© N O O A~ W N =

Probabilistic Soundness Guarantees in LLM
Reasoning Chains

Anonymous Author(s)
Affiliation
Address

email

Abstract

In reasoning chains generated by large language models (LLMs), initial errors often
propagate and undermine the reliability of the final conclusion. Current LLM-based
error detection methods often fail to detect propagated errors because earlier errors
can corrupt judgments of downstream reasoning. To better detect such errors, we
introduce Autoregressive Reasoning Entailment Stability (ARES), a probabilistic
framework that evaluates each reasoning step based solely on previously-verified
premises. We find that ARES can reliably detect propagated reasoning errors that
other baselines fail to find with probabilistic guarantees.

1 Introduction

Large Language Models (LLMs) often produce reasoning chains with errors that propagate, under-
mining the final outputs [Huang et al.| 2025} |Lyu et al., 2024]. An error can be ungrounded statements,
invalid derivations, or propagated errors as illustrated in Figure [T} For example, deriving = 5 from
5z = 9z — 20 is logically valid [Lee and Hockenmaier, 2025]], but can be a propagated error if the
premise 5z = 9z — 20 differs from the context [Iyagi et al.| 2024].. These errors compromise the
reliability LLMs in high-stakes domains [[Agarwal et al., 2024, |(Chen and Mueller, 2023].

Current error detection methods typically aim to identify all errors at once. For example, LLM judges
are prompted to evaluate the entire chain and assess each step for correctness [Tyagi et al.,|2024, He
et al., [2025]. Similarly, Process Reward Models (PRMs) are language models trained with step-level
classification heads on this same objective [Lightman et al., [2023|].

However, existing error detection methods often fall short. Specifically, they are often distracted by
the presence of propagated errors [He et al.|[2025| Turpin et al., 2023, |Dhuliawala et al.,[2023]]. In the
example from Figure [T} if steps 3, 4, and 5 are evaluated together, an LLM may incorrectly mark
step 5 as sound by incorrectly relying on step 4, which is invalid. This highlights the need for robust
methods that can assess the soundness of each step without being adversely distracted by prior errors.

To address this issue, we draw inspiration from human reasoning. Humans typically review claims
sequentially, and disregard previously unsound statements when evaluating subsequent ones [Johnson{
Laird, 2010, Mukherjee et al., 2025]]. In contrast, LLLMs struggle to ignore prior errors, which causes
naive detection methods to fail at simultaneously identifying and localizing all errors in a reasoning
chain [Wu et al.} 2024} Song and Tavanapong, [2024]]. To overcome this limitation, we develop
Autoregressive Reasoning Entailment Stability (ARES), a probabilistic framework that evaluates
the soundness of each reasoning step based on its expected entailment probability, conditioned only
on previously-occurring, sound claims (Figure [2). We iteratively evaluate each claim as follows:
entailed claims are retained as premises for subsequent steps, while non-entailed claims are discarded.
For uncertain claims, retention is probabilistic based on the entailment model. This adaptation not

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

35
36

37

38
39
40
41

42
43
44
45

46
47
48

50
51
52
53
54

Context

Base Claim 1: The denominator of a fraction is 7 less than 3 times the numerator.
Base Claim 2: If the fraction is equivalent to 2/5, what is the numerator?
[[e/el]
L i J
Correct Reasoning Chain Unsound Steps
Claim 1: Let the numerator be x. Claim 1: Let the numerator be x.
Claim 2: The denominator is 3x-7. Claim 2: The denominator is 3x-7.
Claim 3: We know that x/(3x-7) = 2/5. We know that x/(3x-7) =[3/5.
Claim 4: Therefore, 5x = 6x-14. Claim 4: Therefore,(5x = 9x-20]
Claim 5: Finally, we get x = 14. (Correct) Claim 5: Finally, we gefx = 5.)Incorrect)

Figure 1: Faulty LLM reasoning due to propagated errors from ungrounded and invalid steps.
An unsound step is a step that is either (incorrect with respect to the context), invalid
(logically incorrectly derived), or contains propagated errors. In this example,

because it contains information different from the base claim 2. Step 4 is invalid because it contains
an incorrect mathematical computation. Step 5 is a propagated error, even though it is logically
correct from Step 4. This figure is adapted from an example in|Lee and Hockenmaier| [2025]].

Base Claims O sound
The denominator of a fraction is 7 less Unsound Claim 1
than 3 times the numerator. - Premises for entailment Let the numerator be x.
The fraction is equivalent to 2/5.
Base Claims Claim 2 Claim1
l OR0) The denominator of a The denominator is 3x-7. .
il fraction is 7 less than 3 Claim 2«
times the numerator.
LLM Reasoning Chain The fraction is Claim 3 Claim3 X
Claim 1: Let the numerator be x. equivalent to 2/5. We know that x/(3x-7) = 3/5. i .
Claim 2: The denominator is 3x-7. Claim4 X
Claim 3: We know that x/(3x-7) = 3/5.
Claim 4: Therefore, 5x = 9x-20. Claim 4
Claim 5: Finally, we get x=5. Autoregressive Therefore, 5x = 9x-20. <
soundness checking

Figure 2: (Autoregressive Soundness Checking) When we verify an LLM generated reasoning
chain, we can break the context and reasoning chain down to base claims and derived claims. An
autoregressive soundness checker can then check each derived claim step-by-step, using only claims
already identified to be sound as the premise.

only improves error detection but also enables us to give certified guarantees on the robustness of a
reasoning chain.

Our contributions are highlighted as follows.

* We introduce Autoregressive Reasoning Entailment Stability (ARES), a novel probabilistic
framework for evaluating claims in LLM reasoning chains. This framework uniquely
assesses each step by conditioning only on previously verified sound claims, ensuring a
robust and adaptable evaluation.

* We design a computationally and sample-efficient autoregressive algorithm for entailment
estimation within this framework. Crucially, this algorithm provides sample-efficient cer-
tifications of entailment with rigorous statistical guarantees, a capability absent in prior
methods.

* We demonstrate that ARES accurately certifies both sound and unsound reasoning steps, par-
ticularly excelling in long chains prone to error propagation. ARES significantly surpasses
existing approaches and generalizes across diverse reasoning tasks.

2 Soundness in Reasoning Chains

We aim to identify and certify errors within LLM-generated chain-of-thought (CoT) reasoning. To
this end, this section formalizes reasoning chains in terms of their constituent claims (Section @),
introduces the concept of probabilistic entailment between these claims (Section [2.2)), and defines a
notion of soundness that incorporates internal groundedness, validity, and the entailment of a final
hypothesis (Section[2.3).

55

56
57
58
59
60
61

62
63

64

65
66

67

68
69
70
71
72
73

74
75
76
77

78

79
80
81
82
83

84

85
86
87
88
89
90

91
92
93

94

2.1 Claims and Sequences of Claims

A reasoning chain is conceptualized as a sequence of claims, where a claim is the assertion of a
proposition. For instance, “The denominator is 3= — 7” is a claim regarding a component of an
algebraic expression, while “We know that 5-"— = % is a claim that synthesizes prior information
about an equation. The granularity of claims is domain-dependent; it is permissible for a claim
to range from an atomic statement or a single sentence (e.g., “We can simplify = = % to
5z = 6z — 14.”) to more extensive segments like entire theorems or proofs.

For a more formal discussion of our method, we let C denote the set of all possible claims, and C*
represent the set of all possible sequences of claims. An example of such a sequence is as follows:

(“Let the numerator be z”, “The denominator is 3z — 7”, “We know that 2~ = 2”) € C*

which consists of the following individual claims:

“Let the numerator be z”” € C, “The denominator is 3z — 77 € C, “We know that 5-*— = %” eC.

This distinction between individual claims and sequences of claims is important for discussing the
inclusion and exclusion of items from a premise during logical entailment, which we define next.

2.2 Probabilistic Entailment of Claims

To capture the notion of logical entailment between claims expressed in natural language, we introduce
probabilistic entailment models. This approach is motivated by the inherent fuzziness and ambiguity
often present in natural language reasoning [Zadeh, [2008| |Yu et al.,|2024]]. Formally, a probabilistic
entailment model £ : C* x C — [0, 1] accepts a sequence of claims as a premise, P € C*, and a
single claim as a hypothesis, H € C. It then returns a scalar value representing the probability that
the premise P entails the hypothesis H. For instance, consider the premise and hypothesis pair

P= (“Sarah put on her running shoes.”, “She stretched by the sidewalk.”, “The sun was setting.”)
H = “Sarah is going for an evening run.”

A probabilistic entailment model might output £(P, H) = 0.85. This score reflects the linguistic
and social ambiguity in inferring the certainty of an “evening run” from the actions of “donning
running shoes and stretching”. Such a fuzzy, probabilistic approach generalizes classical Boolean
logic, where the output is strictly 1 for entailment and O for non-entailment. E]

2.3 Reasoning Chains and Soundness

To analyze the step-by-step reasoning of LLMs, particularly in CoT processes, we conceptualize
the output as a reasoning chain. This chain initiates with a set of provided statements or contextual
information, designated as base claims. Following these, the LLM autoregressively produces a
sequence of subsequent statements, which we term derived claims. This entire sequence is formally
represented as:

(C’l,...,C”,C’nH,...,C,H_m) ec*r (1)
where (', ..., (), are the base claims, and C, 41, . .., Cy 1, are the derived claims.
This partition is methodologically crucial. Base claims (C1,...,C,) serve as the foundational

premises for a given reasoning task; their factual accuracy is considered out of scope for the present
analysis and is assumed to be handled by external mechanisms. We focus on assessing whether each
derived claim (C,4; for i = 1,...,m) is soundly inferred from the set of preceding statements. We
begin by defining a deterministic (i.e., “hard”) version of soundness, where the entailment model £ is
assumed to be binary-valued.

Definition 2.1 (Hard Soundness). Consider a reasoning chain (C1, ..., Cp4.,) With base claims
C4,...,C, and derived claims C), 11, ..., Cyymy. Then, this reasoning chain is hard-sound with
respect to the deterministic entailment model & if

6((017'-'7Cn+i71)70n+i) = 1? (2)
for all derived claims indexed by ¢ = 1,...,m.

'We distinguish between a non-entailed claim (not logically following premises) and a provably false claim
(factually incorrect). For instance, “Sarah lives in Philadelphia” is not entailed but not demonstrably false.

95
96
97
98
99
100

101

102
103
104

105
106
107
108

110
111
112
113
114
115
116

117

118
119
120

121
122
123
124
125

126
127
128
129
130

Inclusion ? Inclusion

OO
l l Premise:

Claim 1 Claim 1
e v Claim 1,3,4 o v p S p 9 <
Claim 2 X X Claim 2 X [Claim 1 ‘ Claim 2 [Claim 3 ‘ ‘ Claim 4 Claim 5

Hypothesis: \) {)
Claim 3 v Claim 5 Claim 3 v
Claim 4 v Entailment Prob: Claim 4 v

0.279 N

Claim 5 ® Claim 5 X EFlEEL E1EEL EFlEET B

L—> ; P W

oXx Claim 6 ® A ~ A - ™
Bernoulli Sample ‘ Claim 1 ‘ Claim 2 Claim 3 { Claim 4 l Claim 5

Figure 3: (Estimating ARES) (Left) The entailment rate of each derived claim is autoregressively
computed. We first randomly initialize a premise (denoted by «) according to the base priors
P1,---,Pn. Then, for each derived claim, we compute its entailment rate with respect to the premise
set. Finally, we add this derived claim to the premise set with probability equal to its entailment rate.
(Right) This is run in parallel across N instances.

The concept of hard soundness provides a precise, albeit strict, benchmark for evaluating the logical
integrity of a reasoning chain because it requires every derived claim to be perfectly entailed by its
predecessors. However, LLM-generated reasoning chains often deviate from this ideal. Therefore,
while hard soundness serves as an important theoretical standard of correctness, it cannot give
nuanced measures of error, particularly in long reasoning chains. This necessitates more flexible
methods for measuring claim soundness even in the presence of errors, which we address next.

3 Soundness Checks via Autoregressive Reasoning Entailment Stability

We now consider the practical certification of LLM-generated reasoning chains. These chains are

formed autoregressively: starting from an initial sequence of base claims C1,...,C,, the LLM
iteratively generates the derived claims C), 41, .. ., C) 1, Where each

Chir = LLM(Cy, ..., Chig—1),
for reasoning steps k = 1, ..., m. We aim to quantify the reliability of this process using a sequence
of entailment stability scores: T1, ..., Tm € [0, 1], where each 7, denotes how reliably the k-th derived
claim (C),4) is entailed with respect to its preceding claims (C1, ..., Cpik—1). The connection

between entailment and error detection is straightforward: a claim C),, is likely to be erroneous if
Ty 1S low.

While the notion of reliability is general, a rigorous definition of each 7 is challenging due to
probabilistic uncertainty and unreliable preceding claims in the reasoning chain. Critically, determin-
istic hard soundness (Definition [2.T)) cannot account for premises with uncertainty. Autoregressive
Reasoning Entailment Stability addresses this: Section motivates probabilistic entailment using
insights from human psychology, LLM empirics, and mathematical logic. Subsequently, Section[3.2]
formalizes our approach, defines Autoregressive Reasoning Entailment Stability, and details its
efficient Monte Carlo estimation.

3.1 Entailment with Probabilistic Premises

The key challenge lies in accurately assessing entailment when premises are probabilistically uncertain.
To address this, our main insight is to calculate an overall likelihood by averaging across various
probable combinations of that uncertain information.

Our approach is motivated by several observations. In human cognition, people naturally discount
or ignore dubious statements when reasoning [Johnson-Laird} 2010]]. Similarly, lengthy contexts
are often filtered to remove irrelevant and erroneous claims to improve LLM performance on
reasoning tasks [Mukherjee et al.l 2025]. These observations collectively motivate our development
of a probabilistic entailment framework based on premise subsets.

To measure the reliability of a hypothesis H with respect to a premise P containing k& claims with
uncertain soundness, we consider all 2% configurations of inclusion and exclusion for P’s claims.
Each configuration is represented by a binary vector o € {0, 1}*, where a; = 1 indicates inclusion
of claim C; and a;; = 0 indicates exclusion. This leads to the following natural measure of stability
for H with respect to P and &:

131
132

133

134
135
136
137
138

140
141
142
143
144

145
146
147
148

149
150
151

152
153
154
155
156

157

158
159
160

161
162

163
164
165

166
167
168

169

T(€,P,H)= > &(P(a),H)-Prla], 3)
ac{0,1}*
where Pr[«] is the probability of this specific configuration of premise claim inclusions, and depends
on the base and derived claims, as well as the entailment model £, which we discuss next.

3.2 Autoregressive Reasoning Entailment Stability with Efficient Sampling

In the previous section, we established a method for calculating the entailment of a single hypothesis
based on a set of premises that might be uncertain (Equation (3))). Now, we will extend this concept
to evaluate an entire LLM-generated reasoning chain, which consists of multiple, sequential steps.
Our goal is to compute a sequence of entailment stability scores, denoted as 7y, . . . , T,,, Where each
score 73 quantifies the reliability of the k-th derived claim, C, .

The core challenge remains the same: how do we reliably judge a claim when the preceding claims
it relies on are themselves not entirely trustworthy? Our approach, Autoregressive Reasoning
Entailment Stability (ARES), solves this by autoregressively assessing each claim while accounting
for the soundness of previous claims. In particular, when we evaluate the k-th derived claim, we
consider all possible combinations of soundness for the preceding n+k% —1 claims. The stability score,
Tk, 1s then the expected entailment of the current claim, averaged across all sound combinations.

To formalize this, we represent a particular combination of inclusion or exclusion of previous claims
using a binary vector o € {0, 1}"T*~1 where let o; = 1 denote the inclusion of claim C; and let
a; = 0 denote its exclusion. The probability of this combination Pr[«] is calculated recursively as
follows:

» Base Case (k = 1): For the first derived claim, C), 11, the premises are the initial base
claims C'y, . .., C},. We assume that each base claim C}; is associated with a prior probability
of soundness p; that is given. Therefore, let:

rla:n] Hp (1—p)®)

* Inductive Case (k > 1): For any derlved clalm after the first, the probability of a specific
premise combination «y.,x depends on two factors: the probability of the preceding
combination (Pr[a.,+,—1]) and the entailment probability of the new claim given that
preceding combination. In other words, a claim is added to our set of “sound” premises for
the next step based on how strongly the currently accepted set entails it:

Pr[al:n-‘rk] - Pr[alzn-‘rk—l] : S(C(al:n+k—1)7cn+k) (5)
where C'(av1.n11—1) denotes the subset of claims indexed by ., 11 € {0,1}*TF=1,

Using the above definition for Pr[a], we may quantify how likely each combination of previous
claims may affect the current entailment. In particular, we naturally define the entailment stability
score Ty, for the k-th derived claim as a marginalization over all combinations of its predecessors:

T = Z E(C(a),Cryr) - Prla] (6)
aef{0,1}ntk-1

However, directly computing 7y, is highly inefficient, as it requires summing over 2" **~1 possible
premise combinations. Instead, we estimated it by sampling the premise combinations:

o=y 25 ; Crt);)

where let o)., o) ~ {0,1}ntk-1 be 1.1.d. sampled according to Algorithmand Figure
Additionally, note that 7, converges rapidly to 7 as the number of samples N grows, allowing us to
obtain a rigorous statistical guarantee on our stability scores as a function of the number of samples.
Theorem 3.1. Let N > % forany e > 0 and § > 0. Given an entailment model € and
a reasoning chain with m derived claims, use N i.i.d. samples to estimate each Ty. Then, with
probability at least 1 — 0, we have |7y, — 1| < & for all k.

Proof. See Appendix [A] O

170
171
172
173

174

175
176
177

178
179
180
181
182
183
184
185

Dataset / Method GPT-40-mini Qwen3-4B

Recall Precision F1 Recall Precision F1
PRMBench
ARES 0.680 £+ 0.024 0.627 + 0.021 0.640 £+ 0.023 0.688 + 0.020 0.623 + 0.011 0.636 + 0.011
Entail-Prev 0.639 £0.032 0.602 +0.016 0.596 + 0.024 0.698 + 0.016 0.626 + 0.015 0.641 + 0.017
Entail-Base 0.524 £0.022 0511 £0.011 0.484 £0.016 0.631 £0.016 0.558 +£0.007 0.530 +0.011

ROSCOE-LI-Self 0.672 +0.012 0.575£0.007 0.489+0.022 0.458 £0.011 0.478 +0.006 0.446 £ 0.006
ROSCOE-LI-Source 0.676 & 0.014 0.584 £0.008 0.570 & 0.011 0.497 £0.003 0.496 + 0.004 0.495 £ 0.004

ReCEval-Intra 0.563 £0.012 0.581 £0.014 0.568 £0.013 0.550 +0.007 0.573 £0.013 0.554 4+ 0.007
ReCEval-Inter 0.664 £0.012 0.573 £ 0.007 0.465 £0.022 0.449 +0.004 0.476 £ 0.003 0.433 £+ 0.004
LLM-Judge 0.647 £0.011 0.645 + 0.019 0.643 + 0.013 0.695 + 0.017 0.662 + 0.016 0.675 + 0.016
DeltaBench

ARES 0.702 £ 0.024 0.728 + 0.022 0.708 £ 0.026 0.513 +0.013 0.512+£0.013 0.498 +0.010
Entail-Prev 0.698 £ 0.032 0.709 + 0.029 0.699 + 0.031 0.523 £ 0.011 0.522 £0.010 0.506 4+ 0.009
Entail-Base 0.614 £0.010 0.596 +0.004 0.594 £ 0.005 0.580 &+ 0.008 0.586 + 0.008 0.579 £ 0.009

ROSCOE-LI-Self 0.579 £ 0.006 0.664 £0.027 0.571 £0.013 0.555 £0.007 0.638 + 0.039 0.522 £ 0.003
ROSCOE-LI-Source 0.471 £0.006 0.456 &+ 0.009 0.453 £0.005 0.484 +£0.013 0.472 £0.021 0.457 £ 0.017

ReCEval-Intra 0.500 £0.000 0.357 £0.012 0.416 £0.009 0.530 +0.006 0.529 + 0.005 0.528 4+ 0.005
ReCEval-Inter 0.503 £ 0.007 0.508 +0.012 0.483 £ 0.010 0.507 +0.006 0.508 £ 0.006 0.505 + 0.007
LLM-Judge 0.498 £ 0.002 0.371 £0.026 0.381 £ 0.027 0.548 +0.010 0.563 £ 0.016 0.494 + 0.009
ClaimTrees

ARES 0.914 £+ 0.012 0.921 + 0.013 0.903 £+ 0.020 0.731 + 0.006 0.755 £ 0.009 0.723 + 0.006
Entail-Prev 0.587 £0.012 0.704 £0.025 0.491 £0.020 0.580 +0.013 0.760 £ 0.006 0.480 + 0.022
Entail-Base 0.645 £0.018 0.647 +£0.019 0.619 £0.021 0.586 +0.019 0.630 £ 0.018 0.521 4+ 0.026

ROSCOE-LI-Self 0.528 £0.005 0.569 £0.016 0.430+0.011 0.568 £0.009 0.732+0.005 0.473 £0.017
ROSCOE-LI-Source 0.540 +0.012 0.543 £0.013 0.511 =0.016 0.491 £0.004 0.484 +0.006 0.448 £ 0.008

ReCEval-Intra 0.500 £ 0.000 0.254 £0.006 0.336 +0.005 0.500 £ 0.000 0.252 +0.003 0.335 £ 0.003
ReCEval-Inter 0.546 £0.013 0.548 £0.013 0.513 £0.016 0.495 £0.003 0.489 +0.005 0.451 £ 0.007
LLM-Judge 0.687 +0.018 0.780 £ 0.016 0.628 +0.027 0.602 £+ 0.026 0.769 + 0.013 0.502 + 0.034
CaptainCookRecipes

ARES 0.636 + 0.010 0.657 £0.011 0.633 £ 0.010 0.532 £0.012 0.532+0.012 0.517 £ 0.009
Entail-Prev 0.468 +0.004 0.462 +£0.004 0.428 £0.010 0.511 £0.005 0.529 +0.014 0.384 £ 0.008
Entail-Base 0.591 +0.007 0.598 £0.008 0.589 4+ 0.007 0.500 £ 0.000 0.290 + 0.005 0.367 £ 0.005

ROSCOE-LI-Self 0.555 £0.005 0.703 +0.018 0.483 +£0.011 0.619 +0.007 0.711 £+ 0.012 0.601 + 0.010
ROSCOE-LI-Source 0.500 £ 0.000 0.283 4+ 0.009 0.361 £ 0.007 0.500 & 0.000 0.290 £ 0.006 0.367 £ 0.004

ReCEval-Intra 0.5154+0.008 0.540 £0.022 0.396 +=0.010 0.500 £0.000 0.290 + 0.006 0.367 £ 0.004
ReCEval-Inter 0.500 £ 0.000 0.283 £0.009 0.361 +0.007 0.500 £ 0.000 0.290 + 0.005 0.367 £ 0.004
LLM-Judge 0.560 £ 0.023 0.569 £0.024 0.530 +0.028 0.500 £ 0.000 0.289 + 0.005 0.366 £ 0.004

Table 1: (Benchmark Results) ARES is top-performing in majority of settings (5/8), with no other
single method being a consistent challenger. For each dataset+model group, Bold is the best and
underline is the second best.

Error Detection. Recall the connection between entailment stability and error detection: the lower
a claim’s entailment stability, the greater its error. Consider a simple thresholding mechanism: if
some 7y, falls below a prescribed error threshold, then we mark the derived claim C), ; as erroneous.
In the following, we demonstrate the empirical effectiveness of this procedure.

4 Evaluating ARES for Estimating Probabilistic Soundness

ARES performs error detection by estimating the entailment stability of each derived claim and
applying a thresholding mechanism. We next run experiments to validate the performance of ARES
against multiple baselines on diverse benchmarks.

Experiment Setup. We compare ARES with baselines including LLM-Judge, Entail-Prev, Entail-
Base, and pairwise comparison methods from ROSCOE [Golovneva et al.|[2023]] and ReCEval [Prasad
et al., 2023]]. Our experiments used proprietary (GPT-40-mini [[OpenAll 2024]) and open-source
(Qwen3-4B [Yang et al.}[2025]], Qwen2.5-Math-PRM-7B [Zhang et al., [2025]) models. We tested on
established benchmarks (PRMBench [Song et al., [2025], DeltaBench [He et al.,|2025]]) and two new
synthetic datasets, ClaimTrees and CaptainCookRecipes, designed to isolate error propagation. Per-
formance was measured using Macro-F1 score with a 5-fold cross-validation setup (see Appendix [C]
for full details).

186

187
188
189
190
191

192

193
194
195
196
197
198

199

200

201

202
203

204

205

207
208

Method Step Avg Final Step

—e— ARES (Ours)
Entail-Prev ARES 0.730 0.660
= —e— Entail-Base Entail-Prev 0.790 0.240
S —®— ROSCOE-LI-Self Entail-Base 0.540 0.300
2 e O hioource ROSCOE-LI-Self 0.540 0210
eCEval-Intra
ReCEval-inter ROSCOE-LI-Source 0.630 0.310
0.0 ~o— LLM-Judge ReCEval-Intra 0.480 0.060
s 20 30 >0 ReCEval-Inter 0.480 0.190

Linear chain length

LLM-Judge 0.570 0.250

Figure 4: (ClaimTI‘eeS) GPT-40-mini. ARES Figure 5: (PRMBenCh Best-of-N) ARES is the

can robustly identify error propagations in long best at ch]z)osnflg the bes]t?’ s;:gu;:nce fog, dgwn—
reasoning chains, whereas other methods fail. stream task performance. Bold: best within boot-
strap standard error.

Method PRMBench DeltaBench ClaimTrees-10 CaptainCookRecipes
ARES-¢0.1 0.640 0.708 0.931 0.633
ARES-€0.2 0.599 0.697 0.926 0.631
ARES-¢0.3 0.582 0.694 0.919 0.621
ARES-£0.4 0.595 0.687 0.922 0.640

Table 2: (GPT-40-mini) Performance Convergence with Samples ARES is able to achieve high
accuracy even when using a smaller number of samples. When ¢ =0.1, 0.2, 0.3, 0.4, a sequence
of length m = 10 needs 265, 67, 30, 17 samples per step respectively. We can see that there is
no significant performance change when we increase the € to 0.4 and thus decrease the number of
samples 15x.

4.1 RQI1: Does ARES work better than baseline methods on Benchmarks?

On natural reasoning chains in PRMBench and DeltaBench, ARES consistently achieves the best
Macro-F1 scores (Table[T). Baselines struggled with specific challenges; for instance, DeltaBench’s
long reasoning chains appeared to confuse LLM-Judge’s holistic judgments, while Entail-Base
underperformed on PRMBench. Additional experiments show ARES also improves the performance
of PRM backbones (Appendix [C.9).

4.2 RQ2: In what setting does ARES identify more errors than baselines?

To pinpoint where ARES excels, we created two synthetic datasets designed to test error propagation.
By intentionally removing a key base claim in each—such as a logical rule or an ingredient—we
created unsound derivations to precisely track how errors propagate. The performance gap is most
pronounced on these datasets; as shown in Figure d] ARES maintains a high Macro-F1 score (over
89%) on chains up to 50 steps long, while baseline performance collapses. This confirms that ARES
uniquely satisfies the key desiderata for detecting propagated errors (Appendix [B).

4.3 RQ3: Is ARES computationally efficient?

Our analysis shows that ARES’s performance remains stable even with significantly fewer samples,
indicating its efficiency and potential for further computational savings (Table2). On synthetic bench-
marks, performance is consistent for € from 0.1 to 0.4, while more variance is seen on PRMBench
and DeltaBench.

4.4 RQ4: Is ARES useful for selecting Best-of-N generations?

In a best-of-n selection task on PRMBench, ARES was significantly better at identifying the correct
reasoning chain when using the final step’s score—a strict metric on which simpler approaches
like Entail-Prev collapse (Figure[5)). This highlights its reliability and robustness as a predictor for
practical applications.

209

210
211

212
213
214
215

216
217
218
219

220

221
222
223
224

225

226
227
228
229
230
231

232
233
234
235
236
237
238
239

240
241
242
243
244
245
246
247

248

249
250
251
252

254
255

4.5 Ablations

We performed several ablations on ClaimTrees to analyze ARES’s strengths, testing its robustness
against irrelevant claims and benign, non-propagating errors.

Irrelevant Claims and Benign Errors. ARES maintains high performance on both deep and wide
reasoning trees, effectively ignoring irrelevant claims that degrade the performance of other methods
(Table[A8). In cases with benign errors that do not affect subsequent reasoning steps, all methods
perform equally well (Table[A9).

Choice of p and Entailment Model Granularity. Our ablations show that using a probabilistic
entailment model with p = 1 (including all base claims) consistently yields the best and most
computationally efficient performance for ARES. A binary entailment model, in contrast, sometimes
benefits from a slightly lower p = 0.95 (Table[A7).

4.6 Discussion of Errors

Our error analysis reveals specific baseline failure modes. Methods like Entail-Base and LLM-Judge
struggle with long, complex reasoning chains, while Entail-Prev fails to detect the propagated errors
present in our synthetic data. Pairwise methods are limited to simple errors requiring few premises.
Ultimately, ARES’s effectiveness is bounded by the capability of its underlying entailment model.

5 Related Work

Reasoning Chain Verifiers. Approaches to verifying reasoning chains include LLM Judges [Tyagi
et al.| [2024] |He et al.} [2024} 2025]] and Process Reward Models (PRMs) [Lightman et al., [2023]].
While recent verifiers incorporate logic, they have limitations: ROSCOE [Golovneva et al., [2023]]
and ReCEval [Prasad et al.l 2023]] use pairwise contradiction, which is less effective with complex
premises, and PARC [Mukherjee et al., 2025]] provides only a binary soundness classification. Our
work differs by introducing a probabilistic framework for a more nuanced assessment of each claim.

Evaluating Reasoning Error Detectors. While many benchmarks exist for evaluating CoT error de-
tectors—including GridPuzzle [Tyagi et al.| 2024], REVEAL [Jacovi et al.| 2024]], PRMBench [Song
et al., 2025], ProcessBench [Zheng et al., 2024, and DeltaBench [He et al.l 2025]—they lack a
consistent definition of error. We establish a clear standard by adopting a unified definition of
soundness, incorporating concepts of validity and groundedness from|Lee and Hockenmaier| [2025]]
and propagated error from Mukherjee et al.|[2025]]. We define a step as unsound if it is not logically
entailed by correct preceding claims. Since existing benchmarks do not uniformly apply this standard,
we created synthetic datasets for a more robust evaluation.

Probabilistic Guarantees. Our work applies statistical guarantees for reliability—a practice com-
mon in high-stakes domains [Fayyad et al., [2024] [McShane et al.,[2023| [Lindemann et al.,[2023]] and
explainable Al [Jin et al.| 2025]—to natural language reasoning. We provide soundness guarantees
over the entire directed acyclic graph (DAG) of a reasoning chain. This holistic approach contrasts
with frameworks like BIRD [Feng et al., [2025]], which calibrate individual components (e.g., the
entailment model), whereas we provide formal guarantees for the multi-step process itself. As a
model-agnostic framework, our method is complementary and can leverage improved, calibrated
models to enhance its own certification reliability.

6 Conclusion

Current methods cannot reliably detect LLM reasoning errors that propagate. To overcome these
limitations, we introduce Autoregressive Reasoning Entailment Stability (ARES), a model-agnostic
framework for the probabilistic certification of LLM reasoning. Theoretically, ARES offers a novel
probabilistic approach to inductively assess reasoning soundness by considering only previously
validated claims, mirroring human-like error checking that discards incorrect intermediate steps.
Experimentally, ARES demonstrates superior performance in robustly identifying errors in lengthy
and complex reasoning chains, outperforming existing methods that degrade under error propagation.

256

257
258
259

260
261

262

264

265
266

267
268

270
271
272
273

274
275
276

277
278
279

280
281
282

284
285
286
287
288

290

291
292

293
294

295

297
298
299

300
301

303
304

References

Chirag Agarwal, Sree Harsha Tanneru, and Himabindu Lakkaraju. Faithfulness vs. plausibility: On
the (un) reliability of explanations from large language models. arXiv preprint arXiv:2402.04614,
2024.

Jiuhai Chen and Jonas Mueller. Quantifying uncertainty in answers from any language model and
enhancing their trustworthiness. arXiv preprint arXiv:2308.16175, 2023.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv preprint
arXiv:2309.11495, 2023.

Jamil Fayyad, Shadi Alijani, and Homayoun Najjaran. Empirical validation of conformal prediction
for trustworthy skin lesions classification, 2024. URL https://arxiv.org/abs/2312.07460.

Yu Feng, Ben Zhou, Weidong Lin, and Dan Roth. BIRD: A trustworthy bayesian inference framework
for large language models. In The Thirteenth International Conference on Learning Representa-
tions, 2025. URL https://openreview.net/forum?id=fAAaT826Vv.

Olga Golovneva, Moya Peng Chen, Spencer Poff, Martin Corredor, Luke Zettlemoyer, Maryam
Fazel-Zarandi, and Asli Celikyilmaz. ROSCOE: A suite of metrics for scoring step-by-step
reasoning. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=xY1JRpzZtsY.

Hangfeng He, Hongming Zhang, and Dan Roth. Socreval: Large language models with the socratic
method for reference-free reasoning evaluation, 2024. URL https://arxiv.org/abs/2310.0
0074.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang, Xingyuan Bu, Ge Zhang, Zhongyuan Peng,
Zhaoxiang Zhang, Zhicheng Zheng, Wenbo Su, and Bo Zheng. Can large language models detect
errors in long chain-of-thought reasoning?, 2025. URL https://arxiv.org/abs/2502.19361!

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
models: Principles, taxonomy, challenges, and open questions. ACM Transactions on Information
Systems, 43(2):1-55, 2025.

Alon Jacovi, Yonatan Bitton, Bernd Bohnet, Jonathan Herzig, Or Honovich, Michael Tseng, Michael
Collins, Roee Aharoni, and Mor Geva. A chain-of-thought is as strong as its weakest link: A
benchmark for verifiers of reasoning chains. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 4615-4634, Bangkok, Thailand, August 2024. Association for
Computational Linguistics. doi: 10.18653/v1/2024.acl-long.254. URL https://aclanthology
.org/2024.acl-1long.254/.

Helen Jin, Anton Xue, Weiqiu You, Surbhi Goel, and Eric Wong. Probabilistic stability guarantees
for feature attributions. arXiv preprint arXiv:2504.13787, 2025.

Phil Johnson-Laird. Deductive reasoning. Wiley Interdisciplinary Reviews: Cognitive Science, 1(1):
8-17, 2010.

Jinu Lee and Julia Hockenmaier. Evaluating step-by-step reasoning traces: A survey, 2025. URL
https://arxiv.org/abs/2502.12289.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

Lars Lindemann, Matthew Cleaveland, Gihyun Shim, and George J. Pappas. Safe planning in dynamic
environments using conformal prediction, 2023. URL https://arxiv.org/abs/2210.10254.

Qing Lyu, Marianna Apidianaki, and Chris Callison-Burch. Towards faithful model explanation in
NLP: A survey. Computational Linguistics, 50(2):657-723, June 2024. doi: 10.1162/coli_a_00511.
URL https://aclanthology.org/2024.c1-2.6/,

https://arxiv.org/abs/2312.07460
https://openreview.net/forum?id=fAAaT826Vv
https://openreview.net/forum?id=xYlJRpzZtsY
https://arxiv.org/abs/2310.00074
https://arxiv.org/abs/2310.00074
https://arxiv.org/abs/2310.00074
https://arxiv.org/abs/2502.19361
https://aclanthology.org/2024.acl-long.254/
https://aclanthology.org/2024.acl-long.254/
https://aclanthology.org/2024.acl-long.254/
https://arxiv.org/abs/2502.12289
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2210.10254
https://aclanthology.org/2024.cl-2.6/

305
306
307

308
309
310

311
312

313
314
315

317
318
319
320

321
322
323
324

326
327
328

329
330
331

332
333
334

335
336
337
338
339
340

341
342
343

344
345
346
347
348

350
351
352

353
354

355

Staffan Arvidsson McShane, Ulf Norinder, Jonathan Alvarsson, Ernst Ahlberg, Lars Carlsson, and
Ola Spjuth. Cpsign-conformal prediction for cheminformatics modeling. bioRxiv, pages 2023-11,
2023.

Sagnik Mukherjee, Abhinav Chinta, Takyoung Kim, Tarun Anoop Sharma, and Dilek Hakkani-Ttiir.
Premise-augmented reasoning chains improve error identification in math reasoning with llms,
2025. URL https://arxiv.org/abs/2502.02362.

OpenAl. Gpt-4o mini: advancing cost-efficient intelligence. https://openai.com/index/gpt-4
o-mini-advancing-cost-efficient-intelligence/, July 2024. Accessed: 2025-05-19.

Rohith Peddi, Shivvrat Arya, Bharath Challa, Likhitha Pallapothula, Akshay Vyas, Bhavya
Gouripeddi, Qifan Zhang, Jikai Wang, Vasundhara Komaragiri, Eric Ragan, Nicholas Ruozzi,
Yu Xiang, and Vibhav Gogate. Captaincook4d: A dataset for understanding errors in procedural
activities. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang,
editors, Advances in Neural Information Processing Systems, volume 37, pages 135626—135679.
Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/pap
er/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmar
ks_Track.pdfl

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and Mohit Bansal. ReCEval: Evaluating reasoning
chains via correctness and informativeness. In Houda Bouamor, Juan Pino, and Kalika Bali, editors,
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages
10066-10086, Singapore, December 2023. Association for Computational Linguistics. doi: 10.186
53/v1/2023.emnlp-main.622. URL https://aclanthology.org/2023.emnlp-main.622/.

Mingyang Song, Zhaochen Su, Xiaoye Qu, Jiawei Zhou, and Yu Cheng. Prmbench: A fine-grained
and challenging benchmark for process-level reward models, 2025. URL https://arxiv.org/
abs/2501.03124.

Seok Hwan Song and Wallapak Tavanapong. How much do prompting methods help llms on
quantitative reasoning with irrelevant information? In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management, pages 2128-2137, 2024.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952-74965, 2023.

Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin Rrv, Nisarg Patel, Mutsumi Nakamura,
Arindam Mitra, and Chitta Baral. Step-by-step reasoning to solve grid puzzles: Where do LLMs
falter? In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 19898-19915, Miami,
Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/20
24.emnlp-main.1111. URL https://aclanthology.org/2024.emnlp-main.1111/.

Siye Wu, Jian Xie, Jiangjie Chen, Tinghui Zhu, Kai Zhang, and Yanghua Xiao. How easily do
irrelevant inputs skew the responses of large language models? arXiv preprint arXiv:2404.03302,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report. arXiv preprint arXiv:2505.09388, 2025.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou Wang. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1-39, 2024.

Lotfi A Zadeh. Fuzzy logic. Scholarpedia, 3(3):1766, 2008.

10

https://arxiv.org/abs/2502.02362
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://openai.com/index/gpt-4o-mini-advancing-cost-efficient-intelligence/
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f4a04396c2ed1342a5d8d05e94cb6101-Paper-Datasets_and_Benchmarks_Track.pdf
https://aclanthology.org/2023.emnlp-main.622/
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://arxiv.org/abs/2501.03124
https://aclanthology.org/2024.emnlp-main.1111/

356
357
358
359

360
361

363
364
365

366
367

368

370

371

372

373

374

375

377

378

380
381

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025. URL https://arxiv.org/abs/2501.07301.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. Processbench: Identifying process errors in mathematical reasoning,
2024. URL https://arxiv.org/abs/2412.06559,

A Proofs

Theorem 3.1. Let N > % forany e > 0 and § > 0. Given an entailment model £ and

a reasoning chain with m derived claims, use N i.i.d. samples to estimate each Ty. Then, with
probability at least 1 — 0, we have |7y, — 1| < € for all k.

Proof. Let A; denote the event that |7; — 7;| < € foreachi € {n+1,...,n+m}. We want to prove
that
n+m n+m B
Pr(ﬂAZ):l—Pr(UAi)zl—é. (8)
t=n-+1 i=n+1

According to Boole’s inequality and Hoeffding’s inequality,

n+m n+m
Pr (U Ai> < Z Pr(A;) (Boole’s)

i=n—+1 i=n+1
n+m
= Z Pr (|7 — 7] > ¢) ©)
i=n—+1
n+m
< Z 2 exp(—2Ne?) (Hoeffding’s)
i=n—+1
= 2mexp(—2Ne?) (10)
log(2m/é
<5 when N > 1BCM/0) (an
2e2
with the estimation error of each stability rate bounded by §; = %. O

B Method

There are three important desiderata for error detection methods:

1. Robust: Previous errors do not adversely affect current step.
2. Causal: Downstream steps do not affect current step.

3. Sufficient: All relevant claims included as premise for detection.

Appendix [B|shows that only ARES satisfies all desiderata while none of the baseline methods does.
Algorithm details is shown in Algorithm T}
C Experiments

C.1 Entailment Model
We instantiate the entailment model by prompting LLMs to judge the entailment of a hypothesis

given a premise, where there can be multiple claims in the premise. The LLM’s output is either
YES/NO in the binary case, or a 7-point Likert scale converted to a real value between 0 and 1.

11

https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2412.06559

383
384
385

386

387
388
389

390

391
392
393
394
395
396

397
398
399

401

402

403
404

Method Robust Causal Sufficient

ARES (ours)
Entail-Prev
Entail-Base
ROSCOE-LI-Self
ROSCOE-LI-Source
ReCEval-Intra
ReCEval-Inter
LLM-Judge

x X N\ XX\ X%\
3NN N N S
NX X X XX\

Table A3: (Desiderata for methods) Robust: Previous errors do not adversely affect current step.
Causal: Downstream steps do not affect current step. Sufficient: All relevant claims included as
premise for detection.

Algorithm 1 Estimating ARES
Require: Reasoning chain (C4,. .., Chim), tolerance (g, 0), base priors p1, . . . , pn, and entailment model €.
1: N «— log(%;/é)
: 2
2: fori:_lf..,Ndo _
3: aﬁ” ~ Bernoulli(p1), ..., ol ~ Bernoulli(py)

4 fork=1,...,mdo

5 pffj_k — g(C(a§13’L+k—l)’ Cn+k)
6: aiﬂ—k ~ Bernoulli(piz_k)

7 end for

8: end for

9:fork=1,...,mdo

10: Th = % Zivzl pg—k
11: end for

C.2 Hyperparameters for ARES

In our experiments, we used § = 0.1 and ¢ = 0.1 for ARES, which determines the number of samples
to take. We use p = 0.95 for the inclusion rate for base claims to allow buffer for information
overload.

C.3 Experiment Details

We use a subset of examples for each experiment. Experiment results are computed using 5-fold
cross-validation. For each split, the thresholds are picked for the best Macro-F1 on the validation
split, and the final numbers are on the test split, averaged over the 5 folds.

C.4 Controllable Datasets

ClaimTrees. One is ClaimTrees, a synthetic dataset in which the reasoning chain reasons starts
from a state A, and reason all the way to another state, say T. All the reasoning rules are provided
in the premise, except one, so that from that point on we know that all the claims are unsound: An
example of a chain of reasoning is shown in Figure In this example, rule B -> C does not actually
exist, and thus the reasoning steps starting from the second derived step are unsound claims. We can
construct reasoning chains with arbitrary length and errors occurring at different places.

CaptainCookRecipes. CaptainCookRecipes is derived from the recipe graphs in Captain-
Cook4D [Peddi et al., [2024], where certain actions must follow other actions. We then construct
base claims using edges in the graph as rules, similar to how we construct the ones in ClaimTrees. In
addition, we add ingredients to the base claims and randomly drop an ingredient. Then, all the claims
that require the ingredient and claims that follow them become unsound. We extract the ingredients
from the claims using GPT-40-mini.

An example of results for CaptainCookRecipes is shown in Table[A4] With propagated errors present,
only ARES is able to capture all errors.

12

405

406
407

408

409
410
411
412
413
414
415
416

417

418

419
420

421

422

DeltaBench
PRMBench
CaptainCook4D
ClaimTrees-50
ClaimTrees-30

ClaimTrees-20

ClaimTrees-10

mm| Actual

ClaimTrees-5 I Theoretical

0 50 100 150 200 250 300 350
Average Samples per Derived Claim

Figure A6: (Per-Claim Samples) ARES in practice only uses 0.03x to 0.31x of theoretical number
of samples on average for each derived claim.

Long Chain Example.

Base Claims:

Rule: AZ -> DG (meaning that if I have AZ, I can derive DG)
Rule: SG -> H3 (meaning that if I have SG, I can derive H3)

I have AZ

Rule: DG -> SG (meaning that if [have DG, I can derive SG)
Reasoning Steps:

I have AZ, I use rule (AZ -> DG) to derive DG, now I have DG
I have DG, I use rule (DG -> SG) to derive SG, now I have SG
I have SG, I use rule (SG -> H3) to derive H3, now I have H3

I have H3, I use rule (H3 -> VD) to derive VD, now I have VD

Figure A7: Long Chain Example for ClaimTrees

C.5 Computing Resources

We used an NVIDIA A100 GPU with 80GB of memory for the Qwen3-4B model. For GPT-40-mini,
we used approximately 600 USD in total for prototyping and experiments.

C.6 Additional Computational Efficiency Analysis

ARES’s computational efficiency stems from a two-tiered optimization. First, ARES uses a sampling-
based strategy for soundness checking, which is inherently more efficient than an exhaustive approach.
Second, we add another layer of efficiency by eliminating redundant LLM calls for the same premise-
hypothesis pairs. This dual approach dramatically reduces computational overhead, as shown by the
gap between theoretical and actual samples in Figure[A6] The result is a highly efficient process: on
shorter chains (ClaimTrees-5), we require only 0.03x the theoretical samples. Even on DeltaBench,
which needs more sampling due to model uncertainty, the method remains effective at 0.31x the
theoretical maximum.

C.7 Probabilistic Entailment Model Output
To obtain probabilistic entailment model output, we instruct LLM to output one of the following:

Very Likely, Likely, Somewhat Likely, Neutral, Somewhat Unlikely, Unlikely, Very Unlikely and
convert them to 1, 0.8, 0.6, 0.5, 0.4, 0.2, 0.0, respectively.

C.8 Best-of-N Results

For best-of-N result with standard deviations, see Table[A3]

13

423

424
425
426
427

428
429
430
431
432

433

434
435
436
437

439
440
441
442

C.9 ARES Also Improves PRMs

Process Reward Models (PRMs) can sometimes rival LLMs, and can also provide a non-binary
soundness score. We run additional experiments using a SOTA PRMs, Qwen2.5-Math-PRM-7B, as
the base entailment model. The results show that ARES can help significantly improve upon PRM on
reasoning chains with propagated errors.

The results in Table@] show that, while the specialized PRM is a strong baseline on its in-domain
dataset (PRMBench), applying ARES significantly improves performance on the abstract ClaimTrees
dataset which has many propagated errors. On out-of-domain (non-math) CaptainCook4D, ARES
achieves on par performance with PRM. This demonstrates ARES’s value as a flexible, general-
purpose framework that adds robustness, especially on tasks with propagated errors.

C.10 Discussion of Errors

Our inspection of the data and error detection outputs reveals some insights. Entail-Base fails on
PRMBench because judging entailment in long math derivations is challenging. Both LLM-Judge and
Entail-Base fail in DeltaBench, with Entail-Base struggling to judge entailment in very long reasoning
chains. In naturally occurring datasets, error propagation is limited and not always annotated, so
Entail-Prev performs close to ARES. However, synthetic data shows Entail-Prev fails with propagated
errors. LLM-Judge sometimes fails to follow instructions, outputting incorrect numbers of scores
relative to claims being judged. Pairwise methods in ROSCOE and ReCEval cannot detect complex
errors that need multiple claims as premise. ARES can only improve upon entailment models that
can already do correct entailment.

14

ARES Entail Entail ReCEval ReCEval ROSCOE ROSCOE LLM Ground

Claim (Ours) -Prev -Base “Inter Jntra -LI-Source LISelf -Judge Trurh

sentl: Only after the necessary preceding steps (put-put tomatoes on a serving plate), And if - - - - - - - - -
we have all the ingredients, we can then Pour-Pour the egg mixture into the pan.
sent2: Only after the necessary preceding steps (Take-Take a tomato), And if we have all the = = = = = = = = =
ingredients, we can then Cut-Cut tomato into two pieces.
sent3: Only after the necessary preceding steps (Stop-Stop stirring when it’s nearly cooked - - - - - - - - -
to allow it to set into an omelette), And if we have all the ingredients, we can then Transfer-
Transfer omelette to the plate and serve with the tomatoes.
sentd: Only after the necessary preceding steps (Chop-Chop 2 tbsp cilantro), And if we have = = = = = - = = -
all the i i we can then add-add the chopped cilantro to the bowl.
Sent5: Only after the necessary preceding steps (START), And if we have all the ingredients, - - - - - - - - -
we can then add-1/2 tsp ground black pepper to the bowl.
Sent6: We have ground black pepper. - = - - - - - - -
sent7: We have oil. - - - - - - - - -
Sent8: Only after the necessary preceding steps (Scoop-Scoop the tomatoes from the pan), = = = = = = = = =
And if we have all the i ients, we can then put-put tomatoes on a serving plate.
Sent9: Only after the necessary preceding steps (Pour-Pour the egg mixture into the pan), = = = = = = = = =
And if we have all the ingredients, we can then stir-stir gently with a wooden spoon so the
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space.
sentl0: Only after the necessary preceding steps (Transfer-Transfer omelette to the plate and = = = = = = = = =
serve with the tomatoes), And if we have all the ingredients, we can then END.
sent11: Only after the necessary preceding steps (add-add the chopped cilantro to the bowl, = = = = = = = = =
and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl), And if
we have all the ingredients, we can then Beat-Beat the contents of the bowl.
sent12: Only after the necessary preceding steps (Heat-Heat 1 tbsp oil in a non-stick frying - - - - - - - - -
pan), And if we have all the ingredients, we can then cook-cook the tomatoes cut-side down
until they start to soften and colour.
sent13: Only after the necessary preceding steps (START), And if we have all the ingredients, - = = = = = - = -
we can then crack-crack one egg in a bowl.
sent14: Only after the necessary preceding steps (cook-cook the tomatoes cut-side down until - - - - - - - - -
they start to soften and colour), And if we have all the ingredients, we can then Scoop-Scoop
the tomatoes from the pan.
sent15: Only after the necessary preceding steps (START), And if we have all the ingredients, = = = = = = = = =
we can then Take-Take a tomato.
Sentl6: Only after the necessary preceding steps (Beat-Beat the contents of the bowl, and = = = = = = = = =
Cut-Cut tomato into two pieces), And if we have all the ingredients, we can then Heat-Heat 1
thsp oil in a non-stick frying pan.
sentl7: We have egg. = = = = = - = = =
sent18: Only after the necessary preceding steps (START), And if we have all the ingredients, = = . = = = = = =
we can then Chop-Chop 2 tbsp cilantro.
sentl9: Only after the necessary preceding steps (stir-stir gently with a wooden spoon so the = = = = = = = = =
egg that sets on the base of the pan moves to enable the uncooked egg to flow into the space),
And if we have all the ingredients, we can then Stop-Stop stirring when it’s nearly cooked to
allow it to set into an omelette.
sent20: We have tomato. - - - - - - - - -
sent21: We now START. - - - - - - -
intl: Because we have completed all previous steps (START), and have all necessary in- ~ 0.35x 0.00 < 0.00 < 0.00 < 1.00 0.00 < 1.00 1.00 X
gredients (cilantro), we can now do the step Chop-Chop 2 thsp cilantro. And now we have

this step Chop-Chop 2 tbsp cilantro.
int2: Because we have completed all previous steps (START), and have all necessary in- 0.85 1.00 1.00 0.00x 1.00 0.00x 0.00x 1.00
gredients (egg), we can now do the step crack-crack one egg in a bowl. And now we have

this step crack-crack one egg in a bowl.
int3: Because we have completed all previous steps (START), and have all necessary ingredi- ~ 0.98 1.00 1.00 0.00x 1.00 0.00x 0.00x 1.00
ents (tomato), we can now do the step Take-Take a tomato. And now we have completed this
step Take-Take a tomato.
int4: Because we have completed all previous steps (START), and have all necessary ingredi- ~ 0.80 1.00 1.00 0.00x 1.00 0.00x 1.00 1.00
ents (ground black pepper), we can now do the step add-1/2 tsp ground black pepper to the
bowl. And now we have completed this step add-1/2 tsp ground black pepper to the bowl.
int5: Because we have completed all previous steps (Chop-Chop 2 tbsp cilantro), and have 0.00% 0.00x 0.00x 0.00 1.00 0.00% 0.00 < .00 X
all necessary ingredients (cilantro), we can now do the step add-add the chopped cilantro to
the bowl. And now we have completed this step add-add the chopped cilantro to the bowl.

int6: Because we have completed all previous steps (Take-Take a tomato), and have all 0.96 1.00 1.00 0.00x 1.00 0.00x 0.00x 1.00

necessary ingredients (tomato), we can now do the step Cut-Cut tomato into two pieces. And

now we have this step Cut-Cut tomato into two pieces.

int7: Because we have completed all previous steps (add-add the chopped cilantro to the — 0.01x 0.00 < 1.00 0.00 < 1.00 0.00 < 0.00 < 1.00 X

bowl, and crack-crack one egg in a bowl, and add-1/2 tsp ground black pepper to the bowl),

we can now do the step Beat-Beat the contents of the bowl. And now we have completed this

step Beat-Beat the contents of the bowl.

int8: Because we have completed all previous steps (Beat-Beat the contents of the bowl, and 0.00 < 0.00< 0.00 < 0.00 < 1.00 0.00 < 0.00 < 1.00 X
Cut-Cut tomato into two pieces), and have all necessary ingredients (oil), we can now do the

step Heat-Heat 1 tbsp oil in a non-stick frying pan. And now we have completed this step

Heat-Heat 1 thsp oil in a non-stick frying pan.

int9: Because we have completed all previous steps (Heat-Heat 1 tbsp oil in a non-stick frying 0.01x 1.00 1.00 0.00x 1.00 0.00x 0.00x 1.00 X
pan), and have all necessary ingredients (tomatoes), we can now do the step cook-cook the

tomatoes cut-side down until they start to soften and colour. And now we have completed

this step cook-cook the tomatoes cut-side down until they start to soften and colour.

int10: Because we have completed all previous steps (cook-cook the tomatoes cut-side down — 0.21x 1.00 1.00 0.00 < 1.00 0.00 % 0.00 < 1.00 X
until they start to soften and colour), we can now do the step Scoop-Scoop the tomatoes from

the pan. And now we have this step Scoop-Scoop the tomatoes from the pan.

intl1: Because we have completed all previous steps (Scoop-Scoop the tomatoes from 018X 1.00 T.00 0.00% 0.00% 0.00% 0.00% T.00 X

the pan), we can now do the step put-put tomatoes on a serving plate. And now we have
this step put-put tomatoes on a serving plate.
nt12: Because we have completed all previous steps (pul-put tomatoes on a serving plate), 0.18x 100 0.00< 0.00% 0.00% 0.00% 0.00% .00 X
we can now do the step Pour-Pour the egg mixture into the pan. And now we have completed
this step Pour-Pour the egg mixture into the pan.
int13: Because we have completed all previous steps (Pour-Pour the egg mixture into the 0.19x 1.00 0.00 < 0.00 < 0.00 < 0.00 < 0.00 < 1.00 X
pan), we can now do the step stir-stir gently with a wooden spoon so the egg that sets on the
base of the pan moves to enable the uncooked egg to flow into the space. And now we have
completed this step stir-stir gently with a wooden spoon so the cgg that sets on the base of
the pan moves to enable the uncooked egg to flow into the space.
nt14: Because we have completed all previous steps (stir-stir gently with a wooden spoonso 0.19x 100 0.00 0.00 1.00 0,00 0.00 1.00 X
the egg that sets on the base of the pan moves to enable the uncooked egg to flow into the
space), we can now do the step Stop-Stop stirring when it’s nearly cooked to allow it to set
into an omelette. And now we have completed this step Stop-Stop stirring when it’s nearly
cooked to allow it to set into an omelette.
Tnt15: Because we have completed all previous steps (Stop-Stop stirring when iUs nearly 0.00< 1.00 0.00 0.00< .00 0.00% 0.00< T.00 X
cooked to allow it to set into an omelette), we can now do the step Transfer-Transfer omelette
to the plate and serve with the tomatoes. And now we have completed this step Transfer-
Transfer omelette to the plate and serve with the tomatoes.
int16: Because we have completed all previous steps (Transfer-Transfer omelette to the plate 0.00 < 1.00 0.00 < 0.00 < 1.00 0.00x 0.00x 1.00 X
and serve with the tomatoes), we can now do the step END. And now we have completed
this step END.

Table A4: (CaptainCookRecipes Example) Only ARES is able to correctly judge all steps for
soundness. Checks v indicate that a method classifies the step as sound after thresholding, and
crosses x indicate that the method judges that step to be erroneous. Bold: Correctly judged soundness.

15

Method

Using Step Average (acctstd)

Using Final Step (acctstd)

ARES 0.730+0.045 0.660+0.049
Entail-Prev 0.790+0.043 0.240+0.042
Entail-Base 0.540£0.049 0.300+0.046
ROSCOE-LI-Self 0.540+£0.051 0.210£0.041
ROSCOE-LI-Source 0.630£0.049 0.310£0.043
ReCEval-Intra 0.480£0.050 0.060+0.024
ReCEval-Inter 0.480£0.048 0.190+0.038
LLM-Judge 0.570£0.050 0.250+0.044

Table A5: (PRMBench Best-of-N) ARES is a strong and robust predictor of downstream task
performance. Bold is the best and underline is the second best.

Dataset / Method Qwen2.5-Math-PRM-7B

Recall Precision F1
PRMBench
ARES 0.751 + 0.017 0.733 + 0.020 0.736 + 0.014
Entail-Prev 0.751 + 0.016 0.733 + 0.020 0.736 + 0.013
Entail-Base 0.643 +0.022 0.632 +0.024 0.624 £ 0.018
ROSCOE-LI-Self 0.651 +0.013 0.598 +0.013 0.592 + 0.006
ROSCOE-LI-Source 0.670 +0.020 0.621 +0.019 0.623 + 0.013
ReCEval-Inter 0.644 +0.014 0.597 £ 0.013 0.596 + 0.009
PRM 0.763 + 0.020 0.743 + 0.017 0.749 + 0.016
ClaimTrees-10
ARES 0.739 + 0.013 0.743 + 0.012 0.733 £ 0.010
Entail-Prev 0.722 +£0.016 0.725+0.017 0.715 £ 0.011
Entail-Base 0.611 £ 0.013 0.616 £ 0.013 0.597 £ 0.017
ROSCOE-LI-Self 0.655 +0.005 0.662 + 0.005 0.644 + 0.008
ROSCOE-LI-Source 0.604 +0.020 0.612 + 0.020 0.591 £ 0.024
ReCEval-Inter 0.629 + 0.020 0.628 + 0.019 0.624 + 0.020
PRM 0.607 £ 0.012 0.622 +0.013 0.594 £ 0.017
CaptainCook4D
ARES 0.551 +0.012 0.556 + 0.014 0.543 £ 0.012
Entail-Prev 0.553 + 0.011 0.560 + 0.014 0.546 + 0.010
Entail-Base 0.531 £0.016 0.533 +0.017 0.519 £0.014
ROSCOE-LI-Self 0.546 + 0.008 0.563 + 0.016 0.529 + 0.008
ROSCOE-LI-Source 0.469 £ 0.015 0.464 +£0.018 0.457 = 0.017
ReCEval-Inter 0.469 + 0.015 0.465 +0.018 0.461 £ 0.017
PRM 0.560 = 0.013 0.569 + 0.017 0.552 + 0.013

Table A6: (Benchmark Results on Qwen2.5-Math-PRM-7B) ARES performs the best across
various datasets and backbone entailment models. For each dataset+model group, Bold is the best
and underline is the second best.

16

Dataset / Method Recall Precision F1

ClaimTrees-5

ARES-1 0.881 0.900 0.873
ARES-0.95 0.861 0.889 0.854
ARES-bin-1 0.898 0913 0.891
ARES-bin-0.95 0.909 0.919 0.902
Entail-Prev 0.704 0.813 0.673
Entail-Base 0.830 0.832 0.824
ROSCOE-LI-Self 0.499 0.500 0.351
ROSCOE-LI-Source 0.647 0.650 0.640
ReCEval-Intra 0.500 0.250 0.332
ReCEval-Inter 0.645 0.648 0.638
LLM-Judge 0.811 0.864 0.803
ClaimTrees-10

ARES-1 0.937 0.943 0.936
ARES-0.95 0.931 0.936 0.931
ARES-bin-1 0.960 0.965 0.962
ARES-bin-0.95 0.947 0.951 0.948
Entail-Prev 0.608 0.783 0.538
Entail-Base 0.626 0.636 0.616
ROSCOE-LI-Self 0.524 0.589 0.420
ROSCOE-LI-Source 0.544 0.548 0.533
ReCEval-Intra 0.500 0.247 0.330
ReCEval-Inter 0.566 0.573 0.555
LLM-Judge 0.767 0.839 0.750
ClaimTrees-20

ARES-1 0.979 0.979 0.978
ARES-0.95 0.971 0.971 0.971
ARES-bin-1 0.964 0.966 0.963
ARES-bin-0.95 0.968 0.970 0.968
Entail-Prev 0.551 0.760 0.440
Entail-Base 0.533 0.537 0.522
ROSCOE-LI-Self 0.521 0.580 0.414
ROSCOE-LI-Source 0.508 0.509 0.480
ReCEval-Intra 0.500 0.248 0.331
ReCEval-Inter 0.513 0.516 0.482
LLM-Judge 0.640 0.788 0.586
ClaimTrees-30

ARES-1 0.973 0.972 0.971
ARES-0.95 0.931 0.934 0.929
ARES-bin-1 0.967 0.973 0.969
ARES-bin-0.95 0.957 0.960 0.956
Entail-Prev 0.530 0.731 0.387
Entail-Base 0.531 0.539 0.499
ROSCOE-LI-Self 0.543 0.595 0.460
ROSCOE-LI-Source 0.498 0.498 0.461
ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.506 0.509 0.464
LLM-Judge 0.581 0.757 0.482
ClaimTrees-50

ARES-1 0.895 0.899 0.890
ARES-0.95 0.871 0.871 0.867
ARES-bin-1 0.887 0.904 0.886
ARES-bin-0.95 0.892 0.892 0.888
Entail-Prev 0.512 0.601 0.340
Entail-Base 0.507 0.508 0.486
ROSCOE-LI-Self 0.555 0.581 0.504
ROSCOE-LI-Source 0.505 0.509 0.442
ReCEval-Intra 0.500 0.262 0.343
ReCEval-Inter 0.498 0.496 0.428
LLM-Judge 0.529 0.714 0.385

Table A7: GPT-40-mini (ClaimTrees) ARES consistently identifies errors in long reasoning chains
while other methods gradually fail.

17

Dataset / Method Recall Precision F1
ClaimTrees-s3d3

ARES-1 0.921+ 0.102 0.980+ 0.018 0.941-+ 0.074
ARES-0.95 0.904+ 0.110 0.975+ 0.027 0.9274+ 0.081
Entail-Prev 0.821+0.046 0.951+0.032 0.863+ 0.039
Entail-Base 0.8594+0.122 0.8664 0.142 0.8374 0.134
ROSCOE-LI-Self 0.5004+ 0.000 0.115+£0.060 0.181+£ 0.078
ROSCOE-LI-Source 0.623£ 0.101 0.5934 0.087 0.497+ 0.161
ReCEval-Intra 0.5004+ 0.000 0.115+£0.060 0.181+£ 0.078
ReCEval-Inter 0.5854+0.081 0.5624 0.061 0.4494+ 0.115
LLM-Judge 0.833+0.051 0.957+0.022 0.875+ 0.035
ClaimTrees-s3d5

ARES-0.95 0.867+ 0.171 0.971+ 0.037 0.887+ 0.146
Entail-Prev 0.7184+ 0.090 0.936+ 0.045 0.761+£ 0.097
Entail-Base 0.659+ 0.061 0.618+ 0.076 0.6104+ 0.091
ROSCOE-LI-Self 0.497+ 0.044 0.500+ 0.242 0.460+ 0.074
ROSCOE-LI-Source 0.5134+0.117 0.5144+ 0.077 0.340+ 0.081
ReCEval-Intra 0.5004+ 0.000 0.100+ 0.054 0.161£ 0.074
ReCEval-Inter 0.5504+ 0.070 0.539+ 0.050 0.356+ 0.083
LLM-Judge 0.7744+ 0.178 0.942+ 0.057 0.796+ 0.169
ClaimTrees-s5d3

ARES-1 0.875+ 0.217 0.889+ 0.232 0.880+ 0.223
ARES-0.95 0.8674+0.217 0.889+ 0.232 0.875+ 0.222
Entail-Prev 0.767+ 0.181 0.873+£0.223 0.799+ 0.191
Entail-Base 0.82440.205 0.7004 0.149 0.7294 0.167
ROSCOE-LI-Self 0.5004 0.000 0.055+ 0.033 0.097+ 0.052
ROSCOE-LI-Source 0.650+ 0.054 0.5604 0.031 0.380+ 0.073
ReCEval-Intra 0.5004 0.000 0.055+ 0.033 0.097+ 0.052
ReCEval-Inter 0.59440.095 0.53940.043 0.3574 0.063
LLM-Judge 0.7424+0.192 0.868+ 0.222 0.7704+ 0.201
ClaimTrees-s5d5

ARES-1 0.900+ 0.163 0.990+ 0.017 0.920-+ 0.139
ARES-0.95 0.900+ 0.163 0.990+ 0.017 0.920+ 0.139
Entail-Prev 0.723+0.096 0.969+ 0.018 0.783+ 0.095
Entail-Base 0.692+ 0.141 0.597+ 0.067 0.610+ 0.083
ROSCOE-LI-Self 0.4814+0.020 0.446+ 0.018 0.462+ 0.010
ROSCOE-LI-Source 0.578+ 0.063 0.533+£ 0.027 0.3214 0.055
ReCEval-Intra 0.500+ 0.000 0.053+ 0.019 0.0944+ 0.031
ReCEval-Inter 0.5844+0.097 0.534+0.059 0.310+£ 0.084
LLM-Judge 0.847+ 0.140 0951+ 0.082 0.881+0.111

Table A8: GPT-40-mini (ClaimTrees) ARES differs from other methods in deeper trees instead of
wider trees. s3d5 means trees with 3 sources and depth of 5.

18

Dataset / Method Recall Precision F1
ClaimTrees-v5il

ARES-1 0.985+ 0.014 0.950+ 0.046 0.965+ 0.032
ARES-0.95 0.990+ 0.022 0.998+ 0.005 0.994+ 0.015
Entail-Prev 0.9924+ 0.011 0.974+ 0.038 0.982+ 0.026
Entail-Base 0.900+ 0.027 0.788+ 0.030 0.813+£ 0.038
ROSCOE-LI-Self 0.975+0.009 0918+ 0.025 0.942+ 0.019
ROSCOE-LI-Source 0.690+ 0.062 0.626+ 0.038 0.5454 0.058
ReCEval-Intra 0.5004 0.000 0.100+ 0.000 0.167+ 0.000
ReCEval-Inter 0.755+0.047 0.671£0.021 0.590+ 0.066
LLM-Judge 1.000£ 0.000 1.000+ 0.000 1.000+ 0.000
ClaimTrees-v5i2

ARES-1 1.000£ 0.000 1.000=+ 0.000 1.000+ 0.000
ARES-0.95 0.9954+ 0.011 0.998+ 0.005 0.996+ 0.008
Entail-Prev 0.990+ 0.010 0981+ 0.019 0.985+ 0.015
Entail-Base 0.863+ 0.009 0.823+ 0.007 0.815+0.013
ROSCOE-LI-Self 0.965+ 0.030 0.951+0.036 0.956+ 0.033
ROSCOE-LI-Source 0.635+ 0.054 0.642+ 0.058 0.5554 0.057
ReCEval-Intra 0.5004+ 0.000 0.167+ 0.000 0.250+ 0.000
ReCEval-Inter 0.695+0.029 0.721+£0.020 0.594+ 0.038
LLM-Judge 0.978+ 0.016 0.960+ 0.028 0.967+ 0.024
ClaimTrees-v5i5

ARES-1 0.988+ 0.028 0.991+ 0.020 0.989+ 0.026
ARES-0.95 0.998+ 0.004 0.998+ 0.005 0.998-+ 0.005
Entail-Prev 0.988+ 0.013 0.990+ 0.010 0.989+ 0.011
Entail-Base 0.930+ 0.019 0.950+ 0.012 0.936+ 0.018
ROSCOE-LI-Self 0.938+0.012 0.955+0.008 0.943+ 0.012
ROSCOE-LI-Source 0.661+ 0.006 0.7364 0.033 0.649+ 0.011
ReCEval-Intra 0.5004 0.000 0.278+ 0.000 0.357+ 0.000
ReCEval-Inter 0.6654+ 0.024 0.8264 0.008 0.642+ 0.034
LLM-Judge 0.9824+0.017 0.983+0.017 0.982+ 0.017

Table A9: GPT-40-mini (ClaimTrees) ARES does not differ much from other methods in inserted
errors that do not affect downstream reasoning. v5i2 means 5 valid claims and 2 inserted claims.

19

	Introduction
	Soundness in Reasoning Chains
	Claims and Sequences of Claims
	Probabilistic Entailment of Claims
	Reasoning Chains and Soundness

	Soundness Checks via Autoregressive Reasoning Entailment Stability
	Entailment with Probabilistic Premises
	Autoregressive Reasoning Entailment Stability with Efficient Sampling

	Evaluating ARES for Estimating Probabilistic Soundness
	RQ1: Does ARES work better than baseline methods on Benchmarks?
	RQ2: In what setting does ARES identify more errors than baselines?
	RQ3: Is ARES computationally efficient?
	RQ4: Is ARES useful for selecting Best-of-N generations?
	Ablations
	Discussion of Errors

	Related Work
	Conclusion
	Proofs
	Method
	Experiments
	Entailment Model
	Hyperparameters for ARES
	Experiment Details
	Controllable Datasets
	Computing Resources
	Additional Computational Efficiency Analysis
	Probabilistic Entailment Model Output
	Best-of-N Results
	ARES Also Improves PRMs
	Discussion of Errors

