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ABSTRACT

Smoothed particle hydrodynamics (SPH) is a mesh-free Lagrangian method for
obtaining approximate numerical solutions of the equations of fluid dynamics,
which has been widely applied to weakly- and strongly compressible turbulence
in astrophysics and engineering applications. We present a learn-able hierarchy
of parameterized and ”physics-explainable” SPH informed fluid simulators us-
ing both physics based parameters and Neural Networks as universal function
approximators. Our learning algorithm develops a mixed mode approach, mix-
ing forward and reverse mode automatic differentiation with forward and adjoint
based sensitivity analyses to efficiently perform gradient based optimization. We
show that our physics informed learning method is capable of: (a) solving in-
verse problems over the physically interpretable parameter space, as well as over
the space of Neural Network parameters; (b) learning Lagrangian statistics of tur-
bulence; (c) combining Lagrangian trajectory based, probabilistic, and Eulerian
field based loss functions; and (d) extrapolating beyond training sets into more
complex regimes of interest. Furthermore, our hierarchy of models gradually in-
troduces more physical structure, which we show improves interpretability, gener-
alizability (over larger ranges of time scales and Reynolds numbers), preservation
of physical symmetries, and requires less training data.

1 INTRODUCTION

Why turbulence? Why Lagrangian? Understanding turbulent flows is crucial for many engineer-
ing and scientific fields, and remains a great unresolved challenge of classical physics (Frisch, 1995).
Many computational fluid dynamics (CFD) approaches (Harlow, 2004) are being explored in this
direction by approximating the Navier-Stokes (NS) equations which are well established in the field
as explaining the ”ground truth”. One such CFD approach is the mesh-free Smoothed Particle
Hydrodynamics (SPH) method (Gingold & Monaghan, 1977; Monaghan, 1992; 2012), which has
been widely applied to weakly- and strongly compressible turbulence in astrophysics and many
engineering applications (Shadloo et al., 2016). It is one of a very few approaches based on a La-
grangian construction: fluid quantities follow the flow using particles as opposed to the Eulerian
approach which computes flow quantities at fixed locations by using a computational mesh. This
mesh-free, Lagrangian approximation of NS is appealing because it naturally unmasks correlations
at the resolved scale from sweeping by larger scale eddies (Kraichnan, 1964; 1965). Developing
approximation-optimal SPH models, and then simulators, for turbulent flows is an ongoing area of
research (Lind et al., 2020), to which this paper contributes. Specifically, we show how modern
tools of machine learning and applied mathematics, such as deep neural networks (NNs), automatic
differentiation (AD), and sensitivity analysis (SA), can be utilized and developed to design better
SPH models.

Physics Informed Machine Learning: What and Why? Numerical simulators, including classi-
cal CFD simulators, have recently been blended with modern machine learning tools (King et al.,
2018; Schenck & Fox, 2018; Mohan & Gaitonde, 2018; Mohan et al., 2020a; Maulik et al., 2020;
Ummenhofer et al., 2020; Mohan et al., 2020b; Tian et al., 2021) out of which a promising field,
coined Physics Informed Machine Learning (PIML), is emerging (and being re-discovered (Lagaris
et al., 1998)). As set, some eight years ago at the first LANL workshop with this name (CNLS at
LANL, 2016, 2018, 2020), PIML was meant to pivot the mixed community of machine learning
researchers on one hand and scientists and engineers on the other, to discover physical phenom-
ena/models from data. Today, PIML researchers are focused on incorporating known physical struc-
tures (such as conservation laws), physical hypothesis and physical equations (and/or their numerical
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schemes/algorithms) into modern machine learning tools. This development is exciting for physi-
cists, as it integrates centuries of scientific discovery with modern machine learning – boosting new
ideas and resurrecting interesting but forgotten hypotheses from the past. The overall goal of PIML
is two-fold (King et al., 2018): learning new physics from data (experimental or computational) and
improving/developing machine learning algorithms by incorporating ideas from physics (especially
in what concerns explainable, interpretable, and generalizable models).

Our Contribution: PIML for SPH. We develop a learn-able hierarchy of parameterized ”physics-
explainable” SPH based fluid simulators that are trained and analyzed on SPH flow data. We train
these models by mixing automatic differentiation (both forward and reverse mode) with forward and
adjoint based sensitivity analyses. Utilizing these models and methods, we show that adding phys-
ical structure improves interpretability, generalizability, and requires less training data compared to
less informed models (such as Neural ODE). Additionally, we show the principal ability of these
parameterized SPH simulators to solve inverse problems, and be fitted to the ground truth flow data
using a combination of field based and statistical based loss functions. Furthermore, we show that
the learned models are able to reconstruct the Lagrangian statistics of the flow, and can be used to
learn unknown, or missing, functions embedded within the SPH models by using Neural Networks
as function approximators (Hornik, 1989).

Why PIML challenges are of interest to a broader Machine Learning Community? Machine
Learning has made tremendous progress in recent years by developing a plethora of sound practical
methods, algorithms and software which allow one to work with all kinds of data in an application
agnostic way. Today we can solve many challenging fitting and prediction problems of interpolation
type, which were unthinkable even five years ago. However, there are still challenges that remain
– notably one related to extrapolation, and thus generalizability, into regimes where data is not
sufficient, if available at all. One way to approach these challenges is to substitute lack of data with
application-specific modeling – in our case Lagrangian Modeling of Turbulent Flows. The emerging
PIML community this research belongs to is focusing exactly on this. We are making progress,
but also need help from a broader machine learning community on multiple issues, in particular
these highlighted in this paper: How to embed physics-based constrains/symmetries/dependencies
into ML frameworks? How does embedding physics into ML schemes contribute (simplify or
complicate) to roughness of the training landscape? How to balance Bayesian and deterministic
approaches, e.g. selecting loss functions, in the intrinsically stochastic extrapolation problems,
like turbulence? Finally, how to balance physics explanations (by tuning physically meaningful
parameters, e.g. with sensitivity approaches) with predictive capabilities of machine learning (by
training NN parameters, introduced for degrees of freedom which we do not need or do not know
how to interpret)?

Outline. The overall outline of the remainder of the manuscript is a follows. First, in section 2, an
overview of related studies is given that draws connections of this manuscript to the broader field of
PIML. Next, in section 3, and Appendix A, a formulation of SPH is presented, which provides the
basis for our work on learning Lagrangian models of turbulence using parameterized and learn-able
SPH simulators. In section 4 and Appendix B, a detailed description of the learning algorithms,
loss functions, and hierarchy of models are suggested, which provides the necessary tools to learn
parameters of the SPH model. Then, in section 5 and Appendix C, we analyze this hierarchy of
models and address how adding more of the known physical (SPH) structure affects the ability of
the models to generalize to longer times and larger Reynolds numbers (Re). Finally, in section 6,
we draw conclusions on the progress made so far along with providing a discussion of future work.

2 RELATED WORK

Early works of incorporating scientific domain knowledge (in the form of differential equations)
within deep learning algorithms dates back to the 1990s (Lagaris et al., 1998). However, in the
context of modern deep learning, interest in this area has been revived (Raissi et al., 2017; Chen
et al., 2019; Rackauckas et al., 2020; Ladický et al., 2015), due in part to the increased computational
power afforded by parallelism across both CPUs and GPUs, along with notable achievements across
disciplines (such as scientific applications (Zhai et al., 2020), data-compression algorithms (Wang
et al., 2016), computer vision (Serre, 2019), natural language processing (Li Deng, 2018), etc. The
main computational utilities and strategies of physics informed learning includes using physical
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structure, NNs as function approximators (Hornik, 1989), automatic differentiation (Bücker, 2006),
and optimization tools to minimize an objective (loss) function.

There are several approaches that can be taken to develop a PIML algorithm; (1) using soft con-
straints by adding physical structure, or symmetries into the loss function (as was done in (Raissi
et al., 2017) where Neural Networks are used to discover and solve parameterized PDEs from data),
(2) enforce physical constraints directly into the NN architecture (as (Mohan et al., 2020a) enforced
the incompressiblility constraint into a Convolutional NN), (3) utilize NN’s as function approxima-
tors along with physical parameters/structure embedded within differentiable numerical simulators
(as was done in (Chen et al., 2019; Rackauckas et al., 2020; Tian et al., 2021)), (4) mixing differ-
entiable programming with SA along with physical structure and NNs as was done by (Ma et al.,
2021; Chen et al., 2019) (which from a technical perspective is most related to our work). The
broader focus of this work is on (4) as an approach to build parameterized Lagrangian models as
candidates for SPH models of turbulence. However, in this manuscript, we combine these scientific
disciplines to not only provide a tool for approaching the discovery of optimal Lagrangian models
for turbulence, but also to explore the effects of adding physical structure into ML algorithms on
extrapolation and generalizability.

In recent years, there have been several works that have integrated ML and DL techniques for La-
grangian flows. The pioneering work by (Ladický et al., 2015) used SPH related models and regres-
sion forests along with physics informed feature vectors, demonstrating that flow representations can
be learned with data-driven techniques. In (de Anda-Suárez et al., 2018), evolutionary algorithms
are applied for optimization of parameters in SPH flows. Further works began utilizing differentiable
programming techniques, such as in (Schenck & Fox, 2018) for robotic control for pouring applica-
tions and in (Ummenhofer et al., 2020) where a continuous convolutional neural network operation
is developed on unordered particle data for learning and simulating SPH. (Tian et al., 2021) learns
reduced models describing the Lagrangian dynamics of the velocity gradient tensor from Direct Nu-
merical Simulation data. Other works have used experimental data from Particle Image Velocimetry
and NNs to track particles embedding in a flow (Rabault et al., 2017; Lee et al., 2017; Cai et al.,
2019; Stulov & Chertkov, 2021).

3 SMOOTHED PARTICLE HYDRODYNAMICS

One of the most prominent particle-based Lagrangian methods for obtaining approximate numerical
solutions of the equations of fluid dynamics is Smoothed Particle Hydrodynamics (SPH) (Mon-
aghan, 2005). Originally introduced independently by (Lucy, 1977) and (Gingold & Monaghan,
1977) for astrophysical flows, however, over the following decades, SPH has found a much wider
range of applications including computer graphics, free-surface flows, fluid-structure interaction,
bioengineering, compressible flows, galaxies’ formation and collapse, high velocity impacts, ge-
ological flows, magnetohydrodynamics, and turbulence (Lind et al., 2020; Shadloo et al., 2016).
Below, we give a brief formulation of SPH and in subsection 4.1 we hard code SPH structure into a
hierarchy of ”physics-explainable” models.

3.1 APPROXIMATION OF EQUATIONS OF MOTION

Essentially, SPH is a discrete approximation to a continuous flow field by using a series of discrete
particles as interpolation points (using an integral interpolation with smoothing kernel W ). Using
the SPH formalism (see Appendix A for more details), the partial differential equations (PDEs) of
fluid dynamics can be approximated by a system of ordinary differential equations (ODEs) for each
particle (indexed by i)

dri

dt
= vi,

dvi

dt
= −

N∑
j 6=i

mj

(
Pj

ρ2j
+
Pi

ρ2i
+ Πij

)
∇iWij + fext, ∀i ∈ {1, 2, ...N}. (1)

See Appendix A for a more detailed derivation, as well as description of how particle density ρi and
pressure Pi are computed as in Monaghan (2012). In this manuscript, deterministic and stochastic
external forcing fext was explored (see Appendix A for more details), which provides the energy
injection mechanism. We also utilize the popular formulation of an artificial viscosity Πij , which
approximates in aggregate contributions from the bulk and shear viscosity (α), a Nueman-Richtmyer
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viscosity for handling shocks (β) Monaghan (2012); Morris et al. (1997), as well as the effective,
eddy viscosity effect of turbulent advection from the under-resolved scales, i.e. scales smaller than
the mean-particle distance.

3.2 EXAMPLE FLOW: TRAINING SET

Fig. (1) shows consecutive snapshots of an exemplary multi-particle SPH flow in three dimensional
space, where the coloration is added for visualization purposes. We use a standard set of parame-
ters for weakly-compressible flows (see Cossins (2010)) α = 1.0 (bulk-shear viscosity), β = 2α
(Nueman-Richtmyer viscosity) , cs = 10 (speed of sound), γ = 7.0 with energy injection rate
θ = 0.5, and deterministic external forcing,(Appendix A). The inverse problem we pose consists in,
given a sequence of snapshots, to reconstruct as best as we can the underlying (SPH) model used to
generate the data.

(a) t0 (b) t1 (c) t2 (d) t3

Figure 1: SPH particles advancing in time used in training data, where coloration is added for
visualization purposes and ti+1 − ti ≈ 100∆t.

4 MIXED MODE PHYSICS INFORMED MACHINE LEARNING METHODS

This section gives a brief overview of our mixed mode physics informed learning algorithm (a first
order gradient based optimization approach). This includes the hierarchy of parameterized SPH
informed models, methods for computing the gradients, and formulating the loss functions. These
methods are implemented using the open source software Julia (Bezanson et al., 2017), which is
a fast and flexible dynamic language, appropriate for high performance scientific and numerical
computing, along with a wide range of data science and machine learning packages such as Flux.jl
(Innes et al., 2018), and AD packages Zygote.jl (Innes, 2018), ForwardDiff.jl (Revels et al., 2016).
For a more detailed treatment on our learning algorithms (including derivations), and loss functions
see Appendix B.

4.1 HIERARCHY OF MODELS

In this work, we hard code SPH structure into a hierarchy of parameterized models that includes
physics based and Neural Network based parameters. Multilayer Perceptrons (MLPs) are used as a
universal function approximators (Hornik, 1989) embedded within an ODE structure describing the
Lagrangian flows. It was found through hyper-parameter tuning that 2 hidden layers were sufficient
for each model using a NN.

• NODE: In this least informed model that we explore, the entire acceleration term, that is the entire
right hand side of Eq. (1) with the exception of fext, is approximated by an MLP, which is most
related to the work done by (Chen et al., 2019). We make an additional modification by considering
the interaction of particles to be within a local cloud (using the cell linked list algorithm (Domı́nguez
et al., 2011)). Note here that no pairwise interaction between particles is assumed. We assume that
velocities, vi(t), and coordinates, ri(t), of N particles evolve in time according to

dri

dt
= vi,

dvi

dt
= NNθ

(
ri − rj ,vi − vj

∣∣∀j : |ri − rj | ≤ 2h
)

+ fext ∀i = 1, · · · , N (2)

where NNθ : R2dm → Rl → Rl → Rd (d = 2, 3 is the space dimension, m is the fixed number
of particles that are closest to the i-th particle in each cloud, and l is the height, or number of
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nodes, of the hidden layer). Although this NN is approximating a function which is interpretable
(acceleration), the individual parameters of theNN are not.

• NN summand: To include more of the physical structure, represented via a sum over the i-th
particle neighborhood in Eq. (1) (which is embedded in generating the ”synthetic” ground truth
data), we approximate the summand term from SPH using a NN. Now a pairwise interaction between
particles is assumed. Here, Eq. (1) is modeled by the Lagrangian based ODE

dri

dt
= vi,

dvi

dt
=

N∑
j

NNθ (ri − rj ,vi − vj) + fext ∀i = 1, · · · , N (3)

where NNθ : R2d → Rl → Rl → Rd.

• Rotationally Invariant NN: In this formulation, built on the top of the NN summand, we use a
neural network of the form NNθ : R4 → Rl → Rl → R to approximate the pair-wise part of the
acceleration term in Eq. (1), where the rotational invariance is hard coded by construction (about a
simple rotationally invariant basis expansion using the difference vector (ri − rj)), as follows

dri

dt
= vi,

dvi

dt
=

N∑
j

NNθ

(
Pi

ρ2i
,
Pj

ρ2j
, (ri − rj) · (vi − vj), ||ri − rj ||2

)
(ri − rj) + fext (4)

• ∇P - NN: Next, we push the neural network deeper within the summand term and now explicitly
include the Π-, i.e. artificial viscosity term, and use a NN to approximate the pressure contribution
(i.e ∇P - term in SPH Eq. (1), see Appendix A for more details):

dri

dt
= vi,

dvi

dt
=

N∑
j

(NNθ (ri − rj) + Πij)∇Wij + fext ∀i = 1, · · · , N (5)

where NNθ : Rd → Rl → Rl → R.

• EoS NN: Embedding a NN within an SPH simulator for learning the interpretable equation of
state from flow data using a neural network (Pnnθ) for approximating P (ρ) in Eq. (1):

dri

dt
= vi,

dvi

dt
=
∑
j

(
Pnnθ(ρi)

ρ2i
+
Pnnθ(ρj)

ρ2j
+ Πij

)
∇Wij + fext ∀i = 1, · · · , N (6)

where Pnnθ(ρ) : R→ Rl → Rl → R.

• Fully Physics Informed: In this formulation, the entire physical structure, that is known to gen-
erate the ground truth, is used, and the physically interpretable parameters α, β, γ, c are learned

dri

dt
= vi,

dvi

dt
=
∑
j

(
Pi(c, γ)

ρ2i
+
Pj(c, γ)

ρ2j
+ Πij(c, α, β)

)
∇Wij + fext ∀i = 1, · · · , N.

(7)

We note that as more of the physical structure is added into the learning algorithm, the learned mod-
els have more interpretability; the learned parameters are associated with actual physical quantities.

4.2 MIXING SENSITIVITY ANALYSIS AND AUTOMATIC DIFFERENTIATION

Sensitivity analysis (SA) is a classical technique found in many applications, such as gradient-
based optimization, optimal control, parameter identification, model diagnostics, (see (Donello et al.,
2020) and many historical references there in), which was also utilized recently to learn neural net-
work parameters within ODEs (Chen et al., 2019; Rackauckas et al., 2020; Ma et al., 2021). In the
context of this work, we use SA to compute gradients of our hierarchy of parameterized models. We
mix SA with Automatic Differentiation (AD) (see (Ma et al., 2021; Bücker, 2006) and references
there in): forward mode and reverse mode AD is applied to derivatives within the SA algorithm,
where the method is chosen based on efficiency (depending on the dimension of the input and out-
put space of the function being differentiated). The losses used in this work are defined in Eq. (4.4),
but in general, we consider loss functions of the form, L(X,θ) =

∫ tf
0

Ψ(X,θ, t)dt, where X and
θ are, respectively, the vector of the combined vector of the particles’ coordinates and velocities and
the vector of parameters introduced in the next subsection.
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4.2.1 FORWARD AND ADJOINT BASED METHODS

Let us, first, introduce some useful common notations for our SPH informed models, Xi =
(ri, vi)

T , X = {Xi|i = 1, ...N}, where, ri = (xi, yi, zi), and, vi = (ui, vi, wi), are the
position and velocity of particle i respectively. Also, θ = [θ1, ..., θp]T where p is the number of
model parameters. Now, the SPH discretizations defined in Eq. (1) can be stated in the ODE form

∀i : dXi/dt = F i(X(t,θ),θ) = (vi, Fi(X,θ))T (8)

where Fi is the right hand side of Eq. (1). Forward and Adjoint based Sensitivity Analyses (FSA,
ASA), analogous to forward and reverse mode AD respectively, are used to compute the gradient of
the loss function (see Section 4.4), ∂θL(X,θ) =

∫ tf
0
∂XΨ(X,θ, t)dθX(θ, t) + ∂θΨ(X,θ, t)dt,

(for derivations of FSA and ASA see Appendix B). FSA computes the sensitivities, Sαi = dXi/dθ
α,

by simultaneously integrating a system of ODEs:

∀i, ∀α = 1, · · · , p : dSαi /dt = (∂F i(X(t),θ)/∂Xi)S
α
i + ∂F i(X(t),θ)/∂θα, (9)

which is known to be more efficient when the number of parameters, p, is not very large, p .
O(100). Once Sαi is known, the gradient is computed directly from the formula for ∂θL as above.
The ASA avoids needing to compute dθX by instead numerically solving a system of equations
for the adjoint equation backwards in time, according to subsubsection B.0.2. Once λ is found,
the gradient of the loss function is found according to, ∂θL = −

∫ tf
0

∑
i λi(∂Fi/∂θ)dt. It is well

known that the ASA is more efficient when p & O(100) (see (Ma et al., 2021)), because solving the
adjoint equation is independent of p but requires more memory to store forward the solution then to
integrate λT backwards in time.

4.3 MIXED MODE AD

In both FSA and ASA described above, the gradient of F i with respect to the parameters,
∂F i(X(τ),θ)/∂θ, and the Jacobian matrix, {∂F i(X(τ),θ)/∂Xj |∀i, j}, need to be computed.
In this manuscript, we accomplish this with a mixed mode approach, i.e. mixing forward and re-
verse mode AD, where the choice is based on efficiency. Depending on the model used, many of
the functions to be differentiated have varying input and output dimensions. For example, when
computing ∂F i(X(τ),θ)/∂θα, with AD where, F i(θ) : Rp → R2d, if p >> 2d, then reverse
mode AD is more efficient than forward mode (Bücker, 2006).

4.4 LOSS FUNCTIONS

In this section, we construct three different loss functions: trajectory based (Lagrangian), field based
Eulerian, and Lagrangian statistics based, described in the following three subsections. Since our
overall goal involves learning SPH models for turbulence applications, it is the underlying statistical
features and large scale field structures we want our models to learn and generalize with. This is
discussed further in section 5, where we compare the hierarchy of models that was constructed in
subsection 4.1.

4.4.1 TRAJECTORY BASED LOSS FUNCTION

A simple loss function to consider is the Mean Squared Error (MSE) of the difference in the La-
grangian particles positions and velocities, as they evolve in time, Ltr(θ) = MSE(X, X̂(θ)) =

‖X − X̂(θ)‖2/N , where X and X̂ are the particle states – the ground truth and the predicted,
respectively. Minimizing this loss function will result in discovering optimal parameters such that
the predicted trajectories gives the best possible match (within the model) for each of the particles.
Notice that this ”perfect” matching of the multi-particle state is not really appropriate for tracking
temporal correlations in turbulence on the time scales longer than the turn-over time of the resolved
eddy (estimated, roughly, as the time needed for a pair of initially neighboring particles to separate
on a distance comparable to their initial separation). This is due to the fact that turbulence is intrin-
sically chaotic, therefore resulting in a strong sensitivity of the state (Lagrangian particle positions
and velocities) on its initial conditions. Therefore, we expect the trajectory based loss method to
over-fit when the observation (tracking) time is sufficiently long.
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4.4.2 FIELD BASED LOSS FUNCTION

The field based loss function tries to minimize the difference between the large scale structures
found in the Eulerian velocity fields, Lf (θ) = MSE(V f , V̂ f ) = ‖V f − V̂ f‖2/Nf , where V f

i =∑Nf

j=1(mj/ρj)vjWij(||rfi −rj ||, h) uses the same SPH smoothing approximation to interpolate the
particle velocity onto a predefined mesh rf (with Nf grid points). Let us remind that SPH is, by
itself, an approximation for the velocity field, therefore providing a strong additional motivation for
using the field based loss function.

4.4.3 LAGRANGIAN STATISTICS BASED LOSS FUNCTION

In order to approach the statistical nature of turbulent flows, one can use well established statis-
tical tools/objects, such as single particle statistics. In this direction, consider the time integrated
Kullback–Leibler divergence (KL) as a loss function

Lkl(θ) =

∫ tf

t=0

∫ ∞
−∞

Ggt(t, zgt(t),x) log

(
Ggt(t, zgt(t),x)

Gpred(t, zpr(θ, t),x)

)
dxdt,

where zgt(t), and zpr(θ, t) represent single particle statistical objects over time of the ground
truth and predicted data, respectively. For example, we can use the velocity increment, zi(t) =
(δui, δvi, δwi), where δui(t) = ui(t) − ui(0) and z ranges over all particles. Here G(t, z(t), x)
is a continuous probability distribution (in x) constructed from data z(t) using Kernel Density Es-
timation (KDE), to obtain smooth and differentiable distributions from data, as discussed in (Chen,
2017)), that isG(τ,z,x) = (Nh)−1

∑N
i=1K ((zi − x)/h) ,whereK is the smoothing kernel (cho-

sen to be the normalized Gaussian in this work). (See Appendix B.1 for details.) In 3D experiments
(discussed in the next section), we use Lkl + Lf as a combination of statistical and field based
loss functions, with the expectation that the gradient descent (in the process of training) will drive
different parameters, responsible for large and small structures, to their optimal values in unison.

5 RESULTS: EVALUATING AND TESTING THE HIERARCHY OF MODELS

In this section, we show the ability of the parameterized SPH simulators to; solve inverse problems,
fit underlying flow data using a combination of field based and statistical based loss functions, learn
unknown functions embedded within SPH based models, generalize to flows not seen in training and
compare their ability to conserve linear and angular momentum. In subsection 5.1 we illustrate the
ability of different models in the hierarchy to learn the parameters to approximate the (underlying)
distribution of velocity increments. Then, in section 5.2 we focus on comparing the generalizability
of different models in the hierarchy. We show that the more physical structure is hard-coded into
the model, the better is the generalizability ( i.e. extrapolation over larger time scales and Reynolds
numbers) and the better it conserves linear and angular momentum (preserves transnational and
rotational symmetries respectively). We also notice that another important advantage of the physics
informed models is that they require less training data (as seen in Figure 9).

5.1 SOLVING INVERSE PROBLEMS

Each parameterized SPH model within the hierarchy (see subsection 4.1) is trained under equivalent
conditions: (a) on the same SPH samples (see subsection 3.2) of fixed temporal duration (which we
choose to be equal to the time scale required for a pair of neighboring particles to separate by the
distance which is in average factor O(1) larger than the pair’s initial separation and henceforth de-
noted tλ); (b) with the same loss function; and (c) with a deterministic forcing fext (subsection A.3)
with constant rate of energy injection.

In Figure 2 and Figure 6, we see that the physics informed parameterized SPH simulator is learn-
able; the physical parameters α, β, c, γ are learned over the physically interpretable parameter space.
Figure 3 illustrates the ability of the method applied to the EoSNN model to learn (approximate)
physically interpretable functions (P (ρ)) using NNs embedded within an SPH model. Figure 4
shows that each model is capable of learning the parameters so that the underlying velocity increment
distribution (a single particle Lagrangian statistic) is approximated, i.e learning Lagrangian statistics.
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These figures, show that over a mixture of loss functions (subsection 4.4), applying the methods
described in subsubsection 4.2.1, the SPH informed models (subsection 4.1) are learn-able.

Figure 2: Solving an inverse problem for the fully physics informed model on 3D SPH flow with
deterministic external forcing on 4096 particles over 4 SPH parameters. The solid lines show the
SPH model parameters (initially chosen to be uniformly distributed about (0,1)) converging to the
dashed lines representing the ground truth parameters. Here the field based loss function (see sub-
section 4.4) is used and is converging up to the order of machine precision (as Float64 and the MSE
of field difference was used). See Figure 6, and Figure 7 for similar results.

Figure 3: Using a Neural Network to approximate the equation of state (see subsection 4.1) using
the field based loss function. We see that P (ρ) is well approximated, where Pgt is the ground truth
EoS and Pnn is the neural network approximation. We note that the underlying ground truth data
has density variations within 1% of mean density, so the NN sufficiently approximates the EoS over
a larger domain of densities as seen in training (see Figure 8 for another example).

Figure 4: The velocity increment distribution (in u, i.eGδu) learned over each model in the hierarchy
subsection 4.1. The dashed crossed green line is the predicted velocity increment distribution at the
specific iteration Ĝθ, and the solid purple line is the ground truth velocity increment distribution.
Each model is learned using the Lkl + Lf loss and the FSA method. From left (NODE) to right
(Fully informed PhysInf ), more physical structure is added. See Figure 5 for further comparisons
of these learned models

5.2 GENERALIZABILITY (EXTRAPOLATION CAPABILITY)

When the training is complete (i.e. when the loss function reaches its minimum) we validate ex-
trapolation capability of the models on test data sets which are longer in duration or derived from
the setting corresponding to stronger turbulence (which we control by increasing intensity of the
injection term, fext, while keeping the integral, i.e. energy injection scale, constant).

8
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(a) t Generalizability (b) Re Generalizability (c) Rotational error (d) Translational error

Figure 5: (a) Box plot using 15 different generalization errors over physically relevant time scales
ranging from the shortest, tλ (which is the time it takes for a pair of initially neighboring particles
to double their relative separation), up to the longest, teddy (which is the time it takes for the largest
eddy of the flow to make a complete revolution). (b) Box plot over 5 different generalization errors
over different Reynolds numbers, ranging in values up to 3 times larger than training data where the
time scale is fixed at tλ. (c) Error in rotational and (d) translational symmetries in the learned models
(i.e measuring conservation of angular and linear momentum of learned models respectively).

We observe in Figure 5, showing results for trained models using Lf +Lkl, that the richer (physical)
structure added to the model is, the lower the generalization error becomes when we extrapolate to
flows with larger Re numbers (and over different time scales). Further experiments were conducted
on two dimensional flows (see Figure 10, shown in the Appendix; here, we observe similar trends
in generalization). Furthermore, Figure 5 shows that as more physical structure is added to the
model, the error in rotational and translational invariance decreases (and therefore conservation of
angular and linear momentum is preserved, even though it was not enforced directly). Finally, we
see additional qualitative generalizability results in Figure 9 (shown in the Appendix) which allows
us to conclude that data (samples of particle trajectories) of much shorter (temporal) duration are
required to train models which are more physics informed (where a short time duration, tλ, is used in
training, and we see the converged models extrapolating to longer time scales not seen in training).
Figure 9 also shows, qualitatively, that the large scales structures of the flows are well preserved as
we extrapolate for longer times than used in training.

6 CONCLUSIONS

Combining modern tools in CFD, machine learning, deep learning, automatic differentiation, and
classical sensitivity analysis, we have developed a learn-able hierarchy of parameterized ”physics-
explainable” Lagrangian fluid simulators and showed that adding physical structure improves inter-
pretability, generalizability (over different time scales and Re numbers), and requires less training
data compared to less informed models (such as Neural ODE). Additionally, we see that as more of
the physical structure is hard codded into the SPH based models, the better is its ability to conserve
linear and angular momentum (translational and rotational symmetries respectively) which is known
to be the case with the underlying ground truth flow.

Furthermore, these parameterized SPH simulators can be used to solve inverse problems (in the
physically interpretable parameter space as well as in the NN parameter space), fit underlying flow
data using a combination of field based and statistical based loss functions, and be used to learn
unknown functions embedded within SPH based models. We showed that each model is capable
of learning the parameters so that the underlying velocity increment distribution (a single particle
Lagrangian statistics) is approximated.

In the future, we plan to improve beyond what is accomplished in this manuscript, that is to solve
efficiently inverse Lagrangian problems with SPH. Specifically, we aim to build Reduced-Order La-
grangian Models of Turbulence based on the SPH approach which provide the best fit to turbulence
data coming from more realistic simulations and/or experiments. It is of a special interest to push the
PIML based Lagrangian SPH approach towards discovering reduced turbulence models which will
extrapolate into difficult regimes, e.g. corresponding to regimes of high Re number and stronger
degree of compressibility, where the data are limited.

9
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7 REPRODUCIBILITY STATEMENT

Supplementary material is provided that includes the Julia source code of our parameterized SPH
simulators, the gradient based learning algorithm, and sensitivities for each model in our hierarchy.
The general steps to take in order to reproduce these results are as follows: generate SPH ground
truth flows using the parameters described in section 3 (or use the data-sets provided), then use this
data for learning the hierarchy of models found in the main.jl file (under the 3d-phys-semi-inf direc-
tory) which requires a selection of the model, loss function, sensitivity method, number of iterations,
and height (where height is found through tuning to have a value of 5, other than for the EoS model
which performs better with a height greater than 8. Note, with these heights, most of the models
containing NNs have a total number of parameters on the order p ∼ O(100); in this case FSA is
usually fastest (ASA is slightly faster for the NODE model, as it involves more parameters than other
models due to non-pairwise interaction of particles). However, for consistency, we have selected the
FSA method when comparing all models with this relatively small number of parameters. The saved
models are provided in the output data files which are used in post-processing. Furthermore, in the
final version of this manuscript a link to the github repository will be included.
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A APPENDIX: SPH (IN MORE DETAILS)

A.1 BASIC FORMULATION

Essentially, SPH is a discrete approximation to a continuous flow field by using a series of discrete
particles. Lets first start with the identity

A(r) =

∫
V

A(r′)δ(r− r′)dr′, (10)

where A is any scalar or tensor field. Using the smoothing kernel W (for interpolation onto smooth
”blobs” of fluid) and after a Taylor expansion it can be shown (according to symmetry of smoothing
kernel Cossins (2010)) that

A(r) =

∫
V

A(r′)W (|r− r′|, h)dr′ +O(h2). (11)

where W is constrained to behave similar to the delta function,∫
V

W (r, h)dr = 1, lim
h→0

W (r, h) = δ(r).

The choice of smoothing kernels is important, and effects the consistency and accuracy of results
Monaghan (2005), where bell-shaped, symmetric, monotonic kernels are the most popular Fulk &
Quinn (1996), however there is still disagreement on the best smoothing kernels to use. Commonly
used are the B-spline smoothing kernels with a finite support (approximating a Gaussian kernel).
The cubic smoothing kernel is used in this work has the following form:

w(q) = σ


1
4 (2− q)3 − (1− q)3 0 ≤ q < 1
1
4 (2− q)3 1 ≤ q ≤ 2

0 2 ≤ q
(12)
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where, W (|r − rj |, h) = h−dw(q) with q = |r − rj |/h, and σ = σ(d) =
[1/π if d = 3, 10/7π if d = 2] is a normalizing constant to satisfy the integral constraint on W
(see Cossins (2010); Fulk & Quinn (1996); Monaghan (2012) for more details). The finite support
allows one to use neighborhood list algorithms discussed below to utilize computational advantages
(only requires a local cloud of interacting particles instead of all the particles in the computational
domain that would be required with a Gaussian kernel).

SPH can be formulated through approximating integral interpolants of any scalar or tensor field A
by a series of discrete particles

〈A(r)〉 =

∫
V

A(r′)W (|r− r′|, h)dr′ ≈
∑
i

mi
A(ri)

ρ(ri)
W (|r− ri|, h), (13)

(i.e a convolution of A with W ) where dr′ denotes a volume element and W (q, h) is the smoothing
kernel. Each particle represents a continuous ”blob” of fluid and carries the fluid quantities in the
Lagrangian frame (such as pressure Pi, density ρi, velocity vi, etc.)

The convenience of this method becomes apparent when the differential operators are approximated,
i.e.

∇r 〈A(r)〉 =
∂

∂r

∫
V

A(r′)W (||r− r′||2, h)dr′ ≈
∑
i

mi
A(ri)

ρ(ri)
∇rW (||r− ri||2, h)), (14)

where we see that in this direct approach to approximate the gradient operator we only need to know
the gradient of the smoothing kernel (which is usually fixed beforehand). Multiple methods have
been proposed and different methods are best suited for different problems. Similar approximations
hold for taking the divergence or curl of a vector field Gingold & Monaghan (1977). The most
common approximation of the gradient operator is derived from the following identity,

∇rA(ri) = ρ

(
A(ri)

ρ2
∇rρ−∇r

(
A(ri)

ρ

))
, (15)

and is approximated with particles as

∇rAi ≈ ρi
N∑
j

mj

(
Aj

ρ2j
−
Ai

ρ2i

)
∇riWij . (16)

A.2 APPROXIMATION OF FLOW EQUATIONS

The above integral interpolant approximations using series of particles can be used to discretize the
equations of motion (as seen in Eq. (1) with more details found in Gingold & Monaghan (1977);
Monaghan (2012). Each particle carries a mass mi and velocity vi, and other properties (such as
pressure, density etc.). We can use Eq. (13) to estimate the density everywhere by

ρ(ri) =
∑
j

mjW (|ri − rj |, h), (17)

where although the summation is over all particles, because the smoothing kernel has compact sup-
port the summation only needs to occur over the smoothing radius (here 2h as seen in Eq. (12).
Another popular way to approximate the density is through using the continuity equation and ap-
proximating the divergence of the velocity field in different ways Monaghan (1992). In what follows
we use the notation Ai = A(ri). Using the gradient approximation defined above (Eq. (16), the
pressure gradient could be estimated by using

ρi∇rPi =
∑
j

mj(Pj − Pi)∇riWij ,

where Wij = W (|ri−rj |, h). However, in this form the momentum equation dtv = − 1
ρ∇rP does

not conserve linear and angular momentum Monaghan (1992). To improve this, a symmetrization is

14
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often done to the pressure gradient term by rewriting ∇rP
ρ = ∂r

(
P
ρ

)
+ P

ρ2∇rρ. This results in a
momentum equation for particle i discretized as

dvi

dt
= −

∑
j

mi

(
Pj

ρ2j
+
Pi

ρ2i

)
∇riWij ,

which produces a symmetric central force between pairs of particles and as a result linear and angular
momentum are conserved Monaghan (1992). Next, including an artificial viscosity term and external
forcing, the full set of ODEs approximating PDEs governing fluid motion is

dri

dt
= vi ∀i ∈ {1, 2, ...N} (18)

dvi

dt
= −

N∑
j 6=i

mj

(
Pj

ρ2j
+
Pi

ρ2i
+ Πij

)
∇riWij + fext ∀i ∈ {1, 2, ...N}. (19)

In this work, we start by using the weakly compressible formulation by assuming a barotropic fluid,
where equation of state (EoS) is given by

P (ρ) =
c2sρ0
γ

[(
ρ

ρ0

)γ
− 1

]
, (20)

as in Monaghan (2012), where ρ0 is the initial reference density, and γ = 7 is used. In future
work, we plan on including the energy equation to extend these methods for highly compressible
applications.

There are many different forms of artificial viscosity that have been proposed Monaghan (1997).
In this work, we use the popular formulation of Πij that approximates the contribution from the
bulk and shear viscosity along with an approximation of Nueman-Richtmyer viscosity for handling
shocks Monaghan (2012); Morris et al. (1997):

Πij =


− αcµij + βµ2

ij

ρij
, vij · rij < 0

0, otherwise
, (21)

where c represents the speed of sound and

µij =
hvij · rij
|rij |2 + εh2

, ρij = 0.5(ρi + ρj),

This artificial viscosity term was constructed in the standard way following Monaghan (1997); Mon-
aghan & Gingold (1983): The linear term involving the speed of sound was based on the viscosity of
an ideal gas. This term scales linearly with the velocity divergence, is negative to enforce Πij > 0,
and should be present only for convergent flows (vij · rij < 0). The quadratic term including
(vij · rij)2 is used to prevent penetration in high Mach number collisions by producing an artifi-
cial pressure roughly proportional to ρ|v|2 and approximates the von Neumann-Richtmyer viscosity
(and should also only be present for convergent flows). There are several advantages to this formu-
lation of Πij ; mainly it is Galilean and rotationally invariant, thus conserves total linear and angular
momentum. A more detailed derivation is found in Cossins (2010) (along with other formulations
of artificial viscosities).

In practice the summation Eq. (1) over all particles is carried out through a neighborhood list
algorithm (such as the cell linked list algorithm with a computational cost that scales as O(N)
Domı́nguez et al. (2011)). We also note that Eq. (1) can also be derived from Euler-Lagrange equa-
tions after defining a Lagrangian, see Cossins (2010) (for respective analysis of the inviscid case,
when the artificial viscosity term is neglected), then an artificial viscosity Πij term can be incorpo-
rated from using SPH discretizations, see Monaghan (2005) for details.
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A.3 EXTERNAL FORCING

In order to approach a stationary homogeneous and isotropic turbulent flow, we use a combination
of external forcing, both stochastic and deterministic. We first use a stochastic external forcing
acting on large scales which forces 10 modes that are close to the origin in Fourier space. Formally,

fext =

(
fxext
fyext

)
, fxext[i] = −

∑10
k=1 cos(fxk xi + fyk yi + 2πζ(t, k))f̃kf

y
k ,

fyext[i] =
∑10
k=1 cos(fxk xi + fyk yi + 2πζ(t, k))f̃kf

x
k , f̃k = 0.25

(
2.5−

√
(fxk )2 + (fyk )2

1.5

)2

,

where (fxk , f
y
k ) are the frequency components that lie near to the origin (in frequency space), and

ζ(t, k) is a stochastic white noise term.

Once the flow achieves stationarity, a deterministic forcing is used (for simplifying the learning
algorithms described in the next section), which is commonly used in CFD literature, e.g. (Petersen
& Livescu, 2010) for analyzing stationary homogeneous and isotropic turbulence. Then,

fext[i] =
θ

ke
(vi − v̄), ke =

0.5

N

N∑
k=1

(u2k + v2k)

is the kinetic energy computed at each time step, θ represents the rate of energy injected into the
flow and v̄ is the mean velocity for each component. θ is a fixed quantity which is set before hand,
and the flow is integrated until stationarity is reached.

A.4 NUMERICAL ALGORITHM FOR FORWARD SOLVING SPH
We use a symplectic integrator for generating the ”synthetic” ground truth data, and for making
prediction steps required in our gradient based optimization described in Eq. (4. We apply the Verlet
integration scheme (leap-frog) to solve the Initial Value Problem. Using the notation,

X = {(ri, vi)|∀i ∈ {1, ..., N}}, ρ = {ρi|∀i ∈ {1, ..., N}},
dri

dt
= vi,

dvi

dt
= F i(ρ,X),

we proceed according to the following algorithm
1: Compute ρk using Eq. (13),
2: Compute F ki (ρk,Xk) using Eq. (1),

3: v
k+ 1

2
i = vki +

∆t

2
F ki ,

4: rk+1
i = rki + ∆tv

k+ 1
2

i ,
5: Compute ρk+1 using Eq. (13),
6: Compute F k+

1
2

i (ρk+1,Xk+ 1
2 ) using Eq. (1),

7: vk+1
i = v

k+ 1
2

i +
∆t

2
F
k+ 1

2
i ,

repeated for each time step, k ∈ {0,∆t, ..., T}, where the time step, ∆t, is chosen according to the
Courant-Friedrichs-Lewy (CFL) condition, ∆t ≤ 0.4h/c. This algorithm has the following physical
interpretation: it prevents spatial information transfer through the code at a rate greater than the local
speed of sound (small in the almost incompressible case considered in this manuscript).

B APPENDIX: METHODS

B.0.1 FORWARD SENSITIVITY ANALYSIS

In general, the loss functions in this work can be defined as

L(X,θ) =

∫ tf

0

Ψ(X,θ, t)dt. (22)
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The forward SA (FSA) approach simultaneously integrates the state variables along with their sen-
sitivities (with respect to parameters) forward in time to compute the gradient of L;

dθL(X,θ) =

∫ tf

0

∂XΨ(X,θ, t)dθX(θ, t) + ∂θΨ(X,θ, t)dt. (23)

Where, through using the chain rule, we see that the sensitivities of the state variables with respect
to the model parameters (dθX) are required to compute the gradient of the loss. Assuming that
the initial conditions of the state variables do not depend on the parameters, then ∂X(0)/∂θα = 0.
Now, define the sensitivities as Sαi := dXi/dθ

α. Then, from Eq. (8) we derive

dSαi
dt

=
dF i(X(t),θ)

dθα
, (24)

then resulting, after applying the chain rule, in

dSαi
dt

=
∂F i(X(t),θ)

∂Xi
Sαi +

∂F i(X(t),θ)

∂θα
. (25)

Since the initial condition X(0) does not depend on θ, then Sαi (0) = 0. Now, computing the
gradient of the loss function reduces to solving a forward in time Initial Value Problem (IVP) by
integrating simultaneously the state variables Xi defined in the main text, and sensitivities Sαi ,
defined in Eq. (25). However, this means that the computational cost of the FSA method scales
with O(Nk), where k is the number of parameters, which can be large when using NN’s. With Sαi
known, the parameters can then be learned (estimated) through an iterative first order gradient based
approach (such as by updating θ using adaptive moment estimation (Adam) (Kingma & Ba, 2017))
where the gradient is computed in Eq. (23).

In order to integrate Eq. (25) the gradient of F i with respect to the parameters, both
∂F i(X(τ),θ)/∂θα and the Jacobian matrix, {∂F i(X(τ),θ)/∂xj |∀i, j} need to be computed. In
this work, this is done with a mixed mode approach. ∂F i(X(τ),θ)/∂θα, with F i(θ) : Rk → R2d,
is computed with AD (the choice of forward or reverse mode is determined by the dimension of the
input and output space), where k is the number of parameters and d is the dimension. For example, if
k � 2d (as is the case when NNs are used), reverse mode AD is more efficient than forward mode
(Ma et al., 2021). The Jacobian matrix is computed and obtained through mixing symbolic differ-
entiation packages (or analytically deriving by hand), as well as mixing AD. For example, when
there are NNs used for the parameterization of the right hand side, then according to expression for
the Jacobian from the main text, AD derivatives will need to be computed on different functions
each with potentially different dimensions of input and output space. With F i(X) : R2d → R2d,
forward mode AD is more efficient. As seen in the subsection 4.1, some of the models we train
require neighborhood search list algorithms, which in this case AD is only applied to derivative
within the Jacobian, especially whenever summation over particles is done. Thus, a mixed mode
approach is taken by combining both forward and reverse mode (depending on dimensions) to im-
prove the efficiency over just applying one or the other. The AD packages used in this work were
both ForwardDiff.jl (Revels et al., 2016) for forward mode and Zygote.jl (Innes, 2018) for reverse
mode.

∂Fi(X(t),θ)

∂Xi
=

 [0]2 I2
∂Fi(X(t),θ)

∂Xi

 =


[0]2 I2

∂F xi
∂x1i

∂F xi
∂x2i

∂F xi
∂x3i

∂F xi
∂x4i

∂F yi
∂x1i

∂F yi
∂x2i

∂F yi
∂x3i

∂F yi
∂x4i


. (26)

B.0.2 ADJOINT METHOD

This section provides an outline of the Adjoint SA (ASA) method used in this work (and can be
found in (Bradley, 2019) (Donello et al., 2020)). Again, the goal is to compute the gradient of the
loss function. This is a continuous time dependent formulation, where the goal is to minimize a

17



Under review as a conference paper at ICLR 2022

loss function L(X(θ, t),θ) which is integrated over time, L(X,θ) =
∫ tf
0

Ψ(X,θ, t)dt, subject to
the physical structure constraints (ODE or PDE), H(X, Ẋ,θ, t) = 0, and the dependence of the
initial condition, g(X(0),θ) = 0, on parameters. Here, H is the explicit ODE in the standard form
obtained through the SPH discretization of the PDE flow equations Eq. (8),

H(X, Ẋ,θ, t) = Ẋ(t)−F(X(t),θ). (27)

A gradient based optimization algorithm requires that the gradient of the loss function,

dθL(X,θ) =

∫ tf

0

∂XΨ(X,θ, t)dθX(θ, t) + ∂θΨ(X,θ, t)dt,

be computed. The main difference in the FSA and ASA approach is that in the ASA calculating
dθX is not required (which avoids integrating the additional k ODEs as in FSA). Instead, the adjoint
method develops a second ODE (size of which is independent of k) in the adjoint variable λ as a
function of time (which is then integrated backwards in time).

The following provides a Lagrange multiplier approach to deriving this ODE in λ. First define

L =

∫ tf

0

(Ψ(X,θ, t) + λT (t)H(X, Ẋ,θ, t))dt+ µT g(X(0),θ) (28)

where λ and µ are the Lagrange multipliers. Now, since H and g are zero everywhere, we may
choose the values of λ and µ arbitrarily. Then,∇θL = ∇θL, resulting in

∇θL =

∫ tf

0

(
∂XΨdθX + ∂θΨ + λT (∂XHdθX + ∂ẊHdθẊ + ∂θH)

)
dt

+ µT (∂X(0)gdθX(0) + ∂θg).

Integrating the equation by parts, and elimitating, dθẊ , we arrive at

∇θL =

∫ tf

0

[(
∂XΨ + λT (∂XH − dt∂ẊH)− λ̇T ∂ẊH

)
dθX + ∂θΨ + λT∂θH

]
dt

+λT∂ẊHdθX

∣∣∣∣
tf

+ (−λT∂ẊH + µT g)

∣∣∣∣
0

dθX(0) + µT∂θg.

Since the choice of, λT , and, µ, is arbitrary, we set, λT (T ) = 0, and, µT = (λT∂ẊH)|0(g|X(0))
−1,

in order to avoid needing to compute, dθX(T ), and thus canceling the second to the last term in the
latest (inline) expression. Now, assuming that the initial values of the state variables, X(0), do not
depend on the parameters, we derive, dθX(0) = 0, and, g = 0. Then, we use a loss function Ψ that
does not depend on θ explicitly, so that, ∂θΨ = 0. And finally, we can avoid computing dθX at all
other times t > 0 by setting

∂XΨ + λT (∂XH − dt∂ẊH)− λ̇T∂ẊH = 0. (29)

The resulting equation for the time derivative of λ can be re-stated as the following adjoint ODE

λ̇T = ∂XΨ− λT
∂F
∂X

, λ(tf ) = 0, (30)

where we also used that according to Eq. (27), ∂XH = −∂XF and ∂ẊH = I2d.

Combining all of the above, we see that the simplified equation for the gradient of the loss function
is

∇θL = ∇θL =

∫ tf

0

λT∂θHdt.

Which, according to Eq. (27), becomes

∇θL = −
∫ tf

0

λT
∂F
∂θ

dt. (31)
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Therefore, in order to compute the gradient, the IVP expression (30) needs to be integrated back-
wards in time for λ(t), starting from λ(tf ) = 0. Similar to the FSA formulation found above, both
∂XF and ∂θF , are computed with a mixture of forward and reverse mode AD tools, depending on
the dimension of the input and output dimension of the functions to be differentiated.

Although the adjoint method has a computational cost that is independent of the number of parame-
ters, it requires more memory as the adjoint Eq. (30) must be solved backward in time (and requires
the forward solution to be stored). Notice that this workflow is not adequate for problems where
real-time sensitivities are needed, as discussed in (Donello et al., 2020). This usually means that for
k ∼ O(100) FSA is more efficient but when k � 100, the situation reverses and ASA becomes
more efficient. See (Ma et al., 2021) for more details on the difference in efficiencies of mixing FSA
(or ASA) with forward and reverse mode AD.

B.1 LOSS FUNCTIONS

In the previous subsections, we introduced the FSA and ASA methods for computing the gradient
of the loss function, which is used in our gradient based optimization learning algorithms. In this
section we construct three different loss functions; trajectory based, field based, and statistical based.
The trajectory based loss function tries to minimize the difference in trajectories of the predicted
particles from that of the ground truth trajectories. The field based loss function tries to minimize
the difference in the velocity fields of the predicted and ground truth data (more fitting for the goal
of SPH: to approximate the field quantities). The statistical based loss function tries to minimize the
difference of underlying probability distributions obtained from the predicted and ground truth data.
We explored all three loss functions and combinations of each in this work. However, since our
overall goal involves learning SPH models for turbulence applications, it is the underlying statistical
description we want our models to learn and generalize to. This is discussed further in section 5
where we compare the hierarchy of models that is constructed in the next subsection 4.1

B.1.1 TRAJECTORY BASED LOSS

A simple loss function to consider is the Mean Squared Error (MSE) of the difference in particles
and velocity:

MSE(θ) =
1

Nf
‖X − X̂‖2,

whereX and X̂ are the ground truth and predicted particles states (both position and velocity) over
the N particles respectively.

B.1.2 FIELD BASED LOSS

The field based loss function tries to minimize the difference of the large scale structures found
in the fields of which the particles are used to approximate. This is obtained by interpolating the
velocities of the particles onto a mesh as seen in the following.

Lf (θ) =
1

Nf
‖V f − V̂ f‖2,

where

V f
i =

Nf∑
j=1

mj

ρj
vjWij(‖rfi − rj‖, h),

uses the same SPH smoothing approximation to interpolate the particle velocity onto a predefined
mesh rf (with Nf grid points), and V̂ f is the velocity field prediction extracted from SPH samples
(multi-particle, temporal snapshots). The motivation for using a field based loss function comes
from the desire to reconstruct the underlying field variables (which is what SPH is approximating
for).
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B.1.3 STATISTICAL BASED LOSS

In order to approach turbulent flows, one can use well established statistical tools/objects. In this
direction consider the integrated Kullback–Leibler divergence (KL) as a loss function (that will later
be used in comparing a hierarchy of models).

L(θ) =

∫ tf

t=0

∫ ∞
−∞

Ggt(t, zgt(t), x) log

(
Ggt(t, zgt(t), x)

Gpred(t, zpr(t), x)

)
dxdt, (32)

where zgt(t), and zpr(t) represent a single particle statistical object over all particles (such as the
single particle dispersion statistics or velocity increment) over time of the ground truth and predicted
data respectively. Here G(t, z(t), x) is the continuous probability distribution (in x) constructed
from data z(t) using Kernel Density Estimation (KDE). KDE is a classical unsupervised statistical
learning method in order to obtain smooth and differentiable distributions from data (Chen, 2017),
with

G(τ,z, x) =
1

Nh

N∑
i=1

K ((zi − x)/h) , (33)

where K is the smoothing kernel (chosen to be the normalized Gaussian in this work). Note the
similarity with the SPH smoothing process, which makes it a natural choice in this setting.

The integration in time becomes a summation over discrete time steps once numerical integration
over time is done (see subsection A.4) in simulating the particles and performing SA (see section 4).
To simplify the resulting expression, let us fix the time τ , then integration over time can be carried
out last (through applying Leibniz integration rule). One derives

L(θ, τ) =

∫ ∞
−∞

Ggt(τ,zgt, x) log

(
Ggt(τ,zgt, x)

Gpred(τ,zpr, x)

)
dx.

Combining all the preceding formulas we derive

L(θ, τ) =

∫ ∞
−∞

[
1

N1h1

N1∑
i=1

K

(
zigt − x
h1

)]
log


1

N1h1

∑N1

i=1K

(
zigt − x
h1

)
1

N2h2

∑N2

i=1K

(
zipr − x
h2

)
 dx.

For notational convenience, let us define the integrand as kl

kl(τ,zgt, zpr, x) =

[
1

N1h1

N1∑
i=1

K

(
zigt − x
h1

)]
log


1

N1h1

∑N1

i=1K

(
zigt − x
h1

)
1

N2h2

∑N2

i=1K

(
zipr − x
h2

)
 ,

and

L(θ) =

∫ ∞
−∞

kl(τ,zgt, zpr, x)dx,

so that
kl(τ,zgt, zpr, x) : R× RN1 × RN2 × R→ R

.

In order to perform gradient descent, this loss function will need to be differentiated with respect to
each parameter, and through the chain rule we will need the derivative of the state space variables
with respect to the parameters (found through FSA or ASA mixed with AD). Some of the follow-
ing derivatives are done through automatic differentiation, however, in order to not require taking
derivatives through the non-differentiable neighborhood list algorithm, some of the derivative need
to be done analytically (or at least symbolically).

∂L

∂θα
=

∫ ∞
−∞

∂kl(τ,zgt, zpr, x)

∂zgt
· 0 +

∂kl(τ,zgt, zpr, x)

∂zpr
·
∂zpr

∂θα
dx,
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where

∂kl

∂zpri
=

[
1

N1h1

N1∑
i=1

K

(
zigt − x
h1

)]
∂

∂zipr
log


1

N1h1

∑N1

i=1K

(
zigt − x
h1

)
1

N2h2

∑N2

i=1K

(
zipr − x
h2

)


= −
1

h2

[
1

N1h1

N1∑
i=1

K

(
zigt − x
h1

)]
1

N2h2
K ′

(
zipr − x
h2

)
1

N2h2

∑N2

i=1K

(
zipr − x
h2

)


= −
1

h2
Gu(zgt, x)


1

N2h2
K ′
(
zpri − x
h2

)
Gpredu (zpr, x)



Using the velocity increment in both u and v this can be simplified:

∂L

∂θα
=

∫ ∞
−∞

N2∑
i=1

(
∂klu

∂zupri

∂uipr
∂θα

+
∂klv

∂zvpri

∂vipr
∂θα

)
dx

where zupri = uipr(τ)− ui(0). Simplifying,

∂L

∂θα
=

N2∑
i=1

[
∂uipr
∂θα

∫ ∞
−∞

∂klu

∂zupri
dx+

∂vipr
∂θα

∫ ∞
−∞

∂klv

∂zvpri
dx

]
,

where
∂uipr
∂θα

, and
∂vipr
∂θα

are computed using our mixed mode approach (in section 4),
∂klv

∂zvpri
and

∂klu

∂zupri
are computed with forward mode AD, and the integrals over x are computed using numerical

integration.
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B.2 LEARNING ALGORITHM

In what follows, we combine all of the computational tools and techniques introduced so far to
outline the mixed mode learning algorithm.

Algorithm 1: Mixed Mode Learning Algorithm
Given Ground Truth: {X(t0),X(t1), ...,X(tf )} SPH data ;
Select model: dtX(t) = F(X(t),θ) from hierarchy
Select SA method (Forward or Adjoint)
Choose Loss methods (Trajectory, Field, or Probabilistic)
Choose optimizer: e.g RMSprop or ADAM
for k ∈ {1, .., n} do

Prediction step: Verlet integration of model X̂ = V erlet(F ,θk,X(t0), t0, tf )

Simultaneously computes
∂F
∂X̂i

,
∂F
∂θ

with mixed mode AD.

if Forward SA then
Simultaneously integrate system of ODEs for sensitivities Sαi ;

dtSi =
∂F i(X̂(t),θk)

∂X̂i

Si +
∂F i(X̂(t),θk)

∂θk

else if Adjoint SA then
Integrate dtλT backwards in time (store forward solve);

dtλ
T = ∂X̂Ψ− λT

∂F
∂X̂

, λ(tf ) = 0

end

Obtain predicted probability distribution Ĝ = KDE(ẑ)

Compute ∇L (depends on SA method)

update θ using optimizer;
θk+1 = Opt(θk)

end
Result: Estimates θ̂ so that Lagrangian model is fitted to SPH data with locally minimized loss

C ADDITIONAL RESULTS
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Figure 6: Solving an inverse problem for the fully physics informed model on 3D SPH flow with
deterministic external forcing on 4096 particles over 4 SPH parameters. The solid lines show the
SPH model parameters converging to the dashed lines representing the ground truth parameters.
Here the field based loss function (see subsection 4.4) is used and is converging up to the order of
machine precision (as Float64 and the MSE of field difference was used).

Figure 7: Solving the inverse problems for 3D SPH flow with deterministic external forcing on 4096
particles over 5 parameters (including the rate of energy injection). These plots shows the ability of
the mixed mode method to learn the physical parameters of the Physics Informed model Equation 7.
The solid lines show the SPH parameters (initially chosen to be uniformly distributed about (0,1))
converged to the dashed lines representing the ground truth parameters. Here the field based loss
function (see subsection 4.4) is used with our mixed mode gradient based learning method (see
section 4); we see the field based loss (b, d) converging up to the order of machine precision (as
Float64 and the MSE of field was used).
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Figure 8: Using a Neural Network to approximate the equation of state (see subsection 4.1) using
the Lkl + Lf loss function. We see that the Equation of State (EoS) P (ρ) is well approximated on
the domain of densities that is seen in training, however, on the Pressure deviates once densities go
far beyond range seen in training. Here Pgt is the ground truth EoS and Pnn is the neural network
approximation of the EoS. We note that the underlying ground truth data has density variations
within 1% of mean density, so the NN sufficiently approximates the EoS over a larger domain of
densities as seen in training.
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Training set Generalization over time

Figure 9: Snapshots of flows comparing the ground truth to the learned models, where learning is
done with the LKL + Lf loss function. NODE represents the least informed and Phys Inf is the
most informed model. The main takeaway here is that even though the training is occurring on a
shortest (physically relevant) time scale tλ (which corresponds to the time of neighboring particles
to double their relative separation) the more physics informed models are able to generalize to much
longer time scales – all the way to the longest (physically relevant) time scale, teddy (which is the
turnover time scale of the largest eddy of the flow).
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(a) Generalization over time (b) Testing Rotational Invariance

Figure 10: 2D generalizability where the models are trained and tested using the statistical based
loss function. We also see that the rotational invariance (and therefore conservation of angular
momentum) is preserved as more physical struture is included in the model
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