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Abstract

Fine-tuning Multimodal Large Language Mod-
els (MLLMs) in multi-task learning scenarios has
emerged as an effective strategy for achieving
cross-domain specialization. However, multi-task
fine-tuning appears performance degradation on
open-response datasets. We posit that free-form
answer generation primarily depends on language
priors, and strengthening the integration of visual
behavioral cues is critical for enhancing predic-
tion robustness. In this work, we propose Noise
Resilient Confidence Alignment to address the
open-response overfitting challenge during multi-
task fine-tuning. Our approach prioritizes main-
taining consistent prediction patterns in MLLMs
across varying visual qualities. To achieve this,
we synthesize distorted visual inputs and enforce
token prediction confidence alignment towards
normal visual branch. By explicitly linking confi-
dence calibration to visual robustness, this method
reduces over-reliance on language priors. We con-
duct extensive empirical evaluations across di-
verse multi-task downstream via popular MLLM
architectures. The comprehensive experiment
demonstrates our effectiveness, showcasing its
ability to alleviate open-response overfitting while
maintaining satisfying multi-task performance.

1. Introduction
Driven by the remarkable success of Large Language Model
(LLM) in the natural language processing and understand-
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Figure 1: Background and Problem. Fine-tuning Multimodal
Large Language Model (MLLM) on Multi-Task scenarios enables
the model to acquire diverse specialization capabilities. This pro-
cess involves training ( ) both the connector and LLM modules for
E epochs. We notice that during tuning process, Open-Response
task reveals a notable performance degradation, while Fixed-
Choice task demonstrates consistent stability. Experiments are
conducted on Flickr30k and ScienceQA with VILA architecture.

ing (Devlin et al., 2018; Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2022; OpenAI, 2023), Many efforts
have been made to extend LLM to Multimodal Large Lan-
guage Model (MLLM), which have demonstrated remark-
able capabilities in generating coherent and contextually
relevant descriptions from visual inputs (Liu et al., 2023b;
Dai et al., 2023; Lin et al., 2023; Liu et al., 2023a). Specif-
ically, MLLM generally follows the paradigm to fuse the
pre-trained vision encoder (Radford et al., 2021; Dosovit-
skiy et al., 2021) into the representation space of the Large
Language Model, e.g., LLaMA (Touvron et al., 2023) and
Vicuna (Chiang et al., 2023), via the connector module (Dai
et al., 2023; Liu et al., 2023b; Luo et al., 2024). Consider-
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ing that Multimodal Large Language Model is optimized
on millions of multimodality instruction-following datasets
(Lin et al., 2014; Singh et al., 2019; Mishra et al., 2019), it
brings powerful generalization ability on different related
tasks. Despite this, MLLM still performs poorly on different
downstream tasks (Ren et al., 2023; Zhou et al., 2024).

Towards adapting to the target domain, the straightforward
solution is to fine-tune on the task-specific dataset (Zhou
et al., 2024; Han et al., 2024). With respect to existing ex-
plorations, they normally focus on single-task adaption, it
would be simple to construct the personalized fine-tuning
paradigm. However, facing the multi-task tuning require-
ment, we are curious what challenge would incur. To visu-
alize our exploration, we conducted extensive experiments
on two major downstream tasks: open-response and fixed-
choice tasks. We randomly select datasets from these two
views to combine the fine-tuning resource. As shown in
Fig. 1, with longer training epochs, the open-response task
appears the overfitting tendency (Guo et al., 2017; Lak-
shminarayanan et al., 2017) and brings the performance
degradation on the corresponding testing dataset. We fur-
ther investigate why Multimodal Large Language Model
(MLLM) overfitting excites. As noted in previous studies
(Favero et al., 2024; Wang et al., 2024a; Li et al., 2023b),
MLLM tends to rely on the language priors to generate de-
scription sentences, consequently allocating less attention to
visual information. Therefore, particularly in open-response
tasks, MLLM tends to overfit to the current distribution,
resulting in constrained specialization performance and an
increased likelihood of fabricating content (Huang et al.,
2023; Gekhman et al., 2024). Thus, a fundamental question
naturally emerges: How to alleviate open-response overfit-
ting during multi-task MLLM fine-tuning?

The naive solution is to establish asynchronous training
epochs, i.e., shorter for caption and longer for VQA. How-
ever, this operation would incur catastrophic forgetting on
the caption task. In this work, we seek to mitigate overfitting
in MLLM fine-tuning by examining the problem from an in-
ner visual behavior perspective. Specifically, we find that
when confronted with low-quality images, MLLM increas-
ingly relies on textual modality prior information rather than
visual cues (Leng et al., 2024; Favero et al., 2024; Wang
et al., 2024a; Li et al., 2023b). This observation suggests
that maximizing the mutual information between different
visual input views during fine-tuning could help counterbal-
ance the textual bias. Motivated by this insight, we propose
Noise Resilient Confidence Alignment (NRCA), a method
inspired by contrastive learning paradigms that encourage
augmentation invariance and instance discrimination (Ye
et al., 2019; 2020; He et al., 2020; Chen et al., 2020; Huang
et al., 2021; Wu et al., 2022; Wang et al., 2024c). However,
directly applying a standard contrastive paradigm in MLLM
for visual coherence two challenges. First, common data

augmentation strategies (e.g., color jitter, random cropping)
(Tian et al., 2020; Chen et al., 2024a; Woo et al., 2024; Kim
et al., 2024b) can drift from the original answer. To ad-
dress this issue, we propose the Noisy Visual Mixup which
utilizes the Gaussian noise to construct the distorted visual
signal, which does not modify the semantic level knowledge.
Second, the inherently variable prediction length of MLLM
makes straightforward contrastive regularization unstable
and potentially disruptive. To overcome this problem, we
introduce the Token Confidence Alignment, which calcu-
lates the overall prediction token confidence and expects
to achieve the confidence-level alignments. The rationale
behind this is that beyond local empirical minimization, we
encourage the noisy visual input to bring coherent predic-
tion confidence with the original ones to alleviate textual
bias and encourage visual representation ability. For a thor-
ough examination, we conduct experiments on multi-tasking
scenarios. We mix up and fine-tune on two major down-
stream tasks, i.e., open-response and fixed-choice. The main
contributions are summarized as follows:
• We focus on the multi-task Multimodal Large Language

Model fine-tuning scenario and reveal that open-response
tasks, such as image captioning, exhibit performance
degradation due to language prior overfitting.

• We propose Noise Resilient Confidence Alignment
(NRCA), a method designed to mitigate the open-response
overfitting phenomenon by enhancing visual cues dur-
ing Multimodal Large Language Model tuning process.
Generally speaking, we construct noisy visual inputs and
encourage token confidence alignment with the normal
branch to reinforce visual representation.

• We perform a comprehensive analysis on multi-task sce-
narios, including both open-response datasets (Flickr30k
(Young et al., 2014) and COCO-Cap (Lin et al., 2014))
and fixed-choice datasets (ScienceQA (Lu et al., 2022)
and IconQA(Lu et al., 2021)). Experiments are conducted
on the VILA (Lin et al., 2023) and LLaVA (Liu et al.,
2023b) architectures. Through a series of ablation studies,
the promising results empirically validate the effective-
ness of NRCA in alleviating open-response overfitting and
enhancing multi-task fine-tuning overall performance.

2. Related Works
2.1. Multimodal Large Language Models

Motivated by the great progress of Large Language Model
(LLM) (Radford et al., 2019; Brown et al., 2020; OpenAI,
2023; Touvron et al., 2023; Shen et al., 2024b; Jin et al.,
2024; 2025), researchers have been actively exploring ways
to combine pre-trained LLM and vision encoders to con-
struct the end-to-end Multimodal Large Language Model
(MLLM) capable of processing image-text. Existing so-
lutions follow to feed the visual features produced by a
pre-trained vision encoder into the LLM module with the
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visual projector, e.g., Flamingo (Alayrac et al., 2022), BLIP
(Li et al., 2022a; 2023a), InstructBLIP (Dai et al., 2023),
QWen-VL (Bai et al., 2023), LLaVA (Liu et al., 2023b;a;
Zhu et al., 2024c; Li et al., 2024a; Luo et al., 2024), VILA
(Lin et al., 2023; Fang et al., 2024), Cambrian-1 (Tong et al.,
2024). Although MLLM brings the powerful generalization
ability on a wide range of tasks (Marino et al., 2019; Lu
et al., 2021; Lin et al., 2014; Kazemzadeh et al., 2014) but
appears limited performance on specific domains. Thus,
fine-tuning MLLM on the target task brings a reasonable
solution for boosting downstream performance (Zhou et al.,
2024).

2.2. Fine-Tune MLLM

Pre-trained MLLM on large-scale datasets can be easily
transferred to downstream vision tasks through fine-tuning
(Huang et al., 2025). Existing solutions can be primarily cat-
egorized into two types. I) Reparameterization Fine-Tuning
(Hu et al., 2022; Zhang et al., 2023; Wang et al., 2023; Hao
et al., 2024; Liu et al., 2024c; Lin et al., 2024; Hu et al.,
2024; Bi et al., 2025a;b; Liang et al., 2025) normally apply
low-rank matrices to approximate weight changes during
fine-tuning and can merge with pre-trained weights prior to
inference. Despite certain advantages, it faces several limita-
tions that hinder application. First, it normally achieves sub-
optimal performance compared with direct weight updates
(Biderman et al., 2024; Shuttleworth et al., 2024). Second,
it introduces an additional parameter module, increasing
the complexity of achieving universal architectural com-
patibility. II) Partial Fine-Tuning (Li et al., 2022b; Ansell
et al., 2022; Li et al., 2023c; Yu et al., 2024; Zhang et al.,
2024d;a; Zhu et al., 2024a; Lu et al., 2024b) focuses on
directly optimizing selected candidate elements in MLLM,
such as visual connectors and LLM blocks, to align with the
requirements of downstream tasks. This paradigm enjoys
the architecture-agnostic property and thus largely bene-
fits MLLM transferability. In our work, we adhere to the
partial fine-tuning and further provide detailed a learnable
parameter discussion in the following Sec. 4.1.

2.3. Overfitting Behavior in MLLM Fine-Tuning

For downstream fine-tuning, the neural networks are de-
fault optimized based on the cross entropy (De Boer et al.,
2005) which has been shown to overfit to the current distri-
bution (Platt et al., 1999; Amodei et al., 2016; Guo et al.,
2017). In the context of MLLM, over-fitting on new factual
knowledge encourages MLLM prone to fabricating content,
amplifying the risk of hallucinations (Huang et al., 2023;
Gekhman et al., 2024). Substantial research efforts have
been directed towards compensating vision shortcomings
and could be mainly classified into two types: Vision En-
hancement (Luo et al., 2024; Shang et al., 2024; Ghosh et al.,
2024; Zhao et al., 2024; Li et al., 2024a; Shi et al., 2024;

Shen et al., 2024a; Guo et al., 2024) and Update Calibration
(Panigrahi et al., 2023; Chen et al., 2024b). The former
solution introduces additional external vision signals, e.g.,
high resolution, object grounding. However, these solutions
increase the computational burden and limit architecture
compatibility due to the added parameters in pre-trained
models (Huo et al., 2024). In contrast, Update Calibra-
tion methods derive two main research directions. ❶ Par-
tial Update Mask (Li et al., 2022b; Ansell et al., 2022; Li
et al., 2023c; Yu et al., 2024; Zhang et al., 2024d;a; Zhu
et al., 2024a; Lu et al., 2024b; Hui et al., 2024; Chen et al.,
2024b) selects the candidate parameters group to alleviate
the overfitting phenomenon. For example, Random Mask-
Tuning randomly selects half of the learnable parameters
and freezes the rest. ❷ Stiff Penalty Regularization (Kirk-
patrick et al., 2017; Zenke et al., 2017; Xuhong et al., 2018;
Ritter et al., 2018; Buzzega et al., 2020; Li et al., 2020;
Panigrahi et al., 2023) measures the parameter importance
degree to construct the parameter weight updates penalty.
However, existing approaches primarily focus on single-task
adaptation and indiscriminately apply anti-overfitting objec-
tives across all training samples, failing to address the fitting
condition inconsistencies in multi-task setting (Dong et al.,
2023) such as open-response and fixed-choice objectives. In
this work, we focus on MLLM multi-task fine-tuning and
reveal that open-response tasks are particularly susceptible
to overfitting due to excessive dependence on textual modal-
ities. To mitigate this limitation, we propose leveraging in-
trinsic visual behavior patterns to strengthen cross-modal
representation robustness. To address this issue, we incor-
porate. Specifically, we synthesize perturbed visual inputs
through Gaussian noise injection and enforce confidence
consistency between predictions from corrupted and pristine
visual branches. This dual-branch alignment mechanism
effectively reduces textual bias dominance while preserv-
ing semantic fidelity, effectively counteracting overfitting
tendencies during MLLM optimization.

3. Methodology
3.1. Preliminary

Given the Multimodal Large Language Model (MLLM θ)
architecture, the MLLM model typically includes three mod-
ules: visual encoder f (Dosovitskiy et al., 2021), LLM g,
and the connector module φ (Liu et al., 2023b; Dai et al.,
2023; Liu et al., 2023a; Lin et al., 2023). For a query in-
stance, the input consists of both a visual image xv and a
textual instruction xt. Denote the vocabulary dictionary as
V and language response y = {y1, . . . ,yt, . . . ,yT } ∈ RT .
Thus, yt ∈ V and t ∈ {1, . . . , T}. T denotes the to-
ken length. To be precise, we extract the visual features
mv = f(xv), and then apply the trainable projection φ to
convert mv into language embedding tokens, hv = φ ·mv.
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Figure 2: Schematization of NRCA. We propose Noisy Visual
Mixup, which leverages Gaussian distribution to generate noisy
visual inputs. Additionally, we introduce Token Confidence Align-
ment, designed to align the confidence of noisy tokens with the
normal visual branch behavior, thereby enhancing visual represen-
tations during multi-task fine-tuning. The process is illustrated via
logits output with the token length T =3 and class number |V |=4.
Best viewed in color. Zoom in for details. Refer to Sec. 3.2

And textual token as ht = Tokenize(xt). Next, we combine
both visual and textual tokens and pass them into the LLM
module g to generate the logits output z = g(hv, ht). In
our work, following previous MLLM fine-tuning works and
benchmarks (Zhou et al., 2024; Zhu et al., 2024a; Han et al.,
2024) to select the trainable parameters. For the visual mod-
ule, we freeze the vision encoder and tune visual connector
module φ. For LLM aspect, LLM includes several trans-
former blocks and selects the candidate block layers set N
for optimization as g[L]. Thus, we obtain learnable modules
as w = {φ, g[N ]}. Recall the fine-tuning distribution D,
the default MLLM optimization procedure follows:

argmin
w

E(xv,xt,y)∈DL
(
g(hv, ht),y

)
. (1)

The L normally utilizes the Cross-Entropy term (De Boer
et al., 2005) for regular optimization target.

3.2. Noise Resilient Confidence Alignment

Motivation. In general, features derived from the standard
visual output layer are effective for reasoning across Multi-
modal tasks. However, due to the language prior bias (Leng
et al., 2024; Favero et al., 2024; Liu et al., 2024a; Wang et al.,
2024b; Zhang et al., 2024b), Multimodal Large Language
Model (MLLM), particularly during the fine-tuning stage
for caption generation, tend to rely on the language-based
intuition. Therefore, in our work, we focus on enhancing
the visual representation to mitigate overfitting and improve

downstream performance. Inspired by the success of the
contrastive paradigm (Wu et al., 2018; Ye et al., 2019; 2020;
Chen et al., 2020; Khosla et al., 2020; Chen et al., 2022), we
aim to encourage the MLLM to generate consistent predic-
tive behavior for both distorted and normal visual inputs.

Noisy Visual Mixup. Compared to popular contrastive
augmentation such as color jitter and random cropping (Xiao
et al., 2021; Zhao et al., 2021; Wang et al., 2022; 2024c),
would largely bring the hallucination prediction and fail
to align with the original feedback. Thus, we model the
inherent characteristics of the current image by introducing
a random Gaussian distribution based on its own feature
space. This approach leverages the image unique feature
distribution to generate stochastic variations, capturing both
its intrinsic structure and potential perturbations.

µ = fµ(x
v), σ = fσ(x

v), (2a)

x̃v = δ N (µ, σ2)︸ ︷︷ ︸
Noisy Part

+ (1− δ)xv︸ ︷︷ ︸
Normal Part

. (2b)

µ and σ2 respectively denote the mean and variance of the
distribution. N specifies the Gaussian distribution. The
δ denotes the noisy ratio and is default set as 0.5. Then,
we feed both normal xv and noisy x̃v visual information
with the corresponding text prompt xt into the MLLM and
respectively obtain the contextual word prediction logits as
z = g(hv, ht) and z̃ = g(h̃v, ht).

Token Confidence Alignment. Compared with traditional
classification tasks, the prediction z ∈ RT×c for MLLM
appears high output dimensions attributed to vocabulary
scale, e.g., c = 32000 in LLaMA, As a result, directly con-
ducting distribution alignment faces challenges related to
the imbalance between head-tail knowledge variations (Gu
et al., 2024; 2025; Kim et al., 2024a; Ko et al., 2024), and
fails to adequately reflect the reliability of the ground-truth
signal. Therefore, in this work, we propose aligning token
confidence rather than token distribution to mitigate overfit-
ting during the fine-tuning stage of MLLM. Specifically, we
first measure the prediction probability for the token t via
the following formulation:

pt = σ(zt), p̃t = σ(z̃t) ∈ Rc,

p = [pt]
T
t=1, p̃ = [p̃t]

T
t=1 ∈ RT×C .

(3)

σ means the softmax function. Then, we further obtain
the overall token prediction confidence based on the ground-
truth labels y = {yt}Tt=1 as:

I =
1

T

T∑
t=1

pyt
t , Ĩ =

1

T

T∑
t=1

p̃yt
t . (4)

Naturally, we encourage the noisy prediction confidence Ĩ
to align with the normal ones I. Furthermore, applying the
same penalty strength across all samples fails to account
for sample-specific fitting conditions. To address this, we
introduce the empirical loss as a guiding factor, allowing
for tailored penalty allocation for each query sample. We
introduce the following regularization term.
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LCE =
1

T

T∑
t=1

−1yt log(pt), (5a)

LNRCA = |1− Ĩ
I
| × LCE . (5b)

where 1 denotes the one-hot encoding of yt.We detach
the normal branch signals in Eq. (5b) to avoid the MLLM
optimization degradation. Empirically, we identify open-
response samples based on their label length, applying this
operation separately to these samples. Specifically, we ob-
serve that fixed-choice sample labels typically consist of a
single word followed by the [EOS] token, with the label
length as 2. Finally, we carry out the following optimization
objective in fine-tuning phase:

L = LCE + λLNRCA. (6)

λ represents the penalization hyper-parameter that controls
the strength of confidence alignment. We set λ = 2 and pro-
vide the corresponding ablation analysis in Sec. 4.2. Over-
all, the MLLM model is regularized to preserve the down-
stream distribution while promoting invariance in distorted
confidence. As a result, our method effectively mitigates
downstream open-response overfitting by enhancing visual
behavior alignment. We provide a algorithm description in
Algorithm 1 and the methodological framework in Fig. 2.

3.3. Discussion and Limitation

Gaussian Noise Meets MLLM. Existing MLLM research
often employs Gaussian noise (Goodman, 1963; Tüske et al.,
2015; Variani et al., 2015; Hayashi & Uchida, 2019; Ardiz-
zone et al., 2020) to generate low-quality visual inputs,
thereby amplifying language priors (Xiao et al., 2024). A
common approach to mitigating MLLM hallucinations is to
adjust next-token logits in a contrastive manner using the
normal prediction distribution (Leng et al., 2024; Woo et al.,
2024; Zhu et al., 2024b; Chen et al., 2024a; Huo et al., 2024;
Zhang et al., 2024b; Xiao et al., 2024; Liu et al., 2024b).
The rationale behind this approach is that disturbed inputs
significantly exacerbate hallucinations, while contrastive
decoding mitigates this effect by subtracting hallucinated
concepts from the original distribution, thereby reducing
confusion. Consequently, existing methodologies often treat
noisy visual behavior as an optimization trap and disregard
the corresponding feedback. In contrast, our work intro-
duces a novel MLLM multi-task tuning approach to address
open-response overfitting by encouraging prediction confi-
dence alignment between normal and noisy visual signals.
This strategy compels the network to fully leverage its vi-
sual processing capabilities, achieving consistent prediction
confidence even when faced with degraded visual inputs.

Conceptual Difference. Fine-tuning the MLLM for down-
stream tasks is a straightforward approach to developing
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Figure 3: Noise Evaluation Comparison. We evaluate noisy and
normal samples on Flickr30k using LLaVA with E = 3. Normal
Full Fine-Tuning shows a limited performance gap between noisy
and normal visual signals, revealing a tendency of language prior
reliance. In contrast, our approach demonstrates a notable per-
formance improvement by emphasizing the importance of visual
information. See Sec. 3.3 for details.

Table 1: Attention Allocation and Performance Comparison.
We conduct the evaluation on the Flickr30k with noisy visual input.
We tuning on the Flickr30k+ScienceQA datasets based on LLaVA
architecture. Please see Sec. 4.2 for detailed discussion.

Metrics Full FT Ran Mask Mag Mask Grafting L2-Reg Ours

System (All) 0.6837 0.6966 0.6927 0.6673 0.6791 0.6677
Prompt (All) 0.1229 0.1297 0.1280 0.1241 0.1181 0.1225
Visual (All) 0.1933 0.1737 0.1793 0.2084 0.2029 0.2098

System (Mid) 0.5865 0.5874 0.5859 0.5726 0.5826 0.5574
Prompt (Mid) 0.1733 0.1843 0.1832 0.1664 0.1623 0.1576
Visual (Mid) 0.2402 0.2282 0.2309 0.2609 0.2552 0.2850

domain-specialized experts. However, the limited size of
downstream datasets poses a significant challenge, often
leading to overfitting on target-specific behaviors and catas-
trophic forgetting of pre-trained knowledge. Existing stud-
ies predominantly focus on mitigating catastrophic forget-
ting in MLLM, where fine-tuning risks compromise the gen-
erality achieved during pre-training, thus causing upstream
performance degradation. Consequently, prior research has
primarily aimed to balance generalization and specializa-
tion, ensuring robust performance on both seen and unseen
tasks. In contrast, our work addresses a more practical sce-
nario by fine-tuning MLLM for multi-task applications. We
argue that leveraging MLLM to achieve multi-task special-
ization is a more efficient approach than the conventional
one-to-one fine-tuning paradigm. However, when dealing
with multi-task distributions, we identify a critical issue:
MLLM frequently experiences performance degradation in
open-response tasks, e.g., image caption understanding, as
shown in Fig. 1. We hypothesize that this degradation arises
because open-response tasks tend to rely excessively on
language priors rather than leveraging visual information,
as confirmed in Fig. 3. Full Fine-Tuning brings limited per-
formance gap towards the input visual quality. Furthermore,
as for Multimodal Large Language Model (MLLM), input
tokens include System Tokens, Prompt Tokens and Visual

5



Be Confident: Uncovering Overfitting in MLLM Multi-Task Tuning

Table 2: Incremental Resource Cost with Overall Performance
Comparison. Accuracies are derived from Flickr30k & Sci-
enceQA based on VILA for E = 3. O denotes the complexity
degree. - indicates unchanged values. ↑ means improved accuracy
compared with Full FT. Please refer to Sec. 3.3.

Metrics Full FT L2-Reg Ran Mask Our NRCA

Resource Cost − O(|θ|) O(|θ|) O(B×(|x̃v|+ |z̃|)
Performance 79.47 79.52 83.02 83.24↑3.77

Table 3: Ablative Experiments for LNRCA Formulation in
Eq. (5b). Please see Sec. 4.2 for detailed discussion.
|1− Ĩ

I | LCE Flickr30k SQA AVG COCO-Cap SQA AVG

Fine-Tune with VILA architecture
Zero-shot 55.45 68.96 62.20 72.57 68.96 70.76
% (Full FT) 70.33 88.60 79.47 109.58 90.33 99.96
! 70.87 90.43 80.65 114.83 89.59 102.21
! ! 75.10 90.23 82.67 120.05 89.94 105.00

Fine-Tune with LLaVA architecture
Zero-shot 25.31 69.56 47.44 40.28 69.56 54.92
% (Full FT) 63.11 88.3 75.71 101.76 88.65 95.21
! 66.82 87.56 77.19 104.39 87.80 96.10
! ! 72.39 86.61 79.50 114.54 86.32 100.43

Tokens and appear different contribution for the prediction
output. Thus, we utilize the attention map between the first
output token and the input token under the noisy visual
input to visualize the contribution of different input token.
Besides, recent works (Che et al., 2025; Zhang et al., 2025;
2024c) have shown that the MLLM tends to extract object
information from the image at the middle layers. Thus, we
plot the all layers and middle layers attention allocation for
the first output token in the following Tab. 1. The results re-
veal that our method allocates more attention weights on the
visual cue. Therefore, both performance comparisons and
attention analyses show that our method reduces reliance on
language priors and improves overall model performance
by encouraging consistent predictions, even under distorted
visual inputs—highlighting the value of posterior guidance
over prior dependence.

Limitations. Our method, NRCA constructs additional
noisy visual inputs to obtain the corresponding prediction
confidence and expects confidence alignment with the nor-
mal branch. As a result, our method incurs extra storage
requirements for the noisy input x̃v and the logits output sig-
nals z̃. However, existing methods typically require storing
the full pre-trained parameters to apply parameter stiffness
restrictions or sparse mask updating strategies, which heav-
ily depend on the MLLM model scale (O(|θ|)). As shown
in Table 2, while NRCA introduces an incremental storage
complexity as O(B× (|x̃v| + |z̃|)), this cost is relatively
small compared to existing methods. Additionally, NRCA
achieves the highest performance of 83.24, demonstrating
that it effectively balances resource efficiency and down-
stream performance. Detailed performance comparison
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Figure 5: Ablation on the hyper-parameter λ in Eq. (6) for the
proposed method with different MLLM architectures. We default
set λ=2 in the following experiments. See Sec. 4.2. for details.

refers to Sec. 4.3. Furthermore, when the downstream dis-
tribution consists solely of fixed-choice tasks, MLLM does
not encounter significant performance degradation. How-
ever, open-response tasks are crucial for unlocking MLLM
ability to generate free-form expressions, which go beyond
the limitations of traditional classification. In the context
of multi-task settings, we argue that open-response tasks
play an essential role in showcasing the full potential of
dialogue experience of MLLM, even though they introduce
challenges such as performance drops due to overfitting on
language information priors.

4. Experiments
4.1. Experimental Setup

Architecture and Datasets. Adhering to the Multimodal
Large Language Model (MLLM) paradigm, we evaluate the
effectiveness of our proposed methods using two widely
adopted models, LLaVA(Liu et al., 2023b) and VILA(Lin
et al., 2023), as the foundational MLLM for our experi-
ments. We categorize the four downstream datasets into two
task types: image captioning (open-response) and visual
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Table 4: Comparison with the state-of-the-art Multimodal Large Language Model (MLLM) Fine-Tuning Solutions on the multi-task
setting: image captioning (Flickr30k and COCO-Cap) and visual question-answering (ScienceQA and IconQA) based on VILA and
LLaVA architectures with tuning epoch E = 3. We mark the Best in bold and Second in underline across different tuning methods. +
means improved accuracy compared with Zero-shot. Please refer to Sec. 4.3 for relative explanations.

Methods Flickr30k ScienceQA AVG COCO-Cap ScienceQA AVG Flickr30k IconQA AVG COCO-Cap IconQA AVG

Fine-Tune with VILA architecture
Zero-shot 55.45 68.96 62.20 72.57 68.96 70.76 55.45 55.57 55.51 72.57 55.57 64.07

Full FT 70.33 88.60 79.47 109.58 90.33 99.96 68.20 86.62 77.41 108.16 86.91 97.53
Ran Mask 74.77 91.27 83.02 113.86 90.68 102.27 73.16 86.57 79.87 113.59 86.64 100.12
Mag Mask 75.37 91.08 83.23 114.12 90.28 102.20 73.13 87.32 80.23 113.29 87.11 100.20

Grafting 70.23 89.14 79.69 109.02 90.93 99.98 69.01 86.67 77.84 107.73 87.44 97.59
L2-Reg 68.71 90.33 79.52 108.94 90.48 99.71 69.3 87.22 78.26 108.69 87.00 97.85

NRCA
76.00

+ 20.55
90.48

+ 21.52
83.24

+ 21.04
122.27
+ 49.70

89.64
+ 20.68

105.96
+ 35.20

75.98
+ 20.53

86.99
+ 31.42

81.49
+ 25.98

120.82
+ 48.25

86.19
+ 30.62

103.51
+ 39.44

Fine-Tune with LLaVA architecture
Zero-shot 25.31 69.56 47.44 40.28 69.56 54.92 25.31 48.42 36.87 40.28 48.42 44.35

Full FT 63.11 88.30 75.71 101.76 88.65 95.21 64.14 82.68 73.41 101.68 83.06 92.37
Ran Mask 67.56 85.62 76.59 105.24 85.82 95.53 66.64 79.65 73.15 104.86 79.69 92.28
Mag Mask 66.72 85.72 76.22 105.67 85.57 95.62 66.70 79.54 73.12 105.94 79.56 92.75

Grafting 63.30 89.44 76.37 100.47 89.64 95.06 66.35 83.91 75.13 101.20 83.76 92.48
L2-Reg 64.78 90.03 77.41 101.05 89.94 95.50 65.24 83.95 74.60 101.92 83.72 92.82

NRCA
75.49

+ 50.18
83.84

+ 14.28
79.67

+ 32.23
121.50
+ 81.22

83.94
+ 14.38

102.72
+ 47.80

74.31
+ 49.00

77.60
+ 29.18

75.96
+ 39.09

118.74
+ 78.46

77.83
+ 29.41

98.29
+ 53.94

question-answering (fixed-choice), as follows:

• Flickr30k (Young et al., 2014): Design for understanding
the visual content of images associated with linguistic
expressions, it contains 31, 000 images from Flickr, each
paired with 5 human-annotated reference sentences.

• COCO-Cap (Lin et al., 2014): Comprise over 330, 000
images with more than 1.5 million captions, this dataset
provides 5 human-generated captions per image for both
training and validation.

• ScienceQA (Lu et al., 2022): Collect from elementary
and high school science curricula. This dataset includes
approximately 21, 000 multimodal multiple-choice ques-
tions spanning diverse science topics.

• IconQA (Lu et al., 2021): Focus on abstract diagram
understanding and cognitive reasoning in real diagram.

Specifically, we follow the training settings from prior
works (Zhou et al., 2024; Zhu et al., 2024a) and utilize
official optimization scripts1. For fixed-choice tasks (Sci-
enceQA and IconQA), we use the textual prompt: ”Answer
with the option’s letter from the given choices directly.” For
open-response tasks (Flickr30k and COCO-Cap), we collect
five manually written instructions and randomly sample one
as the prompt for each caption, as follows:
•”Describe the image as simply as possible with a sentence

or phrase”
•”Give a brief summary of what you see”
•”Provide a short description of the image”
•”Write a short description for the image”
•”Briefly describe the content of the image”

1https://huggingface.co/datasets/BAAI/DataOptim

For each dataset, we randomly sample 10k instances from
the training set. We randomly select datasets from the above
mentioned captioning and VQA tasks to construct the multi-
task training datasets.

Counterparts. We focus on exploring anti-overfitting
MLLM fine-tuning methods and mainly compare with the
❶ Partial Update Mask and ❷ Stiff Penalty Regularization
solutions as the following formulations:

• Full Fine-Tuning (Full FT) [arXiv’05] (De Boer et al.,
2005): Default optimize full candidate parameters towards
the downstream distribution.

• L2-Regularization (L2-Reg) [PNAS’17] (Kirkpatrick et al.,
2017): Add L2 regularization term with the regularization
hyper-parameter, i.e., 1e-3, to the original loss function.
It focuses on keeping the fine-tuning model closer to the
pre-trained model, thereby mitigating forgetting.

• Grafting [ICML’23] (Panigrahi et al., 2023): Localize
newly acquired skills inside fine-tuned language mod-
els, which could be regarded as L1 regularization with the
penalty weigh, i.e., 1e-6.

• Random Mask-Tuning (Ran Mask) [arXiv’24] (Hui et al.,
2024): Randomly update half ratio of parameters within
each transformer layer at each iteration while freezing the
other elements. We default set the sampling ratio as 50%.

• Magnitude Tuning (Mag Mask) [NeurIPS’15] (Han et al.,
2015)): Select and maintain elements with relative large
weight magnitude with the pre-defined sampling ratio.
The default updating proportion is set as 50%.

Implementation Details. We follow the official reposito-
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Table 5: Comparison with the state-of-the-art Multimodal Large Language Model (MLLM) Fine-Tuning Solutions on the multi-task
setting: image captioning (Flickr30k and COCO-Cap) and visual question-answering (ScienceQA and IconQA) based on VILA and
LLaVA architectures with tuning epoch E = 5. We mark the Best in bold and Second in underline across different tuning methods. +
means improved accuracy compared with Zero-shot. Please refer to Sec. 4.3 for relative explanations.

Methods Flickr30k ScienceQA AVG COCO-Cap ScienceQA AVG Flickr30k IconQA AVG COCO-Cap IconQA AVG

Fine-Tune with VILA architecture
Zero-shot 55.45 68.96 62.20 72.57 68.96 70.76 55.45 55.57 55.51 72.57 55.57 64.07

Full FT 64.67 91.08 77.88 102.23 91.22 96.73 65.42 87.68 76.55 100.40 87.29 93.85
Ran Mask 66.50 90.98 78.74 106.52 90.98 98.75 67.43 86.95 77.19 105.4 87.21 96.31
Mag Mask 69.17 91.77 80.47 105.16 91.22 98.19 67.34 87.24 77.29 104.98 86.87 95.92

Grafting 64.76 91.03 77.90 100.16 90.13 95.15 62.4 87.82 75.11 99.43 87.43 93.43
L2-Reg 63.13 91.22 77.18 101.98 91.67 96.83 61.72 87.86 74.79 100.34 87.46 93.90

NRCA
70.87

+ 15.42
90.58

+ 21.62
80.73

+ 18.53
117.54
+ 44.97

90.78
+ 21.82

104.16
+ 33.40

74.95
+ 19.50

87.22
+ 31.65

81.08
+ 25.57

117.99
+ 45.42

86.92
+ 31.35

102.46
+ 38.39

Fine-Tune with LLaVA architecture
Zero-shot 25.31 69.56 47.44 40.28 69.56 54.92 25.31 48.42 36.87 40.28 48.42 44.35

Full FT 61.46 91.08 76.27 92.82 90.88 91.85 60.51 84.69 72.60 92.19 84.48 88.34
Ran Mask 62.31 88.84 75.58 95.91 88.30 92.11 62.14 82.66 72.40 91.98 81.62 86.80
Mag Mask 63.10 88.55 75.83 96.88 88.50 92.69 61.37 82.43 71.90 95.23 82.79 89.01

Grafting 61.40 91.82 76.61 92.91 91.92 92.42 101.2 83.76 92.48 90.84 85.16 88.00
L2-Reg 59.77 91.52 75.65 91.76 91.67 91.72 59.18 85.99 72.59 91.52 85.32 88.42

NRCA
73.04

+ 47.73
87.11

+ 17.55
80.08

+ 32.64
120.81
+ 80.53

82.80
+ 13.24

101.81
+ 46.89

74.51
+ 49.20

81.65
+ 33.23

78.08
+ 41.21

120.31
+ 80.03

78.34
+ 29.92

99.33
+ 54.98

ries2,3 to conduct the fine-tuning procedure. With respect
to the training scenarios, we first randomly sample 10, 000
instances from each dataset and combine them as multi-task
tuning datasets. As for the optimization details, the learning
rate lr in LLaVA (Liu et al., 2023b) is 2e− 4 for LLM and
2e− 5 for the visual projector. For VILA(Lin et al., 2023),
we uniformly set the learning rate to 1e − 4. The training
epochs are set to E = 3 and E = 5. The training batch
size B is set to 16 by default. The fine-tuning block for
LLM is the last N = 2 layers. Regarding the experimental
conditions, all experiments are conducted on 8 NVIDIA
4090 GPUs, each with 24GB of memory. Due to the limited
computational resources, we select the LLaVA-1.5-7B for
LLaVA and VILA1.5-3B for VILA.

Evaluation Metrics. To evaluate the performance of
MLLM across different downstream task types, we utilize
CIDER (Vedantam et al., 2015) and Top-1 Accuracy metrics
for image captioning and visual question-answering tasks,
respectively. Additionally, we compute the mean results to
represent the overall downstream performance.

4.2. Diagnostic Analysis

We perform ablation studies on two scenarios: Flickr30k &
ScienceQA and COCO-Cap & ScienceQA, utilizing both
the VILA and LLaVA architectures with a tuning epoch of
E=3 to facilitate an in-depth analysis.

Proposed Training Objective. We quantitatively ana-
lyze the proposed Noise Resilient Confidence Alignment

2https://github.com/haotian-liu/LLaVA
3https://github.com/NVlabs/VILA

(NRCA) in Tab. 3. The ablation results demonstrate that
directly encouraging prediction behavior consistency effec-
tively mitigates the open-response overfitting phenomenon.
Moreover, incorporating empirical loss guidance, which
accounts for sample difficulty, further enhances the over-
all performance. Thus, combining Noisy Visual Mixup
and Token Confidence Alignment acquires satisfying down-
stream multi-task performance that coincides with our mo-
tivation of exploiting the noisy resilience to alleviate the
open-response overfitting during Multimodal Large Lan-
guage Model tuning.

Noisy MixUp Ratio. The parameter δ, introduced in
Eq. (2b), controls the Gaussian distortion ratio. As illus-
trated in Fig. 4, increasing the distortion ratio poses chal-
lenges for confidence alignment in open-response tasks,
resulting in limited performance improvements. Generally,
as δ increases, a trade-off between open-response and fixed-
choice performance becomes more pronounced, with im-
provements diminishing under higher noise ratios. For con-
sistency and convenience, we set δ = 0.5 across different
scenarios in the subsequent experiments.

Control Hyper-Parameter λ in Eq. (6). The Sec. 4 quan-
tifies the effect of hyper-parameter λ, which measures the
strength of token confidence difference penalization on dif-
ferent scenarios. Specifically, the open-response and fixed-
task trade-off performance progressively mounts as λ en-
larges, and the improvement presents marginal under strict
parameter stiffness. For convenience, we choose the λ = 2
for different scenarios in the following experiments.
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4.3. Comparison to State-of-the-Arts

We compare our NRCA against related approaches on the
multi-task scenarios: image-captioning & visual question-
answering tasks. As shown in Tab. 4 and Tab. 5, several key
observations can be made. First, Partial Update Mask does
not fundamentally mitigate overfitting but merely slows the
fitting process of MLLM. This is evident from its limited
performance gains, even with extended tuning epochs E
and larger model architectures, e.g., scaling from 3B to
7B. Specifically, Random Mask-Tuning applies stochastic
masks to parameters, injecting noise to reduce reliance on
specific sub-networks and implicitly regularize by limit-
ing parameter co-adaptation. While effective on smaller
models (VILA-3B), its performance drops on larger ones
(LLaVA-7B), suggesting its effect comes from constrained
optimization rather than addressing language prior domi-
nance. Second, Stiff Penalty Regularization is highly sensi-
tive to regularization strength, making it difficult to main-
tain stable performance improvements across varying set-
tings with consistent hyper-parameters. For instance, in
VILA with COCO-Cap and IconQA under E = 5, Graft-
ing demonstrates inferior performance compared to Full
Fine-Tuning, highlighting its limitations in achieving robust
and consistent results. Third, our method NRCA promotes
prediction confidence alignment and consistently delivers
robust results across various downstream tasks and model
architectures. Moreover, as demonstrated in Tab. 2, our
approach requires fewer computational resources compared
to existing methods, highlighting its efficiency.

5. Conclusion
In our work, we focus on fine-tuning Multimodal Large Lan-
guage Model (MLLM) in multi-task scenarios to achieve
multi-domain specialization. However, we observe a criti-
cal issue: open-response distributions appear performance
degradation during the training process. We attribute this
degradation to over language prior reliance. To address this,
we propose Noise Resilient Confidence Alignment (NRCA),
which aims to enhance the effect of visual cues in the pre-
diction process. Generally speaking, we leverage Gaussian
distortions to construct noisy visual inputs and encourage
overall token confidence alignment with the normal visual
branch behavior. Compared to existing methods, our ap-
proach offers two key advantages: First, Resource Cost De-
cline: NRCA conducts output calibration without requiring
storage of pre-trained Multimodal Large Language Model
weights to counteract overfitting phenomenon, making ours
computationally efficient compared to existing methods.
Second, Hyper-Parameter Stability: Related methods of-
ten rely on pre-defined mask ratios or decorate parameter
stiffness control, which are highly correlated with the ar-
chitecture and scale of MLLM. In contrast, our method

introduces prediction confidence calibration that shows the
model-agnostic property. NRCA has been validated across
various scenarios, demonstrating its effectiveness and high-
lighting its potential for broader applications.
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posable sparse fine-tuning for cross-lingual transfer. In
ACL, 2022.

Ardizzone, L., Mackowiak, R., Rother, C., and Köthe, U.
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APPENDIX

A. Notation Table
We provide the notation table in Tab. 6.

Table 6: Notations table.
Description Description

θ MLLM f Vision encoder
φ Connector g Large Language Model
y Language response T Label Length
V Vocabulary dictionary N LLM tuning blocks
xv Visual image N Gaussian distribution
x̃v Noisy visual image xt Textual instruction
mv Visual feature hv Visual token embedding
ht Text token embedding z Logits output
pt Token Probability pyt

t Token Confidence
I Overall token prediction σ softmax function
E Fine-Tuning epoch D Downstream dataset
L Loss function λ Control hyper-parameter
η Learning rate B Training batch size

B. Algorithm
We provide the algorithm description in Algorithm 1.

Algorithm 1 NRCA
Input: Fine-Tuning epoch E, Downstream dataset D
Overall MLLM Network θ, Trainable parameter module w
Output: The optimized selected MLLM module w

for e = 1, 2, ..., E do
for (xv, xt,y) ∈ D do

/* Construct Noisy Vision View */
µ, σ ← (xv) via Eq. (2a)
x̃v ← (xv, µ, σ) by Eq. (2b)

hv = φ(f(xv)) and h̃v = φ(f(x̃v))
ht = Tokenize(xt)

z = g(hv, ht) and z̃ = g(h̃v, ht)

/* Token Confidence Alignment */
pt = σ(zt), p̃t = σ(z̃t) ; // Token Prob.

p = [pyt
t ]Tt=1, p̃ = [p̃yt

t ]Tt=1 ; // Token Conf.
LNRCA ← (p, p̃) through Eq. (5b)

LCE ← (p,y) in Eq. (5a)
L = LCE + λLNRCA

w = w − η∇L ; // Update Param.
end

end

C. Rationale Analysis
We conduct a theoretical discussion to investigate the ra-
tionale for regularizing the prediction confidence in the
Multimodal Large Language Model (MLLM) to mitigate
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Figure 6: Empirical Loss on both Open-Response and Fixed-
Choice tasks. Experiments are based on the LLaVA with tuning
epoch E=5. We observe a stepwise loss tendency in the former.
The open-response distribution compels MLLM to over-memorize
each sample during every training epoch, resulting in a jumping
loss behavior. Please refer to Appendix C.

overfitting. As a preliminary step, we revisit the classi-
cal MLLM fine-tuning optimization loss. Specifically, we
suppose (xv, xt,y) as the query instance from the training
dataset, where y ∈ RT×|V | is the ground-truth label. We
obtain the prediction token logits as z = θ(xv, xt). Then,
we formulate the cross-entropy (De Boer et al., 2005) as:

LCE =
1

T

T∑
t=1

−1yt log(σ(z)),

=
1

T

T∑
t=1

−1yt log(pt),

=
1

T

T∑
t=1

log(pyt
t ),

(7)

where 1yt denotes the one-hot encoding of yt, and σ repre-
sents the softmax operation (Wang et al., 2017). Thus, to
some extent, minimizing LCE can be interpreted as maxi-
mizing the prediction confidence for each token, pyt

t .

Consequently, MLLM, with its large-scale network capacity,
often encounters less challenging scenarios when handling
downstream tasks with limited scope, making it prone to
memorizing the training samples. In open-response tasks,
a long ground-truth label sequence is typically involved.
As a result, during empirical loss minimization, each token
prediction confidence naturally increases to align with the
target distribution. In contrast, for fixed-choice tasks, where
only a single ground-truth token label usually exists (i.e.,
T = 1), responses are constrained to predefined options
such as A, B, C, or D. This constrained candidate label
space makes it more challenging to enforce memorization
of each individual sample.

Therefore, we respectively plot the training loss curve LCE

for both open-response and fixed-choice tasks. As shown
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Table 7: Comparison with the state-of-the-art Multimodal Large Language Model (MLLM) Fine-Tuning Solutions on the multi-task
setting: image captioning (Flickr30k and COCO-Cap) and visual question-answering (ScienceQA and IconQA) based on the VILA
architectures with tuning epoch E = 3. We mark the Best in bold and Second in underline across different tuning methods. + means
improved accuracy compared with Zero-shot. Please refer to Appendix D for relative explanations.

Methods Flickr30k ScienceQA AVG COCO-Cap ScienceQA AVG Flickr30k IconQA AVG COCO-Cap IconQA AVG

Fine-Tune with B = 32

Zero-shot 55.45 68.96 62.20 72.57 68.96 70.76 55.45 55.57 55.51 72.57 55.57 64.07
Full FT 71.73 90.28 81.01 111.22 90.13 100.68 71.67 86.68 79.18 110.86 87.46 99.16

Ran Mask 76.90 90.98 83.94 117.07 90.88 103.98 75.21 86.65 80.93 116.84 87.11 101.98
Mag Mask 77.89 90.78 84.34 117.35 91.27 104.31 76.13 86.97 81.55 116.93 86.91 101.92

Grafting 73.29 90.63 81.96 112.28 90.18 101.23 70.58 87.11 78.85 110.72 87.30 99.01
L2-Reg 73.92 90.68 82.30 111.5 90.48 100.99 71.73 87.06 79.40 110.76 87.35 99.06

NRCA
79.63

+ 24.18
90.08

+ 21.12
84.86

+ 22.66
122.50
+ 49.93

90.73
+ 21.77

106.62
+ 35.86

80.96
+ 25.51

86.62
+ 31.05

83.79
+ 28.28

122.60
+ 50.03

86.11
+ 30.54

104.35
+ 40.28

Fine-Tune with B = 24

Zero-shot 55.45 68.96 62.20 72.57 68.96 70.76 55.45 55.57 55.51 72.57 55.57 64.07
Full FT 71.57 90.68 81.13 110.31 90.48 100.40 71.63 87.08 79.35 109.72 86.49 98.11

Ran Mask 75.62 90.23 82.93 115.83 90.73 103.28 75.55 87.03 81.29 116.13 87.27 101.70
Mag Mask 75.16 90.63 82.90 115.35 90.68 103.02 74.27 87.27 80.77 115.10 87.16 101.13

Grafting 71.64 90.03 80.84 110.09 90.53 100.31 68.88 87.1 77.99 110.21 86.73 98.47
L2-Reg 71.31 90.08 80.70 109.81 90.38 100.10 69.75 87.38 78.57 109.65 86.78 98.22

NRCA
81.20

+ 25.75
90.18

+ 21.22
85.69

+ 23.49
123.22
+ 50.65

90.43
+ 21.47

106.83
+ 36.07

80.93
+ 25.48

86.15
+ 30.58

83.54
+ 28.03

123.84
+ 51.27

86.89
+ 31.32

105.37
+ 41.30

in Appendix C, the training loss for open-response tasks
does not exhibit a progressive loss tendency but instead
demonstrates a stepwise loss behavior. We hypothesize that
this phenomenon is because MLLM tends to memorize each
sample rather than explore the underlying distribution pat-
terns, also observed in (Li et al., 2024b; Lu et al., 2024a). In
contrast, it is challenging to map the same choice to different
multi-modal inputs for fixed-choice settings. Consequently,
MLLM is encouraged to analyze the multi-modal inputs and
make informed decisions.

With recall of the empirical open-response task minimiza-
tion, it would blindly increase the prediction confidence,
pyt

t . Therefore, in our work, we aim to reduce the reliance
of MLLM on language priors and instead emphasize the
role of visual features in prediction behavior. Generally, we
encourage noisy visual inputs to achieve consistent predic-
tion confidence comparable to the normal branch, thereby
mitigating learning shortcuts.

To formalize this, we denote I and Ĩ as the average predic-
tion confidence over ground-truth tokens under clean and
perturbed visual inputs (see Eq. (4)), respectively. Let zt and
z̃t be the predicted logits at position t, and let σ(·) denote
the softmax function. The NRCA regularization seeks to
minimize the relative deviation:

min

∣∣∣∣1− Ĩ

I

∣∣∣∣ = min

∣∣∣∣∣ 1T
T∑

t=1

σyt(zt)− σyt(z̃t)

I

∣∣∣∣∣ . (8)

Since I is detached from the computational graph, this sim-
plifies to:

min

∣∣∣∣∣
T∑

t=1

σyt(zt)− σyt(z̃t)

∣∣∣∣∣ . (9)

Assuming that σyt
(zt) ≥ σyt

(z̃t) holds (a natural assump-
tion since clean inputs tend to yield higher confidence), the
optimization objective becomes:

min

T∑
t=1

(σyt(zt)− σyt(z̃t)) , (10)

which encourages the perturbed-input confidence σyt
(z̃t)

to approach that of the clean input σyt
(zt). Since z̃t =

g(ϕ(f(x̃v)), ht), where f is the visual encoder and ϕ and g
denote the projection and decoding modules, this objective
drives the network to produce robust visual representations
that are invariant to input perturbations. As a result, our
model is encouraged to ground its predictions more faith-
fully in visual evidence rather than language priors, thereby
mitigating overfitting by preventing overconfidence on indi-
vidual training samples. We provide the full implementation
and formulation in Sec. 3.

D. Additional Experiments
We provide the experiment comparison with different train-
ing batch sizes of B ∈ {32, 24} in Tab. 7. We conduct
experiments on the VILA architectures on the four down-
stream datasets with the tuning epochs as E = 3. Compared
with existing Multimodal Large Language Model methods,
our method consistently demonstrates effectiveness.
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