
Under review as a conference paper at ICLR 2024

LEARNING SEQUENCE ATTRACTORS IN HOPFIELD
NETWORKS WITH HIDDEN NEURONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The brain is targeted for processing temporal sequence information. It remains
largely unclear how the brain learns to store and retrieve sequence memories.
Here, we study how networks of Hopfield type learn sequence attractors to store
predefined pattern sequences and retrieve them robustly. We show that to store ar-
bitrary pattern sequences, it is necessary for the network to include hidden neurons
even though their role in displaying sequence memories is indirect. We develop a
local learning algorithm to learn sequence attractors in the networks with hidden
neurons. The algorithm is proven to converge and lead to sequence attractors. We
demonstrate that our model can store and retrieve sequences robustly on synthetic
and real-world datasets. We hope that this study provides new insights in under-
standing sequence memory and temporal information processing in the brain.

1 INTRODUCTION

The brain is targeted for processing temporal sequence information. Taking visual recognition for
example, the conventional setting of static image processing never happens in the brain. Starting
from retina, visual inputs of an image arrive in the form of optical flow, which are transformed into
spike trains of retinal ganglia cells, and then transmitted through LGN, V1, V2, V4 and higher corti-
cal regions until the image is recognized. Along the whole pathway, the computations performed by
the brain are in the form of temporal sequential processing, rather than being static. For another ex-
ample, when we recall an episodic memory, a sequence of events represented by neuronal responses
flows into our mind, and these events do not come in disorder or isolation, but are unfolded in time,
as we experience “mental time travel” [Tulving, 2002]. The hippocampus has been revealed to be
essential for sequence memories by physiological and behavioral studies. In animals, sequences of
neural activity patterns are observed in the hippocampus for memory replay and memory related
tasks [Nádasdy et al., 1999; Lee & Wilson, 2002; Foster & Wilson, 2006; Pastalkova et al., 2008;
Davidson et al., 2009; Pfeiffer & Foster, 2013; 2015]. The discovery of time cells in hippocampus
shows that the brain has specialized neurons encoding the temporal structure of events [Eichenbaum,
2014]. Overall, the processing of temporal sequences is critical to the brain, but computational mod-
eling study on this issue lags far behind that on static information processing.

Attractor neural networks are promising computational models for elucidating the mechanisms of
the brain representing, memorizing and processing information [Amari, 1972; Hopfield, 1982; Amit,
1989]. An attractor network is a type of recurrent networks, in which information is stored as
stable states (attractors) of the network. Once stored, a memory can be retrieved robustly under the
evolving of the network dynamics given noisy or incomplete cues. The experimental evidences have
indicated that the brain employs attractor networks for memory related tasks [Khona & Fiete, 2022].
By considering simplified neuron model and threshold dynamics, the classical Hopfield networks
have successfully elucidated how recurrent networks learn to store static memory patterns [Hopfield,
1982]. However, the classical Hopfield networks and some related works mostly consider static
attractors, which can not explain the sequential neural activities widely observed in the brain (e.g.,
in memory retrieval in the hippocampus). Thus, in this paper, we follow and extend the standard
form of the classical Hopfield networks by considering binary neurons and threshold dynamics, as
this enables us to pursue theoretical analysis, and we investigate how the networks learn to store
sequence attractors. By sequence attractor, it means the state of a recurrent network evolves in the
order of the stored pattern sequence and being robust to noise.

1

Under review as a conference paper at ICLR 2024

We first show that, to store arbitrary pattern sequences, the classical Hopfield networks, which have
only visible neurons, is inadequate in Section 3. Then we argue that it is necessary for the networks
to include hidden neurons in Section 4. These neurons are not directly involved in expressing pat-
tern sequences, but they are indispensable for the networks to store and retrieve arbitrary pattern
sequences. When unfolding the network recurrent dynamics in time, the role of these hidden neu-
rons is analogous to that of a hidden layer in the conventional feedforward networks. We further
develop a local learning algorithm to learn sequence attractors in the networks with hidden neurons
in Section 5. The algorithm is proven to converge and lead to sequence attractors. It draws inspi-
rations from three ideas: feedback alignment [Lillicrap et al., 2016], target propagation [LeCun,
1987; Bengio, 2014; Litwin-Kumar et al., 2017] and three-factor rules [Frémaux & Gerstner, 2016;
Kuśmierz et al., 2017]. We demonstrate that our model can learn to store and retrieve pattern se-
quences robustly on synthetic and real-world datasets in Section 6. We hope that this study provides
new insights in understanding sequence memory and temporal information processing in the brain.

2 RELATED WORKS AND OUR CONTRIBUTIONS

Learning temporal sequences in recurrent networks has been studied previously in the field of com-
putational neuroscience. These works employ different forms of recurrent networks and have differ-
ent focuses of investigation. Specifically, [Amari, 1972; Hopfield, 1982; Kleinfeld, 1986; Sompolin-
sky & Kanter, 1986; Bressloff & Taylor, 1992; Fiete et al., 2010] investigated recurrent networks
of binary neurons and simple threshold dynamics. This approach takes advantages of simplified
models that capture the essential features of neural dynamics and allows us to pursue theoretical
analysis. [Brea et al., 2013; Tully et al., 2016] investigated recurrent networks of spiking neurons
which are more biologically realistic but hard to analyze theoretically. [Laje & Buonomano, 2013;
Rajan et al., 2016; Gillett et al., 2020; Rajakumar et al., 2021] investigated recurrent networks of
firing-rate neurons (e.g., sigmoid and linear-threshold), whose complexity is a trade-off between
binary neurons and spiking neurons. More recently, [Karuvally et al., 2023; Chaudhry et al., 2023]
employ modern Hopfield networks [Krotov & Hopfield, 2016] for modeling sequence memory.

In this paper, we follow and extend networks of Hopfield type, which uses binary neuron model,
with the focus of theoretical analysis. Below summarizes the main contributions of our work in
comparison to related works.

• We highlight the importance of hidden neurons in the networks for learning arbitrary pat-
tern sequences. Most previous works on Hopfield networks of binary neurons consid-
ered only visible neurons, and hence the pattern sequences they can generate are limited
[Amari, 1972; Kleinfeld, 1986; Sompolinsky & Kanter, 1986; Bressloff & Taylor, 1992;
Fiete et al., 2010]. Although modern Hopfield networks also include hidden neurons, the
biological plausibility is unclear as it requires a high-order polynomial or exponential ac-
tivation function [Chaudhry et al., 2023]. Other works using biologically more detailed
models did demonstrate the benefit of including hidden neurons in sequence learning, but
they lack theoretical analysis because of the model complexity [Laje & Buonomano, 2013;
Brea et al., 2013; Rajakumar et al., 2021].

• We have clear theoretical characterization of sequences that can be generated by our net-
works (Proposition 1), a result which is lacking in all other related works. Although this
conclusion comes from the analysis of the simple model we use, it lays foundation for
future work to test it in biologically more realistic networks.

• Our learning algorithm is proven to converge and lead to sequence attractors, while most
previous works only provided empirical evidences to demonstrate that the learned se-
quences are robust to noise [Laje & Buonomano, 2013; Brea et al., 2013; Rajan et al.,
2016; Rajakumar et al., 2021]. Although [Amari, 1972; Bressloff & Taylor, 1992] provided
provable results on sequence attractors, they did not include hidden neurons and hence the
results only hold for a restricted class of sequences.

• Our learning algorithm only requires local information between neurons, which is believed
to be biologically plausible. [Rajakumar et al., 2021] used backpropagation which is often
criticized for its biologically implausibility as it requires gradient computation and has the
weight transport problem [Lillicrap et al., 2020]. [Chaudhry et al., 2023] used a pseudo-
inverse algorithm whose biologically plausibility is unclear.

2

Under review as a conference paper at ICLR 2024

3 LIMITATION OF CLASSICAL HOPFIELD NETWORKS

We first consider the classical Hopfield networks of N visible binary neurons [Amari, 1972; Hop-
field, 1982]. All the neurons are bidirectionally connected and their weight matrix is W of
which Wij denotes the synaptic weight from the j-th neuron to the i-th neuron. Let ξ(t) =
(ξ1(t), ..., ξN (t)) ∈ {−1, 1}N be the states of the neurons at time t. These states are synchronously
updated according to the threshold dynamics, for i = 1, ..., N ,

ξi(t+ 1) = sign
(N∑

j=1

Wijξj(t)− θi

)
= sign

(N∑
j=0

Wijξj(t)
)
, (1)

where sign(x) = 1 if x ≥ 0 and sign(x) = 0 otherwise. Hereafter, the threshold parameter θi is
omitted as it can be absorbed by adding an extra neuron ξ0(t) = 1 and Wi0 = −θi. Given a pair of
successive network states ξ(t) and ξ(t + 1), the dynamics of the network can be unfolded in time
and viewed as a feedforward network, in which each output neuron is a perceptron of the inputs, as
illustrated in Figure 1.

Unfolding in time

ξ(t)

ξ(t+ 1)

W

Figure 1: Classical Hopfield network. The red circles denote the visible neurons.

Given a sequence in the form of x(1), ...,x(T) ∈ {−1, 1}N , one can use a learning algorithm
to adjust W such that the evolving of the network state matches the pattern sequence. Although
the networks can generate some sequences of maximal length 2N [Muscinelli et al., 2017], they
are fundamentally limited in the class of sequences that can be generated. Since each neuron can be
regarded as a perceptron, the condition that sequence x(1), ...,x(T) can be generated by the network
is, for each i, the dataset {(x(t), xi(t + 1))}T−1

t=1 is linearly separable [LeCun, 1986; Bressloff &
Taylor, 1992; Brea et al., 2013; Muscinelli et al., 2017].

For a simple example of sequences which cannot be generated by the networks, consider the se-
quence (1, 1), (1,−1), (−1, 1), (−1,−1), (1, 1) with N = 2 and T = 5. To generate this sequence,
the first neuron of the network needs to map (1, 1) to 1, (1,−1) to −1, (−1, 1) to −1 and (−1,−1)
to 1. This mapping is essentially the XOR operation which cannot be performed by a perceptron
[Minsky & Papert, 1969]. In Figure 2, we show additional examples of sequences that cannot be
generated by the network. The sequences are synthetically constructed. We then test if the per-
ceptron learning algorithm can learn the sequences. Since the algorithm converges if the linear
separability condition is met [Minsky & Papert, 1969], the divergence of the algorithm implies that
the sequences cannot be generated by the networks.

Figure 2: Two example sequences which cannot be generated by recurrent networks without hidden
neurons. White squares denote positive ones and black squares denote negative ones.

3

Under review as a conference paper at ICLR 2024

4 HOPFIELD NETWORKS WITH HIDDEN NEURONS

To overcome the limitation of the classical Hopfield networks, we consider a group of hidden neu-
rons in the network, in addition to visible ones. The visible and hidden neurons are bidirectionally
connected, and there is no intra-connection within visible neurons or hidden neurons. Let U be the
weight matrix from visible neurons to hidden neurons, of which Uij denotes the synaptic weight
from the j-th visible neuron to the i-th hidden neuron, and V be the weight matrix from hidden
neurons to visible neurons, of which Vji denotes the synaptic weight from the i-th hidden neuron to
the j-th visible neuron. Let ξ(t) = (ξ1(t), ..., ξN (t)) ∈ {−1, 1}N be the states of visible neurons
and ζ(t) = (ζ1(t), ..., ζM (t)) ∈ {−1, 1}M be the states of hidden neurons at time t. These states
are synchronously updated according to, for i = 1, ...,M and j = 1, ..., N ,

ζi(t) = sign
(N∑

k=1

Uikξk(t)
)
, (2)

ξj(t+ 1) = sign
(M∑

k=1

Vjkζk(t)
)
, (3)

where we omit the threshold parameters as they can be absorbed into the equations. As illustrated
in Figure 3, given a pair of successive network states ξ(t) and ξ(t+1), the dynamics of the network
can be unfolded in time and viewed as a feedforward network with a hidden layer of neurons.

The networks of M hidden neurons can generate arbitrary sequences with Markov property and of
length at least M , as stated in Proposition 1. We provide a constructive proof based on one-hot
encoding by the hidden neurons in the Appendix.

Proposition 1 Let x(1), ...,x(T) ∈ {−1, 1}N such that x(i) ̸= x(j) for i ̸= j except that x(1) =
x(T). Then x(1), ...,x(T) can be generated by the network defined in (2)(3) for M = T − 1.

Unfolding in time

ξ(t)

ξ(t+ 1)

ζ(t)

U

V

Figure 3: Hopfield network with hidden neurons. The red circles denote visible neurons and the
white circles denote hidden neurons.

5 LEARNING

To learn the weight matrices, one can first unfold the Hopfield network with hidden neurons in time
such that it becomes a feedforward network with a hidden layer, and the pairs of successive patterns
in the sequence constitute the training examples. However, learning in the unfolded feedforward
network is difficult since the backpropagation algorithm cannot be applied as the neurons are not
differentiable.

We propose a new learning algorithm to learn the weight matrices in the unfolded feedforward
networks, which draws inspirations from three ideas: feedback alignment [Lillicrap et al., 2016],
target propagation [LeCun, 1987; Bengio, 2014; Litwin-Kumar et al., 2017] and three-factor rules
[Frémaux & Gerstner, 2016; Kuśmierz et al., 2017]. As in feedback alignment, it requires a random
matrix P, which is fixed during the learning process, to backpropagate signals. As in target prop-
agation, it does not propagate errors but targets to create surrogate targets for the hidden neurons.
Each weight parameter is updated by a three-factor rule, in which the presynaptic activation, the
postsynaptic activation and an error term as neuromodulation are multiplied. The three-factor rule
is similar to the one for Hopfield networks without hidden neurons [Bressloff & Taylor, 1992] and
known as margin perceptron in the machine learning literature [Collobert & Bengio, 2004].

4

Under review as a conference paper at ICLR 2024

The algorithm works as follows. Given a pair of successive patterns x(t) and x(t + 1), for i =
1, ...,M and j = 1, ..., N in parallel,

1. Update U by

zi(t+ 1) = sign
(N∑

k=1

Pikxk(t+ 1)
)
, (4)

µi(t) = H
(
κ− zi(t+ 1)

N∑
k=1

Uikxk(t)
)
, (5)

Uij ← Uij + ηµi(t)zi(t+ 1)xj(t). (6)

2. Update V by

yi(t) = sign
(N∑

k=1

Uikxk(t)
)
, (7)

νj(t) = H
(
κ− xj(t+ 1)

M∑
k=1

Vjkyk(t)
)
, (8)

Vji ← Vji + ηνj(t)xj(t+ 1)yi(t), (9)

where Pik denotes the (i, k) entry of the fixed random matrix P, H(·) is the Heaviside function
(H(x) = 1 if x ≥ 0 and H(x) = 0 otherwise), κ > 0 is the robustness hyperparameter and η > 0
is the learning rate hyperparameter. µi(t) and νj(t) can be interpreted as the error terms for the
hidden and the visible neurons, respectively. zi(t+ 1) can be interpreted as the synaptic input from
an external neuron. The above procedure is then repeated for each t.

5.1 ANALYSIS

In this section, we provide theoretical analysis of the algorithm. The proofs are left to the Appendix.
First, we provide convergence guarantee of the algorithm.

Proposition 2 Given the definitions in (4)(5)(7)(8), for all i, j and t, if a solution exists such that
µi(t) = 0 and νj(t) = 0 , then the algorithm (4)-(9) converges in finite steps given Uij and Vji are
initialized to zero.

Next, we show the algorithm can reduce error µi(t) for a single step of updating U. The proposition
can be trivially extended for νj(t) and V by a similar proof.

Proposition 3 Given the definitions in (4)(5), let

U ′
ik = Uik + ηµi(t)zi(t+ 1)xk(t), (10)

µ′
i(t) = H

(
κ− zi(t+ 1)

N∑
k=1

U ′
ikxk(t)

)
. (11)

Then µ′
i(t) = 0 for sufficiently large η > 0.

To understand why reducing the errors µi(t) and νj(t) leads to sequence attractors, we present the
following result.

Proposition 4 Given the definitions in (7)(8), let ŷ(t) = (ŷ1(t), ..., ŷM (t)) ∈ {−1, 1}M such that∑
k |ŷk(t)− yk(t)| < ϵ. If νj(t) = 0 and

ϵ ·max
k
|Vjk| < κ, (12)

then

xj(t+ 1) = sign
(M∑

k=1

Vjkŷk(t)
)
. (13)

5

Under review as a conference paper at ICLR 2024

Proposition 4 shows that when the errors are zero, given perturbed hidden neuron states ŷ(t), we
have x(t + 1) = sign(Vŷ(t)). The result can be trivially extended to show that given perturbed
visible neuron states x̂(t) we have y(t) = sign(Ux̂(t)) by a similar proof. Therefore, the network
can generate sequence x(1), ...,x(T) as an attractor. From Proposition 4, we can also see that κ acts
as the robustness hyperparameter as it controls the level of perturbation ϵ for inequality (27) to hold.

To understand why the algorithm works despite that P is a random matrix and fixed during learning,
consider the following. If the update of U converges, then µi(t) = 0 for all i. Therefore,

yi(t) = sign
(N∑

k=1

Uikxk(t)
)
= zi(t+ 1) = sign

(N∑
k=1

Pikxk(t+ 1)
)
. (14)

The update of V aims at making the condition sign
(∑M

k=1 Vjkyk(t)
)
= xj(t+ 1) hold, which is

sign(Vsign(Px(t+ 1))) = x(t+ 1), (15)

in matrix form when yk(t) is substituted by (14). For large M , a solution V exists, that is, the
pseudo-inverse of P or the transpose of P. The numerical result is shown in Figure 4. The phe-
nomenon might be explained by the high-dimensional probability theory [Vershynin, 2018].

0 1000 2000
0

50

100

(a) Gaussian

0 1000 2000
0

50

100

(b) Uniform

Figure 4: Reconstruction error ∥x− sign(Vsign(Px))∥1 where P is a M ×N random matrix and
x is a random vector uniformly sampled from {−1, 1}N . P+ denotes the pseudo-inverse of P. P⊤

denotes the transpose of P. (a) The entries of P are sampled i.i.d. from the standard Gaussian
distribution. (b) The entries of P are sampled i.i.d. from the uniform distribution on [−1, 1]. In (a)
and (b), N = 100 and the results are averaged over 100 trials. The results are similar in (a) and (b).

5.2 ROBUSTNESS HYPERPARAMETER

Having a hyperparameter κ in the algorithm is not problematic in practice. One can simply set
κ = 1 as we did for all the experiments in the next section and adjust the scale of initial weights
and the learning rate. In margin perceptron, the margin learned is disproportional to the learning
rate [Collobert & Bengio, 2004]. The margin is defined as the reciprocal of the weight magnitude,
which is related to the robustness hyperparameter, as shown in Proposition 4. Therefore, it can be
interpreted that the robustness hyperparameter is automatically adjusted during learning.

6 EXPERIMENTS

We run experiments on synthetic and real-world sequence datasets for Hopfield networks with hid-
den neurons by the algorithm proposed in the previous section to learn sequence attractors. All the
experiments are carried out in MATLAB and PyTorch. In all the experiments, each weight parameter
of U, V and P is sampled i.i.d. from Gaussian distribution with mean zero and variance 1× 10−6,
learning rate η = 1 × 10−3 and robustness κ = 1. In each experiment, we run the algorithm for
500 epochs. In each epoch, the algorithm runs on (x(t),x(t + 1)) from the start to the end of each
sequence. No noise is added during learning. Noise is added only at retrieval. We also provide addi-
tional experiments in the Appendix for comparisons to networks of continuous neurons trained with
backpropagation and to modern Hopfield networks for sequence learning [Chaudhry et al., 2023].

6

Under review as a conference paper at ICLR 2024

6.1 TOY EXAMPLES

To show the networks with hidden neurons can overcome the limitation of classical Hopfield net-
works, we conduct experiments on the examples in Figure 2. We construct a network of visible
neurons N = 10 and hidden neurons M = 50 for each example. After learning, we test the ro-
bustness of the networks in retrieval by adding two salt-and-pepper noises (flipping the states of
two out of ten neurons) to the first pattern of a sequence and set it to be the initial network state.
The results are shown in Figure 5, from which we can see that the networks with hidden neurons
can generate sequences which cannot be generated by classical Hopfield networks and retrieve them
robustly under moderate level of noise.

Figure 5: Networks with hidden neurons can generate the two sequences in Figure 2, which cannot
be generated without hidden neurons, despite noisy initial states. Note that in the first column of
each diagram two salt-and-pepper noises are added to test the robustness of the retrieval.

6.2 RANDOM SEQUENCES

We generate periodic sequences of random patterns x(1), ...,x(T) ∈ {−1, 1}N . In each sequence,
x(i) ̸= x(j) for i ̸= j except that x(1) = x(T) for the periodicity. We set N = 100 and vary
period length T . We sample each x(t) independently from the uniform distribution of {−1, 1}N
for t = 1, ..., T − 1 and then resample it if it is identical to a previous pattern. Finally, we set
x(T) = x(1). For each random sequence, we construct a network with hidden neurons and apply
the proposed learning algorithm. To evaluate the effectiveness of the learning algorithm, we compare
learning only V (with U fixed during learning) and learning both U and V. Once the learning is
done, we test if the network can retrieve the sequence robustly given perturbed x(1) with 10 salt-
and-pepper noises as the initial network state ξ(1). We define that the retrieval is successful if
ξ(τ + t) = x(t) for some τ and all t = 1, ..., T . We run 100 trials for each T or M setting and count
the successful retrievals.

In Figure 6, we show the visualization of a result. In Figure 7, we show the results with various
period lengths T for M = 500. In Figure 8, we show the results with various numbers of hidden
neurons M for T = 70. We can see learning both U and V is more effective than learning only V.
However, in both cases, the algorithm fails for large T , even if we increase the number of hidden
neurons, which might be due to the suboptimality of the algorithm.

(a) Ground truth (b) Network states

Figure 6: Learning random periodic sequences in networks with hidden neurons. Only the first 20
neurons of 100 visible neurons are selected for visualization due to space limitation. Note that in the
first column of (b) salt-and-pepper noises are added to test the robustness of the retrieval.

7

Under review as a conference paper at ICLR 2024

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

20

40

60

80

100

Figure 7: Successful retrievals out of 100 trials with different sequence period lengths.

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Figure 8: Successful retrievals out of 100 trials with different numbers of hidden neurons.

6.3 REAL-WORLD SEQUENCES

We test the networks with hidden neurons by the algorithm in learning real-world sequences on
a silhouette sequence dataset (OU-ISIR gait database large population [Iwama et al., 2012]) and
a handwriting sequence dataset (Moving MNIST [Srivastava et al., 2015]). The patterns in the
sequences are rather correlated since adjacent image frames are similar. To adopt the datasets for
the networks to learn, we convert the image intensity values to±1. For the silhouette dataset, we use
a network with hidden neuron number M = 200 to learn a single image sequence of length 103, in
which each image has size 88×128. The images are flatten to vectors of size 88×128 = 11264. For
the handwriting dataset, we use a network with hidden neuron number M = 1000 to learn 20 image
sequences of length 20, in which each image has size 64 × 64. The images are flatten to vectors of
size 64× 64 = 4096. In Figure 9 and 10, we show the visualization results of the learned networks
for robust retrieval, in which the first image of a sequence is corrupted and set to be the initial state
of a network. In Figure 11, we show the average errors 1

M

∑
t

∑
i µi(t) and 1

N

∑
t

∑
j νj(t) during

the learning process, from which we can see that both errors reduce to zero.

(a) Ground truth x(t)

(b) Network states ξ(t)

Figure 9: Retrieval of sequences under noise on the silhouette sequence dataset. An image sequence
of length 103 is learned. Each image has size 88 × 128. In (a) and (b), x(t) and ξ(t) are shown
respectively for t = 1, ..., 10. In (b), 2000 salt-and-pepper noises are added to the first image. The
corrupted image is set to be the initial state of the network.

8

Under review as a conference paper at ICLR 2024

(a) Ground truth x(t)

(b) Network states ξ(t)

Figure 10: Retrieval of sequences under noise on the handwriting sequence dataset. 20 image
sequences of length 20 are learned. Due to space limitation, only one image sequence is displayed
in here. Each image has size 64 × 64. In (a) and (b), x(t) and ξ(t) are shown respectively for
t = 1, ..., 8. In (b), 300 salt-and-pepper noises are added to the first image. The corrupted image is
set to be the initial state of the network.

0 50 100
0

10

20

30

40

(a) Silhouette

0 50 100
0

50

100

(b) Handwriting

Figure 11: Errors during learning. 1
M

∑
t

∑
i µi(t) is the average error for the hidden neurons.

1
N

∑
t

∑
j νj(t) is the average error for the visible neurons.

7 CONCLUSION AND DISCUSSION

In this paper, we have investigated how networks of Hopfield type learn sequence attractors to rep-
resent temporal sequence information. We showed that to store arbitrary sequence patterns, it is
necessary for the networks to include hidden neurons. We developed a local learning algorithm
and demonstrated that our model works well on synthetic and real-world datasets. Thus, our work
provides a possible biologically plausible mechanism in elucidating sequence memory in the brain.

In our model, hidden neurons are not directly involved in expressing pattern sequences. Instead, their
contribution is on facilitating the storing and retrieving of pattern sequences. If the recurrent dynam-
ics of our model is unfolded in time, the role of hidden neurons is analogous to that of a hidden layer
in a two-layer feedforward network, where they serve as a relay stage for information processing.
The indirect but indispensable role of hidden neurons may have a far-reaching implication to neural
information processing.

In this paper, to pursue theoretical analysis, we have employed a very simple network model with
binary neurons and threshold dynamics. From this simple model, we can get some insights into
the neural mechanisms of sequence processing in the brain (as the classical Hopfield networks to
static memories), but this simplification also incurs limitations, that is, to fully validate our results,
further researches with biologically more plausible models are needed, which include, for instances,
biologically more realistic neuron models, synapses models, connection structures, learning rules
and form of pattern sequences. Additionally, external inputs, as an important part of temporal infor-
mation processing in the brain, are absent in our network model and should be further investigated.
These studies form our future work.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Shun-ichi Amari. Learning patterns and pattern sequences by self-organizing nets of threshold
elements. IEEE Transactions on Computers, 1972.

Daniel J Amit. Modeling Brain Function: The World of Attractor Neural Networks. Cambridge
University Press, 1989.

Yoshua Bengio. How auto-encoders could provide credit assignment in deep networks via target
propagation. arXiv preprint arXiv:1407.7906, 2014.

Johanni Brea, Walter Senn, and Jean-Pascal Pfister. Matching recall and storage in sequence learning
with spiking neural networks. Journal of Neuroscience, 2013.

Paul C Bressloff and John G Taylor. Perceptron-like learning in time-summating neural networks.
Journal of Physics A: Mathematical and General, 1992.

Hamza Tahir Chaudhry, Jacob A Zavatone-Veth, Dmitry Krotov, and Cengiz Pehlevan. Long se-
quence hopfield memory. Advances in Neural Information Processing Systems, 2023.

Ronan Collobert and Samy Bengio. Links between perceptrons, mlps and svms. International
Conference on Machine learning, 2004.

Thomas J Davidson, Fabian Kloosterman, and Matthew A Wilson. Hippocampal replay of extended
experience. Neuron, 2009.

Howard Eichenbaum. Time cells in the hippocampus: a new dimension for mapping memories.
Nature Reviews Neuroscience, 2014.

Ila R Fiete, Walter Senn, Claude ZH Wang, and Richard HR Hahnloser. Spike-time-dependent plas-
ticity and heterosynaptic competition organize networks to produce long scale-free sequences
of neural activity. Neuron, 2010.

David J Foster and Matthew A Wilson. Reverse replay of behavioural sequences in hippocampal
place cells during the awake state. Nature, 2006.

Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity, and
theory of three-factor learning rules. Frontiers in Neural Circuits, 2016.

Elizabeth Gardner. The space of interactions in neural network models. Journal of Physics A:
Mathematical and General, 1988.

Maxwell Gillett, Ulises Pereira, and Nicolas Brunel. Characteristics of sequential activity in net-
works with temporally asymmetric hebbian learning. Proceedings of the National Academy of
Sciences, 2020.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 1982.

Haruyuki Iwama, Mayu Okumura, Yasushi Makihara, and Yasushi Yagi. The ou-isir gait database
comprising the large population dataset and performance evaluation of gait recognition. IEEE
Transactions on Information Forensics and Security, 2012.

Arjun Karuvally, Terrence Sejnowski, and Hava T Siegelmann. General sequential episodic memory
model. International Conference on Machine Learning, 2023.

Mikail Khona and Ila R Fiete. Attractor and integrator networks in the brain. Nature Reviews
Neuroscience, 2022.

David Kleinfeld. Sequential state generation by model neural networks. Proceedings of the National
Academy of Sciences, 1986.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances
in Neural Information Processing Systems, 2016.

Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulating
hebbian plasticity with errors. Current Opinion in Neurobiology, 2017.

Rodrigo Laje and Dean V Buonomano. Robust timing and motor patterns by taming chaos in
recurrent neural networks. Nature Neuroscience, 2013.

Yann LeCun. Learning process in an asymmetric threshold network. Disordered Systems and Bio-
logical Organization, 1986.

10

Under review as a conference paper at ICLR 2024

Yann LeCun. Modeles connexionnistes de lapprentissage. PhD thesis, These de Doctorat, Universite
Paris, 1987.

Albert K Lee and Matthew A Wilson. Memory of sequential experience in the hippocampus during
slow wave sleep. Neuron, 2002.

Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synaptic
feedback weights support error backpropagation for deep learning. Nature Communications,
2016.

Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton. Back-
propagation and the brain. Nature Reviews Neuroscience, 2020.

Ashok Litwin-Kumar, Kameron Decker Harris, Richard Axel, Haim Sompolinsky, and LF Abbott.
Optimal degrees of synaptic connectivity. Neuron, 2017.

Marvin Minsky and Seymour A Papert. Perceptrons. MIT Press, 1969.
Samuel P Muscinelli, Wulfram Gerstner, and Johanni Brea. Exponentially long orbits in hopfield

neural networks. Neural Computation, 2017.
Zoltán Nádasdy, Hajime Hirase, András Czurkó, Jozsef Csicsvari, and György Buzsáki. Replay and

time compression of recurring spike sequences in the hippocampus. Journal of Neuroscience,
1999.

Eva Pastalkova, Vladimir Itskov, Asohan Amarasingham, and Gyorgy Buzsaki. Internally generated
cell assembly sequences in the rat hippocampus. Science, 2008.

Brad E Pfeiffer and David J Foster. Hippocampal place-cell sequences depict future paths to remem-
bered goals. Nature, 2013.

Brad E Pfeiffer and David J Foster. Autoassociative dynamics in the generation of sequences of
hippocampal place cells. Science, 2015.

Alfred Rajakumar, John Rinzel, and Zhe S Chen. Stimulus-driven and spontaneous dynamics in
excitatory-inhibitory recurrent neural networks for sequence representation. Neural Computa-
tion, 2021.

Kanaka Rajan, Christopher D Harvey, and David W Tank. Recurrent network models of sequence
generation and memory. Neuron, 2016.

Haim Sompolinsky and Ido Kanter. Temporal association in asymmetric neural networks. Physical
Review Letters, 1986.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video
representations using lstms. International Conference on Machine Learning, 2015.

Philip J Tully, Henrik Lindén, Matthias H Hennig, and Anders Lansner. Spike-based bayesian-
hebbian learning of temporal sequences. PLoS Computational Biology, 2016.

Endel Tulving. Episodic memory: From mind to brain. Annual Review of Psychology, 2002.
Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data Sci-

ence. Cambridge University Press, 2018.

11

Under review as a conference paper at ICLR 2024

A COMPARISON TO NETWORKS OF CONTINUOUS NEURONS

We compare our networks of binary neurons (trained by the learning algorithm in Section 5) with
networks of continuous neurons (trained with backpropagation) for learning the real-world se-
quences in Section 6.3. The states of the networks of continuous neurons are synchronously updated
according to, for i = 1, ...,M and j = 1, ..., N ,

ζi(t) = tanh
(N∑

k=1

Uikξk(t)
)
, (16)

ξj(t+ 1) = tanh
(M∑

k=1

Vjkζk(t)
)
, (17)

which can be interpreted as the continuous approximation of the networks in (2)(3).

We follow the experimental settings of Section 6.3. In training the networks of continuous neurons,
we compared two algorithms, stochastic gradient descent (SGD) and Adam. We used the default
weight initialization in PyTorch. We tested learning rates {1 × 10−1, 1 × 10−2, 1 × 10−3, 1 ×
10−4, 1 × 10−5, 1 × 10−6} in each set of experiments and show the best performance in terms of
training speed in Figure 12. The training error is defined as

∑
t ∥x(t + 1) − ϕ(Vϕ(Ux(t)))∥1

where ϕ is the sign or tanh function. We found that networks of continuous neurons can reach zero
training errors and are robust to noise in sequence retrieval as ours. However, our network model
(2)(3), together with our algorithm, learns much faster compared to networks of continuous neurons
trained with backpropagation, as shown in Figure 12.

0 50 100 150 200
0

2

4

6

8

10

10
5

(a) Silhouette

0 50 100 150 200
0

2

4

6

10
5

(b) Handwriting

Figure 12: Training errors

We summarize some advantages of our approach compared to networks of continuous neurons
trained with backpropagation.

• Our algorithm is more biologically plausible, as it requires only local information between
neurons, while networks of continuous neurons requires backpropagation, whose biological
plausibility is in question.

• Our algorithm is proven to converge and lead to sequence attractors. Such theoretical re-
sults are missing for networks of continuous neurons trained with backpropagation.

• Our algorithm converges to zero training error much faster empirically.

B COMPARISON TO MODERN HOPFIELD NETWORKS

Modern Hopfield networks can also be interpreted as networks with hidden neurons [Krotov &
Hopfield, 2016; Chaudhry et al., 2023]. Therefore, we conducted experiments with modern Hopfield
networks for learning the real-world sequences in Section 6.3. We used the model and the learning
procedure in [Chaudhry et al., 2023]. We found modern Hopfield networks can indeed learn to
store the sequences in Section 6.3 and retrieve them robustly under noise if we used the nonlinear
activation function f(x) = xd in the model with d ≥ 30.

12

Under review as a conference paper at ICLR 2024

We summarize some advantages of our approach compared to modern Hopfield networks.

• Our network model is more biologically plausible as it requires only the threshold activation
function, while modern Hopfield networks require a high-order polynomial or exponential
activation function, whose biological plausibility is less clear. Despite that some efforts
have been made in [Chaudhry et al., 2023] for a biologically justification, our network
model is more natural to interpret.

• Our algorithm is more biologically plausible as it requires only local information between
neurons, while modern Hopfield networks require the pseudo-inverse learning algorithm,
whose biological plausibility is in question. Besides, our algorithm learns the sequences in
an online fashion while the learning procedure in [Chaudhry et al., 2023] is a batch-based
method, which is again biologically less plausible.

In [Chaudhry et al., 2023], it has been shown that modern Hopfield networks can store long se-
quences, for a sufficient number of hidden neurons, This is also possible with our network model
based on an explicit construction in the proof of Proposition 1.

C PROOF OF PROPOSITION 1

We construct a network such that, given ξ(t) = x(i) for i = 1, ..., T −1, the hidden neurons provide
an one-hot encoding of the successive pattern x(i+ 1), which is then decoded to be ξ(t+ 1).

To store x(1), ...,x(T) ∈ {−1, 1}N in (2)(3), assuming x(i) ̸= x(j) for i ̸= j except that x(1) =
x(T), let M = T − 1 and construct weight matrix U as

U = (x(1),x(2), ...,x(T − 1))⊤ (18)

and hidden neurons ζ(t) = (ζ1(t), ..., ζM (t)) as

ζi(t) = sign
(N∑

k=1

Uikξk(t)−N
)

(19)

= sign
(
x(i)⊤ξ(t)−N

)
(20)

such that given ξ(t) = x(i) for i = 1, ..., T − 1, we have

ζj(t) =

{
+1, if j = i,

−1, otherwise.
(21)

Next, we construct the weight matrix V as

V = (x(2),x(3), ...,x(T)) (22)

and visible neurons ξ(t+ 1) = (ξ1(t+ 1), ..., ξN (t+ 1)) as

ξ(t+ 1) = sign(Vζ(t) + θ) (23)

where θ =
∑T

j=2 x(j) such that given the one-hot vector ζ(t) we have

ξ(t+ 1) = sign
(
x(i+ 1)−

∑
j ̸=i+1

x(j) +

T∑
j=2

x(j)
)

(24)

= sign(2 · x(i+ 1)) (25)
= x(i+ 1) (26)

D PROOF OF PROPOSITION 2

Note that the update of U (4)(5)(6) in Section 5 does not depend on V. Therefore, we first prove the
convergence of updating U for η > 0 and κ > 0. The proof follows from [Gardner, 1988]. Assume
U∗ exists such that, for all t and i,

zi(t+ 1)
∑
k

U∗
ikxk(t) ≥ κ. (27)

13

Under review as a conference paper at ICLR 2024

Define the p-th update of U with µi(tp) = 1 by

U
(p+1)
ij = U

(p)
ij + ηzi(tp + 1)xj(tp) (28)

for some tp ∈ {1, ..., T − 1} and all j in parallel. We assume zero-initialization, that is, U (1)
ij = 0

for simplicity but the result holds if |U (1)
ij | is sufficiently small. Let

X
(p+1)
i =

∑
j U

(p+1)
ij U∗

ij√∑
j

(
U

(p+1)
ij

)2√∑
j

(
U∗
ij

)2 . (29)

The Cauchy-Schwarz inequality, we have X
(p+1)
i ≤ 1. Now we prove the convergence of updating

U by contradiction. Assuming the update of U does not converge, we will show that X(p+1)
i > 1

as p→∞. First, we have∑
j

U
(p+1)
ij U∗

ij −
∑
j

U
(p)
ij U∗

ij = η
∑
j

zi(tp + 1)U∗
ijxj(tp) ≥ ηκ (30)

due to (27) and therefore∑
j

U
(p+1)
ij U∗

ij =
∑
j

U
(p+1)
ij U∗

ij −
∑
j

U
(p)
ij U∗

ij + ...+
∑
j

U
(2)
ij U∗

ij −
∑
j

U
(1)
ij U∗

ij +
∑
j

U
(1)
ij U∗

ij

(31)
≥ ηκp (32)

since we assumed U
(1)
ij = 0. Next, we have∑

j

(
U

(p+1)
ij

)2 −∑
j

(
U

(p)
ij

)2
=

∑
j

(
U

(p)
ij + ηzi(tp + 1)xj(tp)

)2 −∑
j

(
U

(p)
ij

)2
(33)

= 2η
∑
j

U
(p)
ij zi(tp + 1)xj(tp) +Nη2 (34)

= 2ηzi(tp + 1)
∑
j

U
(p)
ij xj(tp) +Nη2 (35)

< 2ηκ+Nη2 (36)

since we assumed µi(tp) = 1 and therefore zi(tp + 1)
∑

j U
(p)
ij xj(tp) < κ. Then, we have√∑

j

(U
(p+1)
ij)2 −

√∑
j

(U
(p)
ij)2 (37)

=
(∑

j

(
U

(p+1)
ij

)2 −∑
j

(
U

(p)
ij

)2)/(√∑
j

(
U

(p+1)
ij

)2
+

√∑
j

(
U

(p)
ij

)2)
(38)

<(2ηκ+Nη2)
/(√∑

j

(
U

(p+1)
ij

)2
+

√∑
j

(
U

(p)
ij

)2)
. (39)

By Cauchy-Schwarz inequality, we have√∑
j

(U
(p+1)
ij)2

√∑
j

(U∗
ij)

2 ≥
∑
j

U
(p+1)
ij U∗

ij ≥ ηκp (40)

and therefore √∑
j

(U
(p+1)
ij)2 ≥ ηκp√∑

j(U
∗
ij)

2
. (41)

14

Under review as a conference paper at ICLR 2024

Also,√∑
j

(U
(p+1)
ij)2 =

√∑
j

(U
(p+1)
ij)2 −

√∑
j

(U
(p)
ij)2 + ...+

√∑
j

(U
(2)
ij)2 −

√∑
j

(U
(1)
ij)2 (42)

+

√∑
j

(U
(1)
ij)2 (43)

<

p∑
q=1

(2ηκ+Nη2)
/(√∑

j

(
U

(q+1)
ij

)2
+

√∑
j

(
U

(q)
ij

)2)
(44)

<

p∑
q=1

(2ηκ+Nη2)

√∑
j

(U∗
ij)

2
1

ηκ(2q − 1)
(45)

=
ηκ+Nη2/2

ηκ

√∑
j

(U∗
ij)

2

p∑
q=1

1

q − 1/2
(46)

due to (39) and U
(1)
ij = 0. Note that for q > 1

1

q − 1/2
≤

∫ q−1/2

q−3/2

1

x
dx = log(q − 1/2)− log(q − 3/2) (47)

and

p∑
q=1

1

q − 1/2
=

1

2
+

p∑
q=2

1

q − 1/2
≤ 1

2
+

∫ p−1/2

1/2

1

x
dx = 2 + log(p− 1/2)− log(1/2). (48)

Therefore, √∑
j

(U
(p+1)
ij)2 = O(log(p)) (49)

and ∑
j

U
(p+1)
ij U∗

ij = Ω(p) (50)

as p→∞. We have,

X
(p+1)
i =

∑
j U

(p+1)
ij U∗

ij√∑
j(U

(p+1)
ij)2

√∑
j(U

∗
ij)

2

> 1 (51)

for some p. This contradicts that X(p+1)
i ≤ 1. Thus, the updating U converges.

Upon the convergence of updating U, we can prove the convergence of V if there exists V∗ such
that for all t and i,

xi(t+ 1)
∑
k

V ∗
ikyk(t) ≥ κ (52)

by a similar proof.

15

Under review as a conference paper at ICLR 2024

E PROOF OF PROPOSITION 3

If µi(t) = 0, then U ′
ik = Uik and µ′

i(t) = µi(t) = 0. If µi(t) = 1, then

µ′
i(t) = H

(
κ− zi(t+ 1)

N∑
k=1

(
Uik + ηzi(t+ 1)xk(t)

)
xk(t)

)
(53)

= H
(
κ− zi(t+ 1)

N∑
k=1

Uikxk(t)− η
(
zi(t+ 1)

)2 N∑
k=1

(
xk(t)

)2)
(54)

= H
(
κ− zi(t+ 1)

N∑
k=1

Uikxk(t)− ηN
)
= 0 (55)

for sufficiently large η > 0 given xk(t) = ±1, zi(t + 1) = ±1 and the property of Heaviside
function.

F PROOF OF PROPOSITION 4

If νj(t) = 0, then we have

xj(t+ 1)

M∑
k=1

Vjkyk(t) ≥ κ. (56)

Next,

xj(t+ 1)

M∑
k=1

Vjkŷk(t) = xj(t+ 1)

M∑
k=1

Vjk

(
yk(t) + ŷk(t)− yk(t)

)
(57)

= xj(t+ 1)

M∑
k=1

Vjkyk(t) + xj(t+ 1)

M∑
k=1

Vjk

(
ŷk(t)− yk(t)

)
(58)

≥ κ+ xj(t+ 1)

M∑
k=1

Vjk

(
ŷk(t)− yk(t)

)
(59)

≥ κ−
∣∣∣ M∑
k=1

Vjk

(
ŷk(t)− yk(t)

)∣∣∣ (60)

≥ κ−max
k
|Vjk|

M∑
k=1

|ŷk(t)− yk(t)| (61)

> κ−max
k
|Vjk| · ϵ > 0 (62)

since xj(t+ 1) = ±1, which implies

xj(t+ 1) = sign
(M∑

k=1

Vjkŷk(t)
)
. (63)

16

	Introduction
	Related Works and Our Contributions
	Limitation of Classical Hopfield Networks
	Hopfield Networks with Hidden Neurons
	Learning
	Analysis
	Robustness Hyperparameter

	Experiments
	Toy Examples
	Random Sequences
	Real-World Sequences

	Conclusion and Discussion
	Comparison to Networks of Continuous Neurons
	Comparison to Modern Hopfield Networks
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4

