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Abstract

In the wake of the limited availability of pertinent datasets, the application of computer
vision methods for semantic segmentation of abdominal structures is mainly constrained
to surgical instruments or organ-specific segmentations. Multi-organ segmentation has the
potential to furnish supplementary assistance in multifarious domains in healthcare, for
instance, robot-assisted laparoscopic surgery. However, in addition to the complexity in-
volved in discriminating anatomical structures due to their visual attributes and operative
conditions, the representation bias pertaining to organ size results in poor segmentation
performance on organs with smaller pixel proportions. In this work, we focus on alleviating
the influence of representation bias by involving different encoder-decoder frameworks for
learning organ-specific features. In particular, we investigate the effect of organ-specific
decoders on binary segmentation of anatomical structures in abdominal surgery. Addition-
ally, we analyze the effect of organ-specific pretraining on the multi-label segmentation in
two model training settings including knowledge sharing and disjoint learning, in relation
to the contextual feature sharing between organ-specific decoders. Our results illustrate
the significant gain in segmentation performance by incorporating organ-specific decoders,
especially for less represented organs.

Keywords: Semantic segmentation, robot-assisted laparoscopic surgery, organ segmenta-
tion, Dresden surgical anatomy dataset.

1. Introduction

The applications of deep learning (DL) approaches have exhibited unforeseen advancements
in medical image segmentation (Qureshi et al., 2023)(Wang et al., 2022). Nonetheless, the
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limited availability of pertient datasets due to the restrictions involved in medical data pro-
cessing and requirement of domain-specific expertise in annotating the intricate data fea-
tures have restricted the developments to application-specific approaches. Medical imaging
segmentation datasets predominantly focus on single-organ segmentation or specific anatom-
ical regions (Rister et al., 2020), typically in computed tomography (CT) scans, magnetic
resonance imaging (MRI) or X-Ray modalities (Fu et al., 2021)(Ji et al., 2022) (Schneider
et al., 2023)(Héantze et al., 2024). In the domain of minimally invasive surgery, though
datasets like EndoVis (Allan et al., 2020) have contributed to the significant developments
on surgical instruments or organ-specific segmentation, datasets containing multi-organ an-
notations remain scarcely available (Carstens et al., 2023)(Hong et al., 2020). Furthermore,
the surgical environment characteristic involving variable organ appearances, dynamic view-
ing conditions, frequent camera movements, and organ occlusions, present challenges in the
extensive developments of DL-based methods (Rueckert et al., 2024).

For multi-organ segmentation in surgical data, current methods primarily focus on
organ-specific learning. Kolbinger et al. (2023) investigated structure-specific models in
comparison to common encoder and structure-specific decoder approach, reporting better
performance for former. Similarly, Maack et al. (2024) focused on multi-teacher knowledge
distillation (MT-KD) approach involving organ-specific decoders to learn through guided
features of anatomy-specific teacher networks. Jenke et al. (2024) introduced an implicit
learning method which emphasizes only the annotated classes in the images and consid-
ering missing ones as unknowns. It illustrated superior performance in comparison to
organ-specific ensemble model but inferior when compared with full-supervised learning
for multi-organ segmentation. Notwithstanding the improvements in organ-specific per-
formance, these approaches face challenges due to the class imbalance. For instance, the
involved Dresden surgical anatomy (DSA) dataset (Carstens et al., 2023) contains organ
pixel percentages ranging from 27.32% for abdominal wall to 1.25% for intestinal veins
which often leads to learning bias towards the highly represented organs, thereby neglect-
ing smaller or less frequent structures.

To improve the performance for underrepresented or intricate classes in laparoscopic
images, Sinha and Dolz (2021) proposed a multi-scale attention mechanism combined with
semi-supervised learning and effectively leveraged a small set of labeled laparoscopic images
alongside unlabeled data. Similarly, Qiu et al. (2022) introduced a class-wise confidence-
aware active learning framework which focused on dynamically selecting informative samples
and exploiting unlabeled data, achieving significant improvements. (Zhang et al., 2024)
propose a method that integrates class-wise contrastive learning with multi-scale feature
extraction. By leveraging classification labels and employing a multi-scale projection head,
the model effectively learns representations even with limited annotated data.

Our work builds on recent advancements in surgical image segmentation, specifically ad-
dressing key challenges in laparoscopic imaging and organ-specific learning for multi-organ
segmentation. Drawing motivation from (Kolbinger et al., 2023), we focus on tackling
the complexities arising from anatomical variability and inter-organ relationships in sur-
gical imaging datasets. The significant variance in pixel proportions across organs in our
dataset, where seven organs comprise less than 7% of the relative pixel area, necessitates
a careful examination of organ-specific feature learning approaches. Our primary contribu-
tions include: (1) a comprehensive evaluation of four different segmentation architectures,
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including vanilla U-Net variants and state-of-the-art model, for binary segmentation of
abdominal organs; (2) an in-depth analysis of three different training frameworks for organ-
specific binary segmentation, investigating the influence of organ-specific feature learning in
relation to model capacity; (3) examination of organ-specific transfer learning capabilities
for multi-class segmentation focusing on the three organs with the highest pixel proportion;
and (4) investigation of effective intra-organ feature knowledge sharing between organ-
specific decoders, incorporating both knowledge-sharing and disjoint learning frameworks
for multi-label segmentation.

The application of our proposed methodology extends beyond surgical organ segmenta-
tion to other medical imaging domains. The organ-specific feature learning and knowledge
sharing frameworks could benefit areas such as brain tumor segmentation (Chen et al.,
2023), cardiac chamber analysis (Zhang et al., 2023), and musculoskeletal imaging (Wang
et al., 2023) where anatomical structures exhibit similar challenges of size variation and
complex spatial relationships.

2. Methodology

2.1. Dataset

In our work, we utilize the DSA dataset (Carstens et al., 2023), a comprehensive, high-
resolution dataset specifically curated for computer-aided surgical applications and machine
learning approaches in medical imaging. The dataset comprises of 13,195 laparoscopic
images, with a minimum of 20 surgeries documented for each organ. Binary segmentation
masks are provided for eleven anatomical classes including abdominal wall, colon, inferior
mesenteric artery, intestinal veins, liver, pancreas, small intestine, spleen, stomach, ureter,
and vesicular glands. Additionally, the dataset includes a multi-class subset focusing on
six abdominal organs (abdominal wall, colon, liver, pancreas, small intestine, and spleen).
Furthermore, the dataset exhibits significant class imbalance, with organ pixel percentages
ranging from 27.32% for abdominal wall to 1.25% for intestinal veins.

For robust evaluation, we focused on organs with foreground-to-background percentages
exceeding 1% in the multi-class subset, specifically the abdominal wall, colon, and stomach
(see Appendix Table 8). To ensure fair comparison with existing approaches, we adopted
the training, validation, and testing split proposed by (Kolbinger et al., 2023). We resize the
input to 256 x256 and use standard data augmentation approaches including color jittering,
random rotation, and image resizing to enhance model robustness and prevent overfitting.

2.2. Model Architecture

In this study, we investigated four backbone architectures: U-Net (Ronneberger et al.,
2015), DeepLabv3 (Chen et al., 2017), Pyramid Vision Transformer (PVT) U-Net (Zhu
et al., 2023) and a variant of U-Net (Oktay et al., 2018), referred to as Attention U-Net
(AU-Net). The U-Net and AU-Net architectures follow a symmetric encoder-decoder struc-
ture with channel depths [64, 128, 256, 512]. In the AU-Net variant, we enhanced the
standard U-Net by incorporating attention gates within the decoder pathway. These atten-
tion gates integrate gating signals from the decoder with skip connections from the encoder,
enabling the network to focus on task-relevant spatial regions at each decoding stage. The
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PVT U-Net hybrid architecture combines the hierarchical structure of U-Net with mod-
ern vision transformer concepts. This design builds upon the work of (Wang et al., 2021),
adapting their pyramid vision transformer concept into a U-Net framework optimized for
multi-organ segmentation.

We conducted an extensive comparative analysis of two distinct architectural approaches:

e This architecture follows the standard paradigm where a single encoder-decoder pipeline
processes the input, with the decoder’s output channels corresponding to individual
organ segmentation masks (Fig. 1a). This approach leverages shared features across
all organs while maintaining computational efficiency. To investigate whether perfor-
mance differences stem from architectural design or model capacity, we implemented
Expanded CECD (E-CECD), a variant with a 4X increase in decoder channel di-
mensions. This choice was motivated by prior work showing that increasing width
(channel dimensions) rather than depth (number of layers) improves feature represen-
tation and training stability while maintaining computational efficiency (Zagoruyko
and Komodakis, 2016)(Tan and Le, 2019). This controlled comparison allows us to
differentiate between gains achieved through architectural design choices versus those
stemming from increased parameter capacity.

e Common Encoder-Multiple Decoder (CEMD): This architecture utilizes a shared en-
coder but implements dedicated decoders for each of the eleven organs (Fig.1b). The
shared encoder learns common representations of the abdominal anatomy, while indi-
vidual decoders specialize in organ-specific learning. This architectural choice enables
us to investigate whether organ-specific decoders provide advantages over the con-
ventional single-decoder approach in terms of segmentation performance and feature
learning.

This comparative appraisal aims to determine the necessity and effectiveness of organ-
specific decoders versus the standard multi-class segmentation approach, particularly in the
context of complex abdominal organ segmentation tasks.

2.3. Parameter Sharing Strategies

In this work, we furthermore investigate two parameter sharing strategies for fine-tuning
the CEMD framework for multi-class organ segmentation. The first approach focuses on
cumulative knowledge sharing, enabling simultaneous updates across all decoders during
the fine-tuning process. This approach is motivated by the inherent anatomical relation-
ships in abdominal imaging, where organs share common contextual features such as tissue
interfaces, vascular patterns, and neighboring structures. The simultaneous update mecha-
nism potentially allows decoders to leverage cross-organ anatomical knowledge, particularly
beneficial for structures with similar imaging characteristics or adjacent anatomical rela-
tionships.

The second strategy employs disjoint learning, where each decoder is individually up-
dated by preventing the parameter updates for other decoders. This approach maintains
the specialized anatomical features learned during initial training, critical for preserving
organ-specific boundary characteristics and morphological patterns.
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Figure 1: Comparison of two architectural approaches for organ segmentation. (a) CECD
uses a single decoder to generate multi-channel outputs for multiple organ masks, while
(b) CEMD employs multiple decoders, each dedicated to producing a specific organ mask.
Both architectures share a common encoder for feature extraction.

These contrasting approaches address a key trade-off in medical image segmentation
between preserving specialized features and leveraging shared anatomical knowledge. This
distinction is particularly relevant for laparoscopic imaging, where varying viewpoints and
tissue deformation benefit from both, specialized and shared feature learning.

2.4. Experiment Configurations and Evaluation

For all the experiments, we use a batch size of 4 samples, Adam optimizer with an initial
learning rate of 1 x 1073, and a step-based learning rate scheduler, implementing a weight
decay of 0.1 after every 50 epochs. Early stopping is implemented with a patience of 10
epochs, monitoring the validation DICE score to prevent overfitting. Each experiment runs
for a maximum of 200 epochs, though convergence typically occurs earlier. Training is
performed on an NVIDIA A100 GPU (40GB VRAM) using PyTorch framework.

To ensure reproducibility, we initialize all the models with random weights using fixed
seed values. We use DICE loss for training as it exhibited superior performance in compar-
ison to Binary Cross-Entropy (BCE) loss in our preliminary experiments (refer Appendix
Table 6) and use it to select best-performing model checkpoint. For performance evaluation,
we report the DICE Score (expressed in percentage for better interpretability) on held-out
test set, as it provides an intuitive measure of spatial overlap while being robust to class
imbalance, making it a standard metric in medical image segmentation tasks.

3. Results and Discussion

3.1. Comparison of Backbone Models

Our evaluation (Table 1) demonstrates that the AU-Net architecture consistently outper-
forms standard U-Net, DeepLabv3, and PVT U-Net models for most anatomical structures
within the CEMD framework. AU-Net achieved superior performance in 9 out of 11 organs,
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validating the effectiveness of attention mechanisms in medical image segmentation. The
performance comparison between U-Net and AU-Net reveals that incorporating attention
gates in the decoder pathway significantly improves segmentation accuracy. This improve-
ment is particularly pronounced in organs with thin and clear anatomical boundaries with
distinctive features (see Appendix Figure 3 for qualitative comparisons) . Additional anal-
ysis comparing IoU Scores in Appendix Table 4.

Table 1: Model Performance Comparison: DICE Scores (in %) (Mean £ Standard Devi-
ation) across different backbone architectures. % indicates the foreground-to-background
ratio for each organ in the training set. An additional table comparing the pixel % of the
split in Appendix 8.

Organ ‘ % ‘ U-Net DeepLabv3 ‘ PVT U-Net ‘ AU-Net

Abdominal Wall | 27.32 | 88.66 +5.40 82.51 +6.75 | 83.82 +8.49 | 88.73 +5.73
Colon 11.07 | 73.98 +12.36 | 61.12 +15.64 | 60.12 £17.23 | 77.46 +10.26
Inferior Artery 3.14 | 48.54 +11.68 | 36.42 +14.46 | 38.87 +14.55 | 47.95 +14.20
Intestinal Veins 1.25 | 50.58 +11.00 | 42.31 +18.38 | 47.56 +£15.30 | 58.83 +15.64
Liver 24.59 | 77.03 +16.54 | 71.02 +£17.82 | 57.83 +£20.17 | 73.55 +£19.85
Pancreas 2.03 | 28.77 +18.07 | 26.62 +£14.93 | 22.72 +18.99 | 29.80 +18.68
Small Intestine 15.32 | 82.72 +8.04 73.05 £7.94 | 73.57 +5.91 | 85.38 £7.04
Spleen 3.45 83.23 +9.11 | 73.42 +10.82 | 63.26 +19.67 | 87.58 46.98
Stomach 4.73 | 65.48 +16.19 | 58.32 +16.60 | 60.03 £17.17 | 71.38 +16.57
Ureter 1.38 | 27.31 +18.94 | 29.93 +16.73 | 29.26 +15.96 | 50.07 +19.24
Vesicular Glands | 2.37 | 32.25 +15.14 | 28.76 +13.54 | 45.56 +15.39 | 47.27 +15.71
Overall |- | 60.78 +23.00 | 53.04 +20.77 | 51.29 +18.70 | 65.27 +19.85

As anticipated, segmentation performance correlates with the organ pixel percentage (%)
(foreground-to-background ratio). To investigate this, we computed Pearson (Kirch, 2008)
and Spearman correlation coefficients (Spearman, 1904) between pixel % and DICE scores
for each segmentation model. The results reveal a positive correlation between pixel % and
DICE score for all models, with Pearson correlation coefficients of 0.64, 0.76, 0.48, and 0.69
for U-Net, DeepLabv3, PVT U-Net and, AU-Net, respectively (Appendix Fig 2). These
findings highlight the influence of class imbalance on model performance, underscoring the
inherent challenge of segmenting smaller or less frequently visible structures in laparoscopic
imagery.

3.2. Comparison of Base Architectures

Following our comprehensive model evaluation, we focus on AU-Net for architectural variant
comparisons considering its superior performance across organs. The evaluation (Table 2)
reveals significant differences in both computational requirements and segmentation per-
formance where the CEMD consistently outperformed CECD and its expanded variant
E-CECD. While both E-CECD and CEMD have comparable parameter counts (152.83M
and 156.83M respectively), their Giga Multiply-Accumulate Operations (GMACs) differ
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substantially (482.65 vs 443.71). This disparity in computational efficiency arises from how
parameters are distributed across the network. In CEMD, the dedicated decoders process
only their respective organ’s features, whereas E-CECD’s enlarged decoder processes all
features through the same computational path, leading to increased multiply-accumulate
operations. For additional analysis refer Appendix Table 5.

Table 2: Architectural Comparison: DICE Scores (in %) (Mean + Standard Deviation)
with pixel % and computational requirements for CECD, E-CECD, and CEMD variants.

Organ | Pixel (%) | CECD E-CECD CEMD

Parameters (M) - 31.39 152.83 156.83

GMACs - 55.95 482.65 443.71

Abdominal Wall 27.32 85.30 +6.79 86.39 +6.52 88.73 +5.73
Colon 11.07 71.35 +14.15 | 71.06 +12.45 | 77.46 +10.26
Inferior Artery 3.14 36.42 +18.20 | 42.61 +15.68 | 47.95 +14.20
Intestinal Veins 1.25 56.56 +19.65 | 63.89 +13.70 | 58.83 +15.64
Liver 24.59 70.09 +20.56 | 71.52 +17.64 | 73.55 +19.85
Pancreas 2.03 34.29 +19.97 | 27.47 +20.01 | 29.80 +18.68
Small Intestine 15.32 82.48 £8.81 81.63 £7.42 85.38 +7.04
Spleen 3.45 84.28 +7.89 79.06 +13.38 | 87.58 +6.98
Stomach 5.36 64.90 +17.35 | 66.93 £13.97 | 71.38 +16.57
Ureter 1.38 46.27 +17.81 | 43.17 x17.10 | 50.07 +19.24
Vesicular Glands 2.37 47.41 +16.48 | 40.32 +1952 | 47.27 +15.71
Overall - 61.78 +23.91 | 61.14 +£23.93 | 65.27 +19.85

Despite similar parameter counts between E-CECD and CEMD, the latter demonstrates
superior performance for 8 out of 11 organs. It reflects the significant influence of archi-
tectural design in achieving superior outcomes and effectiveness in capturing organ-specific
anatomical features in comparison to the sheer number of model parameters. Notably,
CEMD shows particular strength in segmenting organs with lower pixel percentages, sug-
gesting its enhanced capability in handling class imbalance through its specialized architec-
tural design.

3.3. Evaluating Parameter Sharing Strategies

We further analyze the influence of transfer learning and two different parameter sharing
approaches including Knowledge Sharing Fine-tuning (KS-FT) and Disjoint Fine-tuning
(D-FT) for multi-class segmentation (introduced in Section 2.3). We consider AU-Net
CEMD architecture as baseline and fine-tune it on a three-class organ subset subsuming
abdominal wall, colon, and stomach.

Results (Table 3) demonstrate that D-FT consistently outperforms the baseline and
KS-FT for all organs, achieving an overall improvement of 5.33% in DICE score after fine-
tuning. It suggests that preserving organ-specific features during fine-tuning is crucial for
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maintaining segmentation accuracy. While KS-FT showed improvements for the abdominal
wall and stomach, its performance degraded significantly for colon segmentation, indicating
that simultaneous parameter updates may lead to feature interference in complex anatomical
structures.

Table 3: Fine-tuning Strategy Comparison: DICE and IoU scores (in %) for base model,
Knowledge Sharing Fine-tuning (KS-FT), and Disjoint Fine-tuning (D-FT) on three-organ
subset.

| | DICE Score (in %) |  IoU Score (in %)
Organ | Pixel (%) | Base KS-FT D-FT | Base KS-FT D-FT
Abdominal Wall | 7.69 | 56.17 62.64 63.98 | 47.19 55.76  56.76
Colon 560 | 33.38 2142 38.56 | 25.76 1516 29.55
Stomach 6.97 | 6521 6552 66.22 | 5526 55.80 56.59
Overall - 51.59 49.86 56.92 | 42.07 42.24 47.63

4. Conclusion

Our work presents several contributions to the field of multi-organ segmentation in laparo-
scopic surgery. Firstly, our evaluation of backbone architectures demonstrates that AU-Net
consistently outperforms conventional architectures. The integration of attention gates in
standard U-Net proved particularly effective for organs with distinct boundaries. Secondly,
our investigation of parameter sharing strategies revealed that architectural design, rather
than model capacity alone, plays a crucial role in segmentation performance. The CEMD ar-
chitecture, despite having similar parameter counts to E-CECD, achieved superior results,
suggesting that organ-specific decoders are better suited for capturing unique anatomi-
cal features in surgical organ images. Our analysis of parameter sharing approaches for
fine-tuning indicates the importance of preserving specialized features in transfer learning,
particularly for complex anatomical structures.

Future work should address the persistent challenge of class imbalance between organ
representations and segmentation performance. Additionally, investigating more sophis-
ticated attention mechanisms and developing strategies for efficient knowledge transfer
between organ-specific decoders could further improve performance for less-represented
anatomical structures. Finally, exploring techniques such as Parameter-Efficient Fine-
Tuning (PEFT) methods, including low-rank adaptations (LoRA), or pruning strategies,
could be explored to optimize the architecture. These approaches have the potential to
maintain high segmentation accuracy while significantly lowering computational require-
ments, making the model more practical for deployment in resource-constrained settings.



EFFECTIVE DISJOINT REPRESENTATIONAL LEARNING

Acknowledgments

This research has been funded by the Federal Ministry of Education and Research of Ger-
many and the state of North-Rhine Westphalia as part of the Lamarr-Institute for Machine
Learning and Artificial Intelligence, LAMARR22B.

Additional Results

Table 4: Model Performance Comparison: IOU Scores (in %) (Mean + Standard Deviation)
across different backbone architectures. % indicates the foreground-to-background ratio for
each organ in the test set.

Organ | % |  U-Net DeepLabv3 | PVT U-Net AU-Net

Abdominal Wall | 27.32 | 80.02 +8.21 70.73 £8.95 | 72.96 +11.30 | 80.19 +8.80
Colon 11.07 | 60.14 +14.63 | 45.70 +15.22 | 45.07 +17.17 | 64.27 +12.82
Inferior Artery 3.14 | 32.80 +9.87 | 23.19 1060 | 25.17 +11.67 | 32.64 +11.85
Intestinal Veins 1.25 | 44.32 +11.15 | 28.49 +14.37 | 32.50 +13.09 | 48.30 +14.81
Liver 24.59 | 65.14 +18.69 | 57.83 +17.82 | 42.56 +11.77 | 61.66 +22.51
Pancreas 2.03 | 18.25 +13.86 | 16.25 +10.52 | 14.20 +12.96 | 19.10 +14.60
Small Intestine 15.32 | 71.29 +11.18 | 58.14 +958 | 58.53 +7.38 | 75.11 +10.25
Spleen 3.45 | 72.26 +12.62 | 59.11 +12.97 | 49.12 £20.07 | 78.56 +10.54
Stomach 4.73 | 50.77 £17.53 | 42.94 +15.35 | 44.97 +17.16 | 57.92 +19.01
Ureter 1.38 | 17.32 +13.80 | 18.75 +11.73 | 18.25 +£11.98 | 35.46 +16.29
Vesicular Glands | 2.37 | 20.26 +11.54 | 17.55 +9.56 | 30.80 +13.18 | 32.34 +13.60
Overall - 48.42 +23.33 | 39.88 +19.83 | 37.92 +17.96 | 52.78 +21.21
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Figure 2: Scatter plots showing the correlation between pixel % and DICE scores (in %)
for U-Net, DeepLabv3, PVT U-Net, and AU-Net. Each plot includes a regression trendline
and corresponding Pearson correlation coefficient.
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Figure 3: Qualitative comparison of segmentation results for 11 anatomical structures, com-
paring U-Net and AU-Net across two comprehensive visualizations. Each subplot includes
(1) the original surgical image, (2) the ground truth segmentation mask, (3) U-Net predicted
segmentation mask, and (4) AU-Net predicted segmentation mask. The first visualization
presents results for the first six organs, while the second visualization shows results for
the remaining five organs. AU-Net demonstrates superior boundary delineation and re-
duced false positives compared to U-Net, particularly in regions with complex anatomical
interfaces.
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Table 5: Architectural Comparison: IoU Scores (in %) (Mean + Standard Deviation) and
computational requirements for CECD, E-CECD, and CEMD variants.

Organ | Pixel % | CECD | E-CECD CEMD

Parameters (M) - 31.39 152.83 156.83

GMACs - 55.95 482.65 443.71

Abdominal Wall 27.32 74.95 +9.83 76.59 +9.46 80.19 +8.80
Colon 11.07 57.22 +16.04 | 56.45 +13.98 | 64.27 +12.82
Inferior Artery 3.14 23.84 +14.25 | 28.36 +12.97 | 32.64 +11.85
Intestinal Veins 1.25 41.77 +17.22 | 48.33 +13.99 | 48.30 +14.81
Liver 24.59 57.41 +22.11 | 58.42 +20.01 | 61.66 +22.51
Pancreas 2.03 22.58 +15.78 | 17.73 1579 | 19.10 +14.60
Small Intestine 15.32 71.07 +12.02 | 69.62 +10.42 | 75.11 +10.25
Spleen 3.45 73.62 +11.60 | 67.21 +16.86 | 78.56 +10.54
Stomach 6.58 50.40 +18.62 | 51.95 +15.81 | 57.92 +19.01
Ureter 1.38 31.87 £15.44 | 29.00 +13.61 | 35.46 +16.29
Vesicular Glands 2.37 32.56 +13.88 | 27.17 +15.76 | 32.34 +£13.60
Overall - 48.81 +24.22 | 48.09 +23.93 | 52.78 +21.21

11
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Table 6: Training Loss Function Comparison: DICE vs BCE, evaluating using DICE and
10U scores (in %) (Mean £ Standard Deviation) using the AU-Net architecture. The DICE
loss function was chosen for its ability to better handle the imbalanced class distribution
commonly present in medical image segmentation tasks. It emphasizes the overlap between
predicted and ground truth masks, which is crucial when segmenting small, irregularly
shaped organs where pixel-wise accuracy is less informative. As shown in the table, the use
of DICE loss results in higher DICE and IoU scores for most organs compared to BCE loss,
particularly for organs with smaller or more challenging shapes. The overall performance
of DICE loss (65.27 + 19.65 for DICE Score % and 52.78 £+ 21.21 for IoU Score %) also
outperforms BCE loss (57.63 £ 23.87 for DICE Score % and 45.35 £ 23.71 for IoU Score %),
highlighting its superior sensitivity to challenging segmentation tasks. This is particularly
important for precise delineation in medical imaging, where even small misclassifications
can have significant clinical implications.

DICE Score (%) IoU Score (%)

Organ
| DICE Loss  BCE Loss | DICE Loss  BCE Loss

Abdominal Wall | 88.73 +5.73  87.90 +5.78 80.19 +8.80 78.87 +8.79
Colon 77.46 +1026 72.56 +12.81 | 64.27 +12.82 58.40 +14.65
Inferior Artery 47.95 +1420 40.75 £13.75 | 32.64 +11.85 26.51 +10.74
Intestinal Veins 58.83 +15.64 49.88 1352 | 43.30 +£14.81 34.28 +11.75
Liver 73.55 £19.85 76.76 +15.55 | 61.66 +22.51 64.60 +18.43
Pancreas 29.80 +18.68 25.77 £17.50 | 19.10 +14.60 16.06 +12.71
Small Intestine 85.38 +7.04 8241 +7.11 | 75.11 +10.25  70.67 +9.79
Spleen 87.58 +6.98  78.13 +11.93 | 78.56 +10.54 65.57 +15.01
Stomach 71.38 +1657 63.82 +16.79 | 57.92 +19.01  48.97 +17.29
Ureter 50.07 +19.24  29.10 +19.48 | 35.46 +16.29 18.61 +13.93
Vesicular Glands | 47.27 +15.71  26.86 +14.32 | 32.34 +13.60 16.33 +9.98
Overall \ 65.27 +19.65 57.63 +23.87 | 52.78 +21.21  45.35 +23.71

12
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Table 7: Average Organ Ratios (foreground to background pixels) as percentages for Train,
Test, and Validation Sets for binary segmentation dataset. The table highlights similar
trends in pixel percentages across splits for each organ, demonstrating consistency in the
data distribution.

Organ | Train Set (%) | Test Set (%) | Validation Set (%)
Abdominal Wall 27.32 22.34 27.74
Colon 11.07 14.04 11.75
Inferior Artery 3.14 2.19 2.51
Intestinal Veins 1.25 1.66 1.05
Liver 24.59 11.62 14.99
Pancreas 2.03 4.06 3.18
Small Intestine 15.32 15.99 16.26
Spleen 3.45 2.19 4.00
Stomach 4.73 5.69 5.21
Ureter 1.38 0.85 1.18
Vesicular Glands 2.37 3.34 3.83

Table 8: Average Organ Ratios (foreground to background pixels) as percentages for Train,
Test, and Validation Sets for multi-class segmentation subset. The table highlights incon-
sistencies in organ pixel distribution across splits, with only organs having pixel percentages
greater than 1% in all splits (Abdominal Wall, Colon and Stomach) considered for evalua-
tion. This ensures robustness, avoids bias from underrepresented organs, and addresses the
issue of poor model training and performance on organs with extremely low pixel percent-
ages.

Organ | Train Set (%) | Test Set (%) | Validation Set (%)
Abdominal Wall 13.99 7.67 19.29
Colon 2.79 5.60 1.59
Liver 1.74 0.49 9.53
Pancreas 0.29 0.54 0.04
Small Intestine 0.46 0.20 0.41
Spleen 0.60 0.00 0.00
Stomach 6.19 6.97 6.55
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