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Abstract

Most existing classical artificial neural networks (ANN) are designed as a tree1

structure to imitate neural networks. In this paper, we argue that the connectivity2

of a tree is not sufficient to characterize a neural network. The nodes of the3

same level of a tree cannot be connected with each other, i.e., these neural unit4

cannot share information with each other, which is a major drawback of ANN.5

Although ANN has been significantly improved in recent years to more complex6

structures, such as the directed acyclic graph (DAG), these methods also have7

unidirectional and acyclic bias for ANN. In this paper, we propose a method to8

build a bidirectional complete graph for the nodes in the same level of an ANN,9

which yokes the nodes of the same level to formulate a neural module. We call our10

model as YNN in short. YNN promotes the information transfer significantly which11

obviously helps in improving the performance of the method. Our YNN can imitate12

neural networks much better compared with the traditional ANN. In this paper, we13

analyze the existing structural bias of ANN and propose a model YNN to efficiently14

eliminate such structural bias. In our model, nodes also carry out aggregation and15

transformation of features, and edges determine the flow of information. We further16

impose auxiliary sparsity constraint to the distribution of connectedness, which17

promotes the learned structure to focus on critical connections. Finally, based on18

the optimized structure, we also design small neural module structure based on the19

minimum cut technique to reduce the computational burden of the YNN model.20

This learning process is compatible with the existing networks and different tasks.21

The obtained quantitative experimental results reflect that the learned connectivity22

is superior to the traditional NN structure.23

1 Introduction24

Deep learning successfully transits the feature engineering from manual to automatic design and25

enables optimization of the mapping function from sample to feature. Consequently, the search26

for effective neural networks has gradually become an important and practical direction. However,27

designing the architecture remains a challenging task. Certain research studies explore the impact28

of depth [1,2,3] and the type of convolution [4,5] on performance. Moreover, some researchers29

have attempted to simplify the architecture design. VGGNet [6] was directly stacked by a series30

of convolution layers with plain topology. To better adapt the optimization process of gradient31

descent process, GoogleNet [7] introduced parallel modules, while Highway networks [8] employed32

gating units to regulate information flow, resulting in elastic topologies. Driven by the significance33

of depth, the residual block consisted of residual mapping and shortcut was raised in ResNet [9].34

Topological changes in neural networks successfully scaled up neural networks to hundreds of layers.35

The proposed residual connectivity was widely approved and was subsequently applied in other36

works such as MobileNet [10,11] and ShuffleNet [12]. Divergent from the relative sparse topologies,37
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DenseNet [13] wired densely among blocks to fully leverage feature reuse. Recent advances in38

computer vision [25,26] also explored neural architecture search (NAS) methods [14,15,16] to search39

convolutional blocks. In recent years, Yuan proposed a topological perspective using directed acyclic40

graph (DAG) [29] to represent neural networks, enhancing the topological capabilities of artificial41

neural networks (ANNs). However, these approaches suffer from the bias of unidirectional and42

acyclic structures, limiting the signal’s capability for free transmission in the network.43

The existing efforts in neural network connectivity have primarily focused on the tree structures where44

neural units at the same level cannot exchange information with each other, resulting in significant45

drawbacks for ANNs. This limitation arises due to the absence of a neural module concept. In this46

paper, we argue that the current connectivity approaches fail to adequately capture the essence of47

neural networks. Since the nodes at the same level of a tree cannot establish connections with each48

other, it hampers the transfer of information between these neural units, leading to substantial defects49

for ANNs. We argue that the nodes in the same level should form a neural module and establish50

interconnections. As a result, we introduce a method to build up a bidirectional complete graph51

for nodes at the same level of an ANN. By linking the nodes in a YOKE fashion, we create neural52

modules. Furthermore, when we consider all the nodes at the same level, we would have a chance to53

construct a bidirectional complete graph in ANNs and yields remarkable improvements. We refer54

to our model as Yoked Neural Network, YNN for brevity. It is important to note that if all the edge55

weights in the bidirectional complete graph become vestigial and approach to zero, our YNN would56

reduce to a traditional tree structure.57

In this paper, we analyze the structural bias of existing ANN structures. To more accurately mimic58

neural networks, our method efficiently eliminates structural bias. In our model, nodes not only59

aggregate and transform features but also determine the information flow. We achieve this by60

assigning learnable parameters to the edges, which reflect the magnitude of connections. This allows61

the learning process to resemble traditional learning methods, enhancing the overall performance of62

our model in imitating neural networks. As the nodes are relied on the values of other nodes, it is a63

challenging task designing a bidirectional complete graph for nodes at the same level. We address64

this challenge by introducing a synchronization method specifically tailored for learning the nodes at65

the same level. This synchronization method is crucial for ensuring the effective coordination and66

learning of these interconnected nodes.67

Finally, to optimize the structure of YNN, we further attach an auxiliary sparsity constraint that68

influences the distribution of connectedness. This constraint promotes the learned structure to69

prioritize critical connections, enhancing the overall efficiency of the learning process.70

The learning process is compatible with existing networks and exhibits adaptability to larger search71

spaces and diverse tasks, effectively eliminating the structural bias. We evaluate the effectiveness72

of our optimization method by conducting experiments on classical networks, demonstrating its73

competitiveness compared to existing networks. Additionally, to showcase the benefits of connectivity74

learning, we evaluate our method across various tasks and datasets. The quantitative results from75

these experiments indicate the superiority of the learned connectivity in terms of performance and76

effectiveness.77

Considering that the synchronization algorithm for nodes at the same level may be computationally in-78

tense, we also propose a method to design small neural modules to simplify our model. This approach79

significantly reduces the computational burden of our model while maintaining its effectiveness.80

To sum up, our contributions in this paper are as follows:81

1. We provide an analysis of the structural bias present in existing ANN networks.82

2. We propose the YNN model which involves YOKING the nodes at the same level together83

to simulate real neural networks.84

3. We develop a synchronization method to effectively learn and coordinate the nodes at the85

same level, introducing the concept of neural modules.86

4. We design a regularization-based optimization method to optimize the structure of the YNN87

model.88

5. We propose the design of small neural modules to significantly reduce the computational89

complexity of our model, improving its efficiently.90
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2 Related Works91

We firstly review some related works on the design of neural network structures and relevant opti-92

mization methods. The design of neural network has been studied widely. From shallow to deep,93

the shortcut connection plays an important role. Before ResNet, an early practice [17] also added94

linear layers connected from input to output to train multi-layer perceptrons. [7] was composed95

of a shortcut branch and a few deeper branches. The existence of shortcut eases the vanishing or96

exploding gradients [8,9]. Recently, Yuan [29] explained from a topological perspective that shortcuts97

offer dense connections and benefit optimization. Many networks with dense connections exist98

On macro-structures also. In DenseNet [13], all preceding layers are connected. HRNet [18] was99

benefited from dense high-to-low connections for fine representations. Densely connected networks100

promote the specific task of localization [19]. Differently, our YNN optimizes the desired network101

from a bidirectional complete graph in a differentiable way.102

For the learning process, our method is consistent with DARTS [22], which is differentiable. Different103

from sample-based optimization methods [29], the connectivity is learned simultaneously through the104

weights of the network using our modified version of the gradient descent. A joint training can shift105

the transferring step from one task to another, and obtain task-related YNN. This type was explored106

in [20,21,22,23,24] also, where weight-sharing is utilized across models at the cost of training. At the107

same time, for our YNN model, we also propose a synchronization method to get the node values in108

the same neural module.109

In order to optimize the learned structure, a sparsity constraint can be observed in other applications,110

e.g., path selection for a multi-branch network [27], pruning unimportant channels for fast inference111

[28], etc. In a recent work, Yuan used L1 regularization to optimize a topological structure. In this112

paper, we also use L1 as well as L2 regularization to search a better structure.113

Secondly, many deep learning works deal with the geometric data in these years[40]. They make114

neural network better cope with structure. Graph neural networks (GNNs) are connectivity-driven115

models, which have been addressing the need of geometric deep learning[30,31]. In fact, a GNN116

adapts its structure to that of an input graph, and captures complex dependencies of an underlying117

system through an iterative process of aggregation of information. This allows to predict the properties118

of specific nodes, connections, or of the entire graph as a whole, and also to generalize to unseen119

graphs. Due to these powerful features, GNNs have been utilized in many relevant applications to120

accomplish their tasks, such as recommender systems [33], natural language processing [34], traffic121

speed prediction [35], critical data classification [36], computer vision [25,26,37], particle physics122

[38], resource allocation in computer networks [39], and so on.123

3 Methodology124

3.1 Why YNN is Introduced?125

NN stands for a type of information flow. The traditional structure of ANN is a tree, which is a natural126

way to describe this type of information flow. Then, we can represent the architecture as G = (N,E),127

where N is the set of nodes and E denotes the set of edges. In this tree, each edge eij ∈ E performs128

a transformation operation parameterized by wij , where ij stands for the topological ordering from129

the node ni to node nj with ni, nj ∈ N . In fact, the importance of the connection is determined130

by the weight of eij . The tree structure as a natural way to represent such formation flow is most131

frequently used in ANN.132

A tree is a hierarchical nested structure where a node can be influenced only by its precursor node,133

thereby causing transformation of information between them. In a tree structure, the root node has no134

precursor node, while each other node has one and only one precursor node. The leaf node has no135

subsequent nodes. The number of subsequent nodes of each other node can be one or multiple. In136

addition, the tree structure in mathematical statistics can represent some hierarchical relationships. A137

tree structure has many applications. It can also indicate subordinating relationships.138

In recent years, some researchers attempted to generalize this structure. In those works, except the139

root node, all other nodes are made to have multiple precursor nodes, i.e., the hierarchical information140

flow is made to form a directed acyclic graph (DAG).141
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However, a tree or a DAG is a hierarchical nested structure where a node can be influenced only by142

its precursor node, which makes the transformation of information quite inadequate. Moreover, we143

find that this structure is far more inferior in its strength compared with those of real neural networks,144

which connect far more complex structures than a tree or DAG structure as shown in Fig 1. In fact,145

a tree or a DAG structure is used just because its good mathematical properties which can apply146

backward propagation conveniently.147

Figure 1: Artificial Neural Network Figure 2: Real Neural Network

In this paper, we represent the neural network as a bidirectional complete graph for the nodes of148

the same level to make the description of NN is much better compared with the traditional ANN.149

Further, the connections between nodes are represented as directed edges, which determine the flow150

of information between the connected nodes. We consider that any two nodes ni and nj of the151

same level construct an information clique if there exists a path between them. Compared with the152

traditional tree structure, we yoke the nodes of the same level to form a bidirectional complete graph.153

We call this structure as YNN, which will be introduced in the next section.154

3.2 Structure of YNN155

Inspired by the neural network of human beings as shown in the Fig 2. In order to enhance the ability156

of NN to express information, we design cliques for the nodes of each level of a neural network.157

Definition 1 A clique is a bidirectional complete graph which considers that for any two nodes ni158

and nj , an edge exists from ni to nj .159

According to this definition, the model in our framework is considered as a bidirectional complete160

graph for the nodes of the same level. These nodes construct a clique, where every node is not only161

influenced by its precursor nodes but also by all other nodes of its level. The cliques are represented162

as information modules which greatly enhance the characterization of NN.163

According to the definition of clique, a neural network can also be represented as a list of cliques.164

Further, we can also introduce a concept of neural module.165

Definition 2 A neural module is a collection of nodes that interact with each other.166

According to the definition, a neural module can be part of clique. In fact, if all the weights in a167

clique becomes zero, then the YNN model is reduced to the traditional tree structure.168

In each clique of our model, the nodes are first calculated by using their precursor nodes, which only169

distribute features. The last one is the output level, which only generates final output of the graph.170

Secondly, each node is also indicated by the nodes of the same level and their values are influenced171

by each other.172

During the traditional forward computation, each node aggregates inputs from connected preorder173

nodes. We divide such nodes into two parts. The first part contains the precursor nodes of the last174

level, and the second part contains the nodes of the corresponding clique of the same level. Then,175

features are transformed to get an output tensor, which is sent to the nodes in the next level through176

the output edges. Its specific calculation method will be introduced in the next section.177
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In summary, according to the above definitions, each YNN is constructed as follow. Its order of178

outputs is represented as G = {N,E}. For the nodes in the same level, bidirectional complete graphs179

are built as clique C. Each node n in C is first calculated by using the precursor nodes without the180

nodes in the clique, which is called as the meta value n̂ of the node. Then, we calculate its real value181

n by using the nodes of the clique.182

According to the meta value and the real value as introduced before, the structure of YNN is shown183

in the Fig 3.184

Figure 3: The first picture shows the tree structure of traditional ANN. The second picture shows our
YNN model that yokes together the nodes of the first level. For the clique of the first level, the node
spin part is based on its meta value, which also represents the connection with the pre nodes. As a
result, we can decompose the spin node as shown in the third picture, which is to represent the meta
value. The fourth and fifth pictures show the second level of our YNN model, which are the same as
the second and third pictures, respectively.

In the next section, we will explain how to calculate the values of the nodes by using the precursor185

node as well as the nodes in the clique.186

3.3 Forward Process187

Let we have n elements:188

X = {x1, x2, ..., xn} (1)

as the input data to feed for the first level of ANN. Then, the meta value N̂1 of the first level can be189

calculated as:190

N̂1 = X ∗W 01, (2)
where W01 is the fully connected weight of the edges between level 1 and input nodes. Then,191

similarity in nature, for meta value, the full connection between the levels makes the information to192

flow as:193

N̂ i = f(N i−1) ∗W (i−1)i, (3)
where N i−1 = {1, ni−1

1 , ni−1
2 , ...}, ni−1

j is the real value of the jth node in the (i − 1)th level,194

number 1 indicates for the bias of the value between the (i − 1)th and ith levels as well as the195

activation function f .196

Then, by introducing weight W i in the ith level and considering the bidirectional complete graph of197

that level as a clique, we propose a method to calculate the real value N i based on the meta value N̂ i198

as introduced in the previous section. Suppose, there are m nodes in the clique and they rely on the199

values of other nodes. Hence, we need a synchronization method to solve the problem. Here, we take200

the problem as a system of multivariate equations as well as an activation function f . Then, for the201

real value of ni
j in N i based on the meta value n̂i

j in N̂ i, the equations can be summarized as follow:202



wi
01 +

∑
j ̸=1

f(ni
j) ∗ wi

j1 + f(n̂i
1) ∗ wi

11 = ni
1

wi
02 +

∑
j ̸=2

f(ni
j) ∗ wi

j2 + f(n̂i
2) ∗ wi

22 = ni
2

...

wi
0m +

∑
j ̸=m

f(ni
j) ∗ wi

jm + f(n̂i
m) ∗ wi

mm = ni
m
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In the above equations, wi
01, wi

02, ..., wi
0m are the bias of the real values of the nodes in the ith level.203

Note that, for the mata value, the bias is a value between the levels; while for a real value, the bias is204

a value in the individual level only.205

Existing numerical methods would be able to solve the above equations efficiently. In the real206

applications, the efficiency can also be well optimized. In fact, for too large equations, we also207

propose a method to reduce the calculation scale efficiently. This method is introduced in the208

following section.209

3.4 Backward Process210

In this section, we introduce the backward process of our model. Firstly, let the gradient of the output211

be the gradient of the meta value of the last level. We calculate the node gradient for the ith level as:212

d(N i) = d(N̂ i+1) ∗W i(i+1)T ∗ f−1(N i) . (4)

The meta value of N̂ i is calculated by using the real value of N i−1 according to the system of213

equations.214

Then, to get the value of d(N̂ i−1), we need to consider the nodes as the variables in the system of215

equations. For convenient, we introduce operator Ci to represent the derivatives for the ith level,216

which can be expressed as:217

Ci = W i − diag(W i) + eye(W i) , (5)
where W i is the adjacency matrix of the clique in the ith level, diag(W i) is the diagonal matrix of218

W i, eye(W i) is the identity matrix whose size is the same as that of wi, and operator Ci represents219

the transfer of other nodes for each node in the clique according to the system of equations. In the220

clique, the identity matrix is for the node itself.221

According to the system of equations, the meta value of a node is connected to its real value through222

the diagonal matrix of W i. Note that each node is calculated by using the activation function f . As a223

result, after the transfer through the bidirectional complete graph, the gradient of the meta value of224

the nodes becomes:225

d(N̂ i) = d(N i) ∗ CiT ∗ f−1(N i) ∗ diag(W i) ∗ f−1(N̂ i) . (6)

Now, we have got the gradient of the meta value as well as that of the real value of each node. Finally,226

the gradient weight of the fully connected level W i(i+1) between the ith and (i+ 1)th level can be227

expressed as:228

d(W i(i+1))T = d(N̂ i+1)T ∗ f(N i) . (7)
Now, we need to calculate the gradient of W i for the clique in the ith level. According to the system229

of equations, we need to consider the weights of all the connected nodes. For any jth node in the230

clique, its connected weight is the jth column of the matrix. Similarly, for convenient, we introduce231

the following operator:232

Di
j = (ni

1, ..., n̂
i
j , ..., n

i
m) , (8)

which can be found in the system of equations. Then, by the gradient of real value of the jth node ni
j233

in N i, the following becomes the corresponding gradient of the clique:234

d(W i(:, j))T = d(ni
j) ∗ f(Di′

j ) . (9)

3.5 YNN Structure Optimization235

Consider that for the nodes in the same level, we construct a clique as stated before. Here, we consider236

a clique just as a universal set for all the possible connections. In our work, we can optimize the237

YNN structure to let our model to focus on important connections only. The optimization process can238

be L1 or L2 regularization as usual, which can be parameterized L1 and L2, respectively.239

For the jth node in the ith level, the process can be formulated as follow:240

opt_ni
j = ni

j + L1 ∗
∑
k

abs(wi(k, j)) + L2 ∗
∑
k

(wi(k, j))2 (10)

According to the L1 and L2 regularization, the L1 parameter can make our YNN to focus on important241

connections in the clique, and the L2 regularization makes the weight in the clique to be low to make242

our model to have better generation.243
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3.6 Structure of Neural Module244

According to the forward process of YNN as stated earlier, it solves a system of equations. A large245

number of nodes in the same level would bring too much computational burden to solve a large system246

of equations. In Fact, we can optimize the graph of any level by L1 and L2 regularization, and then247

turn to a minimum cut technology, e.g., the NE algorithm, to reduce the computation significantly.248

For each cut subgraph, we design a neural module structure according to definition 2 to simplify249

the system of equations as shown in Fig. 4. Since the nodes are influenced only by the nodes in the250

subgraph, the system of equations can be reduced to the number of the nodes in the cut subgraph,251

which is formulated as a neural module as definition 2 in this paper.252

Figure 4: If the clique is too large, we would
have too much computational burden to solve
the system of equations. Then, we can first opti-
mize the structure and learn the importance of the
connection, followed by the application of the
minimum cut method to formulate the structure
of the neural module. In this way, the calcula-
tion for the system of equations can be limited
to each subgraph.

In summary, the structure of the neural module can be constructed as follows:253

1. Construct the clique for the nodes in the same level;254

2. Optimize the clique by using the L1 and L2 regularization;255

3. Cut the optimized graph using the NE algorithm;256

4. Construct system of equations by taking each cut subgraph as a neural module.257

As explained before, in this way the system of equations can be reduced to Ns-ary equations, where258

Ns is the number of nodes in each neural module. Of course, if the calculation of our model can be259

accept for our model, take the clique itself as Neural Module is most accurate, since clique considers260

all connection in the level.261

4 Experiments262

4.1 Optimization of Classical ANN263

In this section, we will show the experiments with our method. Here, we compare our method with264

the traditional NN method, stacked auto encoder(SAE), as well as the generalized traditional NN265

which is a topological perspective to take NN as a DAG graph proposed in recent years.266

We show our results for three real data sets. The first dataset contains the codon usage frequencies in267

the genomic coding DNA of a large sample of diverse organisms obtained from different taxa tabulated268

in the CUTG database. Here, we further manually curated and harmonized the existing entries by269

re-classifying the bacteria (bct) class of CUTG into archaea (arc), plasmids (plm), and bacteria270
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Table 1: Codon Dataset
Models Codon Data

35 Nodes 38 Nodes 40 Nodes 45 Nodes 48 Nodes 50 Nodes

NN 0.248±0.0054 0.3098±0.0485 0.2815±0.0037 0.2664±0.0004 0.2837±0.0168 0.3955±0.0011
SAE 0.3446±0.0152 0.3282±0.0097 0.3588±0.0184 0.3294±0.0289 0.3055±0.215 0.3505±0.0226
DAG 0.2719±0.0223 0.2789±0.0402 0.2413±0.0019 0.2656±0.0066 0.2265±0.0285 0.2496±0.0078
YNN 0.2167±0.0054 0.2496±0.0227 0.1835±0.0027 0.1941±0.0093 0.1870±0.0047 0.2034±0.0219
YNN&L1 0.1999±0.0066 0.2117±0.0043 0.1706±0.0039 0.1846±0.0062 0.2132±0.0019 0.1839±0.0141
YNN&L2 0.2007±0.0137 0.212±0.0187 0.1816±0.0046 0.2085±0.009 0.1831±0.0164 0.2003±0.0305

Table 2: Optical Recognition of Handwritten Digits

Models Crowdsourced Data
35 Nodes 38 Nodes 40 Nodes 45 Nodes 48 Nodes 50 Nodes

NN 0.2565±0.069 0.345±0.0011 0.2181±0.445 0.1536±0.0323 0.3159±0.0464 0.259±0.0937
SAE 0.2871±0.04 0.2952±0.0209 0.3603±0.0086 0.4186±0.0419 0.3656±0.0228 0.3375±0.0376
DAG 0.2446±0.0409 0.2095±0.0014 0.2721±0.534 0.3475±0.0208 0.1981±0.0145 0.2585±0.0654
YNN 0.1433±0.0159 0.1274±0.015 0.1725±0.0451 0.1552±0.0077 0.1791±0.0005 0.256±0.0001
YNN&L1 0.1633±0.0153 0.1522pm0.0031 0.18±0.0247 0.1594pm0.0225 0.143±0.0005 0.1494±0.032
YNN&L2 0.1586±0.015 0.1867±0.186 0.1614±0.0189 0.1483±0.142 0.2028±0.0147 0.1881±0.0001

proper (keeping with the original label ’bct’). The second dataset contains optically recognized271

handwritten digits made available by NIST using preprocessing programs to extract normalized272

bitmaps of handwritten digits from a preprinted form. Out of a total of 43 people. The third dataset is273

Connect-4 that contains all the legal 8-ply positions used in the game of connect-4, in which neither274

player has won yet, and the next move is not forced. The outcome class is the theoretical value of the275

first player in the game.276

Here, we compared our method with other methods in terms of a variety of nodes. In this way, we can277

examine the effectiveness of our model at different levels of complexity of the traditional structure.278

These nodes are constructed by the NN, SAE, and DAG models. We compared these models in terms279

of the percentage error. The obtained results are organized in the following Tables, where we can see280

that our YNN model achieves much better results in most of the cases.281

In fact, for all the data sets and a variety of nodes in the same level, our YNN model could tend to282

get better results after the nodes are yoked together. The effect of our YNN could be improved by283

optimizing the structure as explained before. All of the first four lines of the Tables are for the results284

that do not be optimized by the L1 or L2 regularization. We can see that our YNN structure is more285

efficient even without regularization, compared with the traditional structure.286

4.2 Optimization of Structure287

In this section, we optimize the structure of our model. Since every structure is a subgraph of a fully288

connected graph, the initial clique can be a search space for our model. Our model is optimized by289

using the L1 and L2 regularization, which are effective tools for optimizing structures. The obtained290

results show that such optimizations can yield better effect.291

Here, we study the structure of the model for different L1 and L2 parameters, as shown in Fig. 5.292

In the figure, the green line represents the results of YNN without optimization, while the blue and293

red lines are the results for a variety of L1 and L2 parameters, respectively. We can see that such294

optimization is effective for our YNN in most cases.295

Table 3: Connect-4 Dataset
Models connect-4 Data

35 Nodes 38 Nodes 40 Nodes 45 Nodes 48 Nodes 50 Nodes

NN 0.2789±0.0075 0.2726±0.0099 0.285±0.012 0.2875±0.0134 0.2923±0.0145 0.3073±0.0259
SAE 0.3912±0.0416 0.3325±0.0104 0.331±0.0044 0.3346±0.0096 0.3175±0.0082 0.3366±0.0099
DAG 3519±0.05 0.2762±0.0038 0.2828±0.0053 0.2989±0.0081 0.3032±0.0009 0.3134±0.0382
YNN 0.2751±0.0174 0.265±0.0182 0.2489±0.0004 0.2582±0.0045 0.2569±0.0065 0.2475±0.0068
YNN&L1 0.2758±0.026 0.2544±0.0046 0.2513±0.0017 0.2635±0.0029 0.2574±0.006 0.2625±0.0093
YNN&L2 0.2826±0.0366 0.2577±0.0035 0.2495±0.002 0.262±0.0081 0.2549±0.0067 0.2485±0.0122
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We also show the pixel map of the matrix for the clique. In the figure, the black-and-white graph296

represents the matrix of the fully connected graph for the nodes in the same level. The more black of297

the pixel means a lower weight for the corresponding edge.298

According with the decline of the error, we can always seek a better structure compared with the299

bidirectional complete graph used in our YNN. Besides the L1 regularization, the L2 regularization is300

also an effective tool to optimize the structure of our model. A larger L2 regularization lowers the301

weights of all the edges, thus yields more black pixels. However, from the decline of error, we can302

find that the L2 regularization is also effective to optimize our YNN structure.303
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Figure 5: Regularization of results based on L1 and L2 for Codon dataset, optically recognized
handwritten digits and connect-4 dataset.

(a) L1 regularization

(b) L2 regularization

Figure 6: Best pixel map of the clique based on L1 and L2 regularization for codon dataset, optically
recognized handwritten digits and connect-4 dataset.

5 Conclusion304

In this paper, we propose a YNN structure to build a bidirectional complete graph for the nodes in305

the same level of ANN, so as to improve the effect of ANN by promoting the significant transfer306

of information. In our work, we analyse the structure bias. Our method eliminates structure bias307

efficiently. By assigning learnable parameters to the edges, which reflect the magnitude of connections,308

the learning process can be performed in a differentiable manner. For our model, we propose a309

synchronization method to simultaneously calculate the values of the nodes in the same level. We310

further impose an auxiliary sparsity constraint to the distribution of connectedness by L1 and L2311

regularization, which promotes the learned structure to focus on critical connections. We also propose312

a small neural module structure that would efficiently reduce the computational burden of our model.313

The obtained quantitative experimental results demonstrate that the learned YNN structure is superior314

to the traditional structures.315
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