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Abstract

Recent advances in Structure-based Drug Design (SBDD) have leveraged gen-
erative models for 3D molecular generation, predominantly evaluating model per-
formance by binding affinity to target proteins. However, practical drug discovery
necessitates high binding affinity along with synthetic feasibility and selectivity, crit-
ical properties that were largely neglected in previous evaluations. To address this
gap, we identify fundamental limitations of conventional diffusion-based generative
models in effectively guiding molecule generation toward these diverse pharmaco-
logical properties. We propose CBYG, a novel framework extending Bayesian Flow
Network into a gradient-based conditional generative model that robustly integrates
property-specific guidance. Additionally, we introduce a comprehensive evaluation
scheme incorporating practical benchmarks for binding affinity, synthetic feasibility,
and selectivity, overcoming the limitations of conventional evaluation methods. Ex-
tensive experiments demonstrate that our proposed CBYG framework significantly
outperforms baseline models across multiple essential evaluation criteria, highlight-
ing its effectiveness and practicality for real-world drug discovery applications.

1 Introduction

In Structure-based Drug Design (SBDD), generative models capable of designing 3D molecules
that selectively bind target proteins have emerged as essential tools in drug discovery [3, 50]. Initial
approaches primarily utilized voxel-grid representations [33], evolving through autoregressive archi-
tectures [34, 43], to recent high-performing non-autoregressive, diffusion-based methods [20, 21, 19].
Despite significant progress, practical drug discovery requires more than just binding affinity; viable
drug candidates must also satisfy critical pharmacological constraints such as synthetic feasibility and
selectivity [29, 26]. To address this, recent diffusion-based studies have incorporated gradient-based
guidance strategies for enhanced property control during generation [11, 22].
However, it remains unclear whether diffusion-based guidance represents an optimal and practically
reliable strategy for controllable molecule generation. Moreover, widely used evaluation metrics in
existing SBDD research have rarely been rigorously examined regarding their adequacy in assessing
realistic drug candidate properties. In this study, we systematically investigate the theoretical and
practical limitations of diffusion-based guidance strategies and conventional evaluation metrics. To
overcome these problems, we introduce CBYG (Controllable Bayesian Flow Network with Integrated
Guidance), an extended Bayesian Flow Network [18] framework utilizing gradient-based conditional
generation, accompanied by comprehensive evaluation benchmarks targeting synthetic feasibility,
selectivity, and binding affinity. Our contributions provide essential insights and methodological
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advancements toward more robust, practical, and effective AI-driven molecular generation for real-
world drug discovery applications.

2 Rethinking of 3D Molecule Modeling in SBDD

Figure 1: Gradient trajectory for target properties
throughout the Generative Process for Proposed model
and diffusion model. Further Interpretation on these re-
sults is provided in Section 6.4.

Problem of guidance in hybrid modalities.
In SBDD, generating molecules with desired
properties that bind to target proteins is a pri-
mary objective. To this end, employing guid-
ance strategies with external predictors within
diffusion models is a considerable approach for
property-driven sampling [22]. However, the
hybrid nature of 3D molecular data, which com-
prises continuous Cartesian coordinates (typi-
cally modeled with Gaussian distributions) and
categorical atom types (modeled with categorical distributions), presents significant limitations to the
conventional application of guidance. The primary challenges are as follows:

1. Difficulty in Capturing Interactions: As continuous coordinates and categorical atom types are
sampled from fundamentally different types of distributions, the guidance mechanism may fail
to accurately reflect the interactions between them [35, 46]. This can lead to a loss of crucial
chemical context during the generation process.

2. Ineffective and Unstable Categorical Variable Guidance: Applying gradient-based guidance to
categorical variables in diffusion models is inherently problematic. The argmax operation in the
reverse process [19, 20, 21], coupled with the non-differentiability of categorical distributions,
renders guidance signals either ineffective or a source of instability, while workaround strategies
often introduce unnatural representations and increase model complexity, as shown in Figure 1.

3. Loss of Chemical and Structural Validity: Direct injection of gradients calculated during the
denoising process into the sample space can readily compromise the chemical and structural
validity of 3D molecules, which are highly sensitive to numerical perturbations. This complicates
property control and can result in the generation of unstable molecular structures.

Recent studies have begun exploring Bayesian Flow Network (BFN) [18] as a solution to these issues
in 3D molecular generation [46, 37]; however, these typically treat BFN as independent generative
frameworks distinct from diffusion models, leaving gradient-based conditional generation (guidance)
underexplored both theoretically and practically. Therefore, systematic theoretical clarification and
practical expansion of gradient guidance mechanisms within BFN, particularly in comparison with
well-established diffusion-based guidance strategies, remain essential research directions. A detailed
discussion on this point is provided in the Appendix J.

Figure 2: A comparative illustration of at-
tribute conditioning using p(l | xt) versus
p(l | x0) in the image and SBDD domains.

Necessity of Posterior Sampling in Guidance. In
gradient-based generative frameworks such as diffusion
models, conditional generation typically leverages a poste-
rior conditioned on labels (attributes) l, known as the con-
ditional score function ∇xt

p(l | xt), which is learned via
a dedicated neural network [11, 45, 22]. While effective
in image domains, where intermediate noisy states remain
semantically informative, this approach is unsuitable for
3D molecular generation because noisy intermediate struc-
tures lack chemical validity and making reliable attribute
prediction difficult, as shown in Figure 2. Recent studies
have proposed posterior sampling methods utilizing pre-
dicted final states (x0) to address this challenge [7, 23]; however, these methods focus primarily
on general conditional molecular generation tasks, not specifically on structure-based drug design
(SBDD). Furthermore, existing methods unnaturally discretize categorical atom types into continuous
variables and neglect inherent prediction uncertainties of the final state. Thus, further research and
methodological refinements are required to effectively employ x0-based guidance for SBDD tasks. A
detailed discussion on this subject is provided in the Appendix J.
Need for Selectivity dataset and various evaluation metrics. Previous research in SBDD has
predominantly relied on binding affinity measurements, typically using AutoDock Vina [12], to
evaluate generated 3D molecules, introducing potential evaluation biases. To enhance reliability,
incorporating diverse docking algorithms for affinity evaluation is essential.
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Another key consideration is Synthetic Accessibility (SA) scores [14], combining structural complex-
ity and fragment contributions into a single numerical value between 0 and 1, have frequently been
employed to assess synthetic feasibility. However, high SA scores often do not guarantee practical
synthetic routes, highlighting a critical gap in accurately evaluating real-world synthesizability.
Moreover, selectivity (ensuring that molecules bind specifically to target proteins without off-target
interactions) is equally important as affinity [47, 26]. Poor selectivity can cause unwanted side effects,
and while recent studies have proposed diffusion-based guidance methods [17, 6], these rely heavily
on pretrained classifiers predicting true binding molecules. The widely used CrossDocked2020
[15] dataset, initially intended for general docking research, is unsuitable for selectivity evaluations
without substantial additional docking computations. Furthermore, unclear criteria for identifying
true binders and significant data imbalance hinder obtaining reliable guidance signals. Consequently,
establishing biologically relevant benchmark datasets and developing effective controllable generation
strategies for selectivity is urgently required. A detailed discussion on this subject is provided in the
Appendix J.
The Contributions of this research addressing the aforementioned points are as follows:
• We introduce a novel approach that integrates BFN with diffusion models from a guidance

perspective to circumvent the limitations of diffusion guidance in SBDD. This approach explicitly
formulates a gradient-based guidance mechanism within a Bayesian update process and rigorously
establishes its theoretical foundations.

• We provide a comprehensive analysis of how injecting guidance into generative models affects
posterior sampling–based predictions and uncertainty in SBDD. This study offers new insights
into the interplay between guided generation and uncertainty quantification.

• We revisit the limitations of existing evaluation metrics in SBDD and propose a new set of essential
metrics for evaluating practical molecular generative models, including binding affinity, Synthetic
Accessibility (SA), and selectivity.

• Through extensive and comprehensive experiments, we demonstrate that the proposed framework
CBYG outperforms existing baseline models by a substantial margin. Notably, it achieves state-of-
the-art performance under both conventional and newly introduced evaluation criteria.

3 Background

A comprehensive overview of related work pertinent to this study is provided in the Appendix C.

3.1 Bayesian Flow Network in 3D Molecule Modeling

Bayesian Flow Network (BFN) [18] synthesize data through iterative Bayesian refinements in a
unified parameter space, distinct from diffusion models which operate directly in data space. Unlike
conventional methods that separately estimate distributions for continuous atomic coordinates and
categorical atom types, BFN jointly model both modalities within a single, tractable distribution
(typically Gaussian). Formally, the data distribution pϕ(m) is approximated by progressively refining
parameters θ via Bayesian updates:

pϕ(m) =

∫
pϕ(m | θn)p(θ0)

n∏
i=1

pU(θi | θi−1;αi)dθ1:n (1)

Each iterative refinement involves three transition kernels:
Sender distribution pS(yi | m;αi): injects controlled noise into the molecular representation,
enabling gradual data transformations.
Output distribution pO(m̂ | θi−1; ti): uses a neural network Ψ to reconstruct molecular features
based on previous parameter states, ensuring coherence despite noise.
Receiver distribution pR(yi | θi−1; ti, αi): predicts noisy observations by marginalizing over the
output distribution.
Bayesian updates are computed by incorporating noisy observations yi into parameters θi:

pU(θi | θi−1;αi) = EpO(m|θi−1;ti)

[
EpS(yi|m;αi)[δ(θi − h(θi−1,yi, αi))]

]
(2)

BFN ultimately optimize the KL divergence between sender and receiver distributions, progressively
refining parameters toward accurate data approximations. Therefore, this framework uniformly
handle discrete and continuous data through a modality-agnostic framework operating entirely on
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distribution parameters, thus avoiding discontinuities found in discrete diffusion models. After
training, sample generation involves iteratively refining parameters θi: 1) Draw intermediate sample
m′

i ∼ pO(· | θi−1, ti). 2) Obtain noisy observation yi ∼ pS(· | m′
i, αi). 3) Update parameters via

Bayesian inference: θi = h(θi−1,yi, αi).
This iterative Bayesian refinement yields progressively accurate parameter representations, enabling
coherent and robust data generation. For a detailed explanation of this part, we recommend referring
to the original paper [18] that proposed this model, as well as the Appendix A provided in this paper.

4 Unified Framework of Bayesian Flow Network and Score Based Diffusion
4.1 Overview

Building on the previously outlined theoretical foundations of score-based models [22], particularly
the concept of guidance, we now discuss how this framework can be integrated into the inference
process of BFN across different data modalities.

4.2 BFN for Continuous Variables from Score Gradient

When modeling continuous variables (e.g., atomic coordinates) using a Gaussian distribution
N
(
X | θx, ρ−1I

)
, the parameters θ that BFN seeks to optimize can be defined as the mean and

covariance matrices of the distribution: θ = {θx, ρ}. The bayesian update function of update
distribution (Equation (2)) whose fundamental objective is to find the optimal θ that best describes
the data distribution, is defined as below:

h
({

θx
i−1, ρi−1

}
,y, αi

)
= {θx

i , ρi} , where ρi = ρi−1 + αi, θx
i =

θx
i−1ρi−1 + yαi

ρi
(3)

Proposition 4.1. According to Graves [18], when the sender distribution for sampling θx
i is defined as

pS(y | X;αI) = N
(
X, α−1I

)
, the updated θx

i resulting from the update function can be expressed
in the following normal distribution form:

θx
i ∼ N

(
θx
i−1ρi−1 + αx

ρi
,
αi

ρ2i
I

)
(4)

By applying the reparameterization trick to the normal distribution above, it can be reformulated
as the following linear Gaussian model: θx

i =
αX+θx

i−1·ρi−1

ρi
+

√
αi

ρi
· z for z ∼ N (0, I). The

transformation from above linear gaussian model to the following equivalent formulation

x ∼ N
(
1

α

(
ρiθ

x
i − θx

i−1 · ρi−1

)
,
1

α
I

)
(5)

is obtained by rearranging the terms to explicitly express x in terms of the updated parameters.

The resulting distribution allows us to approximate the mean of x as follows: 1
α

(
ρiθ

x
i − θx

i−1 · ρi−1

)
.

Furthermore, this can be alternatively interpreted using Tweedie’s formula from a different perspec-
tive.
Definition 4.1(Tweedie’s Formula [13, 28]). Let z be a Gaussian random variable following the
distribution x ∼ N (x;µx,Σx). Then, Tweedie’s formula states that:

E[µx|x] = x+Σx∇x log p(x) (6)

where p(X) denotes the marginal distribution of x: f(x) =
∫∞
−∞ ϕσ(x− µ)g(µ)dµ, hereϕσ(µ) =(

2πσ2
)−1/2

exp
{
−z2/σ2

}
Based on the principles outlined in Definition 5.1, the corresponding relationship for the normal
distribution in Equation (5) can be formally established as follows: 1

α

(
ρiθ

x
i − θx

i−1 · ρi−1

)
=

x+ 1
α · ∇x log p(x). The derived formula enables us to reinterpret the Bayesian update function in

Equation (4) from the perspective of the score function.

h
(
θx
i−1,yi, αi

)
=

θx
i−1ρi−1 + yαi

ρi
=

αx+ θx
i−1 · ρi−1

ρi
+

√
αi

ρi
· ϵ

=
α

ρi
· x+

ρi−1

ρi
· θx

i−1 +
1

ρi
∇x log p(x) (7)
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Using the reparameterized Bayesian update function derived above, we can rewrite the Bayesian
update distribution pU from Equation (2) as follow:

pU
(
θx
i | θx

i−1;αi

)
= E

pO(m|θi−1;ti)

[
E

pS(yi|m;αi)
[ζ (θi | θi−1,yi, αi)]

]
, where ζ

(
θx
i | θx

i−1,yi, αi

)
: θx

i ←
α

ρi
· x+

ρi−1

ρi
· θx

i−1 +
1

ρi
∇x log p(x) (8)

where we define a compact notation for convenience: δ
(
θx
i − h

(
θx
i−1,yi, αi

))
=

ζ
(
θx
i | θx

i−1,yi, αi

)
Interestingly, the above derivation demonstrates that we can update the pa-

rameter θ by means of the gradient taken with respect to x.

4.3 BFN for Discrete Variables from Score Gradient

Similar to the modeling of continuous variables, and recalling that the fundamental objective of
BFN is to identify parameters that effectively encapsulate the data, this section explores whether the
Bayesian update process for discrete types can be reinterpreted in gradient form. According to Graves,
the Bayesian update function for discrete variables is defined as follows: h (θi−1,y, α) = θi =

eyθi−1∑K
k=1 e

yk(θi−1)k
. Furthermore, the sender distribution, which governs the sampling of the perturbed

state y of the discrete variable, is given by:

pS (y | x;α) = N (y | α (Kex − 1) , αK · I) (9)

where 1 is a vector of ones, I is the identity matrix, and ei ∈ RK is a vector defined as the projection
from the class index i to a length K one-hot vector (details provided by [18]). It is important to note
that ex is a one-hot vector only when it serves as the initial input.

Proposition 4.2. Similar to Proposition 4.1, we can reformulate the relationship between ex and y
using the reparameterization trick, as expressed follow: ex ∼ N

(
1

αK · y + 1
K , 1

αK I
)
. The essence

of the Bayesian update function for discrete variables lies in applying a softmax operation to the
previous timestep parameter θ and the perturbed variable y. Notably, this allows us to express y in a
gradient form, enabling a formal characterization of the relationship between the update function
and the score gradient.

Similarly, applying Tweedie’s formula to the normal distribution from which ex is sampled, as derived
above, yields the following relationship for the computed mean: 1

αK ·y+
1
K = ex+

1
αK∇ex log p(ex).

Utilizing this result, the update function for discrete variables can be extended into the following
gradient form:

h (θi−1,y, α) =
eyθi−1∑K

k=1 e
yk (θi−1)k

= Softmax(ey · θi−1) (10)

, where y = α (K · ex − 1) +
√
αK · ϵ = α (K · ex − 1) +∇ex log p(ex)

Similarly, as with the case of continuous variables, the Bayesian update distribution for discrete vari-
ables can be expressed using Eq. 10 as follows (for notational convenience, δ (θi − h (θi−1,yi, αi))
is denoted as ζx (θi | θi−1,yi, αi) in the discrete variable case):

pU
(
θv
i | θv

i−1;αi

)
= E

pO(m|θv
i−1;ti)

[
E

pS(yi|m;αi)

[
ζv
(
θv
i | θv

i−1,yi, αi

)]]
(11)

, where ζv
(
θv
i | θv

i−1,yi, αi

)
: θv

i ← Softmax
(
eα(K·ex−1)+∇ex log p(ex) · θi−1

)
Through this, we have demonstrated that the Bayesian update process for both continuous and
categorical variables can be effectively reformulated into a gradient-based representation. In addition,
we provide a detailed theoretical discussion and analysis of the relationship between our extended
BFN and diffusion models in the Appendix B. In the following section, we will incorporate this
concept specifically into the context of molecular generation for SBDD, introducing a strategy to
generate molecules with desired target properties.
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Figure 3: Schematic illustration comparing the guidance propagation mechanisms of diffusion-based
models and CBYG in target protein-aware molecular generation. The figure shows how guidance
propagation occurs in the molecular distribution p(x) across the 3D molecular space for each model
type. Further interpretation of this schematic illustration is provided in the Appendix E.

5 Guided Bayesian Flow Networks for 3D Molecule Generation in
Structure-Based Drug Design

5.1 Notation

The primary objective of this study is to advance SBDD by developing generative models capable
of producing molecules specifically tailored to bind to a given protein target. A target protein is
represented as P = {(xP,vP)}, and our goal is to generate ligand molecules denoted by m =
{(xM,vM)}.
Each atom in molecules and proteins is described by its 3D position x ∈ R3 and its chemical type
v ∈ RK , where K represents the total number of possible atom types. Molecules and proteins
can thus be effectively represented as matrices: m = [xM,vM] and p = [xP,vP], with dimensions
xM ∈ RNM×3, vM ∈ RNM×K , xP ∈ RNP×3, and vP ∈ RNP×K . For brevity, we denote molecules
as M = [x,v]. Here, NM and NP denote the number of atoms in the molecule and the protein,
respectively.
In the following section, we introduce our proposed model, CBYG. A general schematic comparison
between CBYG and diffusion models is provided in Figure 3.

5.2 Bayesian Update Distribution in SBDD

To enable property-controlled generation without retraining, we leverage the gradient-based Bayesian
update formulation (Section 4) explicitly conditioned on target properties l: θi ← h(θi−1,yi, αi, l).
Instead of embedding properties directly into the output distribution (which would require retraining),
we integrate a pretrained BFN with a BNN (Bayesian Neural Network) based external property
predictor. This conditional sampling approach closely aligns with methods used in conditional
diffusion models and guided generative frameworks [45, 4]. Formally, extending Equation (1), the
conditional molecular distribution is defined as follows:

pϕ(m|p, l) =
∫

pϕ(m|θn,p, l)p(θ0)
n∏

i=1

pU(θi|θi−1,p, l;αi)dθ1:n

=

[∫
pϕ(x|θx

n,p, l)p(θ
x
0 )

n∏
i=1

pU(θ
x
i |θx

i−1,p, l;αi)dθ
x
1:n

]

·

[∫
pϕ(v|θv

n,p, l)p(θ
v
0 )

n∏
i=1

pU(θ
v
i |θv

i−1,p, l;αi)dθ
v
1:n

]
. (12)

The Bayesian update distribution pU, incorporating explicit conditioning on protein p and property l,
is given by:

pU(θ
x
i |θx

i−1,p, l;αi) = EpO(m|θi−1,p;ti)

[
EpS(yi|x;αi)

[
ζx(θ

x
i |θx

i−1,yi,x, αi,p, l)
]]

pU(θ
v
i |θv

i−1,p, l;αi) = EpO(m|θv
i−1,p;ti)

[
EpS(yi|v;αi)

[
ζv(θ

v
i |θv

i−1,yi,v, αi,p, l)
]]

. (13)

The sender distribution for atom positions is defined as: pS(y | x;αI) = N (x, α−1I), where α
controls the noise intensity around clean coordinates x. The corresponding output distribution
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is modeled via a neural network Ψ: pO(m | θi−1,p; t) = Ψ(θi−1,p, ti), which predicts atom
coordinates and types at each time step ti, conditioned on protein p. For atom types, the sender
distribution embeds discrete types, v into continuous space: pS(y | v;α) = N (y | α(Kev −
1), αK · I), with ev as a one-hot vector, K the number of categories, and α scaling the noise.
Employing score-based guidance [45, 11], we embed property conditions into the gradient updates of
θ identified in Section 4, explicitly guiding molecule generation towards desired properties. Thus,
our guided Bayesian updates for continuous and discrete variables are respectively defined as:

ζx
(
θx
i | θx

i−1,yi,x, αi,p, l
)
: θx

i ←
αi

ρi
· x+

ρi−1

ρi
· θx

i−1 +
1

ρi
∇x log p(x | l)

=
αi

ρi
· y +

ρi−1

ρi
· θx

i−1︸ ︷︷ ︸
Unconditional Generation

+
1

ρi
∇x log p(l | x)︸ ︷︷ ︸

Controllable Guidance

(14)

ζv
(
θv
i | θv

i−1,yi,x, αi,p, l
)
: θv

i ← Softmax
(
eαi(K·ex−1)+∇ex log p(ex|l) · θv

i−1

)
= Softmax

(
ey · θv

i−1︸ ︷︷ ︸
Unconditional
Generation

· e∇ex log p(l|ex)︸ ︷︷ ︸
Controllable

Guidance

)
(15)

The n-step sampling process of CBYG begins with an initial parameter θ0, accuracy parameters αi,
and time steps ti. This process sequentially generates θ1, . . . , θn to produce the final sample. First,
using θi−1 and ti−1, a sample x is drawn from the output distribution pO(· | θi−1,p; ti). Next, based
on x and αi, a noisy sample y is drawn from the sender distribution pS(· | xi−1,p;αi). The parameter
is then updated via pU(· | θi−1,y,p, l;αi). Finally, the sample is generated from pO(· | θn,p; tn)
using the refined parameter θn. Detailed descriptions of the Bayesian neural network-based property
predictor for quantifying predictive uncertainty (guidance reliability), the sampling procedure of
CBYG that incorporates this uncertainty, and the SE(3)-equivariance of the proposed guidance
method are provided in Appendix D.

6 Experiment

To thoroughly evaluate the effectiveness and practicality of our proposed framework, we define 4
key research questions essential to the domain of structure-based drug design: 1) Are conventional
metrics sufficient for reliably evaluating the predicted binding affinity of generated molecules? 2)
Is the widely-used Synthetic Accessibility (SA) score an absolute indicator for practical synthetic
feasibility? 3) Does the guidance mechanism incorporated into our Bayesian Flow Network (BFN)
framework significantly enhance controllable generation performance? 4) Can our generative frame-
work effectively handle molecular selectivity, a key property required for generating novel drug
candidates? In the subsequent sections, we systematically address each of these research questions
through rigorous empirical analyses and extensive evaluations.

6.1 Experimental Setup

We use the CrossDocked dataset [15] for training and testing, which originally contains 22.5 million
protein-ligand pairs, and after the RMSD-based filtering and 30% sequence identity split by Luo et al.
[31], results in 100,000 training pairs and 100 test proteins. For each test protein, we sample 100
molecules for evaluation. Baseline models used for comparison are described in the Appendix F.

6.2 Comprehensive Evaluation Including Binding Affinity of Generated Molecules

Previous evaluations of generative models for target-specific molecular generation have typically
relied on binding affinity metrics derived primarily from AutoDock Vina [12], introducing inherent
biases due to dependence on a single algorithm. To address this limitation, we incorporate additional
docking tools, namely SMINA [30], which captures broader physicochemical interactions, and
GNINA [32], employing a deep learning-based scoring function, to enhance the reliability and
comprehensiveness of the evaluation. Furthermore, shifting away from the narrow focus on binding
affinity alone, we introduce the PoseBusters [5] benchmark, which assesses molecular validity and
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Table 1: Summary of binding affinity and molecular properties of reference molecules and molecules
generated by CBYG and baselines. (↑) / (↓) denotes whether a larger / smaller number is preferred.
Top 2 results are bolded and underlined, respectively.

Methods SMINA (↓) GNINA (↓) Vina (↓) High Affinity(↑) SA(↑) PB-Valid(↑) Diversity(↑)
Score. Dock. Score. Dock. Score. Dock. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Reference -6.37 -7.92 -7.06 -7.61 -6.36 -7.45 - - 0.73 0.74 95.0% 95.0% - -

Gen.

AR[31] -5.04 -7.18 -5.96 -6.31 -5.75 -6.75 37.9% 31.0% 0.63 0.63 88.3% 90.0% 0.70 0.70
Pocket2Mol [34] -4.38 -7.85 -5.50 -6.30 -5.14 -7.15 48.4% 51.0% 0.74 0.75 72.5% 86.5% 0.69 0.71
TargetDiff [20] -3.66 -8.51 -5.50 -6.44 -5.47 -7.80 58.1% 59.1% 0.58 0.58 67.0% 70.0% 0.72 0.71

DecompDiff [21] -4.48 -8.33 -5.89 -6.42 -5.67 -8.39 64.4% 71.0% 0.61 0.60 46.5% 45.9% 0.68 0.68
MolCRAFT [37] -6.03 -8.56 -6.02 -7.26 -6.61 -7.59 63.4% - 70.0% 0.68 0.67 74.0% 82.5% 0.70 0.73

Gen.
+

Opt.

RGA [16] 22.61 -7.25 19.99 -5.28 20.58 -8.01 64.4% 89.3% 0.71 0.73 91.3% 94.1% 0.41 0.41
DecompOpt [51] -3.54 -8.10 -5.26 -6.30 -5.87 -8.98 73.5% 93.3% 0.65 0.65 68.7% 77.7% 0.60 0.61
TacoGFN [42] 39.80 -7.46 32.90 -6.50 32.63 -7.74 58.4% 63.6% 0.79 0.80 89.3% 90.1% 0.56 0.56
ALIDiff [19] -5.68 -8.47 -6.85 -5.61 -7.07 -8.90 73.4% 81.4% 0.57 0.56 44.3% 40.0% 0.73 0.71

TargetOpt -5.71 -8.39 -6.12 -7.01 -6.96 -8.87 76.6% 82.3% 0.71 0.69 78.8% 81.3% 0.60 0.59
CBYG -7.74 -9.61 -7.63 -8.33 -8.60 -9.16 93.6% 100.% 0.84 0.87 94.9% 96.0% 0.61 0.62

stability across 17 metrics, including chemical consistency and ligand stability. Detailed descriptions
of the evaluation metrics and experimental setup are provided in the Appendix G.
Results. As shown in Table.1, Our proposed model substantially outperforms baseline methods
across 12 key metrics related to binding affinity and molecular properties, confirming effective
gradient-based guidance during generation. While baseline models exhibit significant differences
between pre- (Score. in Table.1) and post- (Dock. in Table.1) docking scores, our model maintains
consistently high affinity scores even before docking, indicating enhanced capability to implicitly
identify favorable binding poses and explicitly capture protein-ligand interactions. The robustness of
our model’s superior binding affinity is further supported by its consistent outperformance across
all three docking tools, unlike baseline methods whose relative rankings fluctuate across these
tools. Although our method does not achieve state-of-the-art performance in molecular diversity, this
limitation naturally arises from conditional generation, which inherently targets narrower distributions
to meet specific binding criteria. Futhermore, We assessed energetic stability of top-ranked molecules
from CBYG and baseline models using the PoseCheck [24] benchmark. Figure. 5 shows consistently
low energies, indicating stable binding poses. Additional results are provided in the appendix.
Detailed interpretations and results, including comprehensive score comparisons before and after
docking and ablation studies on guidance scale variations within the CBYG framework, are provided
in the Appendix H.

6.3 Evaluation of Realistic Synthetic Feasibility for Generated Molecules

Figure 5: Cumulative distribu-
tion function of strain energy

To achieve a more precise assessment of the realistic synthesizabil-
ity of generated molecules beyond conventional Synthetic Acces-
sibility (SA) scores (as discussed in Section 2), we introduced the
AiZynthFinder benchmark, which utilizes Monte Carlo Tree Search
(MCTS) to systematically identify viable retrosynthetic pathways.
This benchmark quantitatively evaluates practical synthetic feasi-
bility through six distinct metrics (Detailed descriptions and values
provided in the Appendix G).
Results. Our experimental results (Table. 3) demonstrate that de-
spite exhibiting high binding affinity, our proposed model achieves
near state-of-the-art performance in AiZynthFinder evaluations, in-
dicating its ability to generate molecules that are both efficacious and realistically synthesizable.
Interestingly, we observed no clear correlation between SA scores and actual retrosynthetic feasibility
(as measured by the Solved metric), underscoring the need for broader and more comprehensive

d

4F1M

ALIDiff DecompOpt MolCRAFT CByGReference

Figure 4: Visualizations of reference molecules and generated ligands for protein pockets (PDB ID:
4F1M) generated by CBYG, ALIDiff, DecompOpt, and MolCRAFT.

8



Table 2: Evaluation results of SA for molecules
generated by baseline models and the proposed
model using the AiZynthFinder benchmark.

Metric Solved
(↑)

Routes
(↑)

Solved
Routes

(↑)

Top
Score

(↑)

Reference 0.410 294.1 11.43 0.826

AR 0.194 227.2 3.616 0.744
Pocket2Mol 0.373 150.6 7.743 0.797
TargetDiff 0.082 233.5 1.800 0.695

DecompDiff 0.038 202.7 1.165 0.703
MolCRAFT 0.196 242.2 4.554 0.745

ALIDiff 0.079 321.8 1.521 0.660
RGA 0.487 157.9 3.292 0.822

DecompOpt 0.080 201.9 1.205 0.713
TacoGFN 0.072 255.4 0.530 0.743

CBYG 0.487 334.4 18.90 0.853

CbyG

Figure 6: Guidance score dynamics of three
model types throughout the generation pro-
cess

evaluations of synthetic accessibility in future SBDD research. Notably, models with high SA scores
exhibited practical retrosynthesis success rates of less than 50%, emphasizing the necessity of placing
greater emphasis on realistic synthetic feasibility within the SBDD field. Further detailed discussion
is provided in the Appendix H.

6.4 Assessment of Guidance Effectiveness Across Model Types

To validate the effectiveness of gradient-based guidance injection within CBYG framework, we
compared it empirically against a diffusion-based model. Specifically, we analyzed the dynamics
of guidance scores (p(l |m)), representing molecular property predictions at each timestep during
controllable generation (Diffusion model implementation details provided in Appendix E).
Results. As shown in Figure. 6, our CBYG guidance approach consistently achieves higher and
more stable guidance scores compared to diffusion-based methods. While these method utilizing
predicted final states (x0) can yield higher absolute scores, they exhibit increased variance due to
unstable point-estimations from intermediate noisy states. Unlike diffusion models operating directly
in sample space, CBYG conducts continuous gradient calculations within parameter space (including
categorical variables) thereby enabling more stable and effective controllable generation. Further
detailed analyses and discussions on this comparative experiment are provided in Appendix H.

6.5 Evaluation of Selectivity Control Capability

In this experiment, we evaluated whether our proposed controllable generation strategy
effectively enhances molecular selectivity, a critical factor in practical drug discovery.

Table 3: Evaluation of Selectivity Opti-
mization Capability between Diffusion-based
Guidance Methods and the CBYG Model.
"CBYG w/o G" denotes the CByG model
without guidance injection.

Metric
Succ. Rate

(↑) ∆ Score (↓)

TargetDiff 58.2 %
-0.78TargetOpt 68.6 %

CBYG w/o G 62.6 %
-1.39CBYG 78.3 %

We constructed a biologically relevant selectivity test set
from prior pharmacological studies [27, 10] involving
binding data of 38 kinase inhibitors across a panel of
317 kinases (Refer to Appendix I for detailed methods
and dataset construction). Our results demonstrate that
the proposed BFN-based guidance method significantly
outperforms diffusion-based approaches in selectivity met-
rics (Succ. Rate and Score), with greater improvements
upon guidance injection. These findings strongly sup-
port the practical applicability of BFN-based guidance in
real-world drug development scenarios. Further detailed
metrics and analyses are provided in the Appendix H.

7 Conclusions
In this paper, we introduced CBYG, a generative framework designed to produce 3D molecules
satisfying multiple critical properties, thereby enhancing practical applicability in structure-based drug
design (SBDD). We discussed inherent limitations of conventional diffusion-based guidance methods
and theoretically integrated a gradient-based guidance mechanism within the BFN framework to
address these issues. Empirical evaluations, guided by the key objectives highlighted in Section 2,
demonstrated that our proposed model significantly outperforms comparative baselines across various
evaluation metrics. Nevertheless, the finding that approximately half of the molecules generated
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(even by advanced models including CBYG) remain synthetically infeasible offers a critical insight
and underscores a significant area for further investigation within this research domain.
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A Detail description of Bayesian Flow Network

A.1 Key Distribution

A Bayesian Flow Network (BFN) maintains four distributions at each step: the input distribution
pI(m | θ), the output distribution pO(m | θ, t), the sender distribution pS(y |m;α), and the receiver
distribution pR(y | θ, t, α). Semantically, the input distribution represents the model’s current belief
(prior or posterior) over the data; the output distribution is the network’s predicted distribution
(allowing context) given the input parameters; the sender distribution is a noisy perturbation of
the true data; and the receiver distribution is the model’s predicted distribution over such noisy
messages (averaging over the output distribution). Mathematically, all four are factorized over the
data dimensions for tractability.
Input distribution pI(m | θ). This is a factorized distribution over the data m = (m(1), . . . ,m(D))
with parameters θ = (θ(1), . . . ,θ(D)). For example, each θ(d) might parametrize a univariate
Gaussian or categorical for m(d). Initially pI is a simple prior (e.g.N (0, 1) or a uniform categorical).
During sampling, pI is updated via Bayes’s rule when new observations arrive, so its parameters θ
become progressively more informative about m.
Output distribution pO(m | θ, t). Given input parameters θ and the current (discrete or continuous)
process time t, a neural network computes an output vector that parameterizes pO. However, unlike
pI it integrates context across dimensions via the network: the parameters of pO depend jointly on all
of θ and t, allowing modeling of correlations among data dimensions . In effect, pO represents the
empirical sample distribution accumulated up to step t, providing a comprehensive prediction that
integrates the gathered evidence θ together with contextual information, and it will be used to predict
the clean data distribution.
Sender distribution pS(y |m;α). This is the distribution over a noisy observation y given the true
data m, with accuracy (noise level) αi. It is also factorized across dimensions: pS(yi | m;αi) =∏D

d=1 ps

(
y
(d)
i |m(d);αi

)
. The parameter αi controls informativeness: at i = 0 the sender’s sample

is pure noise (uninformative about m), and as i → ∞ the sample concentrates on y = m. In
practice, α increases through the transmission steps, so that each sender sample carries more refined
information about the true data. Intuitively, pS defines the “message” drawn from data: Alice adds
controlled Gaussian or categorical noise to x to form the sender distribution and then draws a sample
y ∼ pS(· | x;α) (For the Alice-and-Bob example, we recommend consulting the original BFN paper
[18]).
Receiver distribution pR(y | θ, t, αi). This is the model’s predictive distribution over possible
noisy observations y given the output distribution. Formally, it is obtained by marginalizing out
the unknown true data m: pR(yi | θi−1; ti, αi) = E

m̂∼pO(m̂|θi−1;ti)
pS (y | m̂;αi). In other words, for

every candidate m, we consider the sender distribution pS(y |m;α) that would have been used if m
were the truth, and weight these by the network’s probability pO(m | θ, t). The receiver distribution
thus captures both the “known unknown” due to the sender noise (entropy of pS) and the “unknown
unknown” from the output distribution’s uncertainty.
Bayesian update distribution pU(θi | θi−1;αi). This distribution specifies how the parameter
vector of the input distribution evolves after assimilating a noisy observation. Concretely, let the
closed-form update rule be θi = h(θi−1,yi, αi) where yi ∼ pS(yi | m;αi). Conditioning on the
current parameters θi and the accuracy level αi, the update distribution is defined as the push-forward
of the sender distribution:

pU (θi | θi−1;αi) = E
pO(m|θi−1;ti)

[
E

pS(yi|m;αi)
[δ (θi − h (θi−1,yi, αi))]

]
(16)

Because h(·) is applied component-wise under the factorisation of pS, pU factorises across parameter
dimensions, preserving tractability. The role of pU is to enact a one-step Bayesian posterior update
on θ: at early iterations, when αi is small, pU is broad and admits substantial parameter movement,
whereas at later iterations, larger αi makes the update sharply concentrated, refining θ toward the
values most consistent with the clean data. Thus pU provides the formal bridge between each noisy
message and the progressively more informative input distribution maintained by the network.
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A.2 Modality-Agnostic Representation and Progressive Refinement

Because BFN operate on distribution parameters rather than raw data, the same framework applies
uniformly to discrete, discretized, and continuous modalities. For example, discrete data are repre-
sented by categorical distribution parameters (probabilities), which lie on a probability simplex and
thus provide continuous inputs to the network. In fact, the parameters of a categorical distribution
are real-valued probabilities, so the inputs to the network are continuous even when the data is
discrete. Likewise, continuous data use Gaussian or other continuous distributions. In all cases the
model processes continuous-valued parameters, avoiding discontinuities common in discrete diffusion
models. This modality-agnostic formulation means that the same Bayes-and-network machinery can
generate text, images, or other data with only minimal adaptation.

A.3 Generative Sampling Process

After training, sample generation proceeds by iteratively refining the distribution parameters via
Bayesian updates. Starting from an initial parameter θ0 (e.g., a prior at initial noise level t0), the
model performs N iterations of the following procedure for i = 1, . . . , N :

1. Sample from output distribution: An intermediate sample m′
i is drawn from the output

distribution m′
i ∼ pO(· | θi−1, ti) given the current parameter θi−1 and scheduled noise

level ti.

2. Sample from sender distribution: A noisy observation yi is then drawn from the sender
distribution, conditional on m′

i, via y′
i ∼ pS(· |m′

i, αi), where αi is the accuracy (inverse
noise variance) prescribed for step i.

3. Bayesian parameter update: The distribution parameter is updated by incorporating
the observation yi through the Bayesian update function: θi = h(θi−1,yi, αi). Here
h(θi−1,yi, αi) computes the posterior parameter after observing yi with precision αi, given
the prior θi−1.

Repeating the above steps yields a final parameter θN after N iterations. This θN characterizes a
highly concentrated distribution (approximately a Dirac delta distribution in the limit of large N ),
from which the final data sample can be obtained by drawing m ∼ pO(· | θN , tN ). Importantly, the
receiver distribution pR is not explicitly used during generation – its effect is implicitly achieved by
the two-step sampling (pO followed by pS) at each iteration. This ensures that sampling relies solely
on the forward update pattern m′

i → yi → θi described above, in line with the canonical BFN [18]
formulation. A simplified schematic illustration of this is provided in Figure 7.

B Score-Driven Sampling in DDPM vs. BFN: A Rigorous Comparison

B.1 Continuous Variable Modeling

Diffusion based sampling

xt−1 =
1
√
αt

xt −
1− αt√
1− ᾱt

√
αt

ϵ0 + σtz

=

√
αt (1− ᾱt−1)

1− ᾱt
xt +

√
ᾱt−1 (1− αt)

1− ᾱt
x0 + σtz

=
1
√
αt

xt +
1− αt√

αt
∇xt

log p (xt) + σtz

guidance→ 1
√
αt

xt +
1− αt√

αt
∇xt

log p (xt | y) + σtz (17)

=
1
√
αt

xt +
1− αt√

αt
∇xt

log p (xt) +
1− αt√

αt
∇xt

log p (y | xt) + σtz (18)

≃ 1
√
αt

xt +
1− αt√

αt
∇xt log p (xt) +

1− αt√
αt
∇xt log p (y | x0) + σtz (19)
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BFN based sampling

θi =
ρi−1

ρi
θi−1 +

αi

ρi
y (20)

=
ρi−1

ρi
θi−1 +

α

ρi
x0 +

1

ρi
∇x0

log p(x0) (21)

guidance→ ρi−1

ρi
θi−1 +

α

ρi
x0 +

1

ρi
∇x0 log p(x0 | y) (22)

=
ρi−1

ρi
θi−1 +

α

ρi
x0 +

1

ρi
∇x0

log p(x0) +
1

ρi
∇x0

log p(y | x0) (23)

=
ρi−1

ρi
θi−1 +

αi

ρi
y +

1

ρi
∇x0

log p(y | x0) (24)

B.2 Categorical Variable Modeling

Diffusion based sampling

xt−1 ∼ C (xt−1 | θpost(xt, x̂0)) (25)

, where θpost(xt, x̂0) =

[
αtxt +

1−αt

K

]
⊙
[
ᾱt−1x̂0 +

1−ᾱt−1

K

]
∑K

k=1

([
αtxt +

1−αt

K

]
⊙
[
ᾱt−1x̂0 +

1−ᾱt−1

K

])
k

(26)

Here, ⊙ denotes element-wise multiplication, ensuring the probabilities are normalized over all
categories. And, C denotes categorical distribution to model discrete atom types v.
BFN based Sampling

θi = Softmax(ey · θi−1) (27)

= Softmax(eα(K·ex−1)+∇ex log p(ex) · θi−1) (28)

guidance→ Softmax(eα(K·ex−1)+∇ex log p(ex|l) · θi−1) (29)

= Softmax
(
ey · θv

i−1 · e∇ex log p(l|ex)
)

(30)

B.3 Theoretical Distinctions between Diffusion Models and Bayesian Flow Networks

Bayesian Flow Networks (BFN) differ fundamentally from Diffusion Models (DMs) in their mecha-
nism of uncertainty injection and the domain of parameter updates. Unlike diffusion-based generative
processes, which explicitly manipulate the data sample x and inject Gaussian noise at each step to
maintain stochasticity, BFN iteratively update distribution parameters θ through Bayesian inference,
integrating noisy observations yi drawn from a sender distribution pS(y | x;αi).
In contrast to diffusion methods, BFN have no explicit forward noise injection process. Instead,
the generation is achieved by a deterministic parameter update conditional upon the observed

Figure 7: Schematic illustration of Bayesian updates for each variable type
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sample yi, implicitly encoding uncertainty through the random sampling of yi. Specifically, for
continuous variables, the sender distribution pS(yi | x;αi) is typically Gaussian, with precision
(inverse variance) controlled by αi. A small value of αi implies high noise, rendering the observed
value yi nearly independent of the true data x, whereas a large αi indicates a highly informative
(low-noise) observation. Formally, the BFN update can be expressed as:

θi =

(
1− αi

ρi

)
θi−1 +

αi

ρi
yi, where ρi = ρi−1 + αi. (31)

This update rule can be directly interpreted through the lens of Kalman filtering for scalar Gaussian
models. In this analogy, each update of θi is drawn toward the observed sample yi proportionally
to the precision parameter αi, thus progressively reducing uncertainty as ρi increases. Given the
sampled yi, the Bayesian update function remains strictly deterministic, and no additional random
noise is explicitly introduced beyond the implicit stochasticity already present in yi.
This principle of implicit uncertainty introduction also extends naturally to categorical variables.
Suppose the parameter vector θi represents a categorical probability distribution over K classes, i.e.,
θi = (p

(1)
i , p

(2)
i , . . . , p

(K)
i ). In this case, the sender distribution can be viewed as emitting symbols yi

according to a confusion matrix parameterized by αi. Specifically, we have:

pS(yi = c | x = k;αi) ≈

{
1
K , when αi = 0 (uninformative observation),

1c=k, as αi →∞ (perfectly informative).
(32)

Upon observing the symbol yi = c, the Bayesian update for the parameter θi follows:

θi+1(j) ∝ θi(j) · Pr
ρi

[Y = c | X = j]. (33)

Although yi is originally sampled as a continuous vector from a Gaussian distribution centered around
a one-hot encoding of the true class, the Bayesian update interpretation treats yi as if it were decoded
into a discrete class index c = argmaxk yk. For rigorous derivation and proof of this decoding
interpretation, we refer the reader to Graves et al. [18]. The resulting posterior update normalizes
probabilities over all classes j, illustrating explicitly how the sampled observation yi reweights prior
probabilities θi(j) based on the likelihood of observing yi under each class hypothesis X = j. Thus,
the sampled variable yi serves directly as an informative mediator driving the parameter dynamics.
Unlike the arbitrary Gaussian noise z used in diffusion processes, the sampled variable yi in BFN
is inherently linked to the unknown true data x through the sender distribution pS(yi | x). As the
inference procedure progresses (i.e., as i increases and noise decreases), yi provides increasingly
precise information, causing the parameter θi to converge toward a distribution sharply concentrated
around the true data. This iterative Bayesian updating mechanism effectively transfers information
from the sample space into the parameter space.
In summary, two critical distinctions between BFN and diffusion-based generative methods emerge
from our theoretical analysis:

1. Implicit versus Explicit Noise Injection: BFN deterministically update parameters given
noisy observations, implicitly capturing uncertainty. In contrast, diffusion models explicitly
add random noise to samples at each step to maintain stochasticity.

2. Parameter-space versus Sample-space Updates: Diffusion models perform both training
and inference entirely within the sample space. Conversely, BFN operate fundamentally
within the parameter space, integrating information from the sample space through occa-
sional noisy observations, thus creating a natural integration of information between the two
spaces.

C Related Work

C.1 Molecule Generation in Structure-based Drug Design

With the rapid accumulation of protein structural data, generative methods for molecule design
have become increasingly important in structure-based drug discovery. Initial approaches, such as
[44], employed sequence-based generative models to produce SMILES representations informed by
protein binding sites. However, the advent of powerful geometric and 3D modeling methods has
shifted the paradigm toward directly constructing molecules within three-dimensional spaces. For
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example, [38] represented molecules using voxelized atomic density grids and utilized Variational
Autoencoders (VAEs) for molecular synthesis. Meanwhile, [31], [34], and [36] introduced sequential,
autoregressive approaches for placing atoms or functional groups step-by-step into target binding
pockets. Building upon these autoregressive techniques, fragment-based strategies, as seen in FLAG
[49] and DrugGPS [48], integrated chemically meaningful fragments, thereby improving the structural
realism of generated ligands.
In parallel, diffusion-based generative methods have emerged, achieving remarkable success across
various generative tasks such as image and text synthesis. Adaptations of these models in molecular
contexts, exemplified by recent studies [20, 39, 25, 21], iteratively refine atom identities and coordi-
nates, leveraging symmetry-preserving architectures such as SE(3)-equivariant neural networks to
ensure chemical validity and structural accuracy.
Despite substantial advancements, current generative frameworks frequently encounter difficulties in
simultaneously optimizing multiple pharmacologically relevant properties, including binding affinity,
synthetic accessibility, and low toxicity. In practical drug development scenarios, the simultaneous
control and optimization of these attributes are typically mandatory requirements rather than optional
criteria [9]. Thus, developing generative strategies capable of effectively incorporating multiple
property constraints remains a critical challenge in the field.

C.2 Optimization based Molecule Generation in Structure-based Drug Design

Recent research in molecular generative modeling has moved beyond approximating training data
distributions toward explicit optimization strategies aimed at producing molecules with desirable
properties, such as high target protein binding affinity and synthetic accessibility (SA).
For example, RGA [16] employs genetic algorithms specifically tailored to structure-based drug
design (SBDD), explicitly incorporating target protein structures into molecular optimization. De-
compOpt [51] combines a pre-trained, structure-aware equivariant diffusion model to initially identify
suitable molecular substructures complementary to target binding pockets, followed by a docking-
based greedy iterative optimization to enhance binding affinity. TacoGFN [43] leverages generative
flow networks (G-FlowNets) to identify pharmacophoric interactions with target proteins, subse-
quently utilizing reinforcement learning to optimize binding affinity and synthetic accessibility.
Additionally, ALIDiff [19] introduces a preference-based optimization method that aligns pre-trained
generative models to specified molecular properties through fine-tuning.
Despite their demonstrated effectiveness, these approaches share an intrinsic limitation: since op-
timization methods are tightly integrated into their training processes, adapting the models to new
property requirements inevitably necessitates retraining. In contrast, our proposed approach dis-
tinguishes itself by leveraging a pre-trained generative model, enabling effective multi-property
optimization directly through modifications at sampling time, thus avoiding costly retraining and
enhancing flexibility in targeting diverse pharmacologically relevant properties.

C.3 Bayesian Flow Network

Recently, Bayesian Flow Network (BFN) have gained attention as effective models for protein
sequence modeling [2] and molecular structure generation [46, 37], demonstrating promising capabil-
ities particularly in the generation of realistic three-dimensional molecular structures. Despite these
advancements, the development of controllable generation methods within BFN, aimed at optimizing
diverse molecular properties required for viable drug candidates, remains largely unexplored. Thus,
establishing a theoretical link between generative models based on maximum likelihood estimation,
such as diffusion models and BFN, and subsequently formulating gradient-guidance strategies within
the BFN framework, represents an essential step forward. Such advancements could significantly
inform future directions in the field of structure-based drug design.

D Implement Detail

D.1 Predictor with Bayesian Neural Network for Uncertainty

To achieve property-driven generation without retraining the generative model, we introduce an
external Bayesian neural network (BNN) predictor modeling the conditional distribution p(l |m,p)
as a Gaussian distributionN

(
l;µ(m,p),σ(m,p)2

)
with mean µϑ(m,p) and variance σϑ(m,p)2.

Unlike point estimates, this BNN provides uncertainty-aware predictions for properties (e.g., binding
affinity), enabling informed guidance. During molecule generation, the gradient∇m log p(l |m,p),
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which incorporates predictive uncertainty, guides the generative process. This uncertainty integration
allows the model to appropriately moderate its guidance, preventing overly confident predictions
toward regions unsupported by the predictor.
We approximate the overall predicted label distribution as Gaussian with predictive mean and variance
computed from these samples. In particular, the mean is µ̂ϑ(x,p) = M−1

∑M
i=1 µϑ,i(x,p), and the

predictive variance σ̂2
ϑ(x,p) = M−1

∑
i

(
σ2
ϑ,i(x) + µ2

i (x)
)
− µ2

ϑ,i(x) combines the average of
the BNN’s output variances with the variance of its output means. Using the law of total variance, we
decompose the predictive uncertainty into aleatoric and epistemic components:

σ2
ϑ(m,p) = M−1

∑
i

σ2
ϑ,i(m,p) +M−1

∑
i

µ2
i (m,p)− µ2

ϑ,i(m,p)

= E
[
σ2
ϑ(m,p)

]
+ E

[
µ2(m,p)

]
− E [µϑ(m,p)]

2

= E
[
σ2
ϑ(m,p)

]︸ ︷︷ ︸
Aleatoric Uncertainty

+ Var [µ(m,p)]︸ ︷︷ ︸
Epistemic Uncertainty

(34)

where ϑ represents the BNN’s parameters (random due to the weight posterior). The first term
σ2

aleatoric is the expected predictive variance (reflecting inherent noise or irreducible uncertainty in
the property given (x,p)), while the second term σ2

epistemic is the variance of the predicted means
(reflecting uncertainty in the model parameters due to limited training data). Our CBYG can thus
modulate the influence of the guidance signal in proportion to the predictor’s confidence, improving
robust controllability.
We train the property predictor on an external dataset of protein–ligand complexes, allowing it to learn
a mapping from 3D structures to property values independent of the generative model. In particular,
we use the CrossDocked2020 dataset [15] to train the predictor. Each training sample provides a
protein structure p, a ligand m, and a ground-truth label l (e.g., an experimental or docking-derived
affinity score). We optimize the BNN by maximizing the likelihood of the true labels under its
predicted Gaussian distribution. The negative log-likelihood (NLL) loss for a single sample is given
by (For notational simplicity, we omit p):

LNLL (yn,xn) =
logσ2

ϑ (xn)

2
+

(µϑ (xn)− yn)
2

2σ2
ϑ (xn)

, (35)

where we omit the constant 1
2 log(2π) for brevity. In addition to the standard NLL, we also employ a β-

weighted NLL variant (denoted β-NLL) to improve training stability in the presence of heteroscedastic
uncertainty [41], as follow:

Lβ−NLL (yn,xn) = stop
(
σ2β
)
LNLL (yn,xn) , (36)

for some hyperparameter β > 0. Setting β = 0 recovers the original NLL loss, while a positive β
increases the relative penalty for large predicted variances.

D.2 Implement detail

The generative backbone architecture employed in our proposed CByG framework directly inherits
the architecture and pretrained weights from MolCRAFT [37]. For the property predictor backbone,
we adapted the graph transformer architecture from TargetDiff [20] by removing the equivariant head,
resulting in a novel SE(3)-invariant graph transformer. This design choice naturally aligns with the
inherent symmetry of protein-ligand complexes, where binding affinity and synthetic accessibility
scores remain invariant to rotations and translations.
Specifically, the property predictor comprises 16 attention heads, with each attention block consisting
of three SE(3)-invariant layers featuring a hidden dimension of 64. Key and value embeddings
are generated through a two-layer MLP. Layer normalization is uniformly applied throughout the
network, and the Swish activation function is adopted. The learning rate is exponentially decayed
by a factor of 0.6, with a lower bound set at 1 × 10−6. This decay is triggered if no improvement
is observed in the validation loss for ten consecutive evaluations, which occur every 1000 training
steps. Finally, the property predictor’s scoring function is defined as Score =

(
DS
−20 × SA

)
, where

DS means docking score and SA means synthetic accessibility score.

D.3 Sampling
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Algorithm 1 Sampling Procedure CBYG

1: Input:
2: Protein pocket p,
3: Pre-trained output network:
4: pO(m | θi−1,p; t)← Ψoutput(θi−1,p, ti),
5: Property predictor network providing property predictions and uncertainty:
6: pl(l |m,p)← N

(
l;µϑ(m,p),σϑ(m,p)2

)
,

7: Pre-defined precision schedule for coordinate and type (αx,i, αv,i) according to [18],
8: Guidance scale for coordinate and type← λx, λv

9: θx
0 ,θ

v
0 ← 0,

[
1
K

]
NM×K

10: for i = 1 to N do
11: t← i−1

n
12: m : [x̂, v̂] ∼ pO(m | θi−1,p; t)
13: yx,i ∼ ps(yi | x̂;αx,i)
14: yv,i ∼ ps(yi | v̂;αv,i)
15: µϑ,σ

2
ϑ ← pl(l |m,p) ▷ Mean and uncertainty from property predictor

16: θx
i ← αi

ρi
yx,i +

ρi−1

ρi
θx
i−1 + σ2

ϑ · λx · 1
ρi
∇x log pl(l | [x̂, v̂],p)

17: θv
i ←Softmax

(
eyv,i · θv

i−1 · eh
)

where h = σ2
ϑ · λv · ∇ev log pl(l | [x̂, v̂],p), ev = GumbelSoftmax(v̂)

18: end for
19: m ∼ pO(m | θN ,p; t)
20: return [x̂, v̂]

D.4 SE(3)-Equivariance

Since our proposed guidance injection strategy is integrated into an SE(3)-equivariant generative
model, the designed guidance itself must inherently preserve the SE(3)-equivariance property. As
described by [40], aligning the protein-ligand complex to center the pocket at the origin removes
translation equivariance, requiring only O(3)-equivariance. The following provides a formal proof
verifying this property.
Proposition D.1. Suppose the property preditor Ψprop([xM,vM], [xP,vP]) ← pl(l | m,p) is
invariant such that Ψprop([xM,vM], [xP,vP]) = Ψprop([Tg(xM),vM], [Tg(xP),vP]). Denoting Tg

as the group of O(3)-transformation, Tg(x) = Rx, where R ∈ R3×3 is the rotation matrix, and
b ∈ R3 is the translation vector. Then, gradient guidance function is orthogonal equivariant such
that ∇xMΨprop(Tg(xM), Tg(xP)) = Tg(∇xMΨprop(xM,xP)). Variables corresponding to type v are
omitted from the notation, as they remain unaffected by O(3) transformations.

Proof. Given the invariance of the property predictor Ψprop(xM,xP) under O(3) transformations, it
follows that Ψprop(RxM,RxP) = Ψprop(xM,xP). Differentiating both sides of the equation with
respect to xM yields:

Ψprop(xM,xP) = Ψprop(RxM,RxP) (37)
∇xMΨprop(xM,xP) = ∇xMΨprop(RxM,RxP)

=

(
∂(RxM)

∂xM

)⊤

∇xMΨprop(RxM,RxP)

= R⊤∇xMΨprop(RxM,RxP) (38)

R∇xMΨprop(xM,xP) = RR⊤∇xMΨprop(RxM,RxP)

= ∇xMΨprop(RxM,RxP) (39)
Therefore, ∇xMΨprop(·) exhibits equivariance under the transformation Tg(·), completing the proof.

E TargetOpt Implement Detail
To evaluate the effectiveness of our proposed guidance injection within the Bayesian Flow Network
framework, we implemented a comparable guidance method within a diffusion-based generative
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model. Specifically, we adopted the TargetDiff [20] architecture, enhancing it with gradient-based
guidance strategies. Two distinct gradient guidance approaches were considered: (1) gradient
computation based on property prediction at arbitrary intermediate time steps xt, and (2) gradient
computation via posterior sampling, leveraging property prediction at the fully denoised state x̂0.
For fair comparison, the model utilized for property prediction at x̂0 was identical to that employed
in our CBYG model. Below, we present the unconditional denoising procedures used by TargetDiff
for each variable type; additional details can be found in the original paper [20].

q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
, q (vt−1 | vt,v0) = C (vt−1 | c̃t (vt,v0))

(40)

, where µ̃t (xt,x0) =
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt, β̃t = 1−ᾱt−1

1−ᾱt
βt, and c̃t (vt,v0) =

c∗/
∑K

k=1 c
∗
k and c∗ (vt,v0) = [αtvt + (1− αt) /K]⊙ [ᾱt−1v0 + (1− ᾱt−1) /K] .

Under the scenario of property prediction at arbitrary intermediate time steps xt, the update procedure
for atomic coordinate and type can be modified as follows.

µ̃t (xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt +

1− αt√
αt
∇xt

log p (l | xt,p) (41)

c̃t (vt,v0) =

(
c∗∑K
k=1 c

∗
k

+ δ

)
· e∇vtp(l|vt,p) (42)

Additionally, when employing posterior sampling for gradient computation, the gradient form can be
reformulated analogous to DPS as follows.

∇xt
log p (l | xt) ≃ ∇ logEx0∼p(x0|xt) [p (y | x̂0)] (43)

∇vt
log p (l | vt) ≃ ∇ logEv0∼p(v0|vt) [p (y | v̂0)] (44)

F Baseline Model for Evaluation

For a fair comparison, we categorize baseline models into two groups: "Only Generation Type" and
"Optimization based Generation Type". Movevoer, we selected state-of-the-art generative models
exhibiting competitive performance as representative models for the "Only Generation Type" category.

Only Generation Type
• AR [31] leverages Markov chain Monte Carlo techniques to sequentially infer molecular structures

from spatial atomic density representations.
• Pocket2Mol [34] incrementally synthesizes molecules through sequential prediction of atoms and

associated bonds using an E(3)-equivariant architecture, selectively expanding frontier atoms to
significantly improve sampling efficiency.

• TargetDiff [20] enhances dual-modality diffusion methodologies, distinctly processing continuous
and discrete modalities through parallel diffusion pipelines, demonstrating improved outcomes
over purely continuous formulations such as DiffSBDD.

• DecompDiff [21] adopts molecular decomposition techniques, separating the molecular structure
into functional arms and connective scaffolds, thereby integrating chemically-informed priors
within diffusion-based generative mechanisms.

• MolCRAFT [37] exploits Bayesian Flow Networks coupled with sophisticated sampling schemes,
showing significant enhancements relative to contemporary diffusion-based methodologies. We
directly utilized the publicly available molecules provided through their respective GitHub reposi-
tories for our experiments.

Optimization based Generation Type
• RGA [16] extends the evolutionary optimization approach of AutoGrow4 by integrating a rein-

forcement learning-based policy conditioned on target binding pockets, effectively constraining
exploratory randomness during molecular search procedures. Since the molecules generated by
these models for CrossDocked2020 benchmark are not publicly available on GitHub, we trained
these models ourselves to produce molecules for evaluation.

21



• DecompOpt [51] employs conditional generative modeling of chemically meaningful fragments
aligned with receptor sites, iteratively optimizing molecular generation via guided resampling
within a structured diffusion latent space, informed by fragment-based oracle rankings. Since the
molecules generated by these models for CrossDocked2020 benchmark are not publicly available
on GitHub, we trained these models ourselves to produce molecules for evaluation.

• TacoGFN [42] leverages a G-FlowNet-based autoregressive approach, incrementally assembling
molecular structures fragment-by-fragment while identifying key pharmacophoric interactions with
target proteins. It integrates a reward-based optimization mechanism, simultaneously promoting
advantageous properties such as binding affinity and synthetic accessibility (SA score) throughout
the generative process. We directly utilized the publicly available molecules provided through their
respective GitHub repositories for our experiments.

• ALIDiff [19] is an SE(3)-equivariant diffusion generative model that incorporates recent reinforce-
ment learning from human feedback techniques, leveraging Energy Preference Optimization to
effectively generate molecules exhibiting superior properties such as enhanced binding affinity and
other desirable attributes. We directly utilized the publicly available molecules provided through
their respective GitHub repositories for our experiments.

• TargetOpt is a diffusion-based generative model developed specifically in this study to enable
gradient-based guidance propagation, serving as a comparative baseline for evaluating the ef-
fectiveness of guidance mechanisms between BFN and diffusion-based frameworks. Although
several studies have adopted similar optimization strategies, we exclude these approaches from
consideration, as they either exclusively optimize for binding affinity or neglect guidance on
categorical atom types.

G Additional Experiment Metrics

G.1 Experimental Setup of Section 6.2

We employ multiple metrics to comprehensively evaluate the binding affinity and intrinsic properties
of the generated molecules. Specifically, we utilize SMINA, GNINA, and AutoDock Vina to
independently calculate two distinct forms of binding affinity: (1) the intrinsic docking scores of
the generated molecules themselves (denoted as Score.), and (2) the affinity scores obtained via
re-docking procedures (denoted as Dock.). Additionally, we introduce the High Affinity metric,
defined as the percentage of generated molecules exhibiting superior binding affinity compared
to a given reference ligand for each target protein. To quantify the intrinsic molecular properties,
we measure the Synthetic Accessibility (SA) and Diversity metrics. Finally, to capture the overall
stability and validity of generated molecules (both intrinsically and in complex with the target protein)
we utilize the PB-valid score from the PoseBusters benchmark. The metric PB-valid denotes the
proportion of generated molecules considered valid under the PoseBusters benchmark, assuming that
violation of any of its 17 evaluation criteria renders the molecule invalid.

G.2 Experimental Setup of Section 6.3

We quantitatively evaluate the synthetic feasibility of generated molecules using six key metrics
provided by AiZynthFinder (Solved, Routes, Solved Routes, and Top Score). The reported values
in Table 2 are averages computed across all generated molecules per model. Specifically, Solved
indicates whether AiZynthFinder successfully identified at least one valid retrosynthetic route for a
given molecule. A higher number of nodes indicates a more extensive exploration of possible reaction
pathways by the algorithm, which may reflect the inherent complexity of the target molecule, diversity
in applicable reaction templates, or increased search depth. While a large node count can imply a
thorough and comprehensive search, it might also signal inefficiencies if numerous unproductive
pathways were evaluated. Thus, this metric provides valuable insights into the balance between
computational effort and search comprehensiveness.
Routes counts the total number of distinct retrosynthetic pathways (complete reaction sequences from
purchasable precursors to the target molecule) identified by AiZynthFinder. This metric quantifies
the diversity of retrosynthetic solutions identified by the algorithm. A higher number of identified
routes suggests multiple viable synthetic strategies for the target molecule, providing chemists with
alternative synthetic options. Nevertheless, not all identified routes may be equally practical or
feasible; thus, this metric should be interpreted alongside complementary measures such as the
number of solved routes or the top-scoring pathways.
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Solved Routes is the subset of these routes comprising exclusively purchasable precursors listed in
commercially available databases (e.g., ZINC), thus representing practically realizable synthetic
pathways. This metric enables rapid assessment of synthetic feasibility given a predefined inventory
of building blocks. Specifically, if at least one retrosynthetic pathway is successfully identified, the
target molecule is considered synthesizable, making this a straightforward, high-level indicator of
synthetic achievability. However, as it does not capture pathway quality or diversity, it should be
interpreted in conjunction with complementary metrics.
Lastly, Top Score reflects the highest-ranked synthetic route as evaluated by AiZynthFinder’s scoring
function, which aggregates criteria such as precursor availability, reaction step count, and reaction
feasibility (e.g., average template frequency). This metric quantitatively represents the quality of
the highest-ranked synthetic route, assisting chemists in prioritizing retrosynthetic pathways for
consideration. A higher score reflects routes with greater feasibility, efficiency, and desirability. This
measure is particularly useful for comparing alternative pathways or selecting the most promising
candidates for subsequent experimental validation.

H Additional Experiment result

H.1 Experimental Analysis of Section 6.2

Our proposed model consistently outperforms baseline methods across 12 evaluation metrics covering
binding affinity and intrinsic molecular properties, as shown Table 1. In particular, our model
significantly outperforms baseline methods in the ’Score’ metric, which measures the binding affinity
of generated molecules prior to any docking procedure. This result indicates that our model inherently
generates molecules possessing high binding affinity, even without additional docking optimization.
Similar superior performance is observed in the Synthetic Accessibility (SA) and PoseBusters
validity (PB-Valid) metrics, indicating that gradients derived from binding affinity and SA scores are
effectively propagated during the guidance-based sampling process.
Furthermore, we observe that different baseline models excel depending on the affinity evaluation
tool used; specifically, ALIDiff outperforms DecompDiff when evaluated by SMINA, whereas
DecompDiff achieves better results when GNINA is used. Considering the variability in performance
across different evaluation metrics, the consistently strong performance of our proposed model
across all three docking tools (Vina, SMINA, and GNINA) highlights its robustness and reliability in
generating molecules with high binding affinity, as well as its generalizable efficacy across diverse
evaluation standards. Additionally, our model uniquely exhibits minimal differences in binding
affinity between pre-docking and post-docking evaluations. This minimal discrepancy indicates our
model’s ability to intrinsically predict stable and energetically favorable binding poses, explicitly
capturing meaningful protein-ligand interactions.
Table 4 demonstrates the effectiveness of jointly applying gradient-based guidance to both atomic
coordinates and atom types. As clearly indicated by the results, simultaneous guidance across both
modalities consistently outperforms methods employing guidance on a single modality alone. This
outcome aligns with fundamental chemical principles, as molecular properties and the corresponding
energy landscape inherently depend upon intricate interactions between atomic types and their spatial
configurations.
In addition to the results presented in Figure 5, we conducted supplementary experiments using the
PoseCheck benchmark to further assess the generated molecules’ structural stability and validity.
Crucially, molecules evaluated in this additional experiment were directly sampled from generative
models, without employing docking. This methodological choice ensures that the evaluation reflects
the inherent capability of the generative models, rather than improvements arising from docking-based
optimizations or adjustments by docking tools. Their reliance on external docking for generating
final 3D conformations makes it unsuitable to accurately evaluate these models from the perspective
of generating intrinsically stable 3D molecular structures. Consequently, models such as RGA and
TacoGFN, which initially generate molecules as SMILES strings or 2D graphs and subsequently
rely on docking software to derive the final 3D conformations, were excluded from this comparative
analysis.
Experimental results (Table 5) indicate that the CByG model outperforms baseline models in terms
of the "Clash" and "Strain Energy" metrics, whereas DecompOpt achieves the best performance in
the "Intermolecular Interaction" metric. Considering that DecompOpt explicitly optimizes molecules
by fixing protein-interacting fragments, this result aligns naturally with its optimization strategy.
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Table 4: Summary of binding affinity and molecular properties of reference molecules and molecules
generated by CBYG and baselines. (↑)/(↓) denotes whether a larger/smaller number is preferred. Top
2 results are bolded and underlined, respectively.

Methods SMINA (↓) GNINA (↓) Vina (↓) SA (↑) PB-Valid (↑)
Score. Dock. Score. Dock. Score. Dock. Avg. Med. Avg. Med.

Reference -6.37 -7.92 -7.06 -7.61 -6.36 -7.45 0.73 0.74 95.0% 95.0%

CBYG -7.74 -9.61 -7.63 -8.33 -8.60 -9.16 0.84 0.87 94.9% 96.0%
CBYG w/o pos guidance -7.05 -8.60 -6.88 -7.42 -7.74 -8.12 0.78 0.79 90.4% 91.1%

CBYG w/o type guidance -6.92 -8.45 -6.70 -7.20 -7.60 -7.95 0.76 0.77 88.3% 89.0%
CBYG w/o uncertainty -7.25 -8.81 -7.10 -7.64 -7.90 -8.31 0.75 0.76 87.1% 87.7%

CBYG (λx = 40, λv = 40) -7.74 -9.61 -7.63 -8.33 -8.60 -9.16 0.84 0.87 94.9% 96.0%
CBYG (λx = 30, λv = 30) -7.13 -8.64 -6.95 -7.47 -7.79 -8.17 0.79 0.81 91.0% 91.4%
CBYG (λx = 50, λv = 50) -7.33 -8.94 -7.22 -7.79 -8.07 -8.49 0.74 0.76 85.6% 86.2%
CBYG (λx = 30, λv = 40) -7.28 -8.89 -7.15 -7.68 -7.98 -8.42 0.77 0.78 89.2% 89.7%
CBYG (λx = 40, λv = 30) -7.10 -8.59 -6.92 -7.42 -7.76 -8.10 0.80 0.82 91.8% 92.3%

Table 5: Posebusters results for all methods.
CBYG TargetDiff DecompDiff MolCraft DecompOpt ALIDiff

Avg. Clash (↓) 3.71 10.54 13.66 5.72 17.05 8.71
Avg. Strain Energy (↓) 5.85×107 1.41×1014 1.44×109 7.57×1011 1.18×1011 6.22×1016
Avg. Interaction (↑) 15.65 17.15 18.26 15.92 18.77 17.74

Table 6: PB-Valid results for all metrics.
Metric Valid Score

Mol Pred Loaded & Sanitization & Aromatic Ring Flatness 1.000
All Atoms Connected 0.985
Bond Length & Bond Angle 0.995
Internal Steric Clash 0.993
Double Bond Flatness 0.998
Internal Energy 0.970
Protein-Ligand Maximum Distance & Minimum Distance to Organic Cofactors & Minimum Distance to Waters 1.000
Minimum Distance to Protein 0.997
Minimum Distance to Inorganic Cofactors 0.994
Volume Overlap with Protein & Volume Overlap with Organic Cofactors 1.000
Volume Overlap with Inorganic Cofactors & Volume Overlap with Waters 1.000

H.2 Experimental Analysis of Section 6.3

In this experiment, both our proposed model and the RGA model exhibited overall high performance.
Here, it is important to consider molecular complexity in relation to binding affinity. Typically,
molecules with greater complexity tend to possess higher binding affinity due to increased oppor-
tunities for intermolecular interactions with target proteins; conversely, simpler molecules usually
exhibit lower affinity. Given this, the performance of the RGA model on the AiZynthFinder bench-
mark aligns logically with its relatively lower binding affinity scores reported in Table 1. Applying
the same perspective to our proposed model, it is particularly noteworthy that our model not only
achieves top-tier performance in binding affinity but also exhibits near state-of-the-art results on the
AiZynthFinder benchmark. This indicates the ability of our approach to generate molecules that are
simultaneously effective in terms of biological efficacy and practical retrosynthetic feasibility.
Interestingly, we observe that several models show no clear correlation between their performance on
the AiZynthFinder benchmark and the SA score reported in Table 1. This highlights the necessity for
evaluating synthetic feasibility in SBDD research using multiple diverse criteria beyond just the SA
score. A notable concern is that despite high SA scores (approaching 0.8 for RGA and surpassing
0.8 for our proposed model) the fraction of molecules classified as synthetically feasible under the
AiZynthFinder ’Solved’ metric remains below 50%. This outcome suggests that synthetic feasibility
deserves greater attention in future SBDD research, underscoring the need for broader consideration
and deeper analysis of retrosynthetic practicality.

H.3 Experimental Analysis of Section 6.4

As demonstrated in Figure 6, guidance scores obtained using the BFN-based approach consistently
surpass those derived from diffusion-based methods across the entire generative trajectory. Fur-
thermore, guidance scores from diffusion models utilizing predictions of the final clean state (x̂0)
exhibit marked instability, underscoring the robustness of the BFN-guided generation procedure.
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Notably, diffusion-based methods (green and gray plots) yield higher absolute guidance scores when
employing predictions of the final molecular states; however, these scores simultaneously exhibit
increased variance as the generative process advances. This behavior highlights a fundamental
trade-off within diffusion-based guidance strategies in 3D molecular generation: gradients derived
from predicted clean states facilitate higher guidance scores but necessitate point estimation toward
the final state in the sample space, inherently introducing instability into intermediate guidance steps.
In contrast, BFN operates in a continuous parameter space rather than directly in sample space,
enabling stable and continuous gradient propagation even for categorical variables. Consequently,
BFN-based guidance using predicted final states provides inherently more stable gradient trajectories,
making it particularly advantageous for robust and controllable 3D molecular generation.

H.4 Experimental Analysis of Section 6.5

To evaluate the selectivity control capabilities of the proposed CBYG model, we conducted exper-
iments using the selectivity benchmark set specifically constructed for this study. We primarily
assessed and compared selectivity performance before and after applying guidance in two generative
model categories: diffusion-based models and Bayesian Flow Network-based models. Notably,
optimization-based generation models were excluded from this comparison due to their intrinsic
requirement for retraining to optimize for different molecular properties, highlighting the versatility
of our proposed model in addressing diverse property optimization objectives.
Molecule generation was directed toward enhancing binding affinity to designated on-target proteins,
while guidance was explicitly designed to minimize binding affinity to specified off-target proteins.
In Table 3, the "Succ.Rate" represents the proportion of generated molecules demonstrating superior
affinity for the on-target protein relative to the off-target, whereas the "∆ Score" quantifies the
differential affinity between on-target and off-target interactions.
Experimental results revealed that even without explicit selectivity-guidance, both model categories
produced molecules with superior affinity toward the on-target protein in more than half of the gener-
ated cases. This outcome can be attributed to the inherent advantage of structure-based generative
models, which explicitly encode and leverage the structural context of the target proteins during
molecule generation. Nevertheless, Bayesian Flow Network-based models consistently demonstrated
superior performance compared to diffusion-based models, and this advantage was markedly ampli-
fied when selectivity guidance was employed. These findings collectively underscore the efficacy
and versatility of the proposed CBYG framework in achieving controlled generation not only for
conventional metrics such as synthetic accessibility (SA score) but also for critical properties such as
selectivity.

H.5 Comparative Visualization of Generated Ligands

I Selectivity Dataset

We constructed a selectivity-focused dataset based on kinase inhibitor selectivity data. Initially, we
identified the selectivity profiles of 285 proteins across 38 kinase inhibitors, as reported in a study on
the quantitative analysis of kinase inhibitor selectivity [27, 10]. Subsequently, for each inhibitor, we
categorized the proteins into on-target and off-target groups and extracted their corresponding Entrez
Gene Symbols. These gene symbols were then used to systematically gather protein-related data
from the UniProt [8] database via REST APIs. The UniProt web crawling process was structured in
three stages. First, the Entrez Gene Symbols were URL-encoded and filtered by the human taxonomy
ID (9606) to retrieve corresponding UniProt IDs in JSON format. Second, protein sequences were
obtained by querying the UniProt FASTA API, with FASTA headers subsequently removed. Third,
ATP binding site information—including binding site positions and sequences—was extracted from
the UniProt feature sections. The collected data, comprising UniProt IDs, sequences, and binding
site details, were integrated using the initial set of 285 Entrez Gene Symbols as a reference. Proteins
lacking ATP binding site data (six in total) were excluded, yielding a final dataset of 279 proteins
prepared for further analysis. Protein structures were predicted using AlphaFold3 [1], and model
structure files were retrieved in CIF format. These files were converted to PDB format using the
Bio.PDB module of Biopython. The ATP binding site information was then employed to define and
extract protein pocket structures, specifically targeting the binding site residues and the surrounding
region within a 5Å radius. Structural similarity among the protein pockets was evaluated using
TM-score and RMSD metrics. The TM-score quantifies topological similarity between protein
structures, with values ranging from (0, 1]; scores above 0.5 typically indicate identical protein folds,
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Figure 8: Visualization of generated ligands for protein pockets, with a reference molecule (left) and
corresponding outputs from ALIDiff, DecompOpt, MolCRAFT, and CBYG.

while scores below 0.17 suggest unrelated structures. We classified and organized the extracted
protein structures into directories based on a TM-score threshold of 0.4 and an RMSD of 1Å,
reflecting structurally similar protein pockets suitable for downstream selectivity analyses. This
process ultimately facilitated the construction of on-target (primary) and off-target pairs.

J Rethinking

J.1 Addressing Fundamental Challenges of Diffusion-based Guidance in 3D Molecular
Generation

A core objective in Structure-based Drug Design (SBDD) is generating molecules that bind specifi-
cally to target proteins while simultaneously satisfying desired properties. Diffusion-based generative
models are particularly suited to this task, as they can incorporate external predictors for property-
guided sampling. Specifically, these models leverage guidance derived from predictors to direct the
generative process toward property-specific regions of molecular space. However, as briefly men-
tioned in previous sections, 3D molecular structures inherently comprise hybrid data types, consisting
of continuous variables (e.g., Cartesian coordinates) typically modeled by Gaussian distributions, and
categorical variables (e.g., atom types such as oxygen or nitrogen) typically represented by categorical
distributions. This hybrid nature presents fundamental challenges for conventional gradient-based
guidance approaches.
First, since coordinates and atom types are sampled from fundamentally distinct distributions,
guidance gradients tend to propagate independently across these data types. Consequently, the
guidance mechanism often fails to accurately capture the critical chemical interdependencies between
atomic coordinates and categorical atom identities, thereby undermining the chemical coherence of
the generated molecules.
Second, categorical variables in diffusion models rely on discrete sampling processes involving an
argmax operation at each reverse sampling step. Due to the discrete nature of argmax operations,
direct application of gradient-based guidance becomes infeasible, as minor guidance gradients
typically do not influence the argmax outcome unless excessively amplified. Yet, increasing the
guidance scale excessively can cause the distribution during reverse sampling to become dominated
by guidance gradients, resulting in unstable and unrealistic molecular structures. Alternatively,
attempting to circumvent this issue by artificially converting categorical distributions into continuous
or discretized variables introduces unnatural assumptions and significantly increases the complexity
of model design.
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Lastly, injecting guidance gradients directly into the denoising process, which operates in the molecu-
lar sample space, risks destabilizing intermediate molecular configurations. This instability arises due
to the numerical sensitivity of 3D coordinates, potentially causing molecules to lose chemical validity
and structural coherence during intermediate generation stages. Thus, this approach substantially
hinders effective controllability over molecular properties, and leads to unstable molecular outcomes.
In the context of 3D molecules (with continuous coordinates and discrete atom types), diffusion-based
generative guidance methods face several fundamental limitations.
First, guidance gradients often fail to capture interdependencies between modalities (e.g. coordinate
updates and atom-type assignments may be misaligned if treated separately) as evidenced by the need
for separate latent spaces or noise schedules for different variable types in prior diffusion approaches.
Second, guidance in categorical diffusion is unstable and often ineffective: choosing atom types via
an argmax during the denoising process introduces a discontinuous, non-differentiable operation
that disrupts gradient-based optimization. Third, the denoising of spatial coordinates is structurally
fragile – adding noise to atomic positions can break chemical bonds or distort interatomic distances
beyond physical limits, leaving intermediate states chemically invalid and uninformative. Given
these challenges, BFN offer a promising alternative for property-guided molecular generation. BFN
operate in a fully differentiable parameter space and provide a unified probabilistic treatment of
continuous and categorical modalities, thereby inherently modeling cross-modal dependencies and
avoiding the need for modality-specific hacks. In contrast to diffusion, BFN do not require per-step
argmax sampling for atom types; instead, they maintain a probability simplex representation for
categorical variables, preserving gradient information throughout the generative process. This unified
and differentiable approach enables stable gradient-based guidance on molecular properties, making
BFN a robust paradigm for 3D molecule generation under complex hybrid objectives.

J.2 Rethinking Posterior Guidance: From Intermediate States to Predicted Final Structures

In generative frameworks such as diffusion models, conditional generation typically involves control-
ling the generative process by leveraging gradient guidance from a posterior conditioned on labels
(attributes) l. According to the theoretical foundations of the reverse process, the introduced posterior
term can be represented as∇xtp(l | xt), commonly known as the conditional score function, which
is usually learned using a dedicated neural network. Here, it is crucial to reassess whether the interme-
diate state xt, employed as input for the conditional score function, is a sensible variable for attribute
prediction [11, 45, 22]. In domains like image generation, where score-based diffusion models were
initially introduced, intrinsic structural characteristics of the data enable meaningful predictions of
labels even from intermediate noisy states. Thus, utilizing the conditional score function in the form
p(l | xt) has proven reasonable in these contexts.
However, unlike image data, intermediate states of 3D molecular structures with added noise lose
their chemical validity, rendering derived molecular properties essentially meaningless. Consequently,
employing a posterior conditioned directly on the intermediate noisy state xt, i.e., p(l | xt), is
fundamentally unreasonable as guidance for molecule generation tasks. To overcome this limitation,
recent studies have adopted a posterior sampling strategy, originally proposed in inverse problems
within the image generation domain [7, 23]. Specifically, these methods predict the final, noise-free
molecular structure x0 and leverage this prediction to guide gradient-based generation, i.e., p(l | x̂0).
Further efforts have also extended such posterior sampling approaches to the conditional generation
of 3D molecules. However, existing methods primarily focus on general conditional molecular
generation rather than the specialized task of structure-based drug design (SBDD), which involves
molecular binding to specific proteins. Therefore, substantial modifications and further methodologi-
cal advancements are necessary for applying these approaches to the SBDD task. Notably, existing
frameworks discretize categorical variables representing atom types into continuous representations,
which is inherently unnatural given the data’s discrete characteristics.
In summary, predicting the posterior for the final molecular structure x0 and subsequently using it for
calculating guidance gradients is more principled in the context of SBDD tasks. We propose that this
principle is broadly applicable across generative modeling frameworks, including not only diffusion
models but also BFN.

J.3 Limitations of Current Evaluation Methods

In previous research on structure-based drug design (SBDD), evaluating the binding affinity between
generated molecules and their target proteins has been a common practice to assess model perfor-
mance. Most studies traditionally relied heavily on AutoDock Vina to measure binding affinity.
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Although AutoDock Vina provides three distinct scoring metrics, these metrics inherently depend on
the same underlying computational algorithm, potentially introducing bias due to reliance on a single
scoring method. To enhance the generalizability and reliability of affinity assessments, incorporating
multiple docking algorithms in the evaluation process is necessary. Accordingly, in Section 6.2, we
present a detailed experimental setup employing several docking tools, including AutoDock Vina, to
enable a more comprehensive and robust evaluation of generative model performance.
Furthermore, previous SBDD research has commonly utilized the Synthetic Accessibility (SA) score
to evaluate the synthetic feasibility of generated molecules. The SA score quantitatively integrates
chemical fragment contributions and structural complexity penalties into a single metric ranging
between 0 and 1, with higher scores indicating greater synthetic accessibility. However, molecules
possessing very high SA scores (e.g., greater than 0.9) frequently lack viable retrosynthetic pathways,
making their actual synthesis infeasible. Regardless of a molecule’s theoretical efficacy, its practical
value is severely limited without an achievable synthetic route. Therefore, rigorously assessing
realistic synthetic accessibility is critical, although research addressing this aspect has been relatively
limited. Recognizing the importance of this issue, we introduce the AiZynthFinder benchmark, an
evaluation method for retrosynthetic analysis based on practically available chemical building blocks.
From the viewpoint of practical drug development, selectivity is equally important as binding affinity
for identifying promising drug candidates. Selectivity refers to the ability of a candidate molecule to
specifically bind to its intended target protein without significant interactions with off-target proteins.
Molecules lacking sufficient selectivity may interact with unintended proteins, potentially causing
side effects or adverse reactions, thereby reducing or negating the desired pharmacological effects.
Recently, selectivity has received increased attention in the field of 3D molecular generation, and
several diffusion-based guidance strategies have been proposed to address this requirement.
However, existing selectivity-focused strategies typically require prior training of classifiers that
distinguish between positive (binding) and negative (non-binding) protein-ligand pairs. Furthermore,
the CrossDocked2020 dataset, commonly used in docking studies, was not originally constructed for
selectivity evaluations. Thus, leveraging this dataset for selectivity assessments necessitates extensive
additional docking computations. Moreover, the absence of clear criteria for identifying true binding
molecules and the significantly greater number of false binding molecules relative to true binding
molecules pose substantial challenges for obtaining generalizable guidance signals. Consequently,
deriving selectivity metrics based solely on the CrossDocked2020 dataset inherently risks bias due to
these intrinsic dataset limitations. Most critically, the CrossDocked dataset may not adequately reflect
biologically meaningful selectivity, limiting its practical utility for reliable selectivity assessment.
Therefore, establishing rigorous, standardized benchmark datasets capable of objectively evaluating
selectivity is essential. Additionally, there is an urgent need to develop novel, efficient controllable
generation strategies capable of effectively ensuring molecular selectivity.

K Justification for Applying Tweedie’s Formula
Justification for Applying Tweedie’s Formula in Continuous Variables In our framework, the
sender distribution for continuous variables is explicitly modeled as a Gaussian:

pS(y | x;α) = N (y | x, α−1I)

Given a prior over x (possibly Gaussian), the Bayesian update for the parameter θ given a noisy
observation y from the sender is:

p(x | y) ∝ pS(y | x;α) · p(x)
If we assume the prior p(x) = N (x | µ0,Σ0), then the posterior p(x | y) is also Gaussian, due to
conjugacy:

p(x | y) = N (x | µpost,Σpost)

where
Σ−1

post = Σ−1
0 + αI, µpost = Σpost

(
Σ−1

0 µ0 + αy
)

Thus, the Bayesian update function for the mean parameter θ becomes a linear function of the
previous mean and the new observation y:

θi+1 =
ρi−1

ρi
θi +

αi

ρi
yi

with ρi = ρi−1 + αi, which matches the classic Kalman filter update for Gaussian models.
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Conclusion: Since the posterior is exactly Gaussian, Tweedie’s formula

E[x | y] = y + α−1∇y log p(y)

is strictly valid, and our use of Tweedie’s formula to obtain a gradient-based update is mathematically
justified.

Justification for Applying Tweedie’s Formula in Categorical Variables For categorical variables,
the latent class indicator ex is originally a one-hot vector, i.e., ex ∈ {0, 1}K with

∑K
k=1 e

(k)
x = 1.

However, in our framework, we reparameterize ex to a continuous relaxation (e.g., using the Gumbel-
softmax trick), and the sender distribution is modeled as a multivariate Gaussian over this relaxed
variable:

pS(y | ex;α) = N (y | α(Kex − 1), αKI)

where y is a continuous vector and ex is now allowed to be a point in the probability simplex.
Given this sender structure, the "pseudo-posterior" p(ex | y) (formally, the conditional distribution in
the continuous relaxation) is also a multivariate Gaussian, due to the properties of conjugacy between
Gaussians.
Thus, the Bayesian update for the categorical parameter θ (in the reparameterized space) can be
written as a function of y and the previous parameter:

ex,i+1 =
ρi−1

ρi
ex,i +

αi

ρi
yi

with ρi = ρi−1 + αi, which is the direct analogue of the update for the continuous case.

Applicability of Tweedie’s Formula: Since both y and ex are continuous and (conditionally)
Gaussian under the sender, Tweedie’s formula is applicable:

E[ex | y] = y + (αK)−1∇y log p(y)

and, by chain rule,
∇ex log p(ex) = J⊤

ex→y∇y log p(y)

where Jex→y is the Jacobian matrix of the sender’s mapping.

Conclusion: By reparameterizing the categorical variable into a continuous, sender-Gaussianized
latent variable, all required conditions for Tweedie’s formula (Gaussianity and differentiability)
are satisfied in the update step. This mathematically justifies the use of Tweedie’s formula for
gradient-based guidance in categorical settings, just as in the continuous case.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly outline the contributions and scope, as
confirmed by theoretical analyses and extensive experiments presented in Sections 3, 4, and
5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We explicitly discuss limitations related to the practical synthetic feasibility of
generated molecules in the conclusion and provide further discussion in Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All theoretical derivations for the Bayesian Flow Network’s gradient-based
extension are provided and elaborated in Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental settings, model configurations, and evalua-
tion methodologies necessary for reproducibility in Section 4 and Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide full open access to our source code along with detailed instructions
for reproducing all main experimental results, which are included in the supplemental
material (appendix).

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Training setups, evaluation metrics, hyperparameters, optimizers, and data
splits are explicitly detailed in Section 4 and further elaborated in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean and median values for key experimental results to confirm
statistical significance, as shown in tables in Section 4 and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computational resources, including GPU specifications, computational time,
and memory requirements, are described in detail in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research fully adheres to the NeurIPS Code of Ethics, involving no ethical
concerns or violations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive impacts (enhanced drug discovery efficiency)
and possible negative implications (generation of synthetically challenging molecules) in
the conclusion.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This research does not involve releasing data or models with high risks of
misuse or dual-use concerns.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing datasets and models used are properly cited, and licensing infor-
mation is clearly specified in the appendix.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We constructed and released a new selectivity dataset, fully documented with
detailed descriptions, preprocessing steps, and access information provided in the appendix.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve human subjects or crowdsourced experiments.

Guidelines: This research does not involve human subjects or crowdsourced experiments.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our study does not involve human participants; thus, IRB approval is not
applicable.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve the use of LLMs as a significant or original
component of the methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• This paper does not involve the use of LLMs as a significant or original component of
the methodology.
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