
Proceedings of Machine Learning Research – 207:1–18, 2025 Full Paper – MIDL 2025

Effective Disjoint Representational Learning for Anatomical
Segmentation

Priya Tomar∗1,2 priya.priya@iais.fraunhofer.de

Aditya Parikh∗1 aditya.parikh@iais.fraunhofer.de

Philipp Feodorovici3 philipp.feodorovici@ukbonn.de

Jan Arensmeyer3 jan.arensmeyer@ukbonn.de

Hanno Matthaei3 hanno.matthaei@ukbonn.de

Christian Bauckhage1,2 christian.bauckhage@iais.fraunhofer.de

Helen Schneider†1 helen.schneider@iais.fraunhofer.de

Rafet Sifa†1,2 rafet.sifa@iais.fraunhofer.de

1 Fraunhofer IAIS, Germany
2 University of Bonn, Germany
3 University Hospital Bonn, Germany

Editors: Accepted for publication at MIDL 2025

Abstract

In the wake of the limited availability of pertinent datasets, the application of computer
vision methods for semantic segmentation of abdominal structures is mainly constrained
to surgical instruments or organ-specific segmentation. Multi-organ segmentation has the
potential to furnish supplementary assistance in multifarious domains in healthcare, for
instance, robot-assisted laparoscopic surgery. However, in addition to the complexity in-
volved in discriminating anatomical structures due to their visual attributes and operative
conditions, the representation bias pertaining to organ size results in poor segmentation
performance on organs with smaller pixel proportions. In this work, we focus on alleviating
the influence of representation bias by involving different encoder-decoder frameworks for
learning organ-specific features. In particular, we investigate the effect of organ-specific
decoders on binary segmentation of anatomical structures in abdominal surgery. Addition-
ally, we analyze the effect of organ-specific pretraining on the multi-label segmentation in
two model training settings including knowledge sharing and disjoint learning, in relation
to the contextual feature sharing between organ-specific decoders. Our results illustrate
the significant gain in segmentation performance by incorporating organ-specific decoders,
especially for less represented organs.

Keywords: Semantic segmentation, robot-assisted laparoscopic surgery, organ segmenta-
tion, Dresden surgical anatomy dataset.

1. Introduction

The applications of deep learning (DL) approaches have exhibited unforeseen advancements
in medical image segmentation (Wang et al., 2022) (Qureshi et al., 2023)(Ye et al., 2023).
Nonetheless, the limited availability of pertient datasets due to the restrictions involved
in medical data processing and requirement of domain-specific expertise in annotating the

∗ Contributed equally
† Contributed equally

© 2025 CC-BY 4.0, P. Tomar et al.

https://creativecommons.org/licenses/by/4.0/


Tomar Parikh Feodorovici Arensmeyer Matthaei Bauckhage Schneider Sifa

intricate data features have restricted the developments to application-specific approaches.
Medical imaging segmentation datasets predominantly focus on single-organ segmentation
or specific anatomical regions (Rister et al., 2020), typically in computed tomography (CT)
scans, magnetic resonance imaging (MRI) or X-Ray modalities (Fu et al., 2021)(Ji et al.,
2022) (Schneider et al., 2023)(Häntze et al., 2024). In the domain of minimally invasive
surgery, though datasets like EndoVis (Allan et al., 2020) have contributed to the significant
developments on surgical instruments or organ-specific segmentation, datasets containing
multi-organ annotations remain scarcely available (Carstens et al., 2023)(Hong et al., 2020)
(Zhang et al., 2020). Furthermore, the surgical environment characteristic involving variable
organ appearances, dynamic viewing conditions, frequent camera movements, and organ
occlusions, present challenges in the extensive developments of DL-based methods (Rueckert
et al., 2024).

For multi-organ segmentation in surgical data, current methods primarily focus on
organ-specific learning. Kolbinger et al. (2023) investigated structure-specific models in
comparison to common encoder and structure-specific decoder approach, reporting better
performance for former. Similarly, Maack et al. (2024) focused on multi-teacher knowl-
edge distillation (MT-KD) approach involving organ-specific decoders to learn through
guided features of anatomy-specific teacher networks. Jenke et al. (2024) introduced an
implicit learning method which emphasizes only the annotated classes in the images and
considering missing ones as unknowns. It illustrated superior performance in comparison
to organ-specific ensemble model but inferior when compared with fully-supervised learning
for multi-organ segmentation. Notwithstanding the improvements in organ-specific per-
formance, these approaches face challenges due to the class imbalance. For instance, the
Dresden surgical anatomy (DSA) dataset (Carstens et al., 2023) contains organ pixel per-
centages ranging from 27.32% for abdominal wall to 1.25% for intestinal veins which often
leads to learning bias towards the highly represented organs, thereby neglecting smaller or
less frequent structures.

To improve the performance for underrepresented or intricate classes in laparoscopic
images, Sinha and Dolz (2021) proposed a multi-scale attention mechanism combined with
semi-supervised learning and effectively leveraged a small set of labeled laparoscopic images
alongside unlabeled data. Similarly, Qiu et al. (2022) introduced a class-wise confidence-
aware active learning framework which focused on dynamically selecting informative samples
and exploiting unlabeled data, achieving significant improvements. (Zhang et al., 2024)
propose a method that integrates class-wise contrastive learning with multi-scale feature
extraction. By leveraging classification labels and employing a multi-scale projection head,
the model effectively learns representations even with limited annotated data.

Our work builds on recent advancements in surgical image segmentation, specifically ad-
dressing key challenges in laparoscopic imaging and organ-specific learning for multi-organ
segmentation. Drawing motivation from (Kolbinger et al., 2023), we focus on tackling the
complexities arising from anatomical variability and inter-organ relationships in surgical
imaging datasets. The significant variance in pixel proportions across organs in our dataset,
where seven organs comprise less than 7% of the relative pixel area, necessitates a careful
examination of organ-specific feature learning approaches. Our primary contributions in-
clude: (1) a comprehensive evaluation of four different segmentation architectures, including
convolution neural network (CNN), transformers, and hybrid models for segmentation of
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abdominal organs; (2) an in-depth analysis of three different training frameworks for in-
vestigating the influence of organ-specific feature learning in relation to model capacity;
(3) investigation of effective intra-organ feature knowledge sharing between organ-specific
decoders, incorporating both knowledge-sharing and disjoint learning frameworks for multi-
label segmentation.

The application of our proposed methodology extends beyond surgical organ segmenta-
tion to other medical imaging domains. The organ-specific feature learning and knowledge
sharing frameworks could benefit areas such as brain tumor segmentation (Chen et al.,
2023), cardiac chamber analysis (Zhang et al., 2023), and musculoskeletal imaging (Wang
et al., 2023) where anatomical structures exhibit similar challenges of size variation and
complex spatial relationships.

2. Methodology

2.1. Dataset

We utilize the DSA dataset (Carstens et al., 2023), a high-resolution dataset specifically
curated for computer-aided surgical applications and machine learning approaches in med-
ical imaging. It comprises of 13,195 laparoscopic images from 32 real-world surgeries, with
a minimum of 20 surgeries and 1000 images for each organ. It contains organ-specific bi-
nary segmentation masks for eleven anatomical structures including abdominal wall, colon,
inferior mesenteric artery, intestinal veins, liver, pancreas, small intestine, spleen, stomach,
ureter, and vesicular glands. Additionally, it contains a multi-class subset of 1430 im-
ages which are extracted from stomach subset and frequently display other organs, in total
seven abdominal organs (abdominal wall, colon, liver, pancreas, small intestine, stomach
and spleen). It exhibits significant class imbalance, with organ pixel percentages ranging
from 27.32% for abdominal wall to 1.25% for intestinal veins in binary masks. Refer to
(Carstens et al., 2023) for additional details concerning the dataset.

2.2. Training Framework

We investigate two architectural paradigms for multi-organ segmentation including Com-
mon Encoder-Common Decoder (CECD) and Common Encoder-Multiple Decoder (CEMD).
This assessments aims to determine the effectiveness of organ-specific decoders in com-
parison to the standard multi-class segmentation approach for complex abdominal organ
segmentation tasks.

• Common Encoder-Common Decoder (CECD): A single pipeline processes input im-
ages, producing multi-channel output corresponding to organ segmentation masks
(Fig. 1a). This approach shares features across organs while maintaining efficiency.
To distinguish between architectural and capacity effects, we include Expanded CECD
(E-CECD) with 4× wider decoder channels, following research that shows increas-
ing channels width improve representation capacity without excessive computational
cost(Zagoruyko and Komodakis, 2016)(Tan and Le, 2019).

• Common Encoder-Multiple Decoder (CEMD): This architecture uses a shared encoder
with dedicated decoders for each of the eleven target organs (Fig.1a). The common
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encoder captures general abdominal anatomy, while specialized decoders focus on
organ-specific features and output organ-wise binary masks.

To assess the effectiveness of adopted frameworks, we consider five representative back-
bones including pure CNN: U-Net (Ronneberger et al., 2015) and DeepLabv3(Chen et al.,
2017), transformer: SegFormer (Xie et al., 2021), and hybrid architectures: PVT U-Net
(Zhu et al., 2023) and Attention U-Net (Oktay et al., 2018). U-Net and AU-Net use sym-
metric encoder-decoder structures, with AU-Net adding attention gates to focus on relevant
spatial regions. PVT U-Net integrates vision transformer concepts with U-Net’s structure,
while SegFormer combines a hierarchical transformer encoder with an all-MLP decoder.
DeepLabv3 applies atrous convolutions in parallel or cascade and capture multi-scale con-
text with different atrous rates.
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Figure 1: (a) Comparison of common-decoder (CECD) versus multiple-decoder (CEMD)
frameworks. (b) Two fine-tuning strategies: Disjoint Fine-tuning (D-FT) where decoders
update independently, and Knowledge-sharing Fine-tuning (KS-FT) with simultaneous de-
coder updates, both showing pre-training and fine-tuning phases for organ segmentation†

.
2.3. Parameter Sharing Strategies

We investigate two parameter sharing strategies for fine-tuning the CEMD framework for
multi-class organ segmentation (Fig. 1b).

• Knowledge Sharing Fine-Tuning (KS-FT): It facilitates cumulative knowledge sharing
by simultaneously updating all decoders during fine-tuning. It allows decoders to
leverage inter-organ contextual knowledge, particularly beneficial for structures with
similar visual attributes and spatial arrangements. The loss function for KS-FT is:

LKS =
∑
i∈S

Lseg(Di(E(X)), Yi) (1)
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where E(X) is the encoder output, Di is the i-th decoder, Yi is the ground-truth for
organ i, and S represents set of all organs in the dataset. The segmentation loss Lseg
is defined as the DICE loss function in this case.

• Disjoint Fine-Tuning (D-FT): It employs disjoint learning by updating each decoder
while freezing others in a sequential manner. This preserves specialized anatomical
features learned during initial training, maintaining organ-specific boundary charac-
teristics. The loss function for D-FT is:

LDisjoint = Lseg(Dk(E(X)), Yk) for k ∈ SX (2)

where SX represents set of organs present in the training sample X, corresponding to
the multi-class subset in this case.

These contrasting approaches address a key trade-off between preserving specialized fea-
tures and leveraging shared anatomical knowledge—particularly important for laparoscopic
imaging where varying viewpoints and tissue deformation benefit from both specialized and
shared feature learning.

2.4. Experiment Configuration

For data pre-processing, we resize the input to 256×256 and use standard data augmentation
approaches during training including color jittering, random rotation, and image resizing to
enhance model robustness and prevent overfitting. We use U-Net, PVT U-Net, and AU-Net
with channel depths [64, 128, 256, 512], SegFormer with MiT-b0 backbone, and DeepLabv3
with Resnet50 backbone. We initialize all the models with random weights using fixed
seed values to ensure reproducibility. For all the experiments, we use a batch size of 4
samples, Adam optimizer with an initial learning rate of 1 × 10−3, a step-based learning
rate scheduler with weight decay factor 0.1 after every 50 epochs, and early stopping based
on validation DICE score with a patience of 10 epochs. For SegFormer, we used a lower
initial learning rate of 1 × 10−4 to enable stable gradient updates. We train models for
200 epochs using DICE loss (though convergence typically occurs earlier) and use it to
select best model checkpoint. DICE loss exhibited superior performance in comparison to
Binary Cross-Entropy (BCE) loss in our preliminary experiments (refer Appendix Table 5).
Training is performed on an NVIDIA A100 GPU (40GB VRAM) using PyTorch framework.

2.5. Evaluation

For data splitting, we follow the recommended split by (Kolbinger et al., 2023) to ensure
comparability in results. The training set (surgeries 1, 4–6, 8–10, 12, 15–17, 19, 22–25,
27–31), validation set (surgeries 3, 21, 26), and test set (surgeries 2, 7, 11, 13, 14, 18,
20, 32). In aggregate, the training validation and test sets containing binary organ masks
subsume 7789, 1978 and 3328 samples respectively. For the multi-class subset, we focused on
organs with foreground-to-background percentages exceeding 1% including the abdominal
wall, colon, and stomach. The multiclass sets comprise 863, 202, and 365 samples in the
training, validation and test sets respectively. Refer Table 4 in appendix for pixel ratios in
different splits. As performance metrics, we report the DICE Score and Intersection over
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Union (IoU) on held-out test set, as these metrics provide measure of spatial overlap while
being robust to class imbalance.

3. Results and Discussion

3.1. Comparison of Backbone Models

For primary analysis, we deliberate over DICE scores and present the results of CEMD
framework for our considered models in Figure 2. Refer to Table 6 and Table 7 in appendix
for IoU and DICE scores. The results demonstrate that the AU-Net consistently outper-
forms other models for most anatomical structures, achieving superior performance in 8
out of 11 organs. The performance comparison between U-Net and AU-Net reveals that
incorporating attention gates in the decoder pathway significantly improves segmentation
accuracy. This improvement is particularly pronounced in organs with thin anatomical
boundaries with distinctive features, such as the Ureter (+22.76%) and Vesicular Glands
(+15.02%) Figure 5 in appendix illustrates the prediction masks for these two models.

Figure 2: Mean DICE scores of models on different organs, sorted according to foreground to
background pixel-ratio in the training data. AU-Net outperforms other models in majority
of the cases. Mostly the influence of pixel area is observed in segmentation performance.
Besides, the visual features of organ also influence performance, for instance, comparatively
good performance of models on spleen in comparison to larger organs like liver and small
intestine.

As anticipated, segmentation performance correlates with the organ pixel percentage (%)
(foreground-to-background ratio). To investigate this, we computed Pearson (Kirch, 2008)
and Spearman correlation coefficients (Spearman, 1904) between pixel % and DICE scores
for each model. The results reveal a positive correlation between pixel % and DICE score for
all models, with Pearson correlation coefficients of 0.64, 0.76, 0.48, 0.59, and 0.69 for U-Net,
DeepLabv3, PVT U-Net , AU-Net and, SegFormer, respectively (Appendix Fig 4). These
findings highlight the influence of class imbalance on model performance, underscoring the
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Figure 3: Segmentation results for AU-Net trained with common encoder multiple decoder
(CEMD) architecture. Rows indicate input, target mask and prediction mask for 11 organs
arranged in decreasing order of their respective pixel ratios in the training set. According
to the evaluation metrics, model achieved best DICE and IoU scores on abdominal wall
and lowest on Pancreas which is reflected in the prediction masks. Model is effective in
detecting organs with distinctive visual attributes such as spleen, colon, inferior artery, and
intestinal vein.

inherent challenge of segmenting smaller or less frequently visible structures in laparoscopic
imagery.

Furthermore, it is evident that organ attributes are influential besides their pixel % in
training data. The best performance of all the models is observed on abdominal wall, the
organ with highest pixel-area. However, the scores of spleen (pixel % 3.5%) are higher
than liver (pixel % 24.6%) for all 5 backbone models. Similarly, the least performance is
observed for pancreas (pixel area 2%), not intestinal vein (pixel % 1.2%). Besides, the
results delineates two categories of organs such that the models perform poorly on organs
inferior artery, vesicular glands, pancreas, ureter, and intestinal veins in comparison to other
organs with pixel % more than 3.5%.

3.2. Comparison of Base Architectures

Following our backbone model comparison, we focus on AU-Net due to its superior per-
formance for comparing organ-specific decoder framework (CEMD) with common decoder
frameworks (CECD and E-CECD) and present the DICE scores in Table 1. Refer to Table 8
in appendix for IoU scores. Table Table 1 reveal significant differences in both computa-
tional requirements and segmentation performance where the CEMD consistently outper-
formed CECD and its expanded variant E-CECD. While both E-CECD and CEMD have
comparable parameter counts (152.83M and 156.83M respectively), their Giga Multiply-
Accumulate Operations (GMACs) differ substantially (482.65 vs 443.71). This disparity
in computational efficiency arises from how parameters are distributed across the network.
In CEMD, the dedicated decoders process only their respective organ’s features, whereas
E-CECD’s enlarged decoder processes all features through the same computational path,
leading to increased multiply-accumulate operations. Per-image execution time measure-
ments reinforce this efficiency distinction, with CECD (2.72 ± 0.15 ms) being significantly
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faster than E-CECD (12.38 ± 0.11 ms) and CEMD (29.04 ± 0.37 ms), highlighting the
computational cost of CEMD’s superior segmentation performance. For additional analysis
refer Appendix Table 8.

Table 1: Architectural Comparison: DICE Scores (in %) (Mean ± Standard Deviation)
with pixel % and computational requirements for CECD, E-CECD, and CEMD variants.
+ indicate an increase of at least ≈ 5% in CEMD in comparison to E-CECD.

Organ Pixel (%) CECD E-CECD CEMD

Abdominal Wall 27.32 85.30 ±6.79 86.39 ±6.52 88.73 ±5.73

Liver 24.59 70.09 ±20.56 71.52 ±17.64 73.55 ±19.85

Small Intestine 15.32 82.48 ±8.81 81.63 ±7.42 85.38 ±7.04

Colon 11.07 71.35 ±14.15 71.06 ±12.45 77.46 ±10.26 +
Stomach 5.36 64.90 ±17.35 66.93 ±13.97 71.38 ±16.57 +
Spleen 3.45 84.28 ±7.89 79.06 ±13.38 87.58 ±6.98 +
Inferior Artery 3.14 36.42 ±18.20 42.61 ±15.68 47.95 ±14.20 +
Vesicular Glands 2.37 47.41 ±16.48 40.32 ±19.52 47.27 ±15.71 +
Pancreas 2.03 34.29 ±19.97 27.47 ±20.01 29.80 ±18.68

Ureter 1.38 46.27 ±17.81 43.17 ±17.10 50.07 ±19.24 +
Intestinal Veins 1.25 56.56 ±19.65 63.89 ±13.70 58.83 ±15.64

Overall - 61.78 ±23.91 61.14 ±23.93 65.27 ±19.85

Parameters (M) - 31.39 152.83 156.83
GMACs - 55.95 482.65 443.71
Memory Footprint (MB) - 893.95 2984.21 5442.54
Execution Time (ms) - 2.72 ±0.15 12.38 ±0.11 29.04 ±0.37

Despite similar parameter counts between E-CECD and CEMD, the latter demonstrates
superior performance for 8 out of 11 organs. It reflects the significant influence of archi-
tectural design in achieving superior outcomes and effectiveness in capturing organ-specific
anatomical features in comparison to the sheer number of model parameters. Notably,
CEMD shows particular strength in segmenting organs with lower pixel percentages (par-
ticularly in inferior artery and ureter), suggesting its enhanced capability in handling class
imbalance through its specialized architectural design. Concerning the organs, pancreas
shows lowest scores which can be attributed to the challenges inherent in its detection due
to limited field of view and indistinctive spatial boundaries.

3.3. Evaluating Parameter Sharing Strategies

We further analyze the influence of transfer learning and two different parameter sharing
approaches including Knowledge Sharing Fine-tuning (KS-FT) and Disjoint Fine-tuning
(D-FT) on multi-class set (introduced in Section 2.3). We consider AU-Net CEMD archi-
tecture as baseline and fine-tune it on a three-class organ subset subsuming abdominal wall,
colon, and stomach.
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Results (Table 2) demonstrate that D-FT consistently outperforms the baseline and
KS-FT for all organs, achieving an overall improvement of 5.33% in DICE score after fine-
tuning. It suggests that preserving organ-specific features during fine-tuning is crucial for
maintaining segmentation accuracy. While KS-FT showed improvements for the abdominal
wall and stomach in comparison to baseline, its performance degraded significantly for
colon segmentation, indicating that simultaneous parameter updates may lead to feature
interference in complex anatomical structures.

Table 2: Fine-tuning Strategy Comparison: DICE and IoU scores (in %) for base model,
Knowledge Sharing Fine-tuning (KS-FT), and Disjoint Fine-tuning (D-FT) on three-organ
subset.

DICE Score (in %) IoU Score (in %)

Organ Pixel (%) Base KS-FT D-FT Base KS-FT D-FT

Abdominal Wall 7.69 56.17 62.64 63.98 47.19 55.76 56.76
Stomach 6.97 65.21 65.52 66.22 55.26 55.80 56.59
Colon 5.60 33.38 21.42 38.56 25.76 15.16 29.55

Overall - 51.59 49.86 56.92 42.07 42.24 47.63

4. Conclusion

Our work presents several contributions to the field of multi-organ segmentation in laparo-
scopic surgery. Firstly, our evaluation of backbone architectures demonstrates that AU-Net
consistently outperforms conventional architectures. The integration of attention gates in
standard U-Net proved particularly effective for organs with distinct boundaries. Secondly,
our investigation of parameter sharing strategies revealed that architectural design, rather
than model capacity alone, plays a crucial role in segmentation performance. The CEMD ar-
chitecture, despite having similar parameter counts to E-CECD, achieved superior results,
suggesting that organ-specific decoders are better suited for capturing unique anatomi-
cal features in surgical organ images. Our analysis of parameter sharing approaches for
fine-tuning indicates the importance of preserving specialized features in transfer learning,
particularly for complex anatomical structures.

Future work should address the persistent challenge of class imbalance between organ
representations and segmentation performance. Additionally, investigating more sophis-
ticated attention mechanisms and developing strategies for efficient knowledge transfer
between organ-specific decoders could further improve performance for less-represented
anatomical structures. Finally, exploring techniques such as Parameter-Efficient Fine-
Tuning (PEFT) methods, including low-rank adaptations (LoRA), or pruning strategies,
could be explored to optimize the architecture. These approaches have the potential to
maintain high segmentation accuracy while significantly lowering computational require-
ments, making the model more practical for deployment in resource-constrained settings.
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Appendix

Table 3: Average Organ Ratios (foreground to background pixels) as percentages for Train,
Test, and Validation Sets for binary segmentation dataset. The table highlights similar
trends in pixel percentages across splits for each organ, demonstrating consistency in the
data distribution. The rows are arranged according to the decreasing order of pixel ratios
in the training set.

Organ Train Set (%) Test Set (%) Validation Set (%)

Abdominal Wall 27.32 22.34 27.74
Liver 24.59 11.62 14.99
Small Intestine 15.32 15.99 16.26
Colon 11.07 14.04 11.75
Stomach 4.73 5.69 5.21
Spleen 3.45 2.19 4.00
Inferior Artery 3.14 2.19 2.51
Vesicular Glands 2.37 3.34 3.83
Pancreas 2.03 4.06 3.18
Ureter 1.38 0.85 1.18
Intestinal Veins 1.25 1.66 1.05

Table 4: Average Organ Ratios (foreground to background pixels) as percentages for Train,
Test, and Validation Sets for multi-class segmentation subset arranged in the decreasing
order of pixel ratio in training set. The table highlights inconsistencies in organ pixel
distribution across splits, with only organs having pixel percentages greater than 1% in
all splits (Abdominal Wall, Colon and Stomach) considered for evaluation. This ensures
robustness, avoids bias from underrepresented organs, and addresses the issue of poor model
training and performance on organs with extremely low pixel percentages.

Organ Train Set (%) Test Set (%) Validation Set (%)

Abdominal Wall 13.99 7.67 19.29
Stomach 6.19 6.97 6.55
Colon 2.79 5.60 1.59
Liver 1.74 0.49 9.53
Spleen 0.60 0.00 0.00
Small Intestine 0.46 0.20 0.41
Pancreas 0.29 0.54 0.04

13



Tomar Parikh Feodorovici Arensmeyer Matthaei Bauckhage Schneider Sifa

Table 5: Training Loss Function Comparison: DICE vs BCE, evaluating using DICE and
IOU scores (in %) (Mean ± Standard Deviation) using the AU-Net architecture. The DICE
loss function was chosen for its ability to better handle the imbalanced class distribution
commonly present in medical image segmentation tasks. It emphasizes the overlap between
predicted and ground truth masks, which is crucial when segmenting small, irregularly
shaped organs where pixel-wise accuracy is less informative. As shown in the table, the use
of DICE loss results in higher DICE and IoU scores for most organs compared to BCE loss,
particularly for organs with smaller or more challenging shapes. The overall performance
of DICE loss (65.27 ± 19.65 for DICE Score % and 52.78 ± 21.21 for IoU Score %) also
outperforms BCE loss (57.63 ± 23.87 for DICE Score % and 45.35 ± 23.71 for IoU Score %),
highlighting its superior sensitivity to challenging segmentation tasks. This is particularly
important for precise delineation in medical imaging, where even small misclassifications
can have significant clinical implications.

Organ
DICE Score (%) IoU Score (%)

DICE Loss BCE Loss DICE Loss BCE Loss

Abdominal Wall 88.73 ±5.73 87.90 ±5.78 80.19 ±8.80 78.87 ±8.79

Liver 73.55 ±19.85 76.76 ±15.55 61.66 ±22.51 64.60 ±18.43

Small Intestine 85.38 ±7.04 82.41 ±7.11 75.11 ±10.25 70.67 ±9.79

Colon 77.46 ±10.26 72.56 ±12.81 64.27 ±12.82 58.40 ±14.65

Spleen 87.58 ±6.98 78.13 ±11.93 78.56 ±10.54 65.57 ±15.01

Stomach 71.38 ±16.57 63.82 ±16.79 57.92 ±19.01 48.97 ±17.29

Inferior Artery 47.95 ±14.20 40.75 ±13.75 32.64 ±11.85 26.51 ±10.74

Intestinal Veins 58.83 ±15.64 49.88 ±13.52 43.30 ±14.81 34.28 ±11.75

Vesicular Glands 47.27 ±15.71 26.86 ±14.32 32.34 ±13.60 16.33 ±9.98

Pancreas 29.80 ±18.68 25.77 ±17.50 19.10 ±14.60 16.06 ±12.71

Ureter 50.07 ±19.24 29.10 ±19.48 35.46 ±16.29 18.61 ±13.93

Overall 65.27 ±19.65 57.63 ±23.87 52.78 ±21.21 45.35 ±23.71
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Table 6: Model Performance Comparison: DICE Scores (in %) (Mean ± Standard Devia-
tion) across backbone architectures. Abbreviations: Abd Wall (Abdominal Wall), Inf Art
(Inferior Artery), Int Veins (Intestinal Veins), Sm Int (Small Intestine), Ves Glands (Vesic-
ular Glands). Foreground-to-background ratios: Abd Wall (27.32%), Liver (24.59%), Sm
Int (15.32%), Colon (11.07%), Spleen (3.45%), Stomach (4.73%), Inf Art (3.14%), Int Veins
(1.25%), Ves Glands (2.37%), Pancreas (2.03%), Ureter (1.38%).

Organ U-Net DeepLabv3 PVT U-Net AU-Net SegFormer

Abd Wall 88.66 ±5.40 82.51 ±6.75 83.82 ±8.49 88.73 ±5.73 83.70 ±7.37

Liver 77.03 ±16.54 71.02 ±17.82 57.83 ±20.17 73.55 ±19.85 74.03 ±16.68

Sm Int 82.72 ±8.04 73.05 ±7.94 73.57 ±5.91 85.38 ±7.04 73.33 ±15.89

Colon 73.98 ±12.36 61.12 ±15.64 60.12 ±17.23 77.46 ±10.26 67.64 ±14.56

Spleen 83.23 ±9.11 73.42 ±10.82 63.26 ±19.67 87.58 ±6.98 79.52 ±13.08

Stomach 65.48 ±16.19 58.32 ±16.60 60.03 ±17.17 71.38 ±16.57 59.28 ±20.32

Inf Art 48.54 ±11.68 36.42 ±14.46 38.87 ±14.55 47.95 ±14.20 45.52 ±17.16

Int Veins 50.58 ±11.00 42.31 ±18.38 47.56 ±15.30 58.83 ±15.64 50.69 ±18.60

Ves Glands 32.25 ±15.14 28.76 ±13.54 45.56 ±15.39 47.27 ±15.71 28.34 ±16.67

Pancreas 28.77 ±18.07 26.62 ±14.93 22.72 ±18.99 29.80 ±18.68 32.71 ±24.10

Ureter 27.31 ±18.94 29.93 ±16.73 29.26 ±15.96 50.07 ±19.24 38.80 ±21.70

Overall 60.78 ±23.09 53.04 ±20.77 51.29 ±18.70 65.27 ±19.85 57.59 ±19.51

Table 7: Model Performance Comparison: IOU Scores (in %) (Mean ± Standard Deviation)
across different backbone architectures.Abbreviations: Abd Wall (Abdominal Wall), Inf
Art (Inferior Artery), Int Veins (Intestinal Veins), Sm Int (Small Intestine), Ves Glands
(Vesicular Glands). Foreground-to-background ratios: Abd Wall (27.32%), Liver (24.59%),
Sm Int (15.32%), Colon (11.07%), Spleen (3.45%), Stomach (4.73%), Inf Art (3.14%), Int
Veins (1.25%), Ves Glands (2.37%), Pancreas (2.03%), Ureter (1.38%).

Organ U-Net DeepLabv3 PVT U-Net AU-Net SegFormer

Abd Wall 80.02 ±8.21 70.73 ±8.95 72.96 ±11.30 80.19 ±8.80 72.63 ±10.47

Liver 65.14 ±18.69 57.83 ±17.82 42.56 ±11.77 61.66 ±22.51 61.19 ±18.70

Sml Int 71.29 ±11.18 58.14 ±9.58 58.53 ±7.38 75.11 ±10.25 60.15 ±18.23

Colon 60.14 ±14.63 45.70 ±15.22 45.07 ±17.17 64.27 ±12.82 52.87 ±16.10

Spleen 72.26 ±12.62 59.11 ±12.97 49.12 ±20.07 78.56 ±10.54 67.76 ±16.37

Stomach 50.77 ±17.53 42.94 ±15.35 44.97 ±17.16 57.92 ±19.01 44.95 ±19.77

Inf Artery 32.80 ±9.87 23.19 ±10.60 25.17 ±11.67 32.64 ±11.85 31.03 ±14.09

Int Veins 44.32 ±11.15 28.49 ±14.37 32.50 ±13.09 48.30 ±14.81 35.96 ±16.29

Ves Glands 20.26 ±11.54 17.55 ±9.56 30.80 ±13.18 32.34 ±13.60 17.69 ±12.23

Pancreas 18.25 ±13.86 16.25 ±10.52 14.20 ±12.96 19.10 ±14.60 22.21 ±18.61

Ureter 17.32 ±13.80 18.75 ±11.73 18.25 ±11.98 35.46 ±16.29 26.39 ±17.42

Overall 48.42 ±23.33 39.88 ±19.83 37.92 ±17.96 52.78 ±21.21 44.80 ±19.30
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Figure 4: Scatter plots showing the correlation between pixel % and DICE scores (in %) for
U-Net, DeepLabv3, PVT U-Net, AU-Net and SegFormer. Each plot includes a regression
trendline and corresponding Pearson correlation coefficient.

Table 8: Architectural Comparison: IoU Scores (in %) (Mean ± Standard Deviation) and
computational requirements for CECD, E-CECD, and CEMD variants.

Organ Pixel % CECD E-CECD CEMD

Parameters (M) - 31.39 152.83 156.83
GMACs - 55.95 482.65 443.71

Abdominal Wall 27.32 74.95 ±9.83 76.59 ±9.46 80.19 ±8.80

Liver 24.59 57.41 ±22.11 58.42 ±20.01 61.66 ±22.51

Small Intestine 15.32 71.07 ±12.02 69.62 ±10.42 75.11 ±10.25

Colon 11.07 57.22 ±16.04 56.45 ±13.98 64.27 ±12.82

Stomach 6.58 50.40 ±18.62 51.95 ±15.81 57.92 ±19.01

Spleen 3.45 73.62 ±11.60 67.21 ±16.86 78.56 ±10.54

Inferior Artery 3.14 23.84 ±14.25 28.36 ±12.97 32.64 ±11.85

Vesicular Glands 2.37 32.56 ±13.88 27.17 ±15.76 32.34 ±13.60

Pancreas 2.03 22.58 ±15.78 17.73 ±15.79 19.10 ±14.60

Ureter 1.38 31.87 ±15.44 29.00 ±13.61 35.46 ±16.29

Intestinal Veins 1.25 41.77 ±17.22 48.33 ±13.99 48.30 ±14.81

Overall - 48.81 ±24.22 48.09 ±23.93 52.78 ±21.21
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Figure 5: Qualitative comparison of segmentation results for 11 anatomical structures, com-
paring U-Net and AU-Net across two comprehensive visualizations. Each subplot includes
(1) the original surgical image, (2) the ground truth segmentation mask, (3) U-Net predicted
segmentation mask, and (4) AU-Net predicted segmentation mask. The first visualization
presents results for the first six organs, while the second visualization shows results for
the remaining five organs. AU-Net demonstrates superior boundary delineation and re-
duced false positives compared to U-Net, particularly in regions with complex anatomical
interfaces.
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Figure 6: Segformer Training and Validation Loss with DICE (F1) Score. The plot demon-
strates the smooth convergence of both training and validation loss, reflecting the effective
optimization of the Segformer model. The steadily increasing validation DICE score indi-
cates an improvement in model performance, while the closely aligned training and valida-
tion loss curves suggest minimal overfitting. This confirms the model’s ability to generalize
well over the epochs.
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