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Abstract

In this paper, we aim to establish a simple, effec-
tive, and theoretically grounded benchmark for
rigorously probing abstract reasoning in Large
Language Models (LLMs). To achieve this, we
first develop a mathematic framework that defines
abstract reasoning as the ability to: (i) extract
essential patterns independent of surface repre-
sentations, and (ii) apply consistent rules to these
abstract patterns. Based on this framework, we
introduce two novel complementary metrics: Γ
measures basic reasoning accuracy, while ∆ quan-
tifies a model’s reliance on specific symbols rather
than underlying patterns - a key indicator of true
abstraction versus mere memorization. To imple-
ment this measurement, we design a benchmark:
systematic symbol remapping in rule-based tasks,
which forces models to demonstrate genuine pat-
tern recognition beyond superficial token match-
ing. Extensive LLM evaluations using this bench-
mark (commercial API models, 7B-70B, multi-
agent) reveal:1) critical limitations in non-decimal
arithmetic and symbolic reasoning; 2) persistent
abstraction gaps despite chain-of-thought prompt-
ing; and 3) ∆’s effectiveness in robustly mea-
suring memory dependence by quantifying per-
formance degradation under symbol remapping,
particularly highlighting operand-specific memo-
rization. These findings underscore that current
LLMs, despite domain-specific strengths, still
lack robust abstract reasoning, highlighting key
areas for future improvement.
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Figure 1. Models often excel on GSM8K (blue line) but show sig-
nificantly lower performance on our abstract reasoning benchmark
(red line), suggesting that domain-specific math tasks may not
probe deeper abstract skills.

1. Introduction
Abstract reasoning, a cornerstone of human-level intel-
ligence (Holyoak & Morrison, 2012; Penn et al., 2008;
Holyoak, 2012; Chollet, 2019; Bober-Irizar & Banerjee,
2024; Xiong et al., 2024), remains a critical yet elusive capa-
bility for large language models (LLMs). As philosophically
defined, abstract reasoning involves two core processes: ab-
straction, the extraction of common features from concrete
entities (Murphy, 2004), and reasoning, the derivation of
new knowledge from existing information (Holyoak & Mor-
rison, 2012). Abstraction provides the fundamental units
and organizational structure for cognition, while reasoning
operates and infers relationships between these abstractions.
Their synergy empowers systems to understand the world
and solve problems.

While large language models (LLMs) such as GPT se-
ries (Radford et al., 2019; Achiam et al., 2023), Llama
seris(Touvron et al., 2023a;b; Dubey et al., 2024), and
PaLM-2 (Anil et al., 2023) have exhibited remarkable
achievements in various benchmarks, high performance
does not necessarily imply abstract generalization. Indeed,
many benchmark tasks can be tackled via pattern matching
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Figure 2. Memory Dependence vs. Average Score (Small Scale).
The corresponding full-size version is available in Fig.6 of the
Appendix.

or memorized heuristics, failing to assess true reasoning.

Numerous benchmarks attempt to assess reasoning, but of-
ten fall short for rigorously evaluating abstract reasoning
in LLMs. ARC (Chollet, 2019)’s 2D visual format is fun-
damentally misaligned with LLMs’ text-based nature, hin-
dering direct evaluation of their reasoning. Benchmarks
like GSM8K (Cobbe et al., 2021) and MATH (Hendrycks
et al., 2021), while symbolic, risk measuring memoriza-
tion of problem-solving heuristics rather than true abstract
mathematical understanding. Even BIG-Bench Hard (Suz-
gun et al., 2023), with its broad task range, lacks a focused
theoretical grounding for abstraction, potentially allowing
solutions via pattern matching without genuine abstraction.
These limitations underscore the urgent need for bench-
marks that are both LLM-compatible and theoretically de-
signed to isolate and measure abstract reasoning, moving
beyond surface patterns and memorization (Wu et al., 2024;
Jiang et al., 2024; Mirzadeh et al., 2024).

Therefore, in this paper, we aim to bridge this gap by con-
structing a mathematically rigorous theoretical framework
to formally define abstract reasoning (Chollet, 2019; Mor-
ris et al., 2023) to formally define abstract reasoning as a
composite process: first, abstraction as extracting essen-
tial patterns from concrete inputs through a mapping func-
tion, and second, reasoning as applying consistent rules
to these abstract patterns to derive conclusions. Based
on this framework, we introduce two complementary met-
rics to rigorously probe LLMs’ abstract reasoning abilities.
Specifically, Γ measures the basic accuracy of reasoning,
reflecting how well models apply rules, and ∆ quantifies a

model’s dependence on specific symbols rather than under-
lying abstract patterns, thus serving as a crucial indicator
of genuine abstraction versus mere memorization. Based
on these rigorous definitions, we further derive three the-
orems. This theorem further motivates the core principle
for our benchmark design: systematic symbol remapping in
rule-based tasks, which compels models to demonstrate gen-
uine pattern recognition beyond superficial token matching.
Consequently, we design our domain-general benchmark,
which, unlike domain-specific, math-centric benchmarks
like GSM8K, offers a more discerning evaluation through
symbolic tasks and abstract rules. This design effectively
reduces reliance on memorization and domain knowledge,
directly targeting genuine abstract reasoning. We then con-
duct extensive evaluations of various LLMs (7B-70B, multi-
agent) using this benchmark, revealing key limitations and
the diagnostic value of ∆.

Our contributions are threefold: (1) a theoretically grounded
framework formalizing abstraction and reasoning, and intro-
ducing the Γ and ∆ metrics; (2) a novel symbolic benchmark
with diverse tasks and remapping variants to rigorously test
abstract reasoning; and (3) empirical insights from exten-
sive LLM evaluations, revealing persistent challenges in
non-decimal arithmetic, symbolic transformations, and func-
tion inference, even with Chain-of-Thought and multi-agent
methods showing only partial gains. These findings under-
score the need for refined benchmarks like ours to guide the
development of truly abstractly reasoning AI systems and
highlight key areas for future improvement.

2. Related Work
Reasoning Benchmarks. Existing abstract reasoning
benchmarks are often domain-specific, limiting scope and
theoretical interpretability (Chollet, 2019; Barrett et al.,
2018; Mirzadeh et al., 2024; Frohberg & Binder, 2022;
Majumder et al., 2024; Li et al., 2024a; Yuan et al., 2023).
Visual benchmarks like ARC (Chollet, 2019) and PGM
(Barrett et al., 2018) focus on 2D spatial tasks, misaligned
with LLMs’ text nature. Mathematical benchmarks (e.g.,
GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.,
2021)), while symbolic, may allow memorization of domain
patterns without deep abstract reasoning. BIG-Bench Hard
(Suzgun et al., 2023) offers broader tasks but lacks a uni-
fied theoretical abstraction framework. Our domain-general,
theoretically grounded benchmark with symbolic tasks ad-
dresses these limitations for rigorous abstract reasoning
evaluation in LLMs.

Multi-Agent Systems and CoT Prompting. Chain-of-
thought (CoT) (Wei et al., 2022) and multi-agent frame-
works (ReAct (Yao et al., 2023), AutoGen (Wu et al., 2023),
LLM Debate (Du et al., 2023)) aim to enhance LLM rea-
soning, but evaluations often lack abstract reasoning focus.
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While CoT/multi-agent methods improve performance on
some reasoning tasks, they don’t fundamentally address
core abstraction gaps our benchmark reveals, especially for
symbolic transformations.

Theoretical Perspectives. Broader theoretical underpin-
nings, particularly in the domain of neural-symbolic learn-
ing and reasoning, are extensively reviewed by (Besold
et al., 2021). Theoretical frameworks for abstract reasoning
(Barrett et al., 2018; Li et al., 2024b; Mitchell et al., 2023;
Chollet, 2019; Morris et al., 2023; Huang & Chang, 2023;
Boix-Adsera et al., 2023; Jiang et al., 2024; Wu et al., 2024)
offer insights but are often conceptual or task-specific. Bar-
rett et al. (Barrett et al., 2018) explore information theory
in visual reasoning; Mitchell et al. (Mitchell et al., 2023)
emphasize feature selection in abstraction. However, these
often lack direct application to LLM abstract reasoning
evaluation. Our work builds on these, offering a unified,
grounded framework and benchmark for quantitative LLM
evaluation, with metrics measuring invariance and general-
ization. Such quantitative evaluation of genuine abstraction
is crucial, especially as the field explores avenues like neuro-
symbolic AI to foster more robust reasoning beyond mere
pattern matching (d’Avila Garcez & Lamb, 2020). Fur-
thermore, our benchmark’s systematic symbol remapping
directly probes the generalization of learned patterns and
the analogical reasoning capabilities that are increasingly
observed in LLMs (Webb et al., 2023).

3. Theoretical Foundations on Abstract and
Reasoning

In this section, we establish a rigorous theoretical frame-
work for analyzing and evaluating abstract reasoning in
LLMs. While prior research (Holyoak & Morrison, 2012;
Penn et al., 2008; Murphy, 2004; Holyoak, 2012; Evans,
2010; Holland, 1986) has explored abstract reasoning from
cognitive and philosophical perspectives, we advance the
field by providing a formal, mathematically grounded frame-
work specifically designed for computational systems. Our
framework consists of three complementary components:
formal definitions that precisely characterize abstraction
and reasoning processes (Section 3.1), theoretical validation
that establishes the mathematical soundness of our approach
(Section 3.5), and evaluation metrics that enable systematic
assessment of abstract reasoning capabilities (Section 3.3).

3.1. Formal Definitions: Abstraction and Reasoning

Abstract reasoning relies on the core processes of abstraction
and reasoning. Cognitive science defines abstract reason-
ing as identifying and extracting essential, generalizable
patterns from complex instances, effectively filtering irrel-
evant details to focus on core concepts for understanding
and generalization (Murphy, 2004; Holyoak & Morrison,

2012). These “essential patterns” are crucial for under-
standing, categorization, prediction, and reasoning, contrast-
ing with superficial details that are intentionally discarded
(Holyoak, 2012). In our framework, we represent both con-
crete instances and abstract features as strings, suitable for
modeling symbolic information processed by LLMs.

Abstraction is crucial for effective cognition, enabling com-
plexity management and generalization in reasoning. Ab-
straction, in essence, is information compression and gener-
alization from concrete to abstract string representations, ex-
tracting core, reasoning-relevant information. This involves
mapping a concrete instance to an abstract feature, aiming to
distill it into a concise, generalized form that retains essen-
tial patterns for reasoning, while reducing complexity and
variability. Building upon established perspectives (Murphy,
2004; Goldstone & Barsalou, 1998; Ross & Spalding, 1994),
we formally define abstraction as follows:

Definition 3.1 (Abstraction Mapping). Let C be the set
of concrete instances, each being an individual instance
represented as a string of maximum length l, such that C ⊆
Σ≤l (Σ is a finite alphabet). Let A be the set of abstract
features, each an abstract feature a ∈ A also a string with
maximum length a ≤ l, such that A ⊆ Σ≤a.

Abstraction is a mapping function f : C → A.

For example, recognizing a “dog” involves abstraction to
generalize across breeds, focusing on essential features like
“four-legged” and “mammalian” while disregarding details
like “fur color”. In our benchmark, a binary addition prob-
lem like “01000110 + 00011111” (concrete instance c) can
be abstracted to “binary addition operation” (abstract feature
a), focusing on the operation rather than specific operands.
Here, l is the maximum length of the problem string, and a
is the length of “binary addition” (a < l).

Reasoning, in cognitive science, is broadly defined as de-
riving new information from existing knowledge (Holyoak
& Morrison, 2012; Evans, 2010). It involves manipulat-
ing abstract representations, identifying relationships, and
inferring conclusions. This process can be formalized as ap-
plying a rule to an abstract feature to produce a conclusion.
Building on this, we formalize the reasoning function as:

Definition 3.2 (Reasoning Function). Let R be the set
of rules, where each rule r ∈ R is a string describing an
operation, procedure, or pattern, with maximum length ρ,
such that R ⊆ Σ≤ρ. Let A be the set of abstract features
(Definition 3.1). Let Q be the set of conclusions, each
conclusion q ∈ Q also a string with maximum length q,
such that Q ⊆ Σ≤q .

The reasoning process is formalized by a function Re :
A× R → Q.

For instance, with the abstract concept “dog” and the rule
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“dogs bark,” reasoning infers “This dog is likely to bark”
upon encountering a new dog. In binary addition, with
the abstract feature “binary addition operation” (from A)
and a binary addition rule r ∈ R, Re yields a conclusion
q ∈ Q like “01100101” from operands “01000110” and
“00011111”. Here, q is the maximum conclusion string
length.

3.2. Two Types of Composite Abstract Reasoning:
Rule-Given and Rule-Inductive

Cognitive science identifies rule-based reasoning, or de-
ductive reasoning, as applying pre-established rules to de-
rive conclusions (Evans, 2010; Johnson-Laird, 1999; Liu
et al., 2024b; Wang et al., 2024; Boix-Adsera et al., 2023).
Rule-given abstract reasoning focuses on scenarios with ex-
plicit or known rules, reflecting our ability to use existing
knowledge for inference in new situations—a cornerstone
of cognition. This type of reasoning can be formalized as
a composite process involving abstraction followed by rule
application. Building on these insights and deductive rea-
soning research (Evans, 2010; Johnson-Laird, 1999; Laird,
2019), we formally define the Rule-Given Composite Ab-
stract Reasoning Function:

Definition 3.3 (Rule-Given Composite Abstract Reason-
ing Function). When rule r ∈ R is given, the composite
abstract reasoning function, HG, represents the complete
abstract reasoning process. It is formalized as the composi-
tion of abstraction mapping f (Definition 3.1) and reasoning
function Re (Definition 3.2):

HG = Re ◦ f. (1)

For a concrete instance c ∈ C and a given rule r ∈ R, it is:

HG(c, r) = Re(f(c), r). (2)

Here, c ∈ C is a concrete instance string (max length l),
r ∈ R is a rule string (max length ρ), f : C → A is
abstraction mapping, and Re : A × R → Q is reasoning
function. A is the set of abstract features (strings, max
length a ≤ l), and Q is conclusions (strings, max length q).

Consider recognizing dog breeds: we apply learned “dog-
ness” rules to identify even unfamiliar breeds—rule-given
abstract reasoning in action. In our benchmark, binary addi-
tion exemplifies this. For c = “01000110 + 00011111” and
a given binary addition rule r, HG abstracts f(c) to “binary
addition operation”, then Re(a, r) applies r, yielding q =
“01100101”. The rule is provided; the task is abstraction and
application.

Rule induction, or inductive reasoning, contrasts with rule-
given reasoning by learning general rules from specific ex-
periences (Holland, 1986; Sloman, 1996; Qiu et al., 2024;
Li et al., 2024b; Mirchandani et al., 2023; Merler et al.,

2024). It enables new knowledge acquisition, adaptation,
and generalization beyond direct experience, moving from
observation to rule discovery—crucial for intelligent behav-
ior. This form of reasoning involves inferring a rule from
examples and then applying it to new instances. Building
on cognitive foundations and inductive learning theories
(Holland, 1986; Tenenbaum et al., 2011; Anderson, 1991),
we formally define the Rule-Inductive Composite Abstract
Reasoning Function:
Definition 3.4 (Rule-Inductive Composite Abstract Rea-
soning Function). When the rule is initially unknown and
inferred from examples, the composite abstract reasoning
function, HI, incorporates rule induction. Given example
set e = {(ecj , eqj)}mj=1 and new instance c ∈ C, it is:

HI(e, c) = Re(f(c), r̂), where r̂ = InferRule(e). (3)

Here, e = {(ecj , eqj)}mj=1 is an example set of instance-
conclusion pairs (ecj ∈ C, eqj ∈ Q). c ∈ C is a new
concrete instance string. f : C → A is abstraction mapping,
Re : A × R → Q is reasoning function, r̂ ∈ R is the
inferred rule string (max length ρ), and InferRule(e) → r̂
is the rule inference mechanism.

Consider learning a new plant species: we induce a rule
string from examples of leaf shape, flower color, etc. In
our benchmark, inferring operation “#op” from examples
like e = { (“2 #op 3”, “5”), ... , (“7 #op 2”, “9”) }. HI
first infers rule r̂ = InferRule(e) (e.g., “addition”), then for
c = “5 #op 4”, applies Re(f(c), r̂), yielding q = “9”. The
system induces the rule from examples, then applies it to a
new problem.

3.3. Measuring Abstract Reasoning: A Two-Metric
Approach

Traditional accuracy metrics, while important for evaluating
model performance, are insufficient for assessing genuine
abstract reasoning in LLMs (Wu et al., 2024; Jiang et al.,
2024; Mirzadeh et al., 2024; Dentella et al., 2023). As dis-
cussed in Appendix A.1, high accuracy can stem from mem-
orizing input-output patterns or exploiting superficial corre-
lations—a Rule-Given reasoning form based on pre-learned
associations. This memorization-based “reasoning” is brit-
tle, failing to generalize when symbolic representations
change, even with constant abstract task structure. To evalu-
ate true Rule-Inductive abstract reasoning—rule extraction
and application independent of specific symbols—metrics
must discern memorization from genuine abstraction. To
overcome this limitation and rigorously assess genuine ab-
stract reasoning in LLMs, we propose two complementary
metrics: the Abstract Reasoning Score (Γ) and the Memory
Dependence Score (∆). The Abstract Reasoning Score (Γ)
is designed to measure the basic accuracy of a model on
abstract reasoning tasks using original symbols, establishing
a performance baseline.
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Definition 3.5 (Abstract Reasoning Score, Γ). Consider a
test set T = {(ci, ri, qi)}Ni=1 of N independent tasks. For
each task i, ci ∈ C is a concrete instance string (max length
l), ri ∈ R is a rule string (max length ρ), and qi ∈ Q is the
ground truth conclusion string (max length q).

The Abstract Reasoning Score, Γ, is calculated as:

Γ =
1

N

N∑
i=1

1
[
Ĥ(ci, ri) = qi

]
, (4)

where 1
[
Ĥ(ci, ri) = qi

]
is an indicator function evaluating

to 1 if model Ĥ’s predicted conclusion Ĥ(ci, ri) matches
the ground truth qi (string identity), and 0 otherwise; sum-
mation is over all N tasks. Ĥ is the model’s composite
abstract reasoning function.

A higher Γ (0 to 1) indicates greater average accuracy of
Ĥ on T with original symbols. Γ measures baseline perfor-
mance on abstract reasoning tasks under standard symbolic
conditions, showing model performance with familiar rep-
resentations, but it does not alone differentiate abstraction
from memorization.

To assess model dependence on specific symbols and probe
Rule-Inductive reasoning, we introduce ∆. ∆ , the Memory
Dependence Score, is designed to quantify a model’s depen-
dence on specific symbols rather than underlying abstract
patterns. The core idea is to disrupt memorization via sym-
bol mapping M , which systematically re-labels symbols in
concrete instance strings ci ∈ C of test set T . M preserves
abstract task structure while altering surface symbols (e.g.,
in binary arithmetic, remap ‘0’, ‘1’ to ‘A’, ‘B’), forcing
reasoning about binary operations, not memorized ‘0’, ‘1’
associations.

Definition 3.6 (Memory Dependence Score, ∆). Apply
symbol mapping M to each ci in original test set T =
{(ci, ri, qi)}Ni=1, creating symbol-mapped set M(T ) =
{(M(ci), ri,M(qi))}Ni=1. Rule strings ri remain in the orig-
inal symbolic space.

Evaluate model Ĥ on M(T ), calculating accuracy ΓM ,
similar to Γ:

ΓM =
1

N

N∑
i=1

1
[
Ĥ(M(ci), ri) = M(qi)

]
. (5)

The Memory Dependence Score, ∆, is the difference be-
tween Γ and ΓM :

∆ = Γ− ΓM . (6)

∆ quantifies performance degradation under remapping.
Larger ∆ indicates significant performance drop, suggest-
ing high dependence on original symbols and memorization.

Smaller ∆ signifies robustness to remapping, indicating less
token dependence and more abstract, rule-based reasoning.
Ideally, a truly abstract reasoning model has ∆ ≈ 0, show-
ing invariance to symbol remappings.

In summary, Γ and ∆ offer a comprehensive evaluation
of abstract reasoning in LLMs. Γ measures basic reason-
ing accuracy under standard conditions, establishing a per-
formance baseline. ∆, as a diagnostic metric, reveals the
nature of this accuracy by quantifying performance drop un-
der symbol remapping. This distinction helps differentiate
accuracy from Rule-Inductive abstraction (low ∆) versus
Rule-Given memorization (high ∆). This dual-metric ap-
proach is crucial for deeper insights into LLMs’ abstract
reasoning, moving beyond superficial accuracy evaluations.

3.4. Comparison with Existing Abstract Reasoning
Benchmarks

Existing benchmarks offer AI reasoning insights, but in-
completely assess abstract reasoning per our framework.
GSM8K, MATH, BIG-Bench Hard mainly evaluate Rule-
Given Reasoning, susceptible to memorization and lack-
ing memory dependence measures. ARC emphasizes Rule-
Inductive Reasoning and reduces memorization via novelty,
but its visual format is suboptimal for LLMs and neglects
Rule-Given abilities. Thus, no existing benchmark fully
evaluates both Rule-Given and Rule-Inductive reasoning in
a unified framework, nor offers memory dependence metrics.
This critical gap—especially distinguishing abstraction from
memorization—highlights the need for novel benchmarks
like ours and ∆, specifically designed for rigorous, diag-
nostic evaluation of abstract reasoning in LLMs by directly
addressing both reasoning types and memory dependence.

3.5. Theoretical Validity of Γ and ∆ Metrics in Abstract
Reasoning Assessment

While our framework and metrics provide an intuitive ap-
proach to evaluating abstract reasoning, we need to estab-
lish their theoretical soundness. Just as cognitive science
research validates psychological measures through formal
analysis, we must demonstrate that our metrics Γ and ∆
truly capture the intended aspects of abstract reasoning.
Here, we develop three foundational theorems that validate
our approach.

Our first theorem addresses a fundamental question: Can we
trust Γ as a reliable indicator of an LLM’s basic reasoning
capabilities? This validation is essential before we can build
upon it to assess more complex reasoning patterns.

Theorem 3.7 (Validity of Γ for Rule-Given Potential). Let
Ĥ be an LLM approximating the abstract reasoning function
H = Re ◦ f . For a sufficiently high threshold γ ∈ [0, 1]:

P (Ĥ(c, r) = q | (c, r, q) ∈ T ) ≥ γ (7)
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where T is the test set of concrete instances, rules, and
expected conclusions.

This theorem establishes that achieving a high Γ score indi-
cates strong Rule-Given reasoning potential in the model.

With the foundation of Γ’s validity established, we turn to a
more nuanced question: How can we ensure that high per-
formance truly reflects abstract understanding rather than
memorization? This leads us to our second theorem, which
validates ∆ as a measure of genuine rule-inductive reason-
ing.

Theorem 3.8 (Validity of ∆ for Rule-Inductive Abstraction).
For sufficiently small δ ∈ [0, 1] and high γ ∈ [0, 1]:

∆ ≤ δ ∧ Γ ≥ γ (8)

This theorem demonstrates that low memory dependence
combined with high accuracy indicates true Rule-Inductive
abstraction capabilities.

Having established the validity of both metrics individu-
ally, we naturally arrive at the question of how to interpret
them in combination. Our final theorem provides a formal
framework for this unified interpretation.

Theorem 3.9 (Score Range Interpretation).

F(Γ,∆) = w1Γ + w2(1−∆) (9)

where w1, w2 ≥ 0 and w1 + w2 = 1

This theorem establishes a continuous mapping F : [0, 1]×
[0, 1] → [0, 1] that provides a valid measure of abstract
reasoning ability by combining both metrics.

These theorems provide a rigorous mathematical foundation
for our evaluation framework, demonstrating that Γ and
∆ effectively capture different yet complementary aspects
of abstract reasoning ability in LLMs. The proofs for all
theorems are presented in Appendix A.2.

4. Benchmark Design
We designed a novel symbolic task benchmark to rigorously
evaluate abstract reasoning in LLMs, operationalizing our
theoretical framework and addressing limitations of existing
evaluations. This benchmark provides a direct and robust
assessment of abstract reasoning capabilities.

4.1. Benchmark Design Principles: Theoretical
Grounding

Our benchmark design, theoretically grounded in Section 3,
prioritizes effective LLM evaluation of abstract reasoning.
We use one-dimensional text input for relevance to LLMs.
Systematic symbol remappings are employed to rigorously

test for genuine abstraction, moving beyond mere token
memorization. Tasks are theoretically aligned with the def-
initions of abstraction (f) and reasoning (Re) established
in Section 3, and are categorized (BC-SR) for structured
analysis. This tiered category system (BC-SR) also ensures
scalability across varying levels of cognitive complexity,
from basic arithmetic to function inference. Finally, objec-
tive diagnosis of abstract reasoning and memory dependence
is achieved through our quantitative metrics, Γ and ∆ and
supported by automated analysis.

4.2. Task Categories

Our benchmark tasks are designed with tiered complexity
to comprehensively evaluate abstract reasoning. Basic Com-
putation (BC) tasks assess fundamental arithmetic skills in
the decimal system, serving as a baseline for computational
abilities. Extended Calculation (EC) tasks evaluate the abil-
ity to perform diverse computations beyond basic arithmetic,
testing the breadth of computational skills. Number Base
Reasoning (NBR) tasks rigorously test the generalization
of arithmetic reasoning beyond decimal, forcing abstrac-
tion of underlying arithmetic principles. Math Application
(MA) tasks evaluate multi-step mathematical word prob-
lem solving, assessing higher-level reasoning in applied
settings, adopting GSM8K style problems for comparison.
Symbolic Math Abstraction (SMA) tasks probe inductive
mathematical reasoning and abstracting symbolic functions
from numerical data, testing pattern discovery. Symbolic
Reasoning (SR) tasks directly assess abstract rule applica-
tion and symbolic manipulation, testing rule identification
and application with abstract symbols, independent of do-
main knowledge.

Detailed task specifications and examples are provided in
the appendix.

5. Experimental Results and Analysis
In this study, we assessed the abstract reasoning abilities
of Large Language Models (LLMs) across different scales
and types. Our evaluation encompassed 7B-scale and 70B-
scale open-source models, API-accessible models, and agent
frameworks (agentchat(autogen), react, llm debate), the lat-
ter leveraging gpt-4o-mini. For open-source and API
models, we employed greedy decoding for inference, while
agent frameworks were used with default settings. To evalu-
ate performance, we utilized two prompting strategies for
each model type: Direct Prompting (DP) and Chain-of-
Thought (CoT), primarily zero-shot CoT, with the excep-
tion of Math Application (MA) tasks under CoT, where
8-shot examples based on GSM8K-like data were incorpo-
rated. All experiments were conducted on local machines
equipped with 8 NVIDIA GPUs, including A800 and 3090
models. For consistent and reliable evaluation of model
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Table 1. Abstract Reasoning Performance (Γ Scores) of Represen-
tative LLMs across Different Scales and Types.

MODEL AVERAGE SCORE

7B-SCALE MODELS

GLM-4-9B-CHAT 0.17
GLM-4-9B-CHAT COT 0.25
GEMMA-2-9B-IT 0.18
GEMMA-2-9B-IT COT 0.19
LLAMA-3.1-8B-INSTRUCT 0.17
LLAMA-3.1-8B-INSTRUCT COT 0.21
QWEN2.5-7B-INSTRUCT 0.19
QWEN2.5-7B-INSTRUCT COT 0.34

32B-SCALE MODELS

QWQ-32B-PREVIEW 0.22
QWQ-32B-PREVIEW COT 0.50

70B-SCALE MODELS

LLAMA-3.3-70B-INSTRUCT 0.22
LLAMA-3.3-70B-INSTRUCT COT 0.43
QWEN2.5-72B-INSTRUCT 0.28
QWEN2.5-72B-INSTRUCT COT 0.47

API-BASED MODELS

GPT-4O-MINI 0.40
GPT-4O-MINI COT 0.43
GEMINI-2.0-FLASH-EXP 0.29
GEMINI-2.0-FLASH-EXP COT 0.52
GEMINI-2.0-FLASH-THINKING-EXP 0.39
GEMINI-2.0-FLASH-THINKING-EXP COT 0.54
DEEPSEEK V3 0.48
DEEPSEEK V3 COT 0.41

AGENTS FRAMEWORKS

AGENTCHAT(AUTOGEN) 0.60
REACT 0.46
LLM DEBATE 0.35

outputs across all tasks, we employed gpt-4o-mini to
parse responses and determine answer correctness. Based
on this comprehensive evaluation framework, our experi-
ments revealed several critical insights into current LLM
capabilities and limitations.

Through systematic evaluation focusing on rule-inductive
reasoning and generalization beyond memorized patterns,
our analysis uncovered several fundamental limitations in
current LLMs: (1) widespread failure in non-decimal arith-
metic reasoning, with even 70B-scale models showing near-
zero performance on number base tasks; (2) strong depen-
dence on specific operand symbols rather than abstract pat-
terns, as quantified by our Memory Dependence Score ∆;
and (3) a complex trade-off in Chain-of-Thought prompting,
where improved task performance often comes at the cost
of increased memory dependence. These findings suggest
fundamental limitations in LLMs’ ability to perform gen-
uine abstract reasoning, particularly when faced with novel
symbolic representations.

5.1. Quantitative Results and Analysis

Our evaluation encompasses performance metrics across
different model scales (7B-70B), prompting strategies, and

BC EC NBR MA SMA SR Avg
0

0.2
0.4
0.6
0.8
1

Sc
or

e
(Γ

)

7B Normal 7B CoT 70B Normal 70B CoT
API Normal API CoT Agents Normal

Figure 3. Abstract Reasoning Performance across Tasks, Model
Types, and Prompting (Normal/CoT).
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Figure 4. Memory Dependence Score (∆) across Model Types and
Prompting Strategies. Operand memory dependence is consistently
higher.

task categories. Figure 3 presents a detailed comparison
of Abstract Reasoning Score (Γ) across model types and
tasks. On decimal-based tasks (Basic Computation (BC),
Extended Calculation (EC)), API models achieve average Γ
exceeding 0.5, while 7B/70B models reach over 0.4 (Table 3
for detailed scores). However, Number Base Reasoning
(NBR) performance collapses across all model scales, with
average Γ below 0.1, highlighting a significant abstraction
gap in numerical generalization.

Math Application (MA) tasks show substantial gains with
Chain-of-Thought (CoT) prompting, particularly for 7B
models, suggesting CoT’s effectiveness in guiding multi-
step, familiar arithmetic problems. In contrast, Symbolic
Reasoning (SR) and Symbolic Math Abstraction (SMA)
tasks remain challenging, with average Γ generally below
0.3 even for larger models, indicating persistent difficulty in
abstract symbolic manipulation and function inference.

The Memory Dependence Score ∆ provides crucial in-
sights into the nature of model capabilities. Analy-
sis reveals consistently higher dependence on operand
symbols (MemDep num) compared to operator symbols
(MemDep op) across models and tasks. For instance,
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Table 2. Memory Dependence Analysis (∆ Scores) of Representa-
tive LLMs: Measuring Abstraction vs. Memorization.

MODEL OP NUM ALL

7B-SCALE MODELS

GLM-4-9B-CHAT 0.14 0.26 0.27
GLM-4-9B-CHAT COT 0.23 0.30 0.34
GEMMA-2-9B-IT 0.10 0.37 0.37
GEMMA-2-9B-IT COT 0.33 0.36 0.40
LLAMA-3.1-8B-INSTRUCT 0.11 0.35 0.35
LLAMA-3.1-8B-INSTRUCT COT 0.14 0.23 0.23
QWEN2.5-7B-INSTRUCT 0.10 0.36 0.37
QWEN2.5-7B-INSTRUCT COT 0.23 0.34 0.40

32B-SCALE MODELS

QWQ-32B-PREVIEW 0.02 0.23 0.21
QWQ-32B-PREVIEW COT 0.31 0.50 0.58

70B-SCALE MODELS

LLAMA-3.3-70B-INSTRUCT 0.11 0.42 0.43
LLAMA-3.3-70B-INSTRUCT COT 0.17 0.37 0.43
QWEN2.5-72B-INSTRUCT 0.07 0.42 0.43
QWEN2.5-72B-INSTRUCT COT 0.12 0.41 0.47

API-BASED MODELS

GPT-4O-MINI 0.11 0.30 0.35
GPT-4O-MINI COT 0.20 0.47 0.44
GEMINI-2.0-FLASH-EXP 0.09 0.41 0.44
GEMINI-2.0-FLASH-EXP COT 0.15 0.35 0.41
GEMINI-2.0-FLASH-THINKING-EXP 0.10 0.48 0.51
GEMINI-2.0-FLASH-THINKING-EXP COT 0.08 0.33 0.41
DEEPSEEK V3 0.08 0.37 0.41
DEEPSEEK V3 COT 0.15 0.40 0.47

AGENTS FRAMEWORKS

AGENTCHAT(AUTOGEN) 0.25 0.50 0.56
REACT 0.41 0.59 0.70
LLM DEBATE 0.21 0.40 0.41

Llama-3.3-70B-Instruct exhibits MemDep num = 0.42 vs.
MemDep op = 0.11, indicating stronger reliance on spe-
cific operand symbols. CoT prompting sometimes increases
∆, as observed in glm-4-9b-chat where ∆NUM rises from
0.26 to 0.30 with CoT. Even agent frameworks show high
memory dependence, with react reaching MemDep all of
0.70, suggesting persistent token-specific reasoning despite
architectural sophistication.

5.2. Pattern Analysis and Failure Modes

Our analysis reveals a clear task difficulty hierarchy:
SMA(hardest) → NBR → SR → EC, BC → MA (easiest),
reflecting fundamental limitations in LLMs’ abstract reason-
ing capabilities. This is particularly evident in NBR tasks,
where low Γ scores across all model scales demonstrate a
critical failure to generalize arithmetic abstraction (f ) be-
yond decimal representations, often triggering catastrophic
failures or random outputs, especially in smaller models.
Similarly, SMA tasks frequently yielded apparently random
responses, pointing to a fundamental weakness in inductive
function inference – the ability to abstract symbolic rules
(Re) from numerical examples. These patterns signify not
merely performance limitations, but fundamental deficits in

true rule induction for novel symbolic systems, revealing
core cognitive capabilities currently lacking in LLMs.

Chain-of-Thought prompting exhibits nuanced effects
across different task categories. While it reduces arithmetic
errors in MA and EC tasks, it shows limited benefit for NBR,
SMA, or SR tasks. This pattern suggests that CoT primarily
aids in structuring procedural steps within familiar domains
rather than enhancing fundamental abstraction capabilities.
Moreover, the concurrent rise in memory dependence (∆)
with CoT in some cases indicates a potential trade-off: pro-
cedural guidance might reinforce token-specific reasoning
at the expense of genuine abstraction.

MA tasks, despite their word problem format, proved rela-
tively easier across models, largely attributable to their re-
liance on familiar decimal arithmetic and extensively trained
problem-solving patterns. This observation further supports
our finding that models excel in domains with familiar sym-
bolic representations but struggle with novel abstract pat-
terns.

Agent frameworks, despite showing improved accuracy
scores, exhibited persistent token memorization patterns
in SMA and SR tasks. This suggests that even sophisticated
multi-agent architectures fail to overcome fundamental ab-
straction limitations, instead potentially reinforcing superfi-
cial pattern matching through their interaction protocols.

5.3. Deeper Analysis: Training Data Impact and
Human Baseline

To further probe the nature of LLM abstract reasoning, we
conducted supplementary experiments investigating the im-
pact of training data and establishing a human performance
baseline. Detailed experimental setups is provided in Ap-
pendix A.11.

First, we fine-tuned Llama-3.1-8B-Instruct on datasets with
and without our systematic symbol remapping. Fine-tuning
on data containing remapped symbols significantly im-
proved performance on tasks with the same remapping
structure (e.g., accuracy on the “fixed len chat bit dataset”
task increased from 13% to 60% for direct prompting
after fine-tuning on remapped data). However, this im-
provement showed limited generalization; performance
on tasks with different, unseen remapping structures (e.g.,
“fixed len chat str dataset”) did not show a similar uplift
and, in some cases, even degraded slightly (see Table 4).
This suggests that the model tended to memorize specific
mapping patterns rather than acquiring a generalizable ab-
stract rule-application capability.

Second, we benchmarked human performance using un-
dergraduate students with a computer science background
on a subset of these challenging tasks. Humans demon-
strated robust abstract reasoning, achieving near-perfect
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accuracy (97%) on the remapped bitwise operation task
(“fixed len chat bit dataset”) and strong performance (87%)
on non-decimal arithmetic (e.g., “add base3 raw dataset”),
significantly outperforming the LLMs (Table 4). Even
on the more complex remapped string operation task
(“fixed len chat str dataset”), where LLM performance was
particularly low, humans achieved 47% accuracy, highlight-
ing a substantial gap.

These findings underscore that while specific training can en-
hance performance on familiar remapped structures, current
LLMs still struggle with genuine generalization in abstract
symbolic reasoning and fall considerably short of human
capabilities in flexibly applying abstract rules to novel rep-
resentations.

5.4. Implications and Future Directions

The Memory Dependence Score ∆ serves as a critical diag-
nostic tool, revealing how LLMs rely more heavily on mem-
orizing numerical tokens (MemDep num > MemDep op)
than learning abstract rules. This operand-specific mem-
orization fundamentally limits models’ ability to general-
ize across different symbolic representations. As Figure
6 demonstrates, higher ∆ directly correlates with reduced
generalization capability.

These findings indicate that LLMs’ abstract reasoning limita-
tions stem not from scale issues, but from their fundamental
reliance on memorized patterns rather than representation-
invariant rules. Advanced techniques like multi-agent frame-
works and CoT prompting improve performance metrics but
fail to address this core abstraction deficit.

We propose three critical research directions: (1) Symbolic
data augmentation through systematic permutation to reduce
token memorization, (2) Development of functional embed-
ding spaces to promote abstraction beyond lexical forms,
and (3) Extension of benchmarks to evaluate generalization
across physical and causal reasoning domains.

The ∆ metric provides a quantitative measure for track-
ing progress toward true symbolic generalization, essential
for developing AI systems with genuine abstract reasoning
capabilities rather than mere pattern matching.

6. Conclusion
We tackled the crucial challenge of rigorously evaluating
abstract reasoning in LLMs through a theoretically robust
framework. By defining abstract reasoning as the interplay
of abstraction and reasoning, we derived validity for our met-
rics, Γ and ∆, and designed a symbol remapping benchmark
to compel genuine generalization. Extensive evaluations us-
ing this benchmark exposed a critical limitation: current
LLMs, despite strengths in familiar domains, exhibit a pro-

found deficit in abstract symbolic reasoning, hindered by
significant memory dependence and limited generalization,
even with advanced techniques.The benchmark dataset, gen-
eration scripts, and evaluation code proposed in this paper
will be publicly available at https://github.com/
MAC-AutoML/abstract-reason-benchmark.
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Impact Statement
This work introduces novel metrics, Γ (Abstract Reasoning
Score) and ∆ (Memory Dependence Score), to rigorously
benchmark abstract reasoning in Large Language Models
(LLMs). The primary positive impact lies in fostering the de-
velopment of more robust and generalizable AI. By provid-
ing a more nuanced evaluation framework that disentangles
genuine reasoning from memorization, our benchmark (Γ)
and diagnostic tool (∆) can guide research towards LLMs
capable of deeper understanding and more reliable perfor-
mance in novel, complex scenarios. This could accelerate
progress in AI safety and alignment by promoting models
that operate on underlying principles rather than superficial
correlations, potentially leading to more predictable and
interpretable systems. Improved abstract reasoning capabil-
ities are crucial for advancing AI applications in science,
education, and critical problem-solving domains where true
generalization is paramount.

Potential negative impacts, common to advancements in AI
evaluation, include the risk of “benchmark hacking”, where
models might be narrowly optimized for Γ and ∆ without
commensurate gains in holistic cognitive abilities. Further-
more, while our work aims to improve LLM robustness, the
development of more capable AI systems inherently carries
dual-use concerns and necessitates ongoing ethical scrutiny
regarding their deployment and societal consequences. The
insights gained from these metrics, if not carefully contex-
tualized, could also be misinterpreted, leading to an over-
estimation or underestimation of AI capabilities in specific
reasoning facets. We encourage the community to use these
tools responsibly, as part of a broader suite of evaluations,
to cultivate AI that is not only more capable but also more
aligned with human values and societal benefit.
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A. Appendix
In this appendix, we present comprehensive performance tables of our experimental results, including Γ and ∆ metrics
across various models and tasks. In addition to these detailed tables, we provide further clarifications on symbol mapping
protocol to ensure a complete understanding of our benchmark and evaluation process.

A.1. Abstract Reasoning in Machine Learning Context

From a statistical learning perspective, the composite abstract reasoning function H = Re◦f can be viewed as a hypothesis
class in machine learning. Here, the abstraction mapping f acts as a feature extractor, transforming concrete inputs into
abstract representations, and the reasoning function Re serves as a decision rule, operating on these abstract features to
produce conclusions. In the context of Large Language Models (LLMs), this perspective provides valuable insights. The
abstraction mapping f can be loosely associated with the embedding and encoding layers of an LLM, which process input
tokens and extract relevant features. The reasoning function Re, on the other hand, aligns with the decoder and prediction
components, which utilize the extracted features to generate output sequences.

However, applying this framework to machine learning, especially in the context of evaluating abstract reasoning in LLMs,
introduces unique challenges that distinguish it from traditional machine learning approaches:

1. Symbolic Invariance: Traditional machine learning data augmentation techniques, like image rotation or cropping,
aim to improve robustness to variations in input data. For abstract reasoning, however, we require a more nuanced
form of invariance: symbolic invariance. This means that a truly abstractly reasoning model should be invariant to
symbolic transformations that alter the surface form of inputs (e.g., symbol remapping) but preserve the underlying
abstract structure and rules. As illustrated in Figure 5, remapping digits or operators should not fundamentally impair
the model’s ability to perform the reasoning task if it has genuinely grasped the abstract principles. This is in stark
contrast to memorization-based approaches that rely on specific token identities.

2. Composite Learning: In many traditional machine learning tasks, feature extraction and decision-making might be
implicitly learned or treated as separate stages. In abstract reasoning, however, the emphasis is on learning a composite
process H = Re ◦ f . This means that the model must learn to seamlessly integrate the abstraction mapping f and the
reasoning function Re. It’s not sufficient to just have a good feature extractor or a good rule applier in isolation; the
model must learn to systematically unify these components to effectively perform abstract reasoning across different
rules and tasks. This composite nature requires a more holistic learning approach compared to simply optimizing
individual modules.

3. Information Compression through Abstraction: Beyond standard generalization metrics like accuracy, abstract
reasoning highlights the critical role of information compression through abstraction. A hallmark of abstract reasoning
is the ability to distill complex, concrete instances into concise, abstract features. This compression is not merely
about reducing dimensionality; it’s about selectively discarding irrelevant surface details while preserving the essential,
reasoning-relevant structure. An effective abstract reasoning system should operate primarily on these compressed
abstract representations, rather than directly on the high-dimensional raw input space. The efficiency and generalizability
of abstract reasoning are intrinsically linked to this ability to achieve meaningful information compression.

4. Rule Availability during Training (Rule-Given vs. Rule-Inductive): The nature of abstract reasoning tasks, in
relation to an LLM’s training data, significantly impacts the difficulty and the type of reasoning required. Rule-given
abstract reasoning tasks are those where the underlying rules or patterns are likely to have been encountered, implicitly
or explicitly, during the LLM’s extensive pre-training. In such cases, the model can potentially leverage its vast learned
knowledge and memory to perform the task, effectively recalling and applying pre-existing associations. For example,
tasks involving decimal arithmetic, common sense reasoning based on everyday knowledge, or applying frequently
seen symbolic transformations might fall into this category. The model’s performance could be enhanced by its ability
to access and utilize relevant information acquired during training.

Conversely, rule-inductive abstract reasoning tasks present a much greater challenge. These tasks involve novel rules
or patterns that are unlikely to have been directly or frequently encountered in the training data. To succeed, the LLM
must go beyond simple recall and pattern matching; it must genuinely induce the underlying rule from the provided
task description or examples and then apply this newly learned rule to solve the problem. Tasks involving arithmetic in
unfamiliar number bases, inferring novel symbolic operations from a few examples, or applying abstract rules defined
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using novel symbols are characteristic of rule-inductive reasoning. These tasks demand a higher level of abstraction,
requiring the model to actively learn and generalize rules on-the-fly, rather than relying on pre-existing knowledge.
Therefore, rule-inductive tasks are crucial for rigorously evaluating the true abstract reasoning capacity of LLMs, as
they minimize reliance on memorization and maximize the need for genuine, flexible rule learning and application.

This naturally raises a crucial question for evaluating machine learning models, especially LLMs: how can we effectively
measure whether a model has truly learned abstract reasoning, particularly rule-inductive abstract reasoning, rather than
merely memorizing patterns or exploiting superficial cues? Consider again a model solving binary arithmetic. It might
achieve correct results either through a genuine understanding of abstract arithmetic rules applicable to any base, or by
simply memorizing common input-output patterns specific to binary operations represented with ‘0’ and ‘1’. Traditional
accuracy metrics alone, while useful, are insufficient to distinguish between these fundamentally different approaches. We
need evaluation methodologies that can probe deeper into the nature of a model’s reasoning and reveal whether it is grounded
in genuine abstraction or mere memorization.

A.2. Proofs of Theorems

A.2.1. PROOF OF THEOREM 3.7: VALIDITY OF Γ FOR RULE-GIVEN POTENTIAL

Let γ be a sufficiently high threshold and consider model Ĥ with Abstract Reasoning Score Γ ≥ γ.

Step 1: By definition of Γ, we have:
1

N

N∑
i=1

⊮[Ĥ(ci, ri) = qi] ≥ γ (10)

Step 2: For large sample size N , by the Law of Large Numbers:

P (Ĥ(c, r) = q|(c, r, q) ∈ T ) ≥ γ (11)

Step 3: Let f be the abstraction mapping and Re the reasoning function. For high γ:

P (Re(f(c), r) = q) ≥ γ (12)

Therefore, high accuracy on original symbolic representations implies Rule-Given proficiency.

A.2.2. PROOF OF THEOREM 3.8: VALIDITY OF ∆ FOR RULE-INDUCTIVE ABSTRACTION

Consider model Ĥ with ∆ ≤ δ and Γ ≥ γ.

Step 1: By definition of ∆:
|Γ− ΓM | ≤ δ (13)

where ΓM is accuracy under symbol mapping M .

Step 2: For any concrete instance c ∈ C:

|P (Ĥ(c, r) = q)− P (Ĥ(M(c), r) = M(q))| ≤ δ (14)

Step 3: Given Γ ≥ γ, we have:

P (Ĥ(c, r) = q) ≥ γ P (Ĥ(M(c), r) = M(q)) ≥ γ − δ (15)

Step 4: Let f be the abstraction mapping. For small δ:

f(c) ≈ f(M(c)) =⇒ Re(f(c), r) ≈ Re(f(M(c)), r) (16)

This invariance to symbol mapping demonstrates Rule-Inductive abstraction.
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A.2.3. PROOF OF THEOREM 3.9: SCORE RANGE INTERPRETATION

We construct and validate the mapping F .

Step 1: Define F as weighted sum:
F(Γ,∆) = w1Γ + w2(1−∆) (17)

Step 2: Verify properties for extreme cases:

Case 1 (High Ability): When Γ ≈ 1 and ∆ ≈ 0:

F(Γ,∆) ≈ w1 + w2 = 1 (18)

Case 2 (Medium Ability): When Γ ≈ 0.5 and ∆ ≈ 0.5:

F(Γ,∆) ≈ 0.5 (19)

Case 3 (Low Ability): When Γ ≈ 0 or ∆ ≈ 1:
F(Γ,∆) ≈ 0 (20)

Step 3: F is continuous and monotonic in Γ and −∆, ensuring smooth transitions between ability levels.

Therefore, F provides a valid mapping from scores to abstract reasoning ability.

A.3. Model Performance and Memory Dependence Table

A.4. Diagrams

Figure 5. Illustration of the symbolic mapping process for operands and operators.

A.5. Symbol Mapping Protocols and Implementation

Symbol mapping is central to disentangling abstract reasoning from superficial memorization, forcing focus on rule
structures. We employ operand, operator, and combined remapping, as illustrated in Figure 5. To specifically assess memory
dependence, Symbolic Reasoning (SR) tasks, derived from Extended Calculation (EC) tasks through these mappings, are
used in conjunction with EC to calculate the Memory Dependence Score (∆). Performance evaluation under remappings
quantifies memory dependence (∆) and the robustness of abstract reasoning. The generation of remapped datasets follows a
systematic procedure:

1. Candidate Symbol Pool Generation: A pool of candidate symbols for remapping is curated from the Llama-2 7B
tokenizer’s vocabulary. This vocabulary is filtered to retain only single-character alphanumeric tokens (e.g., ‘a’-‘z’,
‘A’-‘Z’, ‘0’-‘9’ that are treated as individual tokens). This ensures that the new symbols are basic, unlikely to carry
strong pre-existing semantic meaning in complex sequences, and are distinct from structural elements like spaces or
newlines. Let this set of candidate remapping tokens be denoted as Scand.
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Table 3. Model Performance and Memory Dependence Evaluation. Γ values represent accuracy on task categories: Basic Computation
(BC), Extended Calculation (EC), Number Base Reasoning (NBR), Math Application (MA), Symbolic Math Abstraction (SMA), Symbolic
Reasoning (SR). ∆ values show performance drops under memory dependence tests.

MODEL BC EC NBR MA SMA SR AVG OP NUM ALL

7B-SCALE MODELS

INTERNLM2 5-7B-CHAT (CAI ET AL., 2024) 0.51 0.30 0.01 0.27 0.11 0.11 0.16 0.08 0.28 0.29
INTERNLM2 5-7B-CHAT COT 0.40 0.39 0.02 0.82 0.13 0.23 0.24 0.10 0.25 0.27
GLM-4-9B-CHAT (GLM ET AL., 2024) 0.20 0.34 0.00 0.18 0.14 0.15 0.17 0.14 0.26 0.27
GLM-4-9B-CHAT COT 0.24 0.46 0.10 0.84 0.14 0.22 0.25 0.23 0.30 0.34
YI-1.5-9B-CHAT-16K (YOUNG ET AL., 2024) 0.53 0.38 0.03 0.29 0.11 0.14 0.19 0.09 0.36 0.38
YI-1.5-9B-CHAT-16K COT 0.49 0.48 0.14 0.80 0.08 0.28 0.30 0.14 0.31 0.32
GEMMA-2-9B-IT (TEAM ET AL., 2024) 0.44 0.38 0.03 0.21 0.12 0.14 0.18 0.10 0.37 0.37
GEMMA-2-9B-IT COT 0.47 0.41 0.19 0.87 0.00 0.09 0.19 0.33 0.36 0.40
MARCO-O1 (ZHAO ET AL., 2024) 0.49 0.39 0.04 0.31 0.11 0.14 0.19 0.10 0.37 0.38
MARCO-O1 COT 0.47 0.38 0.03 0.50 0.11 0.14 0.19 0.13 0.34 0.35
LLAMA-3.1-8B-INSTRUCT (DUBEY ET AL., 2024) 0.35 0.35 0.02 0.75 0.11 0.12 0.17 0.11 0.35 0.35
LLAMA-3.1-8B-INSTRUCT COT 0.27 0.35 0.07 0.87 0.19 0.18 0.21 0.14 0.23 0.23
OPENMATH2-LLAMA3.1-8B (TOSHNIWAL ET AL., 2024) 0.24 0.33 0.03 0.89 0.14 0.18 0.19 0.05 0.26 0.25
OPENMATH2-LLAMA3.1-8B COT 0.14 0.21 0.05 0.83 0.11 0.16 0.16 0.02 0.08 0.10
QWEN2.5-7B-INSTRUCT (YANG ET AL., 2024) 0.50 0.39 0.06 0.31 0.11 0.14 0.19 0.10 0.36 0.37
QWEN2.5-7B-INSTRUCT COT 0.57 0.55 0.31 0.91 0.13 0.27 0.34 0.23 0.34 0.40
QWEN2.5-MATH-7B-INSTRUCT 0.49 0.34 0.09 0.95 0.12 0.12 0.18 0.15 0.27 0.27
QWEN2.5-MATH-7B-INSTRUCT COT 0.19 0.11 0.02 0.94 0.01 0.05 0.07 0.04 0.06 0.08

NORMAL AVG 0.41 0.35 0.03 0.46 0.11 0.13 0.18 0.10 0.32 0.32
COT AVG 0.36 0.37 0.10 0.82 0.10 0.18 0.21 0.15 0.25 0.27

32B-SCALE MODELS

QWQ-32B-PREVIEW (TEAM, 2025) 0.42 0.33 0.17 0.95 0.16 0.17 0.22 0.02 0.23 0.21
QWQ-32B-PREVIEW COT 0.78 0.83 0.53 0.95 0.13 0.40 0.50 0.31 0.50 0.58

70B-SCALE MODELS

LLAMA-3.3-70B-INSTRUCT 0.52 0.44 0.09 0.84 0.11 0.16 0.22 0.11 0.42 0.43
LLAMA-3.3-70B-INSTRUCT COT 0.53 0.69 0.21 0.96 0.09 0.43 0.43 0.17 0.37 0.43
LLAMA-3.1-NEMOTRON-70B-INSTRUCT 0.49 0.42 0.10 0.74 0.13 0.17 0.23 0.11 0.39 0.38
LLAMA-3.1-NEMOTRON-70B-INSTRUCT COT 0.45 0.66 0.19 0.95 0.12 0.38 0.40 0.15 0.42 0.45
OPENMATH2-LLAMA3.1-70B 0.47 0.43 0.12 0.94 0.13 0.15 0.23 0.13 0.40 0.41
OPENMATH2-LLAMA3.1-70B COT 0.48 0.42 0.24 0.53 0.04 0.19 0.25 0.12 0.35 0.37
QWEN2.5-72B-INSTRUCT 0.64 0.49 0.29 0.68 0.11 0.18 0.28 0.07 0.42 0.43
QWEN2.5-72B-INSTRUCT COT 0.71 0.72 0.39 0.95 0.08 0.43 0.47 0.12 0.41 0.47

NORMAL AVG 0.53 0.44 0.15 0.80 0.12 0.16 0.24 0.10 0.40 0.41
COT AVG 0.54 0.62 0.25 0.84 0.08 0.35 0.38 0.14 0.38 0.43

API-BASED MODELS

GPT-4O-MINI 0.54 0.63 0.05 0.90 0.12 0.44 0.40 0.11 0.30 0.35
GPT-4O-MINI COT 0.57 0.72 0.25 0.92 0.10 0.41 0.43 0.20 0.47 0.44
GEMINI-1.5-FLASH (TEAM ET AL., 2023) 0.59 0.50 0.28 0.36 0.04 0.32 0.34 0.06 0.28 0.27
GEMINI-1.5-FLASH COT 0.61 0.64 0.27 0.93 0.02 0.37 0.40 0.18 0.36 0.42
GEMINI-2.0-FLASH-EXP 0.72 0.52 0.26 0.56 0.14 0.19 0.29 0.09 0.41 0.44
GEMINI-2.0-FLASH-EXP COT 0.75 0.77 0.47 0.94 0.13 0.48 0.52 0.15 0.35 0.41
GEMINI-2.0-FLASH-THINKING-EXP 0.80 0.60 0.76 0.95 0.12 0.20 0.39 0.10 0.48 0.51
GEMINI-2.0-FLASH-THINKING-EXP COT 0.81 0.72 0.77 0.95 0.13 0.43 0.54 0.08 0.33 0.41
DEEPSEEK V3 (LIU ET AL., 2024A) 0.80 0.67 0.64 0.96 0.13 0.37 0.48 0.08 0.37 0.41
DEEPSEEK V3 COT 0.79 0.66 0.50 0.96 0.12 0.29 0.41 0.15 0.40 0.47

NORMAL AVG 0.69 0.58 0.39 0.74 0.11 0.30 0.38 0.08 0.36 0.39
COT AVG 0.70 0.70 0.45 0.94 0.10 0.39 0.46 0.15 0.38 0.43

AGENTS FRAMEWORKS

AGENTCHAT(AUTOGEN) (WU ET AL., 2023) 0.96 0.88 0.95 0.90 0.10 0.43 0.60 0.25 0.50 0.56
REACT (YAO ET AL., 2023) 0.97 0.83 0.76 0.85 0.06 0.25 0.46 0.41 0.59 0.70
LLM DEBATE (DU ET AL., 2023) 0.53 0.63 0.19 0.86 0.12 0.31 0.35 0.21 0.40 0.41

NORMAL AVG 0.82 0.78 0.63 0.87 0.09 0.33 0.47 0.29 0.50 0.56

2. Identification of Original Symbols for a Task Instance: For each original task instance, consisting of few-shot
examples and a question-answer pair, we first identify the set of all unique non-whitespace characters, Uorig, present in
its textual representation (both questions and answers within the examples and the target QA pair).

3. Random Bijective Symbol Mapping Establishment: A random bijective (one-to-one and onto) mapping function,
Msym : Uorig → S′

cand, is established. Here, S′
cand is a randomly selected subset of Scand such that |S′

cand| = |Uorig|. This
ensures that each unique original symbol is mapped to a unique novel candidate symbol.
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4. Generation of Remapped Task Instances under Different Strategies: The original task instances are then trans-
formed by applying character-wise substitution based on specific mapping strategies to produce remapped instances.
The core strategies are:
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Table 4. Detailed Performance Comparison: Fine-tuned Llama-3.1-8B-Instruct Variants and Human Baseline. Accuracies are percentages.
(*) denotes training on unmapped symbols; (**) denotes training on fully remapped symbols. “Untrained” is the base model. “N/A”
indicates data not applicable for that row/column (e.g., human baseline for fine-tuning, or models not subjected to fine-tuning on these
specific configurations).

DATASET MODEL / PARTICIPANT GROUP UNTRAINED FINE-TUNED (EPOCH 8) HUMAN BASELINE

FIXED LEN CHAT BIT DATASET

LLAMA-3.1-8B-INSTRUCT* DIRECT 13% 18%

97%

LLAMA-3.1-8B-INSTRUCT* COT 5% 7%
LLAMA-3.1-8B-INSTRUCT** DIRECT 13% 60%
LLAMA-3.1-8B-INSTRUCT** COT 5% 11%
GEMINI-2.0-FLASH-THINKING-EXP DIRECT 57% N/A
GEMINI-2.0-FLASH-THINKING-EXP COT 46% N/A

FIXED LEN CHAT STR DATASET

LLAMA-3.1-8B-INSTRUCT* DIRECT 27% 27%

47%

LLAMA-3.1-8B-INSTRUCT* COT 3% 7%
LLAMA-3.1-8B-INSTRUCT** DIRECT 27% 25%
LLAMA-3.1-8B-INSTRUCT** COT 3% 2%
GEMINI-2.0-FLASH-THINKING-EXP DIRECT 19% N/A
GEMINI-2.0-FLASH-THINKING-EXP COT 17% N/A

ADD BASE3 RAW DATASET GEMINI-2.0-FLASH-THINKING-EXP 75% N/A 87%

• Raw (No Remapping): The original task instance is used as-is. This serves as the baseline for calculating Γ.
• Combined Remapping (All Symbols): The mapping Msym (derived from all unique characters Uorig) is applied

to all characters in the task instance’s examples and QA pair. This generates the fully remapped dataset variant
used for one type of ∆ calculation.

• Operand-Specific Remapping (Number/Value Symbols): First, unique characters constituting only the operands
(e.g., ‘0’, ‘1’ in bit strings; digits in numerical operations) are identified from Uorig, let this set be Uoperand. A
distinct random bijective mapping Moperand : Uoperand → S′′

cand is created. This mapping is then applied only to the
operand characters within the task instance. Operator symbols remain in their original form.

• Operator-Specific Remapping (Operation Symbols): Similarly, unique characters representing operators (e.g.,
‘binary and’, ‘+’, or their symbolic representations in the examples) are identified, let this set be Uoperator. A
distinct random bijective mapping Moperator : Uoperator → S′′′

cand is created. This mapping is applied only to the
operator characters. Operand symbols remain unchanged.

For all remapping strategies, the underlying problem structure and the rules implied by the examples are preserved;
only the surface symbolic representation is altered.

5. Dataset Assembly: By applying these strategies, we generate multiple versions of each sub-dataset: a raw version, a
fully remapped version, an operand-remapped version, and an operator-remapped version. These variants allow for the
calculation of Γ (from raw performance) and different facets of ∆ by comparing performance on raw versus remapped
datasets.

This systematic remapping allows us to quantify how much a model’s performance relies on specific familiar tokens versus
its ability to generalize to abstract patterns represented by novel symbols.

A.6. Dataset Details

Our benchmark comprises 82 sub-datasets, categorized across six main task categories: Basic Computation (BC), Extended
Calculation (EC), Number Base Reasoning (NBR), Math Application (MA), Symbolic Math Abstraction (SMA), and
Symbolic Reasoning (SR). With the exception of the Math Application (MA) category which utilizes the GSM8K dataset,
each sub-dataset contains 96 examples, resulting in a total of 9095 samples across the entire benchmark. During dataset
construction, we ensured diversity in task instructions and samples, and meticulously excluded potential duplicate phrasings
to prevent models from solving tasks via superficial pattern matching. The naming convention for sub-datasets indicates
key variations: prefixes like ‘var len’ or ‘fixed len’ denote variable or fixed operand lengths, respectively; ‘chat’ signifies a
conversational prompt format. The core of the filename often indicates the specific operation type (e.g., ‘bit’ for bitwise
operations, ‘str’ for string manipulations, ‘strop’ for specific string operations). Furthermore, suffixes such as ‘raw’ identify
tasks using original, unmapped symbols, while ‘op map’, ‘num map’, and ‘all map’ specify whether symbol remapping is
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applied to operators, operands (numbers), or both, respectively. A detailed list of sub-datasets within each task category is
provided below:

A.6.1. BASIC COMPUTATION (BC) DATASETS

chat_add_dataset
chat_div_dataset
chat_sub_dataset
chat_mul_dataset

A.6.2. EXTENDED CALCULATION (EC) DATASETS

var_len_chat_list_cnt_raw_dataset
var_len_chat_strop_raw_dataset
fixed_len_chat_substr_raw_dataset
fixed_len_chat_bit_raw_dataset
fixed_len_chat_str_raw_dataset
var_len_chat_bitop_raw_dataset
var_len_chat_str_raw_dataset
var_len_chat_bit_shift_raw_dataset
var_len_chat_list_raw_dataset
fixed_len_chat_bitop_raw_dataset
chat_square_dataset
var_len_chat_bit_raw_dataset
var_len_chat_data_raw_dataset
var_len_chat_set_raw_dataset
fixed_len_chat_strop_raw_dataset
fixed_len_chat_bit_shift_raw_dataset

A.6.3. MATH APPLICATION (MA) DATASETS

dataset_gsm8k (1319 samples)

A.6.4. NUMBER BASE REASONING (NBR) DATASETS

chat_add_base3_raw_dataset
chat_add_base4_raw_dataset
chat_base5_raw_dataset
chat_sub_base4_raw_dataset
chat_mul_base3_raw_dataset
chat_base3_raw_dataset
chat_mul_base4_raw_dataset
chat_base4_raw_dataset
chat_add_base5_raw_dataset
chat_sub_base3_raw_dataset
chat_mul_base5_raw_dataset
chat_sub_base5_raw_dataset

A.6.5. SYMBOLIC MATH ABSTRACTION (SMA) DATASETS

chat_quadratic_dataset
chat_triangle_wave_dataset
chat_sawtooth_wave_dataset
chat_square_wave_dataset
chat_cosine_dataset
chat_linear_dataset
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chat_sine_dataset

A.6.6. SYMBOLIC REASONING (SR) DATASETS

var_len_chat_bitop_num_dataset
fixed_len_chat_str_op_dataset
fixed_len_chat_bit_op_dataset
var_len_chat_list_cnt_num_dataset
var_len_chat_bit_dataset
fixed_len_chat_bit_shift_dataset
var_len_chat_bit_shift_num_dataset
var_len_chat_bit_shift_dataset
var_len_chat_bit_op_dataset
var_len_chat_list_op_dataset
var_len_chat_list_num_dataset
var_len_chat_set_dataset
var_len_chat_list_cnt_dataset
var_len_chat_str_num_dataset
var_len_chat_bitop_op_dataset
var_len_chat_list_cnt_op_dataset
fixed_len_chat_bit_shift_op_dataset
fixed_len_chat_substr_num_dataset
var_len_chat_bitop_dataset
fixed_len_chat_str_num_dataset
var_len_chat_strop_dataset
var_len_chat_str_op_dataset
var_len_chat_list_dataset
fixed_len_chat_bitop_num_dataset
fixed_len_chat_str_dataset
var_len_chat_bit_shift_op_dataset
var_len_chat_set_num_dataset
fixed_len_chat_bitop_dataset
var_len_chat_strop_op_dataset
var_len_chat_bit_num_dataset
fixed_len_chat_substr_dataset
fixed_len_chat_strop_dataset
fixed_len_chat_substr_op_dataset
fixed_len_chat_strop_num_dataset
fixed_len_chat_bit_shift_num_dataset
fixed_len_chat_strop_op_dataset
var_len_chat_strop_num_dataset
fixed_len_chat_bit_dataset
fixed_len_chat_bit_num_dataset
var_len_chat_set_op_dataset
fixed_len_chat_bitop_op_dataset
var_len_chat_str_dataset
fixed_len_chat_substr_op_dataset

Total Samples: 9095

Dataset Structure: Each dataset consists of input-output pairs designed to evaluate specific abstract reasoning skills as
detailed in Section 4. The input and output formats are consistent across all sub-datasets within each task category, ensuring
a standardized evaluation framework. The ‘Avg’ column in Table 3 represents the average of the Abstract Reasoning Score
(Γ) across all sub-datasets within the corresponding task category.
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A.7. Example Demonstrations

Here we provide example prompts and instances from our benchmark to illustrate the task format and the symbol mapping
methodology.

A.7.1. EXAMPLE FROM EXTENDED CALCULATION (EC) CATEGORY

Prompt: The task is to identify patterns and discover rules from the provided examples, then answer a question. The
symbols in the question may not have their usual meanings, so carefully analyze the rules and expressions before providing
your final answer in the format: “Answer: The answer is {your answer}.”

Examples:

• Question: 01000110 binary and 00011111 =

• Answer: The answer is 00000110.

• Question: 00011100 binary and 00010001 =

• Answer: The answer is 00010000.

• Question: 01011110 binary and 00001101 =

• Answer: The answer is 00001100.

• ...

Question: 00100111 binary and 01100111 = Answer: The answer is 00100111.

A.7.2. EXAMPLE FROM SYMBOLIC REASONING (SR) CATEGORY WITH SYMBOL MAPPING

Prompt: The task is to identify patterns and discover rules from the provided examples, then answer a question. The
symbols in the question may not have their usual meanings, so carefully analyze the rules and expressions before providing
your final answer in the format: “Answer: The answer is {your answer}.”

Examples:

• Question: JQJJJQQJ q5nbmvYbnD JJJQQQQQ z

• Answer: The answer is JJJJJQQJ.

• Question: JJJQQQJJ q5nbmvYbnD JJJQJJJQ z

• Answer: The answer is JJJQJJJJ.

• Question: JQJQQQQJ q5nbmvYbnD JJJJQQJQ z

• Answer: The answer is JJJJQQJJ.

• ...

Question: JJQJJQQQ q5nbmvYbnD JQQJJQQQ z Answer: The answer is JJQJJQQQ.

A.8. Example Instances for Task Categories

Here we provide example instances for each task category in our benchmark, drawing from the benchmark document
provided:

• BC (Basic Computation):

– Addition: ‘27 + 15817 = ?’
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– Subtraction: ‘100 - 25 = ?’
– Multiplication: ‘12 * 8 = ?’
– Division: ‘24 / 8 = ?’

• EC (Extended Calculation): This category includes a variety of extended computational tasks:

– Square Root Calculation: ‘sqrt(625) = ?’
– Bitwise Operations:

* Binary AND: ‘01000110 binary and 00011111 = ?’

* Binary OR: ‘01000110 binary or 00011111 = ?’

* Binary NOT: ‘binary not 01010101 = ?’
– Bit Shift Operations:

* Logical Left Shift: ‘00000110 bit shift left 2 = ?’

* Logical Right Shift: ‘00000110 bit shift right 2 = ?’

* Circular Right Shift: ‘00000110 circular right shift 1 = ?’
– Bit Manipulation Operations:

* Check Bit: ‘01000110 check bit 1 = ?’ (Check if bit at position 1 is set)

* Set Bit: ‘01100010 set bit 0 = ?’ (Set bit at position 0 to 1)

* Toggle Bit: ‘00010100 toggle bit 6 = ?’ (Flip bit at position 6)
– String Manipulation:

* Reverse String: ‘reverse(‘algorithm’) = ?’

* Concatenate Strings: ‘concatenate(‘hello’, ‘world’) = ?’

* Repeat String: ‘repeat(‘go’, 3) = ?’

* Get String Length: ‘get length(‘benchmarking’) = ?’

* Substring Containment (in order): ‘ebhbgfhdbcfgfbhbbegaafaaceechhfhadacdabb contains(in order) bffd = ?’
– Set Operations:

* Difference: ‘difference(0, 2, 4, 0, 1, 4) = ?’

* Union: ‘union(a, b, c, c, d, e) = ?’

* Intersection: ‘intersection(1, 2, 3, 3, 4, 5) = ?’
– List Operations:

* Sort List: ‘sort([5, 2, 8, 1, 9]) = ?’

* Filter List: ‘filter([1, 5, 10, 3, 8], 5) = ?’ (Filter elements greater than 5)

* Deduplicate List: ‘deduplicate([a, b, a, c, c, b, d]) = ?’

* Maximum Value in List: ‘max([12, 5, 23, 8, 15]) = ?’

* Minimum Value in List: ‘min([12, 5, 23, 8, 15]) = ?’

* Median Value in List: ‘median([3, 1, 4, 1, 5, 9, 2, 6]) = ?’

* Mode Value in List: ‘mode([a, b, c, b, a, a, d]) = ?’
– Date Calculation:

* Days Between Dates: ‘days between dates([2024, 07, 29], [2021, 10, 31]) = ?’

• NBR (Number Base Reasoning):

– Ternary Addition: ‘2200102 (base3) + 11100111 (base3) = ? (base3)’
– Quaternary Subtraction: ‘321 (base4) - 13 (base4) = ? (base4)’
– Quinary Multiplication: ‘23 (base5) * 4 (base5) = ? (base5)’
– Base Conversion: ‘25 (base10) to base 3 = ? (base3)’

• MA (Math Application):

– GSM8K style problems, for example: “If Maria buys 3 apples and each apple costs $0.50, and she also buys a
banana for $1.00, how much does she spend in total?”

• SMA (Symbolic Math Abstraction):
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– Infer function type and parameters from input-output pairs:

* Linear Function: Input-Output pairs: (1, 5), (2, 8), (3, 11). Question: fun(4) = ? (Function is f(x) = 3x + 2)

* Quadratic Function: Input-Output pairs: (1, 2), (2, 7), (3, 14). Question: fun(4) = ? (Function is f(x) = x2̂ + 1)

* Exponential Function: Input-Output pairs: (1, 6), (2, 18), (3, 54). Question: fun(4) = ? (Function is f(x) = 2 *
3x̂)

* Logarithmic Function: Input-Output pairs: (1, 0), (e, a), (e2̂, 2a). Question: fun(e3̂) = ? (Function is f(x) = a *
ln(x))

* Sine Function: Input-Output pairs: (0, 0), (π/2, a), (π, 0). Question: fun(3π/2) = ? (Function is f(x) = a *
sin(x))

• SR (Symbolic Reasoning):

– For the Symbolic Reasoning (SR) dataset, we utilized tasks from the Extended Calculation (EC) category,
excluding tasks involving square root calculations (sqrt) and date-related operations (data).

A.9. Benchmark Task Generation Details

Definition A.1 (Task Generation Function). For each task category c, the generation function Gc is defined as:

Gc : R×P → {(xi, yi)}ni=1

where:

• R is the rule space.

• P is the parameter space for task configuration.

• (xi, yi) are input-output pairs satisfying yi = R(f(xi), r) for r ∈ R.

A.10. Illustrative Case Studies: Success and Failure in Abstract Reasoning

To further illustrate the performance characteristics of LLMs on our benchmark, this section presents two specific case
studies: one failure and one success. For brevity, the few-shot examples provided in the full prompt are omitted here; we
focus on the final question posed, the ground truth, the model’s full ‘raw output’ (which includes its Chain-of-Thought
process), and an analysis of its reasoning.

A.10.1. FAILURE CASE: NON-DECIMAL ARITHMETIC (BASE-5 ADDITION)

Task Context: The model was tasked with performing addition in base-5, with explicit hints and examples indicating the
base of operation. This tests the model’s ability to generalize arithmetic principles to non-decimal systems.

• Model: DeepSeek-V3 (with CoT prompting)

• Dataset: chat add base5 raw dataset

• Question Posed (final part of prompt): \nHint: This is base 5 operation.\nQuestion: 411
+ 421200 =\n\n (Examples omitted)

• Ground Truth Answer: 422111 (base 5)

• Model’s Extracted Final Answer: 422211 (base 5)

Model’s Full ‘raw output’:

To solve \( 411 + 421200 \) in base 5, we follow these steps:

### Step 1: Align the numbers by their place values
We align the numbers so that the digits are in the correct place value columns:
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421200
+ 411
-------

### Step 2: Add the digits column by column,
starting from the rightmost column (units place)
We add the digits in each column, keeping in mind that this is base 5,
so any sum greater than or equal to 5 will carry over to the next column.

1. **Rightmost column (units place):**
\( 0 + 1 = 1 \).
Write down **1**.

2. **Next column (fives place):**
\( 0 + 1 = 1 \).
Write down **1**.

3. **Next column (twenty-fives place):**
\( 2 + 4 = 6 \).
Since 6 is greater than or equal to 5,
we subtract 5 and carry over 1 to the next column.
Write down **1** and carry over **1**.

4. **Next column (one hundred twenty-fives place):**
\( 1 + 0 = 1 \), plus the carry-over of 1 gives \( 1 + 1 = 2 \).
Write down **2**.

5. **Next column (six hundred twenty-fives place):**
\( 2 + 0 = 2 \).
Write down **2**.

6. **Next column (three thousand one hundred twenty-fives place):**
\( 4 + 0 = 4 \).
Write down **4**.

7. **Leftmost column (fifteen thousand six hundred twenty-fives place):**
\( 4 + 0 = 4 \).
Write down **4**.

### Step 3: Write the final result
Combining all the digits from left to right, the result is:

**422211**.

### Final Answer:
The answer is **422211**.

Analysis of Model’s Reasoning: The model’s ‘raw output’ indicates an attempt to follow a base-5 addition procedure. It
correctly identifies the need for carrying when a column sum is ≥ 5. For instance, in “Step 2, part 3,” it calculates 2+ 4 = 6,
which becomes ‘1’ with a carry of ‘1’ in base 5. The critical error occurs in the handling of place values for numbers of
differing lengths. While ‘421200’ (base 5) is a six-digit number and ‘411’ (base 5) is a three-digit number, the model’s
“Step 2, part 7” incorrectly processes the most significant digit of ‘421200’ (the leftmost ‘4’) as if it were a seventh digit to
be added to an implicit leading zero from the shorter number. This leads to an erroneous extra ‘4‘ at the beginning of its
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sum, resulting in ‘422211’ instead of the correct ‘422111’. This case demonstrates a failure in accurately abstracting and
applying place value concepts in a non-decimal system, even when the fundamental carry logic is partially understood. The
CoT, while outlining steps, did not prevent this structural misunderstanding.

A.10.2. SUCCESS CASE: SYMBOLIC REASONING WITH REMAPPING (BITWISE AND)

Task Context: The model was presented with few-shot examples where two 8-character strings composed of novel symbols
(‘Z’ and ‘3’) were combined with a distractor operator string to produce an 8-character output string. The task required
inferring both the meaning of the novel symbols and the underlying logical operation.

• Model: Gemini-2.0-Flash-Thinking-Exp (with CoT prompting)

• Dataset: fixed len chat bit dataset (a fully remapped bitwise operation task)

• Question Posed (final part of prompt): Question: ZZ333ZZ3 LHWFRwgFWr ZZZ3ZZ3Z G\n\nLet’s
think step by step. \n\n (Examples omitted)

• Ground Truth Answer: ZZZ3ZZZZ

• Model’s Extracted Final Answer: ZZZ3ZZZZ

Model’s Full ‘raw output’:

Answer: The answer is ZZZ3ZZZZ.

**Step-by-step reasoning:**
1. **Convert ’Z’ and ’3’ to binary digits:** Treat ’Z’ as 0 and ’3’ as 1.

- First string: ZZ333ZZ3 becomes 00111001.
- Third string: ZZZ3ZZ3Z becomes 00010010.

2. **Perform bitwise AND operation:**
Apply the bitwise AND operation to each corresponding bit of
the binary representations of the first and third strings.

00111001 (First string)
AND
00010010 (Third string)
---------
00010000 (Result)

- Position 1: 0 AND 0 = 0
- Position 2: 0 AND 0 = 0
- Position 3: 1 AND 0 = 0
- Position 4: 1 AND 1 = 1
- Position 5: 1 AND 0 = 0
- Position 6: 0 AND 0 = 0
- Position 7: 0 AND 1 = 0
- Position 8: 1 AND 0 = 0

3. **Convert the binary result back to ’Z’ and ’3’:**
Convert the binary result 00010000 back to a string of ’Z’s and ’3’s,
where 0 is ’Z’ and 1 is ’3’.

- 00010000 becomes ZZZ3ZZZZ.

4. **Compare with the provided answer:**
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The derived answer ZZZ3ZZZZ matches the provided answer
for the question ZZ333ZZ3 LHWFRwgFWr ZZZ3ZZ3Z G.

Final Answer: The final answer is $\boxed{ZZZ3ZZZZ}$

Analysis of Model’s Reasoning: The model’s ‘raw output’ clearly articulates a successful multi-step abstract reasoning
process:

1. Symbolic Abstraction: In “Step 1,” the model correctly infers the semantic mapping of the novel symbols: ‘Z’ to binary
‘0’ and ‘3’ to binary ‘1’. It then accurately converts the two relevant input strings (‘ZZ333ZZ3’ and ‘ZZZ3ZZ3Z’) into
their binary representations (‘00111001’ and ‘00010010’, respectively). The distractor elements ‘LHWFRwgFWr’ and
‘G’ are correctly ignored.

2. Operational Inference and Execution: In “Step 2,” the model correctly identifies the underlying operation as a
bitwise AND applied to the two abstracted binary strings. It then performs this operation flawlessly, yielding the binary
result ‘00010000’.

3. Reverse Symbolic Mapping: In “Step 3,” the model converts the binary result back to the original symbolic domain,
correctly translating ‘00010000’ to ‘ZZZ3ZZZZ’.

This case exemplifies successful abstract reasoning. The model was not merely pattern matching surface tokens but
demonstrated an understanding of the underlying logical structure by (a) mapping novel symbols to a known representational
system (binary), (b) inferring the correct logical operation from examples, and (c) applying this inferred rule to new inputs.
The CoT output provides transparent evidence of this robust reasoning process.

A.11. Supplementary Experimental Details

This section provides further details on the Large Language Model (LLM) evaluation setup, the fine-tuning experiments,
and the human baseline evaluation.

A.11.1. LLM EVALUATION SETUP

The main LLM evaluations were conducted utilizing two distinct server configurations, selected based on model scale and
computational needs: one server equipped with 8 NVIDIA GeForce RTX 3090 GPUs (24GB VRAM each), and another
with 8 NVIDIA A800 GPUs (80GB VRAM each). For inference, we generally employed a generation configuration with a
temperature of 1e-7 and a maximum of 2096 new tokens. The inference batch size was adjusted according to available GPU
memory and model size, prioritizing model-specific default generation parameters where applicable.

A.11.2. FINE-TUNING SETUP FOR LLAMA-3.1-8B-INSTRUCT

To investigate the impact of training data on abstract reasoning with remapped symbols, we fine-tuned the Llama-3.1-8B-
Instruct model. Input prompts and their corresponding answers were formatted as a continuous sequence, specifically
structured as <s>[INST] {prompt} [/INST] {answer}</s>. We utilized the AutoTokenizer from the “meta-
llama/Llama-3.1-8B-Instruct” pretrained model, configuring it with padding on the left side and setting the pad token to be
the tokenizer’s end-of-sequence (EOS) token. All inputs were tokenized to a maximum length of 2048, with truncation and
padding applied as necessary.

Two distinct training data configurations were employed. The “Unmapped Symbols Training (*)” involved fine-
tuning the model on 2,000 samples generated using original, unmapped symbols, structured similarly to our
“fixed len chat bit raw dataset”. Conversely, the “Fully Mapped Symbols Training (**)” fine-tuned the model on 2,000
samples where symbols (both operands and operators) were systematically remapped, mirroring the structure of our
“fixed len chat bit dataset”.

Key hyperparameters, based on our experimental script, included a per-device batch size of 4, 2 gradient accumulation steps,
the Paged AdamW 8-bit optimizer, a learning rate of 2e-5, and a cosine learning rate scheduler with a warmup ratio of 0.03.
BF16 precision was used, the seed was set to 42, and gradient checkpointing was enabled.
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Post fine-tuning, the performance of these models was assessed on two datasets: the “fixed len chat bit dataset” (where the
remapping structure was encountered during the ‘Fully Mapped’ training phase) and the “fixed len chat str dataset” (which
presented an unseen remapping structure and task type), to evaluate both learning and generalization. The Chain-of-Thought
(CoT) variants mentioned in our earlier rebuttal refer to the application of CoT prompting strategies during the inference
phase with these already fine-tuned models; the fine-tuning data itself did not explicitly include CoT examples. Detailed
results, encompassing pre-fine-tuning (untrained) baselines and post-fine-tuning performance for both direct prompting and
CoT variants, are collated in Table 4.

A.11.3. HUMAN BASELINE EVALUATION PROTOCOL

To establish a human performance baseline for comparative analysis with LLMs, we recruited four undergraduate students,
each with a background in computer science. These participants were tasked with a subset of 16 samples from each of the
following datasets: the “fixed len chat bit dataset” (for remapped bitwise operations), the “fixed len chat str dataset” (for
remapped string operations), and the “add base3 raw dataset” (for non-decimal arithmetic, specifically base-3 addition with
original symbols).

During the evaluation, participants received the identical problem descriptions and examples that were provided to the LLMs
in their respective evaluation settings. They were instructed to infer the underlying rules from these provided examples and
subsequently solve the posed questions. It is important to note that no explicit training or instruction regarding the specific
symbol mappings was given to the participants beyond what could be deduced from the in-prompt examples. Performance
was quantified by calculating accuracy based on the correctness of their final answers. The aggregated human performance
across these tasks is detailed and compared with LLM performance in Table 4.
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