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Abstract

Recent works have shown that tackling offline reinforcement learning (RL) with a conditional
policy produces promising results. Decision Transformers (DT) have shown promising
results in offline reinforcement learning by leveraging sequence modeling. However, standard
DT methods rely on return-to-go (RTG) tokens, which are heuristically defined and often
suboptimal for goal-conditioned tasks. In this work, we introduce Quasimetric Decision
Transformer (QuaD), a novel approach that replaces RTG with learned quasimetric distances,
providing a more structured and theoretically grounded guidance signal for long-horizon
decision-making. We explore two quasimetric formulations: interval quasimetric embeddings
(IQE) and metric residual networks (MRN), and integrate them into DTs. Extensive
evaluations on the AntMaze benchmark demonstrate that QuaD outperforms standard
Decision Transformers, achieving state-of-the-art success rates and improved generalization
to unseen goals. Our results suggest that quasimetric guidance is a viable alternative
to RTG, opening new directions for learning structured distance representations
in offline RL.

1 Introduction

Reinforcement Learning (RL) has achieved remarkable success in domains such as robotics (Kormushev
et al., 2013), autonomous driving (Sallab et al., 2017), and game playing (Silver et al., 2016), by enabling
agents to learn optimal policies through trial-and-error interaction with an environment. However, these
successes typically rely on online RL paradigms, which are often impractical in real-world settings due to
sample inefficiency, safety concerns, and computational constraints.

Offline RL addresses these challenges by learning from static datasets of prior interactions without further
environment access (Levine et al., 2020). It enables safe and efficient learning but suffers from the challenge
of distributional shift, where the learned policy encounters out-of-distribution states or actions during
inference (Kumar et al., 2020). A recent family of models, known as Decision Transformers (DTs) (Chen
et al., 2021), has approached RL from a sequence modeling perspective, treating trajectories as sequences to
be predicted via autoregressive transformers. DTs condition action prediction on past states, actions, and a
Return-to-Go (RTG) token, representing the desired cumulative future reward.

While DTs have shown promise, their reliance on RTG presents critical limitations in goal-conditioned RL
(GCRL) environments. In these settings, tasks are framed as reaching a specific goal state, and rewards are
often sparse or binary. Consequently, RTG becomes an arbitrary and uninformative signal during most of the
trajectory, particularly in long-horizon tasks such as AntMaze (Fu et al., 2020), where DTs perform poorly
in medium and large maze configurations. Furthermore, the use of naïve mean squared error (MSE) loss
functions treats all actions equally, failing to emphasize high-value behaviors required for successful goal
completion.

This paper introduces the Quasimetric Decision Transformer (QuaD), a novel approach that replaces
RTG conditioning with a learned quasimetric function d(s, g), which estimates the directional difficulty of
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reaching a goal state g from a current state s. Unlike scalar reward aggregates, quasimetric functions provide
structured and continuous guidance that aligns more naturally with goal-directed behavior. We explore
two such formulations: Interval Quasimetric Embedding (IQE) (Wang & Isola, 2022a) and Metric Residual
Networks (MRN) (Liu et al., 2023), each capturing asymmetric transition difficulty in high-dimensional
spaces.

In addition, we augment the DT training objective with value-aware loss functions, including Advantage-
Weighted Regression (AWR) (Peng et al., 2019) and DDPG with Behavior Cloning (DDPG+BC) (Lillicrap
et al., 2016), to prioritize high-value actions and address the limitations of MSE. Through extensive experiments
on the AntMaze benchmark, we demonstrate that QuaD significantly outperforms baseline DTs, behavior
cloning, and value-based methods, particularly in sparse-reward and long-horizon tasks.

In summary, our key contributions are:
• We propose replacing RTG in Decision Transformers with a learned quasimetric signal that better reflects

goal-reaching difficulty.
• We introduce value-aware objectives to move beyond imitation learning and enhance goal-directed behavior.
• We evaluate two quasimetric architectures, IQE and MRN, to structure the goal-space representation.
• We conduct experiments showing that QuaD outperforms strong offline RL baselines on challenging

AntMaze tasks.
Our results indicate that structured distance signals and value-guided optimization are essential to bridging
the gap between sequence modeling and effective goal-conditioned RL.

2 Related Work

Our work builds on previous work in learning temporal distances, concepts from goal-conditioned RL and
sequential modeling for reinforcement learning. Our analysis will draw a connection between these prior
methods, a connection which will ultimately result in a new guiding metric for decision transformer for
goal-conditioned environments.

2.1 Goal Conditioned Reinforcement Learning

Goal-conditioned reinforcement learning (GCRL) provides a flexible framework for training policies to
achieve diverse outcomes by conditioning on explicit goal states. Unlike traditional reinforcement learning
(RL), which optimizes for cumulative rewards, GCRL shifts the focus toward reaching specific states in the
environment, making it particularly useful for tasks where defining a dense reward function is challenging or
infeasible. A key challenge in GCRL is learning effective goal-conditioned value functions. Several approaches
leverage hindsight relabeling (Andrychowicz et al., 2017), contrastive learning (Eysenbach et al., 2022), and
state-occupancy matching to improve generalization and robustness. However, many of these methods rely on
bootstrapping with a learned value function, which can introduce instability and inefficiencies, particularly in
long-horizon tasks with sparse rewards (Ghugare et al., 2024). To mitigate the challenges of long-horizon
planning, hierarchical RL (HRL) (Pateria et al., 2021) and subgoal planning (Chane-Sane et al., 2021) have
been explored as extensions to GCRL. HRL methods decompose tasks into subgoals and learn policies that
operate at multiple temporal resolutions, improving sample efficiency and task scalability.

2.2 Transformers for Reinforcement Learning

Transformers have shown remarkable generalization capabilities in fields such as language modeling, image
generation, and representation learning (Vaswani et al., 2017; Devlin et al., 2019; He et al., 2022). Within offline
RL, transformer-based policies treat RL tasks as sequential prediction problems. Decision Transformer (Chen
et al., 2021) models trajectories as sequences and autoregressively predicts actions conditioned on return-to-go,
past states, and actions. The Trajectory Transformer (Janner et al., 2021) demonstrates transformer-based
learning for single-task offline policies. Multi-game Decision Transformer (Lee et al., 2022) and Gato (Reed
et al., 2022) extend transformer-based policies to multi-task and cross-domain applications. However, these
approaches distill expert policies rather than enabling self-improvement. When data are suboptimal or
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adaptation to new tasks is required, multi-game DTs must fine-tune parameters, and Gato must rely on
expert demonstrations. If the model generalizes effectively to out-of-distribution return-to-go values, it can
generate superior policies by prompting higher returns. However, achieving this level of generalization remains
an open challenge in sequential decision-making. DT struggles with robustness to data distribution shifts,
particularly when trained on trajectories generated by suboptimal policies. Research indicates that DT
underperforms in tasks requiring trajectory stitching, integrating suboptimal trajectory segments to create
improved policies(Fujimoto & Gu, 2021; Emmons et al., 2022; Kostrikov et al., 2022). This confirms that
naive return-to-go prompts are insufficient for solving complex sequential decision-making problems.

2.3 Metric Learning in RL and State Abstractions for Decision Making

A fundamental challenge in reinforcement learning (RL) is learning representations that capture meaningful
distances between states. Successor representations and successor features (Dayan, 1993; Barreto et al.,
2017) offer one approach by using temporal difference learning to predict states visited in the future. While
these methods bear similarity to Q-learning (Watkins & Dayan, 1992) in tabular settings, they struggle
with continuous states and actions (Janner et al., 2021; Touati & Ollivier, 2021). To address this, recent
work (Eysenbach et al., 2022; Touati & Ollivier, 2021)has proposed learning representations where inner
products correspond to visitation probabilities. The notion of state-space geometry plays a key role in RL.
Prior work has explored quasimetrics for multi-task planning (Micheli et al., 2020) and parametrizing Q-
functions with improved goal-reaching performance in DDPG (Lillicrap et al., 2016) and HER (Andrychowicz
et al., 2017)). Other approaches define distances based on optimal value functions, the Wasserstein-1
distance (Durugkar et al., 2021), or bisimulation metrics (Hansen-Estruch et al., 2022; Ferns et al., 2011). A
key advantage of quasimetrics is their ability to capture transition difficulty between states while satisfying
the triangle inequality. We utilize a quasimetric that can be easily learned from discounted state occupancy
measures, providing a principled way to model goal-conditioned value functions without assuming symmetry
or other restrictive properties. By leveraging state abstraction techniques and quasimetric learning, our
approach enables improved long-horizon generalization and more effective goal-reaching policies.

3 Preliminaries

In this section, we introduce notation and preliminary definitions for goal-conditioned RL, the Decision
Transformer (Chen et al., 2021) method and the notion of quasimetrics (Wang & Isola, 2022a;b; Liu et al.,
2023) which will serve as the foundation for this work.

3.1 Problem Setting

The offline goal-conditioned reinforcement learning (GCRL) problem is defined by a controlled Markov process
M = (S, A, µ, p) (a Markov decision process (MDP) without rewards) along with an unlabeled dataset D.
Here, S denotes the state space, A represents the action space, µ(s) ∈ ∆(S) is the initial state distribution,
and p(s′ | s, a) : S × A → ∆(S) describes the transition dynamics. The notation ∆(X ) refers to the space of
probability distributions over a set X . The dataset D = {τ (n)}N

n=1 consists of N unlabeled trajectories:
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The objective of offline GCRL is to learn a goal-conditioned policy π(a | s, g) : S × S → ∆(A) that enables
an agent to reach any target state g ∈ S from any initial state in the minimum number of time steps. This is
achieved by maximizing the expected return:

Eτ∼p(τ |g)

[
T∑

t=0
γtδg(st)

]
, (1)

where T ∈ N is the episode horizon, γ ∈ (0, 1) is the discount factor, and p(τ | g) is the trajectory distribution
induced by:

p(τ | g) = µ(s0)
T −1∏
t=0

π(at | st, g)p(st+1 | st, at).
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Here, δg(s) represents the Dirac delta function, which in a discrete MDP corresponds to the indicator function
1{g}(s). In continuous MDPs, a precise definition requires measure-theoretic notation or distribution theory,
but we omit these details for simplicity.

For any goal g ∈ S, we frame goal-reaching as an inference problem (Borsa et al., 2019; Barreto et al., 2022;
Blier et al., 2021; Eysenbach et al., 2022): given the current state and desired goal, what is the most likely
action to bring the agent closer to that goal? This corresponds to solving the MDP Mg, which extends M
with a goal-conditioned reward function:

rg(s) = (1 − γ)δg(s). (2)

Thus, a goal-conditioned policy π(a | s, g) receives both the current state and goal as inputs, effectively
transforming M into a goal-conditioned MDP, denoted as Mg.

3.2 Revisiting Decision Transformers

Decision Transformer (DT) (Chen et al., 2021) is an influential method that bridges sequence modeling
with decision-making by adapting the transformer architecture (Vaswani et al., 2017) to reinforcement
learning. Unlike traditional reinforcement learning (RL) algorithms that rely on dynamic programming or
policy gradient methods, DT directly learns an autoregressive model from trajectory data using a causal
transformer (Radford et al., 2019). This allows DT to leverage powerful pre-trained architectures developed
for language and vision tasks (Brown et al., 2020; Chowdhery et al., 2023). DT modifies initial trajectories
from the dataset and represents them as :

τ = (R1, s1, a1, R2, s2, a2, . . . , RT , sT , aT ), (3)

where Rt =
∑T

i=t ri is the return-to-go (RTG) from time step t onward. The DT policy is parameterized as:

πDT(at|st, Rt, τt), (4)

where τt = (R0, s0, a0, . . . , Rt−1, st−1, at−1) is the sub-trajectory history before time step t. Training is
performed autoregressively, where the model predicts actions conditioned on the previous state, RTG, and
trajectory history. At test time, DT initializes with a desired return-to-go R0 and an initial state s0. The
generated action is executed, the return is decremented by the achieved reward, and the process continues
until termination. The authors of (Chen et al., 2021) argue that the conditional prediction model is able to
perform policy optimization without using dynamic programming. However, recent works observe that DT
often shows inferior performance compared to dynamic programming based offline RL algorithms when the
offline dataset consists of sub-optimal trajectories (Fujimoto & Gu, 2021; Emmons et al., 2022; Kostrikov
et al., 2022).

3.3 Learning the Quasimetric Distance Function

Within any Markov decision process (MDP), there is an intuitive notion of “distance” between states as the
difficulty of transitioning between them. There are many seemingly reasonable definitions for distance a
priori: likelihood of reaching the goal at a particular time, expected time to reach the goal, likelihood of ever
reaching the goal, etc. (under some policy). The key mathematical structure for a distance to be useful for
reaching goals is that it must satisfy the triangle inequality d(a, c) ≤ d(a, b) + d(b, c): being able to go from
a → b and from b → c means going from a → c can be no harder than both of the aforementioned steps. Such
a distance is called a metric over the state space if it is symmetric and more generally a quasimetric (Wang
& Isola, 2022b;a; Liu et al., 2023).

Definition 3.1. We define a distance function d : S × S → R that satisfies nonnegativity and identity
properties. The set of all such distance functions is given by:

D ≜ {d : S × S → R | d(s, s) = 0, d(s, s′) > 0
for all s ̸= s′ ∈ S}. (5)
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Causal Transformer

Quasimetric Network Quasimetric Network Quasimetric Network

Figure 1: Architecture of the Quasimetric Decision Transformer (QuaD). The model replaces return-
to-go (RTG) with a learned quasimetric function d(st, g), which provides structured goal-aware guidance. The
Quasimetric Network computes dt given the current state st and the goal g, producing a distance embedding.
These embeddings, along with state-goal embeddings sgt and past actions at, are tokenized and processed by
a causal transformer, which autoregressively predicts actions at+1. The quasimetric function enables better
trajectory modeling and generalization in goal-conditioned RL tasks.

A distance function satisfying the triangle inequality is called a quasimetric, and the set of all quasimetrics is:

Q ≜ {d ∈ D | d(s, g) ≤ d(s, w) + d(w, g)
for all s, g, w ∈ S}. (6)

While prior work on bisimulations (Hansen-Estruch et al., 2022) use a reward function to construct such
a distance, we aim will to leverage a notion of distance that does not require a reward function. For the
correct choice of distance, learning a goal-conditioned value function will correspond to selecting a distance
metric that best enables goal reaching. Such a distance can then be learned with an architecture that directly
enforces metric properties, e.g., metric residual network (MRN)(Liu et al., 2023) and interval quasimetric
embeddings (IQE) (Wang & Isola, 2022b;a). Since the space of value (quasi)metrics imposes a strong induction
bias over value functions, using the right metric architecture can enable better combinatorial and temporal
generalization without requiring additional samples (Wang & Isola, 2022b;a; Liu et al., 2023). Unlike a
standard metric, a quasimetric does not necessarily satisfy symmetry, i.e., d(x, y) ̸= d(y, x) in general (Wang
& Isola, 2022a). This asymmetry is particularly useful for modeling goal-conditioned environments where
reaching a state g from s may not have the same difficulty as returning from g to s.

4 Quasimetric Guided Decision Transformer

The Quasimetric Decision Transformer (QuaD) replaces RTG with a learned quasimetric function d(s, g),
which explicitly models the difficulty of reaching a goal state g from a given state s. This quasimetric satisfies
the properties discussed in Section 3.3 and provides a structured distance measure for goal-reaching tasks.

A QuaD trajectory is represented as:

τ = (s1, a1, d(s1, g), s2, a2, d(s2, g), . . . ), (7)

where d(st, g) replaces the return-to-go Rt.
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The core idea behind QuaD is that d(s, g) acts as a structured guidance signal, allowing the transformer
model to (1) learn more effective trajectory stitching by minimizing d(s, g) at each step, (2) Generalize to
new goals based on quasimetric-based similarity in state space.

4.1 Quasimetric Models in Goal-Conditioned MDPs

A quasimetric model dθ usually consists of (1) a deep encoder mapping inputs in X to a generic latent space Rd

and (2) a differentiable latent quasimetric head dlatent ∈ (Rd) that computes the quasimetric distance for two
input latents. θ contains both the parameters of the encoder and parameters of the latent head dlatent, if any.
Recent works have proposed many choices of dlatent, which have different properties and performances. We
refer interested readers to (Wang & Isola, 2022b) for an in-depth treatment of such models. The quasimetric
model dθ is optimized as follows:

max
θ

Es∼pstate
g∼pgoal

[dθ(s, g)] (8)

subject to E(s,a,s′,r)∼ptransition [relu(dθ(s, s′) + r)2] ≤ ϵ2,

where ε > 0 is small, and relu(x) prevents dθ(s, s′) from exceeding the transition cost −r ≥ 0. After
optimization, we take dθ as our estimate of the difficulty of reaching a goal state g from a given state s.

4.1.1 Training QuaD with Quasimetric Distance

Using mean-squared-error loss alone in Decision Transformer (DT) can lead to suboptimal policy learning, as
it directly minimizes the difference between predicted and observed actions without considering long-term
rewards. This approach lacks a mechanism to distinguish high-value actions from suboptimal ones, limiting
performance in offline RL settings. To address this, we integrate Deep Deterministic Policy Gradient with
Behavior Cloning (DDPG+BC) (Lillicrap et al., 2016) alongside MSE loss, combining Q-function optimization
with policy regularization. The QuaD training objective follows the standard Decision Transformer loss
function but conditions on the quasimetric distance d(s, g):

LQuaD = λ · E(s,a)∼D [−Q(s)] + (1 − λ) · E(s,a)∼D

[
∥â − a∥2

]
, (9)

The first term, E[−Q(s)], promotes actions that yield higher Q-values, where Q(s) estimates the expected
return when following the current policy from state s. Minimizing the negative Q-value encourages value-
driven behavior. The second term, E[∥â − a∥2], is a standard mean squared error loss between the predicted
action â and the ground-truth action a from the dataset, encouraging imitation of demonstrated behavior.

DDPG provides value-based updates, ensuring the policy prioritizes high-reward actions, while BC prevents
excessive deviation from the dataset, improving stability. The additional MSE loss refines action consistency,
keeping predictions aligned with observed behaviors while benefiting from value-driven learning. Furthermore,
instead of treating goals and states as separate tokens as done by DT, we enhance trajectory tokenization by
concatenating the goals with state together and then tokenize the vector, improving context understanding.
This integrated approach results in better stability, improved action selection, and more effective offline RL
training

The quasimetric function d(s, g) is learned separately as a neural network fθ(s, g) trained to satisfy the
quasimetric properties:

d(s, g) ≈ min
π

Eπ

[
T∑

t=0
c(st, g) | s0 = s

]
, (10)

where c(st, g) is a cost function associated with reaching g from st. Training fθ ensures that the quasimetric
structure is learned efficiently and provides meaningful goal-directed guidance.
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Figure 2: D4rl AntMaze environments - Umaze, Medium & Large

5 Experiments

Our experiments will use three offline goal-conditioned tasks, aiming to answer the following questions:

1. Quasimetric Guidance vs. Return-to-Go (RTG): How does replacing RTG conditioning with
quasimetric distances affect trajectory optimization and goal-reaching performance?

2. Effectiveness of Different Quasimetric Models: Which quasimetric model provides better
generalization and planning capabilities?

3. Impact of Loss Functions: How do different loss functions (AWR vs DDPGBC) influence
quasimetric learning and goal-reaching success?

5.1 Experimental Setup

We first describe our evaluation environments, shown in Fig.2. We evaluate QuaD in D4RL AntMaze (Fu
et al., 2020), a suite of six goal-conditioned navigation tasks featuring an 8-DoF Ant robot navigating from
a starting position to a goal location. These tasks require long-horizon planning and trajectory stitching,
making them well-suited for evaluating quasimetric-based decision transformers. The six tasks include:
• AntMaze-Umaze (Play & Diverse)
• AntMaze-Medium (Play & Diverse)
• AntMaze-Large (Play & Diverse)
We evaluate QuaD against a comprehensive set of baselines spanning three primary offline reinforcement
learning paradigms: behavior cloning, value-based methods, and sequence modeling approaches. For behavior
cloning, we include Behavior Cloning (BC), a standard supervised learning method trained to replicate
actions in the dataset without using any reward or goal information, and Goal-Conditioned Behavior Cloning
(GCBC) (Ghosh et al., 2021), which conditions the policy on goal states to imitate goal-reaching behaviors
without value estimation. Among value-based methods, we compare against TD3+BC (Fujimoto & Gu, 2021),
which augments the TD3 actor-critic framework with behavior cloning regularization to ensure stability in
the offline setting; OneStepRL (Brandfonbrener et al., 2021), which limits value updates to a single step to
avoid extrapolation errors over long horizons; and Goal-Conditioned IQL (GC-IQL), an adaptation of Implicit
Q-Learning (Kostrikov et al., 2022) for goal-conditioned tasks that filters actions based on learned Q-values
and avoids value overestimation. For sequence modeling, we include the Decision Transformer (DT) (Chen
et al., 2021), which models trajectories autoregressively and conditions on return-to-go (RTG) to predict
actions, and the Q-Learning Decision Transformer (QLDT), a variant of DT that incorporates Q-values
into the transformer input to guide prediction toward high-value behaviors. All baselines are evaluated on
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the AntMaze benchmark under identical conditions using five random seeds, with 95% confidence intervals
shown via shaded regions in figures or standard deviations reported in tables. Additional training and
implementation details are provided in the Appendix.

Environment TD3+BC OneStepRL BC GCBC GC-IQL DT QLDT QuaD(IQE) QuaD(MRN)
An-U-v2 78.6 64.3 54.6 67.3 ± 10.1 63.5 ± 14.6 53.6 ± 7.3 67.2 ± 2.3 91.0 ± 3.16 89.2 ± 3.82

An-UD-v2 71.4 60.7 45.6 71.9 ± 16.2 70.9 ± 11.2 42.2 ± 5.4 62.1 ± 1.6 91.4 ± 3.58 91.4 ± 3.23
An-MP-v2 10.6 0.3 0 20.2 ± 9.1 50.7 ± 18.8 0.0 0.0 59.4 ± 3.66 60.8 ± 3.24
An-MD-v2 3.0 0.0 0 23.1 ± 15.6 56.5 ± 14.4 0.0 0.0 60.6 ± 2.87 57.8 ± 3.2
An-LP-v2 0.2 0.0 0 14.4 ± 9.7 21.6 ± 15.2 0.0 0.0 33.2 ± 3.80 32.0 ± 1.79
An-LD-v2 0.0 0.0 0 20.7 ± 9.7 29.8 ± 12.4 0.0 0.0 31.2 ± 2.07 30.4 ± 3.36

Table 1: Offline RL benchmarks: We use the AntMaze suite (Fu et al., 2020) of goal-conditioned RL tasks
to compare our method to prior methods, measuring the success rate and standard error across multiple
seeds. The methods on the right of the vertical line are transformer-based methods, the top scores among
which are highlighted in bold. To save space, the name of the environments and datasets are abbreviated as
follows: for the environments An=Ant; for the datasets U=umaze, UD=umaze-diverse, MP=medium-play,
MD=medium-diverse, LP=large-play, LD-large-diverse. The proposed solution performs well.

5.2 Main Results on AntMaze Environments

Table 1 summarizes the success rates (%) and standard errors across multiple seeds, comparing our approach
against various state-of-the-art offline RL methods, including TD3+BC (Fujimoto & Gu, 2021), OneStep
RL (Brandfonbrener et al., 2021), BC (Behavior Cloning), and Decision Transformer (DT) (Chen et al., 2021).
The transformer-based methods (right side of the vertical line) are particularly relevant for comparing our
approach, as they employ sequence modeling techniques.

Overall Performance Trends. Our methods, QuaD (IQE) and QuaD (MRN), significantly outperform
Decision Transformer (DT) and QLDT in all environments, particularly in more complex mazes. While DT
struggles to achieve meaningful success rates, our approach demonstrates robust performance even in difficult
settings. Notably, on the easier umaze environments, QuaD (IQE) achieves a success rate of 91.0%, far
surpassing DT (53.6%) and QLDT (67.2%). Similarly, in umaze-diverse, both IQE and MRN models reach
91.4%, outperforming all baselines.

Performance in Medium and Large Mazes. In more challenging medium and large mazes, our method
significantly improves over prior approaches. Notably, in the medium-play setting, DT and QLDT both
fail to achieve meaningful success rates, whereas our QuaD (IQE) and QuaD (MRN) models achieve 59.4%
and 60.8% success rates, respectively, demonstrating the advantage of quasimetric-based distance guidance.
Similarly, in medium-diverse, both of our models maintain a high success rate around 60%, while all prior
transformer-based methods fail to solve the task.

Challenging Large Maze Tasks. The large-scale AntMaze tasks remain among the most challenging
benchmarks in offline RL. While all prior transformer-based methods fail completely (DT and QLDT achieve
0% success), our models significantly outperform previous baselines, achieving 33.2% (IQE) and 32.0% (MRN)
on large-play, and 31.2% (IQE) and 30.4% (MRN) on large-diverse. This demonstrates that our quasimetric
distance-based approach enables effective long-horizon goal reaching, even in highly sparse-reward settings.

Comparison with Traditional Offline RL. Traditional offline RL methods such as TD3+BC, OneStep
RL, and BC fail to generalize effectively across AntMaze tasks. While TD3+BC achieves some success on
umaze and umaze-diverse, its performance drops significantly in medium and large environments, where goal-
conditioned trajectory stitching is required. Our method, on the other hand, maintains strong performance
across all difficulty levels, highlighting its advantage in long-horizon tasks requiring strategic planning.

Overall, QuaD (IQE) and QuaD (MRN) consistently outperform DT, QLDT, and other prior methods across
all AntMaze tasks. The results validate our hypothesis that replacing RTG with quasimetric guidance enables
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better goal-directed decision-making in sequence-based RL. Moreover, IQE slightly outperforms MRN in
most settings, suggesting that interval-based quasimetric embeddings provide a stronger representation for
long-horizon trajectory modeling. These findings establish QuaD as a powerful alternative to traditional
RTG-based Decision Transformers, particularly in goal-conditioned RL.

5.3 Ablation Studies

To better understand the performance and generalization capabilities of Quasimetric Decision Transformer
(QuaD), we conduct a series of ablation studies focusing on key design choices: the effectiveness of different
quasimetric learning models and the impact of loss functions on training stability and goal-reaching success.

5.3.1 Effectiveness of Different Quasimetric Methods

A fundamental component of QuaD is the choice of quasimetric function, which serves as a structured guidance
signal in place of return-to-go (RTG). We evaluate the two primary quasimetric formulations introduced in
this work:
• Interval Quasimetric Embeddings (IQE) - IQE learns an interval-based quasimetric representation

by sorting embedded state-goal representations into discrete intervals and aggregating them using mean
and max pooling. This approach enforces implicit ordering constraints, making it robust to trajectory
perturbations.

• Metric Residual Networks (MRN) - MRN computes a residual correction over a base Euclidean
distance, incorporating an additional asymmetric L-infinity term to better capture directed transition
dynamics.

Comparison Results: We evaluate both quasimetric models across all six AntMaze tasks, reporting success
rates in Tables 2 and 3. Our key findings are:

1. IQE vs. MRN: General Performance Trends. IQE consistently outperforms MRN in most envi-
ronments, particularly in structured mazes. In AntMaze-Umaze, IQE achieves a success rate of 91.0%
(DDPG+BC) and 93.2% (AWR), whereas MRN lags slightly behind at 89.2% (DDPG+BC)
and 92.4% (AWR). This suggests that IQE’s structured interval-based representation is highly
effective in environments where local trajectory stitching is sufficient for goal-reaching.

2. Impact of Quasimetric Choice in Medium-Scale Planning. In AntMaze-Medium-Play and
Medium-Diverse, MRN performs comparably to IQE, with a slight advantage for MRN in Medium-
Play (60.8% (MRN) vs. 59.4% (IQE), DDPG+BC), but an edge for IQE in Medium-Diverse
(61.0% (IQE) vs. 57.8% (MRN), AWR). This indicates that MRN’s additional residual correction
aids in handling longer-horizon dependencies, though IQE remains competitive.

3. Long-Horizon Performance in Large Mazes. In the most difficult environments (AntMaze-
Large-Play and Large-Diverse), both methods see a performance drop due to the extreme sparsity of
rewards and complexity of planning. IQE and MRN yield similar success rates, with IQE slightly
outperforming MRN in Large-Play (33.2% vs. 32.0%, DDPG+BC), but both converging to 31.2%
success in Large-Diverse. This suggests that neither method generalizes well in extremely long-horizon
settings, indicating a potential limitation in quasimetric extrapolation.

IQE provides superior trajectory stitching capabilities in small- and medium-scale environments, whereas
MRN’s residual-based approach enhances stability in longer-horizon tasks. However, in complex large-scale
mazes, both methods reach similar performance ceilings, highlighting the need for further research into
quasimetric learning for extreme long-horizon goal-reaching.

5.3.2 Impact of Different Loss Functions

Beyond the choice of quasimetric function, the selection of an appropriate loss function plays a crucial role in
determining the quality of learned quasimetric representations and the robustness of trajectory conditioning.
We analyze the effect of the following loss formulations:

9
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Figure 3: Learning curves of QuaD on antmaze-Umaze-v2 environment with different quasimetric functions
(IQE on left, MRN on the right)

Figure 4: Learning curves of QuaD on antmaze-medium-play-v2 environment with different quasimetric
functions (IQE on left, MRN on the right)

• Advantage-Weighted Regression (AWR) - This loss function reweights the behavioral cloning loss
using an exponential advantage factor, which is derived from the quasimetric distance function. Higher
advantages result in a greater probability of action selection, biasing the policy toward trajectories with
lower quasimetric distances.

• DDPG+BC Loss - A hybrid offline RL loss that combines Q-learning (DDPG) and policy regularization
(BC), encouraging quasimetric distance learning while preventing overestimation of value function errors.
This loss is particularly effective for long-horizon planning tasks.

Loss Function Comparison: We evaluate QuaD under each loss function and summarize performance
trends based on the success rates in Tables 2 and 3.

1. AWR excels in small, structured environments. - In AntMaze-Umaze, IQE with AWR achieves
a success rate of 93.2%, slightly outperforming DDPG+BC at 91.0%. - Similarly, in AntMaze-Umaze-
Diverse, AWR-based IQE reaches 89.9%, whereas DDPG+BC achieves 91.4%. - These results suggest
that AWR provides a strong local decision-making bias, making it more effective in short-horizon
structured tasks where optimal trajectories are well-defined.

2. DDPG+BC outperforms AWR in medium and large-scale environments. - In AntMaze-
Medium-Play, IQE with DDPG+BC achieves 59.4%, slightly higher than 58.4% with AWR. - A

10
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similar trend is observed in AntMaze-Medium-Diverse, where IQE scores 60.6% (AWR) vs. 61.0%
(DDPG+BC). - The advantage of DDPG+BC becomes more pronounced in large-scale AntMaze
tasks, particularly in Large-Play (33.2% vs. 31.2%) and Large-Diverse (31.2% for both methods). -
These results indicate that Q-learning improves long-horizon trajectory stitching, making DDPG+BC
preferable for complex planning tasks.

3. MRN follows the same trend as IQE but with slightly lower performance across all
environments. - In AntMaze-Umaze, MRN achieves 92.4% (AWR) and 89.2% (DDPG+BC),
slightly behind IQE. - However, in long-horizon tasks, MRN benefits more from DDPG+BC, as seen
in Medium-Play (60.8%) and Large-Play (32.0%), closing the gap with IQE. - These results suggest
that MRN’s residual structure is more sensitive to loss function selection than IQE.

AWR provides superior stability and early-stage learning efficiency, making it ideal for short-horizon, structured
tasks like Umaze. DDPG+BC enables better long-term planning, significantly improving performance in
medium and large-scale environments where trajectory stitching is crucial. IQE remains the superior
quasimetric model overall, but MRN benefits more from DDPG+BC in large-scale tasks. These findings
suggest that an adaptive loss function, combining AWR’s stability with DDPG+BC’s long-horizon planning
benefits, could be a promising future direction.

Environment IQE (AWR) IQE (DDPG+BC)
An-U-v2 93.2 ± 3.21 91.0 ± 3.16
An-UD-v2 89.9 ± 3.23 91.4 ± 3.58
An-MP-v2 58.4 ± 3.66 59.4 ± 3.63
An-MD-v2 61.0 ± 2.07 60.6 ± 2.87
An-LP-v2 31.2 ± 2.28 33.2 ± 3.80
An-LD-v2 31.2 ± 2.17 31.2 ± 2.07

Table 2: Success rate (%) with standard error for IQE using AWR loss and the DDPG+BC loss. Environments:
An=Ant. Datasets: U=umaze, UD=umaze-diverse, MP=medium-play, MD=medium-diverse, LP=large-play,
LD=large-diverse.

Environment MRN (AWR) MRN (DDPG+BC)
An-U-v2 92.4 ± 5.94 89.2 ± 3.82
An-UD-v2 89.3 ± 3.23 91.4 ± 3.23
An-MP-v2 57.2 ± 4.36 60.8 ± 3.24
An-MD-v2 58.6 ± 2.19 57.8 ± 3.2
An-LP-v2 28.4 ± 2.07 32.0 ± 1.79
An-LD-v2 31.2 ± 2.17 30.4 ± 3.36

Table 3: Success rate (%) with standard error for MRN using AWR loss and the DDPG+BC loss. Environments:
An=Ant. Datasets: U=umaze, UD=umaze-diverse, MP=medium-play, MD=medium-diverse, LP=large-play,
LD=large-diverse.

5.4 Summary of Ablation Findings

Our ablation studies provide key insights into the effectiveness of different quasimetric models, the impact of
loss function selection, and the robustness of QuaD to quasimetric inaccuracies. The results from Tables 2
and 3 highlight the following key takeaways:
• IQE consistently outperforms MRN in structured environments but faces challenges in long-horizon tasks.
• DDPG+BC significantly improves long-horizon planning and goal-reaching success, outperforming AWR

in larger environments.

11
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• DDPG+BC is the most effective loss function overall, achieving the highest success rates across all AntMaze
tasks.

• Quasimetric-based trajectory modeling provides a significant advantage over RTG-based Decision Trans-
formers.

These findings emphasize the importance of quasimetric selection and loss function choice in effective trajectory
modeling. Future improvements may focus on adaptive loss function strategies and hierarchical extensions
that integrate quasimetric subgoal discovery for enhanced long-horizon planning.

6 Conclusion

We introduced Quasimetric Decision Transformer (QuaD), a novel framework that replaces return-to-go
(RTG) conditioning in Decision Transformers with learned quasimetric distances for goal-conditioned RL.
By leveraging quasimetric learning, QuaD provides a structured, goal-aware signal that improves trajectory
optimization, generalization to unseen goals, and long-horizon planning. Our experiments on AntMaze tasks
demonstrate that QuaD significantly outperforms standard Decision Transformers across all settings, with IQE
excelling in structured navigation tasks. We show that Advantage-Weighted Regression (AWR) is the most
effective loss formulation, while DDPG+BC can further aid long-horizon trajectory stitching. Theoretical
analysis confirms that quasimetric distances offer a superior success predictor compared to RTG, leading
to more effective decision-making. This work establishes the first systematic study of metric learning in
sequence-based RL, bridging the gap between Decision Transformers and distance-based goal representations.
Future directions include hierarchical RL with quasimetric-based subgoal discovery, contrastive quasimetric
learning, and real-world applications in robotics. By introducing quasimetric guidance in DTs, we open a
new research avenue for scalable and structured goal-conditioned RL.
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A Hyperparameters

A.1 Quasimetric Network

We provide the hyperparameters used for training the Interval Quasimetric Embedding (IQE) and Metric
Residual Network (MRN) value functions in Table 4. Most hyperparameters are set following standard
configurations used in prior Quasimetric RL (QRL) (Wang & Isola, 2022a; Liu et al., 2023). Both IQE and
MRN utilize a three-layer MLP with 512 hidden units per layer and layer normalization to ensure stable
training. The latent dimension for both architectures is set to 512, with IQE using a per-component dimension
of 8, which defines the number of interval embeddings used in the quasimetric representation. For the dual
lambda loss, we set the margin parameter ϵ = 0.05 across all environments.

Regarding dataset configurations, we set the probability of sampling random value goals to 1.0, ensuring
diverse quasimetric learning, while future trajectory-based goal sampling is only applied for the actor policy.
Additionally, geometric sampling is enabled for value function learning but is disabled for the actor function
to avoid unintended bias in trajectory learning. The quasimetric loss formulation follows the original
implementation in Quasimetric RL, where a softplus loss is used for negative distances, and a quadratic
penalty is applied for positive distances exceeding 1.0. The full hyperparameter details are reported in Table
4.

Hyperparameter IQE (Interval Quasimetric Embeddings) MRN (Metric Residual Network)
Learning Rate (lr) 3 × 10−4 3 × 10−4

Batch Size 1024 1024
Quasimetric Type iqe mrn
Value Hidden Dims (512, 512, 512) (512, 512, 512)
Latent Dimension 512 512
Dimension per Component 8 Not Applicable
Layer Normalization True True
Discount Factor 0.99 0.99
Epsilon for Lambda Loss 0.05 0.05
Quasimetric Function Interval-Based IQE Metric Residual Over Euclidean Distance
Distance Function Mean and Max Aggregation Euclidean + L-Infinity Metric
Alpha Parameter Trainable via Sigmoid Not Applicable
Distance Computation Sorted Components with Negative Increments Symmetric Euclidean + Asymmetric Max

Table 4: Hyperparameter settings and architectural details for the two quasimetric network versions: IQE
and MRN.

A.2 Quasimetric Decision Transformer

We summarize the hyperparameters and architectural details of the Quasimetric Decision Transformer (QuaD)
in Table 5. Most hyperparameters align with standard Decision Transformer (DT) (Chen et al., 2021)
configurations. The model is trained using a sequence length of 20 with a transformer-based architecture
consisting of 4 causal attention blocks, each using 8 self-attention heads and a dropout probability of 0.1. The
embedding dimension is set to 128, with separate state-goal, action, and quasimetric distance embeddings to
enhance representation learning.

For quasimetric learning, we experiment with two quasimetric functions: Interval Quasimetric Embeddings
(IQE) and Metric Residual Networks (MRN), where the latent dimension is set to 512. The quasimetric-guided
actor policy is trained using DDPG+BC by default, but we also evaluate Advantage-Weighted Regression
(AWR) loss settings in ablation studies. The quasimetric prediction model is integrated into the autoregressive
transformer framework, where quasimetric distances are computed at each timestep and embedded into the
transformer sequence model.

Regarding training settings, we follow standard DT training configurations, using an Adam optimizer with a
learning rate of 8 × 10−4, weight decay of 1 × 10−4, and gradient clipping at 0.25 to ensure stable training.
The quasimetric target values replace the standard return-to-go (RTG) formulation, providing a structured
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goal-reaching metric for improved sequence modeling. We evaluate the QuaD framework across six AntMaze
environments from D4RL. The full list of model-specific and training-specific hyperparameters is presented in
Table 5.

Hyperparameter Value
General Training Settings

Batch Size 64
Training Steps 100,000
Evaluation Episodes 100
Episode Length 1,000
Evaluation Interval 10000
Discount Factor (γ) 0.99
Learning Rate 8 × 10−4

Weight Decay 1 × 10−4

Adam Beta Parameters (0.9, 0.999)
Gradient Clipping 0.25
Warmup Steps 10,000

Decision Transformer Model
Sequence Length 20
Number of Transformer Blocks 4
Hidden Dimension (hdim) 128
Number of Attention Heads 8
Dropout Probability 0.1
Attention Heads 8

Quasimetric Network
Quasimetric Type IQE / MRN
Latent Dimension 512
Actor Loss Type AWR / DDPG+BC
Alpha Scaling Factor 0.003
Constant Standard Deviation True

Table 5: Hyperparameter and Architectural Details of the Quasimetric Decision Transformer (Quad).
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