0.512 0.601 0.340
Entail-Base 0.507 0.508 0.486
ROSCOE-LI-Self 0.555 0.581 0.504
ROSCOE-LI-Source 0.505 0.509 0.442
ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.498 0.496 0.428
LLM-Judge 0.529 0.714 0.385

Table A7: GPT-4o-mini (ClaimTrees) ARES consistently identifies errors in long reasoning chains
while other methods gradually fail.

17

Dataset / Method Recall Precision F1

ClaimTrees-s3d3
ARES-1 0.921± 0.102 0.980± 0.018 0.941± 0.074
ARES-0.95 0.904± 0.110 0.975± 0.027 0.927± 0.081
Entail-Prev 0.821± 0.046 0.951± 0.032 0.863± 0.039
Entail-Base 0.859± 0.122 0.866± 0.142 0.837± 0.134
ROSCOE-LI-Self 0.500± 0.000 0.115± 0.060 0.181± 0.078
ROSCOE-LI-Source 0.623± 0.101 0.593± 0.087 0.497± 0.161
ReCEval-Intra 0.500± 0.000 0.115± 0.060 0.181± 0.078
ReCEval-Inter 0.585± 0.081 0.562± 0.061 0.449± 0.115
LLM-Judge 0.833± 0.051 0.957± 0.022 0.875± 0.035

ClaimTrees-s3d5
ARES-0.95 0.867± 0.171 0.971± 0.037 0.887± 0.146
Entail-Prev 0.718± 0.090 0.936± 0.045 0.761± 0.097
Entail-Base 0.659± 0.061 0.618± 0.076 0.610± 0.091
ROSCOE-LI-Self 0.497± 0.044 0.500± 0.242 0.460± 0.074
ROSCOE-LI-Source 0.513± 0.117 0.514± 0.077 0.340± 0.081
ReCEval-Intra 0.500± 0.000 0.100± 0.054 0.161± 0.074
ReCEval-Inter 0.550± 0.070 0.539± 0.050 0.356± 0.083
LLM-Judge 0.774± 0.178 0.942± 0.057 0.796± 0.169

ClaimTrees-s5d3
ARES-1 0.875± 0.217 0.889± 0.232 0.880± 0.223
ARES-0.95 0.867± 0.217 0.889± 0.232 0.875± 0.222
Entail-Prev 0.767± 0.181 0.873± 0.223 0.799± 0.191
Entail-Base 0.824± 0.205 0.700± 0.149 0.729± 0.167
ROSCOE-LI-Self 0.500± 0.000 0.055± 0.033 0.097± 0.052
ROSCOE-LI-Source 0.650± 0.054 0.560± 0.031 0.380± 0.073
ReCEval-Intra 0.500± 0.000 0.055± 0.033 0.097± 0.052
ReCEval-Inter 0.594± 0.095 0.539± 0.043 0.357± 0.063
LLM-Judge 0.742± 0.192 0.868± 0.222 0.770± 0.201

ClaimTrees-s5d5
ARES-1 0.900± 0.163 0.990± 0.017 0.920± 0.139
ARES-0.95 0.900± 0.163 0.990± 0.017 0.920± 0.139
Entail-Prev 0.723± 0.096 0.969± 0.018 0.783± 0.095
Entail-Base 0.692± 0.141 0.597± 0.067 0.610± 0.083
ROSCOE-LI-Self 0.481± 0.020 0.446± 0.018 0.462± 0.010
ROSCOE-LI-Source 0.578± 0.063 0.533± 0.027 0.321± 0.055
ReCEval-Intra 0.500± 0.000 0.053± 0.019 0.094± 0.031
ReCEval-Inter 0.584± 0.097 0.534± 0.059 0.310± 0.084
LLM-Judge 0.847± 0.140 0.951± 0.082 0.881± 0.111

Table A8: GPT-4o-mini (ClaimTrees) ARES differs from other methods in deeper trees instead of
wider trees. s3d5 means trees with 3 sources and depth of 5.

18

Dataset / Method Recall Precision F1

ClaimTrees-v5i1
ARES-1 0.985± 0.014 0.950± 0.046 0.965± 0.032
ARES-0.95 0.990± 0.022 0.998± 0.005 0.994± 0.015
Entail-Prev 0.992± 0.011 0.974± 0.038 0.982± 0.026
Entail-Base 0.900± 0.027 0.788± 0.030 0.813± 0.038
ROSCOE-LI-Self 0.975± 0.009 0.918± 0.025 0.942± 0.019
ROSCOE-LI-Source 0.690± 0.062 0.626± 0.038 0.545± 0.058
ReCEval-Intra 0.500± 0.000 0.100± 0.000 0.167± 0.000
ReCEval-Inter 0.755± 0.047 0.671± 0.021 0.590± 0.066
LLM-Judge 1.000± 0.000 1.000± 0.000 1.000± 0.000

ClaimTrees-v5i2
ARES-1 1.000± 0.000 1.000± 0.000 1.000± 0.000
ARES-0.95 0.995± 0.011 0.998± 0.005 0.996± 0.008
Entail-Prev 0.990± 0.010 0.981± 0.019 0.985± 0.015
Entail-Base 0.863± 0.009 0.823± 0.007 0.815± 0.013
ROSCOE-LI-Self 0.965± 0.030 0.951± 0.036 0.956± 0.033
ROSCOE-LI-Source 0.635± 0.054 0.642± 0.058 0.555± 0.057
ReCEval-Intra 0.500± 0.000 0.167± 0.000 0.250± 0.000
ReCEval-Inter 0.695± 0.029 0.721± 0.020 0.594± 0.038
LLM-Judge 0.978± 0.016 0.960± 0.028 0.967± 0.024

ClaimTrees-v5i5
ARES-1 0.988± 0.028 0.991± 0.020 0.989± 0.026
ARES-0.95 0.998± 0.004 0.998± 0.005 0.998± 0.005
Entail-Prev 0.988± 0.013 0.990± 0.010 0.989± 0.011
Entail-Base 0.930± 0.019 0.950± 0.012 0.936± 0.018
ROSCOE-LI-Self 0.938± 0.012 0.955± 0.008 0.943± 0.012
ROSCOE-LI-Source 0.661± 0.006 0.736± 0.033 0.649± 0.011
ReCEval-Intra 0.500± 0.000 0.278± 0.000 0.357± 0.000
ReCEval-Inter 0.665± 0.024 0.826± 0.008 0.642± 0.034
LLM-Judge 0.982± 0.017 0.983± 0.017 0.982± 0.017

Table A9: GPT-4o-mini (ClaimTrees) ARES does not differ much from other methods in inserted
errors that do not affect downstream reasoning. v5i2 means 5 valid claims and 2 inserted claims.

19

	Introduction
	Soundness in Reasoning Chains
	Claims and Sequences of Claims
	Probabilistic Entailment of Claims
	Reasoning Chains and Soundness

	Soundness Checks via Autoregressive Reasoning Entailment Stability
	Entailment with Probabilistic Premises
	Autoregressive Reasoning Entailment Stability with Efficient Sampling

	Evaluating ARES for Estimating Probabilistic Soundness
	RQ1: Does ARES work better than baseline methods on Benchmarks?
	RQ2: In what setting does ARES identify more errors than baselines?
	RQ3: Is ARES computationally efficient?
	RQ4: Is ARES useful for selecting Best-of-N generations?
	Ablations
	Discussion of Errors

	Related Work
	Conclusion
	Proofs
	Method
	Experiments
	Entailment Model
	Hyperparameters for ARES
	Experiment Details
	Controllable Datasets
	Computing Resources
	Additional Computational Efficiency Analysis
	Probabilistic Entailment Model Output
	Best-of-N Results
	ARES Also Improves PRMs
	Discussion of Errors

