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Abstract

Despite the dominance and effectiveness of scaling, resulting in large networks with1

hundreds of billions of parameters, the necessity to train overparametrized models2

remains poorly understood, and alternative approaches do not necessarily make3

it cheaper to train high-performance models. In this paper, we explore low-rank4

training techniques as an alternative approach to training large neural networks.5

We introduce a novel method called ReLoRA, which utilizes low-rank updates to6

train high-rank networks. We apply ReLoRA to pre-training transformer language7

models with up to 350M parameters, and demonstrate comparable performance8

to regular neural network training. Furthermore, we observe that the efficiency9

of ReLoRA increases with model size, making it a promising approach for train-10

ing multi-billion-parameter networks efficiently. Our findings shed light on the11

potential of low-rank training techniques and their implications for scaling laws.112

1 Introduction13

Over the past decade, the machine learning field has been dominated by the trend of training14

increasingly overparametrized networks or adopting the "stack more layers" approach [32, 21, 27].15

The definition of a large network has evolved from models with 100 million [46, 39] to hundreds16

of billions [8, 12] of parameters, which has made computational costs associated with training of17

such networks prohibitive to most of the research groups. Despite this, the necessity to train models18

which can have orders of magnitude more parameters than the training examples [8, 12, 16], is poorly19

understood theoretically [25, 4, 60].20

Alternative approaches to scaling, such as more compute-efficient scaling optima [22], retrieval-21

augmented models [28, 7], and the simple approach of training smaller models for longer [50], have22

offered new interesting trade-offs. However, they do not bring us closer to understanding why we23

need overparametrized models and rarely democratize the training of these models. For example,24

training RETRO [7] requires a complex training setup and infrastructure capable of quickly searching25

over trillions of tokens, while training LLaMA-6B [50] still requires hundreds of GPUs.26

In contrast, approaches like zero-redundancy optimizers [43], 16-bit training [37], 8-bit inference [14],27

and parameter-efficient fine-tuning (PEFT) [33] have played a crucial role in making large models28

more accessible. Specifically, PEFT methods have enabled fine-tuning of billion-scale language or29

diffusion models on consumer hardware. This raises the question: Can these approaches also benefit30

pre-training?31

On one hand, pre-training is exactly the step that allows for small modifications to the network to32

adapt it to new tasks. Aghajanyan et al. [1] demonstrated that the rank of the changes required33

1The code is provided with the supplementary material of the submission.
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Figure 1: ReLoRA learns a high-rank network through a sequence of low-rank updates. It outperforms
networks with the same trainable parameter count and achieves similar performance to training a full
network at 100M+ scale. The efficiency of ReLoRA increases with the model size, making it a viable
candidate for multi-billion-parameter training.

to learn a task decreases the more you pre-train the network. On the other hand, multiple studies34

have demonstrated the simplicity of features extracted and utilized by language and vision models,35

along with their low intrinsic dimensionality [31, 17, 42, 47]. For instance, attention patterns in36

transformers [51] often exhibit a small rank, which has been successfully leveraged to develop more37

efficient variants of attention [52, 11]. Moreover, overparametrization is also not necessary for38

training. The Lottery Ticket Hypothesis [17] empirically demonstrates that during initialization (or39

early in training [18]), there exist sub-networks – winning tickets – that when trained in isolation40

reach the performance of the full network.41

In this study, we focus on low-rank training techniques and introduce ReLoRA that uses low-rank42

updates to train a high-rank network. We empirically demonstrate that ReLoRA performs a high-rank43

update and achieves performance similar to regular neural network training. The components of44

ReLoRA include initial full-rank training of the neural network (similar to Frankle et al. [18]), LoRA45

training, restarts, a jagged learning rate schedule, and partial optimizer resets. We evaluate ReLoRA46

on transformer language models up to 350M parameters. We chose to focus on autoregressive47

language modeling, as this approach has demonstrated its universality in most of the applications of48

neural networks [41, 56, 3, 35, 10]. Finally, we observe that the efficiency of ReLoRA increases with49

model size, making it a viable option for efficient training of multi-billion-parameter networks.50

Each experiment in this study has used no more than 8 GPU days of compute.51

2 Related work52

Scaling versus Efficiency The relationship between overparametrization and neural network53

trainability and generalization has been extensively studied [59, 5, 17, 38, 47], yet it remains a54

mystery [60]. Moreover, scaling laws [27, 19, 22, 30, 2] demonstrate a simple and strong power-law55

dependence between network size and its performance across a variety of modalities. This finding56

not only supports overparametrization but also encourages the training of extraordinarily resource-57

intensive neural networks [8, 12, 16]. Nonetheless, the Lottery Ticket Hypothesis [17, 18] suggests58

that overparametrization could, in principle, be minimized. Specifically, it shows that early in training,59

subnetworks exist that can be trained to achieve the performance of the full network (winning tickets).60

Parameter-efficient fine-tuning Aghajanyan et al. [1] found that pre-training reduces the amount61

of change to the network, or its intrinsic dimensionality, to learn a new task through fine-tuning. I.e.,62

larger networks or networks pre-trained on more data require smaller modifications in terms of the63

rank of the range to learn a new task. This explains the success of parameter-efficient fine-tuning64

methods [33] and has also motivated the development of low-rank fine-tuning methods such as LoRA65

[23] and Compacter [36].66
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Figure 2: Jagged cosine scheduler used in ReLoRA. On every ReLoRA reset, we set the learning rate
to zero and perform a quick (50-100 steps) learning rate warmup back to the cosine schedule.

Low-rank neural network training Training low-rank representations has been explored in the67

context of CNN compression, regularization, and efficient training [24, 26, 49, 44, 34, 57]. However,68

most of these methods are either specific to CNNs, do not scale well, or have not been evaluated69

on large transformers [51] with hundreds of millions of parameters, which can benefit greatly from70

efficient training. While transformers have been shown to have a low-rank internal dimensionality71

and representations [1, 52], the study by Bhojanapalli et al. [6] demonstrated that the low rank of key72

and query projections in multi-head attention bottlenecks the performance of transformers. Our own73

experiments (Section 3) also demonstrate that low-rank transformers perform significantly worse74

compared to the full-rank baseline and ReLoRA.75

3 Method76

Let’s start by revisiting linear algebra-101. In particular, we are interested in the rank of the sum of77

two matrices:78

rank(A+B) ≤ rank(A) + rank(B). (1)

This bound on the rank of the sum is tight: for a matrix A, rank(A) < dim(A), there exists B,79

rank(B) < dim(B) such that sum of the matrices has a higher rank than either A or B. We want to80

exploit this property to make a flexible parameter-efficient training method. We start with LoRA [23]81

which is a parameter-efficient fine-tuning method based on the idea of low-rank updates. LoRA can82

be applied to any linear operation parametrized through W ∈ Rm×n. Specifically, LoRA decomposes83

the weight update δW into a low-rank product WAWB as shown in Equation 2, where s ∈ R is a84

fixed scaling factor usually equal to 1
r .85

δW = sWAWB

WA ∈ Rin×r,WB ∈ Rr×out (2)

In practice, LoRA is usually implemented by adding new trainable parameters WA and WB , which86

could be merged back into the original parameters after training. Thus, even though Equation 187

allows the total update over training time
∑

t δWt to have a higher rank than any of the individual88

matrices, LoRA implementations are restricted by the rank r = maxWA,WB
rank(WAWB).89

If we could restart LoRA, meaning we merge WA and WB during training and reset the values of90

these matrices, we could increase the total rank of the update. Doing this multiple times brings the91

total neural network update to92

∆W =

T1∑
t=0

δWt +

T2∑
t=T1

δWt + · · ·+
TN∑

t=TN−1

δWt = sW 1
AW

1
B + sW 2

AW
2
B + · · ·+ sWN

A WN
B (3)

where the sums are independent enough, meaning that rank(W i
AW

i
B) + rank(W j

AW
j
B) ≥ r.93
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However, implementing restarts is not trivial in practice and requires certain modifications to the94

optimization procedure. Naïve implementation causes the model to diverge right after the restart.95

Unlike plain stochastic gradient descent, which solely relies on the value of the gradient at the current96

optimization timestep, Adam [29] update is guided mainly by the first and second moments of the97

gradient accumulated over the previous steps. In practice, gradient moment smoothing parameters β198

and β2 are usually very high 0.9− 0.999. Let’s assume that at the reinitialization boundary W 1
A and99

the corresponding gradient moments mA and vA, are full-rank (r). Then, after the merge-and-reinit,100

continuing to use old gradient moments for W 2
A will guide it in the same direction as W 1

A and101

optimize the same subspace.102

To resolve this issue, we propose ReLoRA. ReLoRA performs a partial reset of the optimizer state103

during merge-and-reinit and sets the learning rate to 0 with a subsequent warmup. Specifically, we set104

99% of low-magnitude optimizer state values to zero and use a jagged-cosine learning rate schedule105

(Figure 2). Our ablation studies (Section 3) show that both of these modifications are required to106

improve the performance over vanilla LoRA.107

To reiterate, ReLoRA is a low-rank training method inspired by LoRA that uses restarts to increase108

the effective rank of the update, uses partial optimizer reset, and a jagged scheduler to stabilize109

training and warm starts. All of this allows ReLoRA to achieve performance comparable to full-rank110

training, especially in large transformer networks, by only training a small set of parameters at a time.111

ReLoRA is described in Algorithm 1.112

Enhancing computational efficiency Unlike other low-rank training techniques [44, 49], ReLoRA113

follows the LoRA approach by maintaining the frozen weights of the original network and adding114

new trainable parameters. At first glance, this may appear computationally inefficient; however, the115

differentiation between frozen and trainable parameters plays a crucial role in parameter-efficient116

fine-tuning [33].117

These methods achieve significant improvements in training time and memory efficiency by reducing118

the size of the gradients and the optimizer states. Notably, Adam states consume twice as much119

memory as the model weights. Moreover, it is common practice to maintain gradient accumulation120

buffers in 32-bit precision for large networks, thereby adding significant overhead to the memory121

consumption of gradients.122

By substantially reducing the number of trainable parameters, ReLoRA enables the utilization of larger123

batch sizes, maximizing hardware efficiency. Additionally, it reduces the bandwidth requirements in124

distributed setups, which are often the limiting factor in large-scale training.125

Furthermore, since the frozen parameters are not being updated between restarts, they can be kept in126

a low-precision quantized format, further reducing their memory and computational impact. This127

additional optimization contributes to overall improved efficiency in terms of memory utilization and128

computational resources of ReLoRA and increases at scale.129

4 Experiments130

To evaluate the effectiveness of ReLoRA, we apply it to train a transformer language model on the C4131

dataset [41] using various model sizes: 60M, 130M, 250M, and 350M. Language modeling has been132

shown to be a fundamental task in machine learning [40], it enables text and image classification133

[56], translation [8], programming [9], in-context learning, step-by-step reasoning [54], and many134

other emergent abilities [53]. Given its significance, we focus solely on language modeling for the135

purposes of this paper.136

Architecture and training hyperparameters Our architecture is based on transformer [51] and137

closely resembles LLaMA [50]. Namely, we use pre-normalization, RMSNorm [58], SwiGLU138

activations [45], 8
3h fully-connected hidden state size [50], and rotary embeddings [48]. All hyperpa-139

rameters are presented in Table 1.140

We use bfloat16 for all floating point operations and Flash attention [13] for effective attention141

computation. Compared to attention in LLaMA, which uses float32 for softmax computation, this142

increased training throughput by 50-100% without any training stability issues.143
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Algorithm 1 ReLoRA. θ is model parameters, θ̂ is model parameters with linear layers replaced with
ReLoRA, M and V are Adam optimizer states, η is learning rate scheduled according to a jagged
scheduler, and finally, q is the reinit frequency.

Require: θ, M , V , q, η
1: for t in warm start steps do
2: Update θ, M , V , η {Regular training for warm start}
3: end for
4: for layer in model layers do
5: if layer is linear then
6: layer← ReLoRA(W i,W i

A,W
i
B)

7: Freeze W i

8: end if
9: end for

10: for t in training steps do
11: Update θ̂, M , V {Training step with ReLoRA}
12: if MOD(t, q) = 0 then
13: for l in model layers do
14: if l is linear then
15: W i ← (W i + sW i

AW
i
B)

16: W i
A ← kaiming_init(W i

A); W i
B ← 0

17: MW i
A
← prune(MW i

A
); VW i

A
← prune(VW i

A
)

18: end if
19: end for
20: Start η warmup
21: end if
22: end for
23: return θ

Most of our models were trained on 8 RTX 4090 for one day or less. Due to computational constraints,144

we train much smaller models than LLaMA, with the largest model having 350M parameters, the145

same as BERT Large [15]. We select the number of pre-training tokens based on the Chinchilla146

scaling laws [22] for all models, except for the largest one, which we train for 6.8B tokens while 9.5B147

tokens are Chinchilla-optimal.148

ReLoRA and baselines setup In our low-rank training experiments, ReLoRA replaces all attention149

and fully-connected network parameters, while keeping the embeddings full-rank. The RMSNorm150

parametrization remains unchanged. Since ReLoRA-wrapped models have fewer trainable parameters151

than full-rank training, we include a Control baseline, which is a full-rank transformer with the same152

number of trainable parameters as ReLoRA.153

We initialize ReLoRA from a checkpoint of full-rank training at 5,000 update steps and reset it154

every 5,000 steps thereafter, 3 times in total. After each reset, 99% of the optimizer state is pruned155

based on magnitude, and the loss is warmed up for the next 100 iterations. ReLoRA parameters are156

reinitialized following LoRA best practices, Kaiming initialization [20] for A-matrix, and zeros for157

B-matrix. In case of not using the restarts, the B-matrix also uses Kaiming initialization to avoid158

gradient-symmetry issues.159

Params Hidden Heads Layers Learning rate Batch (tokens) Seq. len. Tokens

60M 512 8 8 1e-3 122K 256 1.2B
130M 768 12 12 1e-3 154K 256 2.6B
250M 768 16 24 5e-4 590K 512 6.8B
350M 1024 16 24 5e-4 590K 512 6.8B

Table 1: Hyperparameters of the language models trained in this study.
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60M 130M 250M 350M

Full training 33.81 23.65 22.39 20.40
Control 36.52 27.30 29.12 23.65
Low-rank pre-training with LoRA 47.44 34.17 36.60 57.11
Low-rank pre-training with ReLoRA 38.28 25.04 23.28 22.48
No. of training tokens (billions) 1.2 2.6 6.8 6.8

Table 2: Comparing perplexities between baseline methods and ReLoRA (lower is better). Control
has the same number of trainable parameters as low-rank training. Low-rank training is bold if it
outperforms the Control baseline. Notice that ReLoRA efficacy increases as the network size grows.
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Figure 3: Singular values spectra of the weight difference between ReLoRA and LoRA at 5,000
iterations (warm start) and 20,000 iterations. ReLoRA exhibits a closer resemblance to full-rank
training singular values than LoRA, indicating its effectiveness in approximating full-rank behavior.

5 Results160

Parameter-efficient pre-training Our main results are resented in Table 2. ReLoRA significantly161

outperforms low-rank LoRA training demonstrating the effectiveness of our proposed modifications162

(ablated in Section 3). Furthermore, ReLoRA achieves similar performance to full-rank training, and163

the performance gap diminishes as network size increases.164

Interestingly, the only model in which ReLoRA couldn’t surpass the Control baseline was our smallest165

model with 60M parameters. This observation suggests that ReLoRA is particularly effective in166

improving the training of large networks, which aligns with our goal of developing a method that167

improves large-network training.168

High-rank training through low-rank updates To determine whether ReLoRA performs a higher169

rank update than LoRA we plot the singular value spectrum of the difference between warm-start170

weights and the final weights for ReLoRA, LoRA, and full-rank training. Figure 3 illustrates171

significant qualitative differences between LoRA and ReLoRA for the singular values of WQ, WK ,172

WV , and Wdown.173

While most of the singular values for LoRA are zero (Figure 4) with a noticeable number of174

exceptionally high values above 1.5, ReLoRA exhibits a higher distribution mass between 0.1 and 1.0,175

reminiscent of full-rank training. This observation emphasizes the significance of high-rank updates176

and demonstrates the qualitative efficacy of ReLoRA, which accomplishes a high-rank update by177

performing multiple low-rank updates.178

5.1 Ablation studies179

We conduct ablation studies on all four crucial components of ReLoRA: restarts, jagged schedule,180

optimizer resets, and warm starts, utilizing the 130M-sized model. The results are presented in181

Table 3. In this section, we will focus on and analyze certain combinations of these components.182
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Restarts Jagged Schedule Optimizer Reset Warm Start Perplexity (↓)
× × × × 34.17
✓ × × × 34.25
✓ × ✓ × N/A
✓ ✓ × × 34.29
✓ ✓ ✓ × 29.77
× × × ✓ 25.46
✓ ✓ ✓ ✓ 25.04

Table 3: Ablation studies of ReLoRA. Restarts and warm starts are essential for good performance.
Using restarts and optimizer reset without a jagged schedule causes the model to diverge.

WQ WK WV Wup Wdown
0

200

400

600
Full-rank
Training
ReLoRA
LoRA

Figure 4: Number of singular values < 0.1 in attention and FCN projection matrices.

LoRA ReLoRA, without the aforementioned components, is essentially equivalent to training183

a low-rank network parameterized by LoRA. This approach yields remarkably high perplexity,184

indicating that a simple matrix decomposition has significantly different training dynamics from185

full-rank training.186

Adding restarts and optimizer resets ReLoRA, without a jagged schedule and optimizer reset,187

performs similarly to LoRA because old optimizer states force the newly initialized parameters188

into the same subspace as the prior weights, limiting the model’s capacity. However, doing a naive189

optimizer reset with ReLoRA causes the model to diverge. A jagged schedule helps to stabilize190

training and has a positive impact on the mixture. In our initial experiments, we also observed that a191

combination of partial optimizer reset and jagged scheduler allows for a quicker warm-up, as low as192

50 steps, instead of hundreds of steps required when the optimizer is initialized from scratch.193

Warm start The warm start shows the most significant improvement, dropping perplexity by194

almost 10 points. To investigate whether post-warmup training contributes to the loss, we measured195

the perplexity of the warmed-up network, which equals 27.03. It outperforms all low-rank methods196

except for our final ReLoRA recipe but still demonstrates a significant difference from the final197

network. This demonstrates the importance of early training, similar to the concept of the lottery198

ticket hypothesis with rewinding [18].199

6 Conclusion200

In this paper, we investigated low-rank training techniques for large transformer language models.201

We first examined the limitations of a simple low-rank matrix factorization (LoRA) approach and202

observed that it struggles to effectively train high-performing transformer models. To address this203

issue, we proposed a novel method called ReLoRA, which leverages the rank of sum property to train204

a high-rank network through multiple low-rank updates. Similar to the lottery ticket hypothesis with205

rewinding, ReLoRA employs a full-rank training warm start before transitioning to ReLoRA. Addi-206

tionally, ReLoRA introduces a merge-and-reinit (restart) strategy, a jagged learning rate scheduler,207

and partial optimizer resets, which collectively enhance the efficiency of ReLoRA and bring it closer208

to full-rank training, particularly in large networks. ReLoRA efficiency increases with the network209

size making it a viable candidate for multi-billion-scale training.210
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We firmly believe that the development of low-rank training methods holds great promise for improv-211

ing the efficiency of training large language models and neural networks in general. Furthermore,212

low-rank training has the potential to provide valuable insights for the advancement of deep learning213

theories, aiding our understanding of neural network trainability through gradient descent and their214

exceptional generalization capabilities in the overparametrized regime.215

7 Limitations and Future Work216

Scaling beyond 350M Due to limited computational resources, our experiments were constrained to217

training language models with up to 350M parameters. Nonetheless, ReLoRA already demonstrates218

promising results at this scale. However, we anticipate its true potential will be realized in the 1B+219

parameter region. Additionally, while the 350M model outperforms the Control baseline, it does not220

continue the trend of narrowing the gap between ReLoRA and full-rank training. We attribute this to221

suboptimal hyperparameter choice, which requires further investigation.222

Furthermore, in 60-350M experiments, even though ReLoRA significantly reduces the number of223

trainable parameters, we did not observe substantial improvements in memory and computation224

for the networks of this size. To evaluate the efficiency of our current implementation at a larger225

scale, we trained the 1.3B-parameter model for a small number of iterations to estimate memory and226

compute improvements of ReLoRA. At this scale, we observe 30% memory consumption reduction227

and 52% training throughput increase. We expect to observe even bigger improvements over the228

full-training baseline for larger networks since the number of trainable parameters for ReLoRA,229

similar to LoRA, increases at a much slower rate compared to the number of frozen parameters.230

ReLoRA implementation could be further improved by effectively utilizing gradient checkpointing231

for ReLoRA layers, custom backward functions, and converting frozen model weights to int8 or int4232

quantized format [14].233

Comparison to other low-rank training methods A number of approaches to low-rank training234

have been explored with other model architectures in earlier work [44, 49, 55]. Two aspects set our235

work apart from these earlier efforts. First, the approach we propose performs high-rank updates236

through low-rank training. Second, our work demonstrates competitiveness of the low-rank training237

methods in large-scale transformer language models with 100M+ parameters.238
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