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Abstract
We revisit the Follow the Regularized Leader
(FTRL) framework for Online Convex Optimiza-
tion (OCO) over compact sets, focusing on achiev-
ing dynamic regret guarantees. Prior work has
highlighted the framework’s limitations in dy-
namic environments due to its tendency to pro-
duce “lazy” iterates. However, building on in-
sights showing FTRL’s ability to produce “agile”
iterates, we show that it can indeed recover known
dynamic regret bounds through optimistic com-
position of future costs and careful linearization
of past costs, which can lead to pruning some
of them. This new analysis of FTRL against dy-
namic comparators yields a principled way to in-
terpolate between greedy and agile updates and
offers several benefits, including refined control
over regret terms, optimism without cyclic depen-
dence, and the application of minimal recursive
regularization akin to AdaFTRL. More broadly,
we show that it is not the “lazy” projection style
of FTRL that hinders (optimistic) dynamic re-
gret, but the decoupling of the algorithm’s state
(linearized history) from its iterates, allowing the
state to grow arbitrarily. Instead, pruning synchro-
nizes these two when necessary.

1. Introduction
This paper addresses the Online Convex Optimization
(OCO) problem (Zinkevich, 2003; Shalev-Shwartz, 2012;
Hazan, 2022), a popular paradigm for sequential decision
making under uncertainty. OCO is regarded as a time-
slotted game between a learner and a potentially adversarial
environment. At slot t, the learner selects an action xt
from a convex set X . Then, the environment reveals a cost
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ft :X ⊂Rn→R, and the learner incurs ft(xt). The objec-
tive is finding a set of actions {xt}Tt=1, for some horizon T ,
that perform well under the functions {ft(·)}Tt=1, which is
non-trivial since xt is committed before ft(·) is revealed.
Under the most stringent criteria, the learner’s performance
is measured by the dynamic regret RT :

RT
.
=

T∑
t=1

ft(xt)− ft(ut),

where {ut}Tt=1 ∈ X is any set of comparators with desirable
costs that we wish to benchmark against. The dynamic re-
gret is thus simply the performance gap between the learner
and the comparator sequence. A key complexity measure
associated with the comparators is its path length PT ,

PT
.
=

T−1∑
t=1

∥ut+1 − ut∥. (1)

The path length quantifies the variation in the comparator
sequence, with larger values indicating a more dynamic
environment and a more challenging learning setting.

1.1. Background and Motivation

Algorithms with a sub-linear regret guarantee have been
behind recent state-of-art advances not only in classical
computer science problems such as caching (Mhaisen et al.,
2022), portfolio management (Tsai et al., 2024), and gener-
alized assignment (Aslan et al., 2024), but also in machine
learning problems such as the design of (enhanced) ADAM
optimizer (Ahn et al., 2024), sub-modular optimization (Si-
Salem et al., 2024), and supervised learning with shifting
labels (Bai et al., 2022) among others. However, even in the
static settings where the comparator is fixed: ut = u,∀t,
the strategy of minimizing witnessed costs at each t ad-
mits linear regret, indicating a failure in learning (Shalev-
Shwartz, 2012, Sec 2.2). Hence, careful regularization is
needed to avoid overfitting past data, which is the fundamen-
tal idea behind the two main algorithmic families for OCO:
Follow the Regularized Leader (FTRL) and Online Mirror
Descent (OMD). It is known that both frameworks achieve
an order optimal static regret bound of O(

√
T ) (Orabona,

2022, Sec. 5). Further, it has been shown that when the reg-
ularization is made data-dependent, the regret bounds will
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indeed be sub-linear and, more importantly, data-dependent.
This is a desirable, albeit challenging, objective.

Data-dependent bounds are preferable because they are
parametrized by the actual problem instance, {ft(·)}Tt=1,
rather than crude universal bounds on this instance. I.e.,
on the Lipschitz constant L and the horizon T . While this
complicates the analysis, it leads to more custom algorithms
in which the “easiness” of an instance is reflected in the
bound. For example, AdaGrad-style bounds (Duchi et al.,
2011), and follow-ups, achieve static regret of the form
O(

√
GT ) where GT =

∑T
t=1 ∥gt∥2, gt ∈ ∂ft(xt) is the

sub-gradients norm trajectory. This form of bounds is de-
sirable since they scale with the lengths ∥gt∥ and hold for
any value T rather than being dependent on the worst case
L value and on a single pre-provided T . Yet, they maintain
the order-optimal bound (O(

√
T )) in all cases. Similarly,

(Chiang et al., 2012) achieves O(
√
VT ) for smooth func-

tions where VT
.
=
∑T
t=2 maxx ∥∇ft(x) − ∇ft−1(x)∥2 is

the gradient variation trajectory, which, again, is never more
O(

√
T ) but tighter for slowly-varying functions.

A more general problem-dependent quantity is the accumu-
lated prediction error (Rakhlin & Sridharan, 2013; Mohri
& Yang, 2016); suppose the learner receives a prediction
f̃t(·) for the cost function ft(·) prior to deciding xt, with
no guarantees on its accuracy, the quantity of interest is:

ET
.
=

T∑
t=1

ϵ2t , ϵt
.
= ∥gt − g̃t∥, (2)

where g̃t ∈ ∂f̃t(xt). Clearly, we can choose f̃t(·) to be
0 or ft−1(·), recovering the dependence on GT and VT 1,
respectively. Algorithms whose regret depends on ET are
called optimistic and are crucial for achieving best-of-both-
worlds-style guarantees: constant regret in predictable envi-
ronments and sub-linear in all cases, delivering adaptability
without sacrificing robustness. Interestingly, the application
of optimistic algorithms extends beyond enabling the use
of untrusted predictions in the OCO problem; they have
been shown to be key in the more general delayed OCO
problem (Flaspohler et al., 2021), as well as the related
OCO with memory problem (Mhaisen & Iosifidis, 2024).
Given their significance, we focus on developing “opti-
mistic” algorithms in this work. That is, algorithms that
receive and use predictions of future costs and have regret
bounds parametrized by ET .

While (optimistic) data dependence is well understood for
both OMD and FTRL frameworks under the static re-
gret metric, the story is different when it comes to dy-
namic regret. For OMD, the current prevalent form of
optimistic problem-dependent dynamic regret bounds first

1More precisely, for differentiable functions, we recover V ′
T =∑T

t=1 ∥∇ft(xt)−∇ft−1(xt−1)∥2 ≤ VT .

appeared in (Jadbabaie et al., 2015), who used a vari-
ant of the Optimistic OMD (OOMD) (two-step variant).
This formulation requires that gt is defined before calcu-
lating xt, which is only possible for linear functions (re-
call gt ∈ ∂ft(xt)). This “cyclic dependency” issue was
only addressed recently in (Scroccaro et al., 2023), who
obtained bounds that depend on a quantity similar to ET ,
DT

.
=
∑T
t=1 ∥∇ft(yt−1) − ∇f̃t(yt−1)∥, where yt are

points generated by an online algorithm.

As for FTRL, the first dynamic regret guarantee has
been established by (Ahn et al., 2024), showing RT =
O(P 1/3T 2/3) for bounded domains. While this guarantee
is not data-dependent and suboptimal in T , it suffices for
the authors’ goal of explaining the behavior of the Adam
optimizer. For bounded domains, to our knowledge, no prior
work has established dynamic regret guarantees for FTRL,
problem-dependent or not, with O(P βT

√
T ) dependence, for

any β ∈ [0, 1]. This gap raises an intriguing question re-
garding the performance of FTRL under the dynamic regret
metric, particularly given that FTRL can be equivalent to
OMD under specific regularization and linearization choices
(McMahan, 2017, Sec. 6), suggesting its potential appli-
cability in dynamic environments. However, the extent to
which FTRL admits meaningful dynamic regret guarantees
remains an open problem.

Conceptually, the versatility of FTRL arises from its richer
state representation, where the “state” refers to the vector
used to determine the next iterate, xt+1. In OMD, the state
of the algorithm is merely the current feasible point, xt. In
contrast, the state in FTRL is some mapping of all previous
cost functions. In the most common case, this mapping
is simply the cumulative gradient, g1:t

.
=
∑t
τ=1 gτ . This

same versatility, which stems from retaining all past costs,
introduces a key drawback: retaining all past costs can
hinder adaptation when the costs are nonstationary.

Specifically, it has been demonstrated that FTRL iterates
that use such mapping fail to achieve sublinear dynamic
regret even for constant path lengths (Jacobsen & Cutkosky,
2022, Thm. 2). In essence, the aggregation of past costs ob-
scures the switching patterns in the data (i.e., in {fτ (·)}tτ=1),
which are crucial for the iterates to adapt appropriately, par-
ticularly when competing with moving comparators. Since
most FTRL variants in the literature aggregate past gra-
dients, FTRL is often considered unsuitable for dynamic
environments (Chen et al., 2024). However, these findings
do not dismiss the potential of all FTRL variants. On the
contrary, they give insight into how to design variants that
adapt to changing comparators, a key motivation behind the
pruning mechanism we analyze here.

This paper seeks to address the ambiguity regarding FTRL’s
performance under dynamic regret. Clarifying this issue
is not only intellectually compelling but also important for
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establishing more refined problem-dependent bounds, as
we demonstrate in the sequel. It will also help explain the
notable performance gap between lazy (i.e., typically FTRL)
and greedy (i.e., typically OMD) methods in dynamic set-
tings. Furthermore, we introduce a new set of FTRL-native
analysis tools, expanding its applicability in dynamic envi-
ronments and paving the way for dynamic regret guarantees
in other OCO settings (e.g., delayed feedback or memory
constraints), where FTRL is often the framework of choice.

1.2. Methodology and Contributions

As noted earlier, certain forms of FTRL are equivalent to
OMD, suggesting that dynamic regret guarantees should
hold in these cases. The equivalence arises when the update
minimizes the regularized linearized history, which is the
starting point of this paper. Specifically, let rt(·) be a data-
dependent strongly convex regularizer that evolves with t,
potentially depending on past costs and actions. Then, the
standard linearized FTRL update is

xt+1 = argmin
x∈X

⟨g1:t,x⟩+ r1:t(x). (3)

If X = Rn, and rt(x) is proximal2, this update is equivalent
to the OMD update which uses r1:t(·) as the mirror map.
This is proven in (McMahan, 2017, Thm. 11), even for the
more general case of composite costs.

Here, we consider the optimistic version of this update.
That is, we append the prediction f̃t+1(x) to the sum in
(3). This will later allow us to have problem-dependent
bounds that are modulated by ET . Secondly, we focus on
compact sets X ⊂ Rn. A primary design choice in our
method is to incorporate the set constraint as an additional
indicator function to each prediction. This is equivalent
to modeling each cost function as a composite function:
ft(x) + IX (x). The indicator part is then always assumed
to be “predicted” perfectly. Nonetheless, the linearization
of the past composite costs is now different. Namely, our
proposed update becomes:

xt+1 = argmin
x

⟨p1:t,x⟩+ r1:t(x)

+ f̃t+1(x) + IX (x), (4)

with the state vector p1:t calculated as the aggregation of

pt = gt + gIt ,

gt ∈ ∂ft(xt), gIt ∈ ∂IX (xt) = NX (xt),

where NX (x) is the normal cone at x, and is defined as

NX (x)
.
= {g

∣∣⟨g,y − x⟩ ≤ 0,∀y ∈ X}.
2A proximal regularizer rt(x) is minimized at xt.
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Figure 1: Effect of dual state size on iterates agility. We
consider two slots t < t′, where gradients switch direction:
gτ =(−1, 0) for τ ≤ t, and gτ =(1, 0) for τ >t. Top: Stan-
dard FTRL accumulates a large state g1:t, and the update
via ∇r⋆(g1:t) becomes insensitive to the change in direc-
tion; both g1:t and g1:t′ map to the same iterate. Bottom:
A well-maintained state p1:t remains bounded, and hence
its mapping stays close to X , enabling xt′ to start aligning
quickly with the new better iterate direction (−1, 0).

The simple yet key observation is that with the extra flexibil-
ity provided by gIt , the state of the algorithm need not be the
simple aggregation g1:t. Rather, some of the summands can
be attenuated or pruned by carefully selecting gIt from the
cone NX (xt), This is possible since NX (xt) contains all
(scaled) negative subgradients of the expression in (4) when
xt lies on the boundary of X xt ∈ bd(X ) (from the opti-
mality conditions for constrained problems, see e.g., (Beck,
2017, Thm. 3.67)). In words, when an iterate leaves the fea-
sible set and is thus projected back, we can choose to prune
the state that led to this situation and replace it with an alter-
native state p1:t, that induces the same iterate but is smaller
in norm. This construction is crucial, as we later show that
the norm of the state is the key bottleneck for FTRL when
competing with time-varying comparators. Fig. 1 illustrates
how different state constructions behave upon a switch in
cost direction; note that the FTRL update, with a fixed r(·)
can be expressed as the projection of ∇r⋆(−g1:t), where
r⋆(·) is the conjugate of r(·) (see def. in Appendix A.4).

Our main contribution is formalizing this intuition to pro-
vide a dynamic regret analysis of Optimistic FTRL, lead-
ing to a new variant, Optimistic Follow the Pruned Leader
(OptFPRL). This variant achieves zero dynamic regret
when predictions are perfect. This is because the quality of
predictions controls all regret terms, including PT . To our
knowledge, this is the first variant to explicitly have such full
dependence on prediction accuracy without oracle tuning.
In the general case, OptFPRL also maintains the minimax
optimal rate of O(

√
(1 + PT )T ) when PT is known. We

also present a version that does not require prior knowledge
of PT , but assumes observability, while still maintaining
dependence on prediction errors.

Next, since OptFPRL follows an FTRL-style analysis, it is
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well-suited to incremental regularization in the manner of
AdaFTRL (Orabona & Pál, 2018). In this scheme, we set
the regularization recursively, incrementing it by, roughly,
the regret by time t had we followed xt,∀τ ≤ t (local
regret). This is different from the more common approach,
which sets this regularization as an upper-bound on this
local regret. While the two are nearly equivalent in the
worst case, the former allows for more refined bounds by
applying only the minimal necessary regularization at each
slot. Unlike prior optimistic dynamic regret algorithms, this
style of regularization offers a more granular bound.

In summary, we investigate FTRL’s dynamic regret over
compact sets, and identify the unbounded growth of the
state as the main bottleneck. By leveraging a simple and
general mechanism, pruning past gradients, we gain a new
degree of freedom that enables improved optimistic bounds.

2. Related Work
Optimism and (dynamic) regret. The pursuit of data
dependence has been a central theme in online learning
research since the introduction of AdaGrad (Duchi et al.,
2011; McMahan & Streeter, 2010). This has eventually
led to the development of Optimistic FTRL (e.g., (Mohri
& Yang, 2016)). For a comprehensive survey of data-
dependent online learning, we refer readers to (Joulani et al.,
2020). However, these studies focus on static regret. Al-
though the dynamic regret metric has been part of the OCO
framework since its introduction, the first data-dependent
dynamic regret bound only appeared in (Jadbabaie et al.,
2015). The authors established a general bound, from which
the result O(

√
(P ∗
T + 1)(ET + 1) can be derived, where

P ∗
T is specific to the sequence of minimizers comparators

{ut = argminx ft(x)}, but in fact the bounds hold for any
sequence whose path is observable online. This is done via
a specialized doubling trick for non-monotone quantities.
By removing the assumption of observable path lengths (i.e.,
considering all sequences simultaneously), dynamic regret
bounds typically lose the sublinear dependence on PT . For
instance, in (Jadbabaie et al., 2015), the bound becomes
O((PT + 1)

√
ET + 1).

To address this, (Zhang et al., 2018) proposed a meta-
learning framework that achieves O(

√
T (1 + PT )) for any

sequence, which is shown to be minimax optimal. This
framework was made data-dependent in (Zhao et al., 2020),
who obtained O(

√
(VT + PT + 1)(1 + PT ) bound, among

others. In this framework, multiple sub-learners are em-
ployed, each implementing Online Gradient Descent (OGD)
with a different (doubling) learning rate, tuned for various
ranges of PT . These sub-learners are then “tracked” by a
variant of the Hedge meta-algorithm. This two-layer ap-
proach was later unified within the framework of Optimistic
OMD and made more efficient in terms of the number of

gradient queries (Zhao et al., 2024). Overall, knowing PT
in advance, or assuming it is observable online, allows us to
tune the regularization (or learning rate for OMD) with this
knowledge, getting the better dependence

√
PT . Without

such assumptions, we can use the meta-learning framework,
which learns online the best such regularization/learning
rate under smoothness assumptions.

Setting aside the order of dependence on PT for a moment,
we examine the quantity ET . The aforementioned studies
suffer the shortcoming hinted at in the introduction: to make
ET small, we require knowledge of ∇ft(xt) at the start of
time slot t, which is generally not feasible3 even if access
to ∇ft(·) was provided (i.e., perfect prediction). This is
because xt remains unknown at the start of t — it is the
very point being determined. While the bounds are still
optimistic, they are not informative for the predictor design.
In the literature, this “cyclic” issue was only identified in
(Scroccaro et al., 2023, Sec. 1.B). Thus, the authors in-
troduce another related quantity DT , defined earlier, and
obtain O((1 + PT )(1 +

√
DT )).4 In the FTRL variants we

propose, we do not have the cyclic issue because we do not
require linearizing the predictions f̃t(·).
The aforementioned studies are based on OMD, particularly
on the “two-steps” variant of (Chiang et al., 2012), where the
learner selects two points in each iteration, an intermediate
one and the actual action. This distinction from our work
is not merely technical. For instance, in the related “OCO
with delay” setting, prior work has established guarantees
for Optimistic FTRL and the one-step version of Optimistic
OMD proposed in (Joulani et al., 2020, Sec. 7.2). However,
similar guarantees are not yet known for the two-step variant
of OMD (Flaspohler et al., 2021), and it remains unclear
whether the same analysis can be extended to them.

Additionally, focusing again on optimism, a common limita-
tion in the aforementioned studies is that the PT quantity5 in
the bounds is unaffected by the predictions. That is, the PT
term may appear independently of any controllable quan-
tity such as ET , leading to bounds of O(PT ) even under
perfect predictions (or zero gradient variation). While this
may partly reflect limitations in the existing analyses rather
than the algorithms themselves, the current bounds do not
fully capture the interaction between prediction quality and
path length. In contrast, OptFPRL analysis reveals that PT ,
or more precisely, each ∥ut+1 − ut∥, is multiplied by the
prediction error (e.g., ϵt or

√
Et). Thus, the effect of PT

can be attenuated when predictions are accurate.

3Unless all functions are originally linear. Note that lineariza-
tion does not solve this issue, as it is performed after the learner
has committed to its action.

4The authors also derive bounds based on “temporal variation”,
but we do not consider this quantity here.

5Or
√
PT , assuming a known budget or an observable sequence

with a doubling trick.
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OMD, FTRL, and (linearized) history. The interplay be-
tween OMD and FTRL has received increasing attention
in recent years. (Fang et al., 2022) studied a modified ver-
sion of OMD under the static regret metric and showed its
equivalence to Dual Averaging, a time-adaptive instance of
FTRL, up to some terms in the normal cone. In this paper,
we show that it is precisely these normal cone terms that
become critical to achieving dynamic regret guarantees. For
dynamic regret, (Jacobsen & Cutkosky, 2022) provides a
comprehensive study via “centered” OMD, which incorpo-
rates FTRL-like centering properties. Their focus is primar-
ily on unbounded domains, where such centering is essential.
While their work integrates FTRL features into OMD, we
take the opposite approach: extending native FTRL results
to dynamic settings. This approach reveals failure modes
of FTRL in non-stationary environments and offers princi-
pled solutions. Specifically, we investigate how modulating
FTRL’s state, in bounded domains, leads to regret bounds
that are fully modulated by prediction accuracy.

In fact, our update is mostly related to the following form

xt+1 = argmin
x

⟨g1:t + gψ1:t−1,x⟩+ r(x) + IX (x),

gψt ∈∂IX (xt+1),

which appears in (McMahan, 2017) under the name “FTRL
Greedy”, and was studied under the static regret metric. Be-
yond explicitly modeling the sub-gradient selection from
the cone, which allows controlling when and what to prune,
we extend this formulation by incorporating: (i) function
predictions, (ii) prediction-adaptive regularization, and (iii)
recursive regularization inspired by AdaFTRL. These mod-
ifications require different analysis tools, especially under
the dynamic regret metric.

FTRL variants that reduce dependence on history have re-
cently been proposed by (Zhang et al., 2024; Ahn et al.,
2024) using geometric discounting of all past costs, which
is specifically designed for the metric of “discounted” re-
gret and its applications. Interestingly, however, Ahn et al.
(2024) also observes that such manipulation of FTRL’s state
can endow it with certain (not necessarily optimal) dynamic
regret guarantees. Though their method differs, the core in-
sight aligns with ours: limiting FTRL’s memory is essential
for adapting to non-stationarity.

We also note the existence of other approaches for model-
ing “optimism” in OCO, other than seeking ET dependence,
such as the Stochastically Extended Adversary (SEA) model
(Sachs et al., 2022) that was studied in (Chen et al., 2024) for
OMD with dynamic comparators. In addition, there exists
the “correlated hints” interpretation of optimism (Bhaskara
& Munagala, 2023), where the prediction quality is mea-
sured by their correlation with the actual cost. This later
line of work assumes strongly convex domains and obtains
a O((1 + PT ) log

2(T )
√
B) bound, where B is the number

Algorithm 1 Optimistic Follow the Pruned Leader (OptFPRL)
Input: Compact set X , strategy for selecting σt,∀t.
Output: {xt}Tt=1.

1: set x1 = argminx f̃1(x) + IX (x)
2: for t = 1, 2, . . . , T do
3: Use action xt
4: *(ft(·) is revealed)*
5: Incur cost ft(xt) and compute gt ∈ ∂ft(xt)
6: Compute g̃t ∈ ∂f̃t(xt) and the error ϵt = ∥gt − g̃t∥
7: Calculate the parameter σt using ϵt.
8: Set gIt according to (5).
9: Compute the (pruned) vector pt = gt + gIt .

10: Receive prediction f̃t+1(·).
11: Compute xuc

t+1 by solving (4) without IX (·).
12: Set xt+1 = Π(xuc

t+1).
13: end for

of slots without correlation. Lastly, an interesting reduction
from dynamic to static settings is explored in (Jacobsen
& Orabona, 2024), which revealed a fundamental tradeoff
between gradient variability and the comparator sequence’s
complexity measures (e.g., the path length considered here).

3. OptFPRL
In this section, we present the proposed algorithm and char-
acterize its dynamic regret. The routine of OptFPRL is
described in Alg. 1. It takes as input the compact convex
set X , along with a strategy for determining the regulariza-
tion parameters σt based on information available up to and
including slot t.

The initial action is based on the first prediction. Then, upon
executing each xt (line 3), the true cost ft(x) is revealed
and the subgradient gt is computable (line 5). In line 6, we
evaluate the prediction error ϵt, which is used in line 7 to
update the regularization parameter σt of the regularizer
rt(·) according to some pre-determined strategy.

We use scaled Euclidean regularizers of the form

rt(x)
.
=
σt
2
∥x∥2,∀t ≥ 1.

The regularizers are set such that r1:t is 1-strongly convex
w.r.t. the scaled Euclidean norm ∥ · ∥t .=

√
σ1:t∥ · ∥ whose

dual norm is ∥ · ∥t,∗ = 1/√σ1:t∥ · ∥, hence we refer to σt also
as the “strong convexity” parameters.

Next, we select gIt according to the following: for t = 1, set
gI1 = −g1 if ϵ1 = 0, and gI1 = 0 otherwise. For all t ≥ 2:

gIt =

{
−(p1:t−1 + g̃t + σ1:t−1xt) if xuc

t /∈ X
0 otherwise,

(5)

where xuc
t is the unconstrained iterate obtained by solving

(4) in Rn (i.e., without the indicator function).
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To see why we can always set gIt as such, note that when
xuc
t /∈ X , then xt ∈ bd(X ) (the projection of a point out-

side a compact convex set lies on the boundary). Hence,
NX (xt) contains vectors other than 0. In particular, it con-
tains −(p1:t−1 + g̃t + σ1:t−1xt) and in fact all positive
multiples of this vector. This follows directly from the opti-
mality condition for the constrained iterate in (4), (see, e.g.,
(Beck, 2017, Thm. 3.67)), and the definition of the normal
cone. For the second case, 0 is always a valid subgradient
of the indicator function since, in this case, xuc

t = xt ∈ X .

Intuitively, this choice of linearization ensures an alternative
state p1:t (instead of g1:t). The former shall stop growing
in norm compared to the latter beyond a certain t, since
the action will hit the boundary of X , starting the pruning
thereafter. This will be formalized in the analysis, where we
show that ∥p1:t∥ cannot grow faster than the regularization,
which is added by us optimistically (i.e., ∝ √

Et). This is
not true in general for an arbitrary choice of linearization,
particularly for the default choice of using only gt.

We note that gIt need not be non-zero at every time slot t
where xuc

t /∈ X . Instead, pruning of the accumulated state
can be delayed for a fixed number of steps k, resulting in
a hybrid state of the form p1:k−1 + gk:t. This is discussed
further in Appendix A.4.

In lines 10, 11, a prediction for the next cost is received, and
the next unconstrained iterate is updated. Lastly, a feasible
point is then recovered via a Euclidean6 projection into X .

Next, we characterize the dynamic regret of OptFPRL un-
der different regularization strategies.

3.1. Dynamic Regret of OptFPRL

In this section, we explore different strategies for setting
the regularization parameters σt, and analyze the resulting
dynamic regret bounds. We begin by outlining the general
setting shared across all regularization strategies.

Settings 1. Let X ⊂ Rd be a compact, convex set such
that ∥x∥ ≤ R for all x ∈ X . Let {ft(·), f̃t(·)}Tt=1 be any
sequence of L-Lipschitz convex functions. Define the path
length PT as in (1), the cumulative prediction error ET as
in (2), and the hybrid term HT

.
=
∑T−1
t=1 ϵt∥ut+1 − ut∥.

3.1.1. PT -AGNOSTIC REGULARIZATION

The first regularization strategy we consider is the standard
optimistic one, which sets σt such that σ1:t ∝

√
ET :

σ =
1

4R
, σ1 = σϵ1,

σt = σ
(√

Et −
√
Et−1

)
,∀t ≥ 2.

(6)

6Technically, the projection is w.r.t. ∥ · ∥t. Since ∥ · ∥t is a
scaled Euclidean, the result is the same.

Theorem 3.1. Under Settings 1, Alg. 1 run with the regu-
larization strategy in (6) produces points {xt}Tt=1 such that,
for any T , the dynamic regret RT satisfies:

RT ≤
(
5.8R+ (1/2)PT

)√
ET +HT (7)

= O
(
(1 + PT )

√
ET

)
.

Remarks. We observe from (7) that all terms in the regret
bound are modulated by the prediction errors. When the
predictions are perfect, the bound reduces to zero (regardless
of PT ), and it gracefully degrades as prediction errors grow.
Note that by Cauchy-Schwarz and the boundness of X ,
the hybrid term can be bounded as HT ≤

√
2R

√
ETPT .

Therefore, the overall bound is never worse than O((1 +
PT )

√
ET ), matching known OMD results when PT is not

accounted for, and tighter when predictions are accurate. In
the static comparator case (PT = 0), the bound recovers the
standard O(

√
ET ) result.

3.1.2. REGULARIZATION WITH PRIOR PT KNOWLEDGE

In many cases, PT can be provided to the algorithm a priori
as a measure of the comparator’s complexity (e.g., (Bes-
bes et al., 2015; Si-Salem et al., 2024)). That is, we wish
to compete against any sequence whose path length is at
most the provided value of PT . With this given target, we
can adjust the regularization to account for the expected
nonstationarity and obtain better bounds, as outlined next:

σ =
1

2
√
2RP ′

T

, P ′
T
.
= 2R+ PT , σ1 = σϵ1,

σt = σ
(√

Et −
√
Et−1

)
,∀t ≥ 2.

(8)

Theorem 3.2. Under Settings 1, Alg. 1 run with the regu-
larization strategy in (8) produces points {xt}Tt=1 such that,
for any T , the dynamic regret RT satisfies:

RT ≤
(
4
√

2R2+PT +
R

8
+

√
RPT
2

)√
ET +HT

= O
(
(1 +

√
PT )

√
ET

)
.

Remarks. This regularization strategy preserves the full
modulation by prediction errors while also matching the
minimax-optimal bound RT = Ω(

√
(1 + PT )T ) (Zhang

et al., 2018, Thm. 2) even when all predictions fail. This
type of bound is new for FTRL-style algorithms. Further-
more, in its full dependency on ET (i.e., without PT or
constant terms that are independent of ET ), it represents a
refinement even compared to OMD. More broadly, access
to a prior bound on PT enables tailoring the regularization
to the expected nonstationarity, allowing us to safeguard the
minimax rate while still adapting to prediction accuracy.
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3.1.3. REGULARIZATION WITH UNKNOWN PT

If PT is unknown but observable, it can be estimated online
alongside Et. However, since

√
Et/Pt is no longer nec-

essarily monotonic, we should safeguard against negative
regularization coefficients. First, define the augmented seen
path length at t as:

P ′
t
.
= 2R+ Pt = 2R+

t−1∑
τ=1

∥uτ+1 − uτ∥.

We adopt a regularization strategy that attempts to track√
ET /PT by its online estimate

√
Et/Pt, while using a

max(·, ·) operator to ensure non-negative regularization.

σ =
1

2
√
2R

, σ1 =
σϵ1√
P ′
1

,

σt=σmax

(
0,

√
Et
P ′
t

−
√
Et−1

P ′
t−1

)
,∀t ≥ 2.

(9)

Theorem 3.3. Under Settings 1, Alg. 1 run with the regu-
larization strategy in (9) produces points {xt}Tt=1 such that,
for any T the dynamic regret RT satisfies:

RT ≤ 5.5
√
R
√
ETP ′

T +HT +
√
R/2 AT

= O
(
(1 +

√
PT )

√
ET +AT

)
,where

AT
.
=

T∑
t=1

∑
τ∈[t]+

(√
Eτ−1

P ′
t−1

−
√
Eτ
P ′
τ

)
∥ut+1 − ut∥,

[t]+ =

{
2 ≤ τ ≤ t

∣∣∣∣
√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

≥ 0

}
.

Remarks. Note that this bound resembles that of Theo-
rem 3.2, except for the additional term AT , which arises
due to the potential non-monotonicity of the estimated quan-
tity

√
Et/Pt. If this sequence were monotonic and non-

decreasing, AT would vanish since [t]+ would be empty.
This case allows us to recover the bound of Theorem 3.2
without requiring prior knowledge of PT . In contrast, in
the worst-case scenario, where the sequence alternates di-
rection at every round, we obtain AT = O(

√
ET (PT + 1))

(see Appendix C.3.1), leading to the looser bound in Theo-
rem 3.1. A comparable correction term to AT also appears
in the optimistic OMD framework (Scroccaro et al., 2023,
Remark 2.19), and likewise depends on monotonicity, reach-
ing

√
ETPT in the worst case. The above-mentioned bound

is, however, more interpretable.

A workaround to this monotonicity issue is a doubling-
trick variant (Jadbabaie et al., 2015), which, however, intro-
duces a slight problem-independence through a multiplica-
tive Θ(log T ) factor, and an additive Θ(log T

√
PT ) factor

that persists even under perfect predictions.

3.1.4. RECURSIVE REGULARIZATION

In this subsection, we employ the regularization strategy
of AdaFTRL (Orabona & Pál, 2018), which sets the strong
convexity parameters recursively, ensuring the minimal re-
quired regularization. Namely, we do not set σt such that
σ1:t ∝

√
Et, as in the strategies discussed earlier, and prior

works on optimistic dynamic regret. Instead, we set σt ∝
δt

.
= h0:t−1(xt) + ⟨pt,xt⟩ −minx (h0:t−1(x) + ⟨pt,x⟩),

where ht(·) is the regularized loss: ht(·) = ⟨pt, ·⟩ + rt(·).
This choice of σt is such that σ1:t ∝ c ≤ √

Et.

In other words, we increase the strong convexity exactly in
proportion to the (regularized) cumulative loss observed at
t (denoted as δt), rather than an upper bound on that loss.
Since the added strong convexity essentially determines the
regret bound, this leads to tighter bounds overall that are
no worse than the ones derived earlier. Namely, we use the
following regularization strategy:

σ =
1

8R2
, σt = σδt, δ1 = ⟨g1,x1⟩ − min

x∈X
⟨g1,x⟩

δt = h0:t−1(xt) + ⟨pt,xt⟩ (10)
− min

x∈X
(h0:t−1(x) + ⟨pt,x⟩) , ∀t ≥ 2.

Theorem 3.4. Under Settings 1, Alg. 1 run with the reg-
ularization strategy in (10) produces points {xt}Tt=1 such
that, for any T , the dynamic regret RT satisfies:

RT ≤ 1.1 δ1:T +

T−1∑
t=1

1

4R
δ1:t∥ut+1 − ut∥+HT

≤ (3.7R+ PT )
√
ET +HT = O

(
(1 + PT )

√
ET

)
.

Remarks. Since the δt terms are often smaller than their
upper bound, this minimal regularization approach is par-
ticularly advantageous in dynamic environments, where
regularization terms sum is nested within the primary sum
over [T ]. While this tuning strategy has been employed pre-
viously in static settings for optimistic learning (Flaspohler
et al., 2021), it has not yet been leveraged for optimism
in dynamic settings7. Nonetheless, the recursive nature of
this regularization adds a technical challenge since the ac-
cumulated strong convexity does not have a closed-form
expression in terms of

√
Et. Fortunately, this recursion is

still shown to be bounded by O(
√
Et) via tools developed

in the AdaFTRL framework.
7We note, however, the related temporal-variation-based dy-

namic regret bound in Implicit OMD (Campolongo & Orabona,
2021), where the structure of “function changes”, rather than “pre-
diction errors”, is exploited.
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4. Tools for FTRL’s Dynamic Regret Analysis
In this section, we present the primary analytical tools used
to derive the regret bounds of the previous section. These
results extend traditional FTRL analyses to incorporate both
optimism and dynamic comparators. First, we bound the
regret via linearization:

RT =

T∑
t=1

jt(xt)− jt(ut) ≤
T∑
t=1

⟨pt,xt − ut⟩,

where jt(x)
.
= ft(x) + IX (x). The inequality follows

directly from the convexity of jt(·),8 noting that pt ∈
∂jt(xt) by definition of pt (recall pt = gt + gIt , with
gt ∈ ∂ft(xt), g

I
t ∈ ∂IX (xt)).

Our analysis begins with a generalization of the main FTRL
lemma (McMahan, 2017, Lem. 5).

Lemma 4.1. (Strong Dynamic Optimistic FTRL). Let
{ft(·), f̃t(·),ut}Tt=1 be an arbitrary set of functions, pre-
dicted functions, and comparators within X , respectively.
Let rt(·) be non-negative regularization functions such that

xt+1
.
= argmin

x
h0:t(x) + f̃t+1(x)

is well-defined, where h0(x)
.
= IX (x), and ∀t ≥ 1:

ht(x)
.
= ⟨pt,x⟩+ rt(x), pt ∈ ∂jt(xt).

Then, the algorithm that selects the actions xt+1,∀t
achieves the following dynamic regret bound:

RT ≤
T∑
t=1

(I)︷ ︸︸ ︷
h0:t(xt)− h0:t(xt+1)− rt(xt)

+

T−1∑
t=1

h0:t(ut+1)− h0:t(ut)︸ ︷︷ ︸
(II)

+ rt(ut).

The regret is thus decomposed into three main parts. Part (I)
measures the penalty incurred due to not knowing gt when
deciding xt. The second part (II) measures the penalty
incurred due to the non-stationarity of the environment
(change of comparators). The last part, rt(ut), is a user-
influenced quantity that reflects the amount of regularization
introduced and will be traded off against the other terms in
the bound that benefit from more regularization.

Next, we describe the upper bounds:

(I) ≤ min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
(II) ≤ (∥p1:t∥+Rσ1:t) ∥ut+1 − ut∥

8see, e.g., (Shalev-Shwartz, 2012, Sec. 2.4), for more details
on linearization.

(I) is a result of a generalization of a common tool in OCO
which bounds the difference in the value of a strongly con-
vex function (h0:t(·)) when evaluated at a “partial”9 mini-
mizer (xt) versus the global minimizer (say, y, and hence
xt+1 also), which we state below.

Lemma 4.2. Let each function h0:t(·) be 1-strongly convex
w.r.t. a norm ∥ · ∥t defined as in Lemma 4.1. Let xt =
argminx h0:t−1(x) + f̃t(x). Then, we have the inequality

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤
1

2
∥gt − g̃t∥2t−1,∗ .

The second term of the min is in fact a crude regularization-
independent bound on the per-slot loss of xt compared to
the omniscient xt+1. We detail both bounds in Appendix B.

(II) follows directly from the first-order inequality for con-
vex functions applied to h0:t(·). Note that it is exactly the
∥p1:t∥ term that explains the potential failure of FTRL in
dynamic environments, even with a constant path length.
Specifically, a trivial bound on this norm is linear in t and
hence is super-linear in T even with one switch in the com-
parators. This is precisely the “vulnerability” that is ex-
ploited in the impossibility result in (Jacobsen & Cutkosky,
2022, Thm. 2). Next, we show how pruning can tie this
∥p1:t∥ term to the regularization parameters σ1:t (which we
control), thus ensuring its sub-linearity.

Lemma 4.3. (Optimistically Bounded State) Let {pt}Tt=1

be a sequence of vectors such that each pt = gt+gIt , where
gt ∈ ∂ft(xt), and gIt ∈ ∂IX (xt) is chosen according
to the construction in (5). That is, pt corresponds to the
linearization of the composite function ft(·)+ IX (·) around
xt. Then, for any t, the following holds:

∥p1:t∥ ≤ Rσ1:t−1 + ϵt.

Proof. First, we begin by showing that

For any t, xuc
t ∈ X =⇒ ∥p1:t∥ ≤ σ1:t−1R+ ϵt. (11)

Since xuc
t ∈ X , we know that xt = Π(xuc

t ) = xuc
t (The

projection of a point within the set is itself), and hence xt is
a minimizer of the unconstrained update rule too:

xt = argmin
x∈Rn

⟨p1:t−1,x⟩+ r1:t−1(x) + f̃t(x) (12)

From the first-order optimality condition for unconstrained
problems (e.g., (Beck, 2017, Thm. 3.63)), we know that
0 is an element of the subdifferential of (12) at xt. Thus,
∃g̃t ∈ ∂ft(xt) such that

0 = p1:t−1 + σ1:t−1xt + g̃t

=⇒ p1:t−1 = −σ1:t−1xt − g̃t, (13)

9Recall that xt does not minimize h0:t, but a related function.
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and we have that the norm of the state p1:t satisfies

∥p1:t∥ = ∥p1:t−1 + pt∥
(a)
= ∥p1:t−1 + gt∥

(b)
= ∥ − σ1:t−1xt − g̃t + gt∥

≤ ∥ − σ1:t−1xt∥+ ∥gt − g̃t∥

= σ1:t−1∥xt∥+ ϵt
(c)

≤ σ1:t−1R+ ϵt,

where (a) holds because gIt = 0 (from (5) & xuc
t ∈ X ), (b)

from (13), and (c) from the set size.

Next, we show that when xuc
t /∈ X , the state is forced via

pruning to be bounded:

For any t, xuc
t /∈ X =⇒ ∥p1:t∥ ≤ σ1:t−1R+ ϵt. (14)

When xuc
t /∈ X , the pruning condition is activated, which

ensures that

p1:t = p1:t−1 +

pt︷ ︸︸ ︷
gt −p1:t−1 − g̃t − σ1:t−1xt︸ ︷︷ ︸

gIt= gt − g̃t − σ1:t−1xt.

Thus, ∥p1:t∥ = ∥gt − g̃t − σ1:t−1xt∥
≤ ∥gt − g̃t∥+ σ1:t−1∥xt∥
≤ ϵt + σ1:t−1R.

The lemma statement follows by (11) and (14).

4.1. Regret Bound Derivation

We show the proof of Theorem 3.1 since it illustrates how
the presented tools come together to obtain the results. It
also provides a sufficient basis for sketching the proofs of
the remaining theorems.

Proof of Theorem 3.1. We begin from the main lemma,
Lemma 4.1, with the bounds on (I) and (II) terms:

RT ≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)

+

T−1∑
t=1

((Rσ1:t + ∥p1:t∥) ∥ut+1 − ut∥) (15)

(a)

≤
T∑
t=1

min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+
R2

2
σ1:T

+

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

=

T∑
t=1

min

(
ϵ2t

2σ
√
Et−1

, 2Rϵt

)
+
R2

2
σ
√
ET

+

T−1∑
t=1

((
2Rσ

√
Et + ϵt

)
∥ut+1 − ut∥

)
(16)

(b)

≤ 4
√
2R
√
ET +

R

8

√
ET

+
1

2

T−1∑
t=1

√
Et∥ut+1 − ut∥+HT

(c)

≤ 5.8R
√
ET +

√
ET
2

PT +HT

where (a) follows from the boundedness of X , the state
bound in Lemma 4.3, and the fact that σ1:t−1 ≤ σ1:t;
the equality follows from the definition of ∥ · ∥∗,t and the
telescoping structure of σ1:t; (b) follows from applying
Lemma D.3 to the

∑
tmin(·, ·) term, which bounds the

sum of the non-increasing quantities, and substituting the
expression for σ; (c) uses that

√
Et is non-decreasing.

Overall, after using the results developed in Sec. 4, ob-
taining the exact results of the theorems mainly hinges on
available tools from the OCO literature on bounding the
sum of non-increasing functions.

Proof sketch of the other theorems. The proofs of the
other theorems follow similar main steps, and are detailed
in the Appendix. When the σ parameter is normalized by√
PT , it can be seen from (16) that the PT term will also be

divided by the same, recovering the result of Theorem 3.2.

For Theorem 3.3, we write the sum σ1:t in (15) as the non-
monotone

√
Et/P ′

t −
√
Et−1/P ′

t−1 provided that we add the
corrective termAT defined earlier. The former tracks the de-
sired quantity

√
ET/P ′

T , which is what is required (and was
used in Theorem 3.2) to recover the

√
ETPT dependence.

The corrective sum AT is handled independently.

Lastly, for Theorem 3.4, we start again from Lemma 4.1,
but instead of using the upper bound of the term (I), we use
the δt terms. This results in a recursion whose solution is
fortunately available among AdaFTRL lemmas.

5. Conclusion
This paper introduced an optimistic FTRL variant with new
data-dependent dynamic regret guarantees, extending classi-
cal FTRL results and advancing our understanding of this
foundational framework in non-stationary environments.
These bounds are explicitly tied to the accuracy of predic-
tions, offering refined performance guarantees in dynamic
settings. The gist of our proposal lies in a simple pruning
rule that modulates the memory (or state) of FTRL based
on the quality of the obtained decisions, preventing the ac-
cumulation of redundant (negative) gradients that align with
iterates on the boundary of the decision set. This technique
can be extended to more flexible pruning strategies that
control pruning magnitude or introduce additional pruning
conditions, enabling a spectrum of algorithms ranging from
fully “lazy” to fully “agile” iterates.
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A. OptFPRL
Below, we restate the main ingredients of OptFPRL using a more detailed presentation.

A.1. Update Rule

Recall the notation a1:t
.
=
∑t
τ=1 aτ . The update rule of OptFPRL is:

xt+1 = argmin
x

{
⟨ p1:t︸︷︷︸

State vector

,x⟩ + r1:t(x)︸ ︷︷ ︸
Incremental regularizers

+ f̃t+1(x)︸ ︷︷ ︸
Prediction

+ IX (x)︸ ︷︷ ︸
Set constraint

}
. (17)

where each pt is the sum of the linearization of the cost function ft(xt), and some choice from the cone NX (xt).

pt = gt + gIt , gt ∈ ∂ft(xt), gIt ∈ ∂IX (xt) = NX (xt). (18)

A.2. Regularizer

We use the scaled Euclidean regularizer,

rt(x) =
σt
2
∥x∥2,

where σt is the strong convexity parameter that will be set in every version of the algorithm. Note that the sum r1:t(·) is
σ1:t-strongly convex with respect to ∥ · ∥, or equivalently 1-strongly convex with respect to ∥ · ∥t .=

√
σ1:t∥ · ∥.

A.3. Pruning

Here, we present a mechanism for selecting the vectors gIt from the cone NX (xt). Define the unconstrained iterate xuc
t ,

which is obtained by solving the update rule without the indicator function

xuc
t+1 = argmin

x
⟨p1:t,x⟩+ r1:t(x) + f̃t+1(x).

Pruning will depend on whether this iterate belongs to the set X or not.

The unconstrained iterate xuc
t always exists and is unique due to the strong convexity of r1:t(·). However, its membership

in X depends on the exact degree of strong convexity. When σ1:t = 0, we consider xuc
t /∈ X , as the minimizer of an

unconstrained linear function does not exist.

We select gIt as follows: for t = 1, set gI1 = −g1 if ϵ1 = σ1 = 0, and gI1 = 0 otherwise. For all t ≥ 2:

gIt =

{
−(p1:t−1 + g̃t + σ1:t−1xt) if xuc

t /∈ X
0 otherwise.

(19)

Recall that this is a valid choice because when xuc
t /∈ X , then xt ∈ bd(X ). Hence, NX (xt) contains elements other than 0,

and in particular −(p1:t−1 + g̃t + σ1:t−1xt). This is a direct result of the optimality condition for the constrained iterate
(17), see, e.g., (Beck, 2017, Thm. 3.67). For the second case, 0 is always a valid subgradient of the indicator function since
in this case xuc

t = xt ∈ X .

A.4. Dual-perspective

To provide a dual view of the proposed FTRL variant, we look at the update step through the lens of dual maps.

First, recall the definition of the convex conjugate r⋆(·) of a closed convex function r(·):

r⋆(y)
.
= sup

x
⟨x,y⟩ − r(x).

The update of FTRL can be expressed using the above definition applied to a potentially time-varying r(·). Namely, the
standard FTRL update can be expressed as:

xRL
t+1 = argmin

x
⟨g1:t,x⟩+ r0:t(x) = ∇r⋆0:t(−g1:t),

12
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where r⋆0:t(·) is the conjugate of the cumulative regularizer r1:t(·), restricted to X via r0 = IX . From this viewpoint, FTRL
maintains the state as cumulative gradients in dual space.

The update of OptFPRL can be interpreted as:

xt+1 = argmin
x

⟨p1:t,x⟩+ r0:t(x) = ∇r⋆0:t(−p1:t) = ∇r⋆0:t(∇r1:t−k−1(xt−k)− gt−k:t),

where t − k denotes the most recent step at which we chose to prune. The last equality holds by the definition of gIk
(assuming no predictions). Intuitively, we retain explicit gradient history only since the last pruning step t − k, while
summarizing earlier history implicitly via the dual mapping of xt−k. The crux of the paper is showing that the way history
is split (explicitly tracked after pruning, and implicitly captured before) is what controls dynamic regret.

A.5. Regret Characterization

Define the dynamic regret metric against any set of comparators {ut}t as:

RT
.
=

T∑
t=1

ft(xt)− ft(ut) =

T∑
t=1

jt(xt)− jt(ut) ≤
T∑
t=1

⟨pt,xt − ut⟩, (20)

where jt(x)
.
= ft(x)+IX (x). The inequality holds by the linearization principle of convex functions (Shalev-Shwartz, 2012,

Sec. 2.4), noticing that we indeed have pt ∈ ∂jt(xt) due the definition of pt in (18), and the fact that the subdifferential of
the sum contains the sum of the subdifferentials (e.g., (Orabona, 2022, Thm. 22)).

B. Missing Proofs for Section 4
B.1. The Strong Dynamic Optimistic FTRL Lemma

Lemma 4.1. (Strong Dynamic Optimistic FTRL). Let {ft(·), f̃t(·),ut}Tt=1 be an arbitrary set of functions, predicted
functions, and comparators within X , respectively. Let rt(·) be non-negative regularization functions such that

xt+1
.
= argmin

x
h0:t(x) + f̃t+1(x)

is well-defined, where h0(x)
.
= IX (x), and ∀t ≥ 1:

ht(x)
.
= ⟨pt,x⟩+ rt(x), pt ∈ ∂jt(xt).

Then, the algorithm that selects the actions xt+1,∀t achieves the following dynamic regret bound:

RT ≤
T∑
t=1

(I)︷ ︸︸ ︷
h0:t(xt)− h0:t(xt+1)− rt(xt) +

T−1∑
t=1

h0:t(ut+1)− h0:t(ut)︸ ︷︷ ︸
(II)

+ rt(ut).

Proof.

T∑
t=1

ht(xt)−
T∑
t=1

ht(ut)− f̃T+1(uT )

=

T∑
t=1

(h0:t(xt)− h0:t−1(xt))−
(

T∑
t=1

(h0:t(ut)− h0:t−1(ut)) + f̃T+1(uT )

)

=

T∑
t=1

h0:t(xt)−
T∑
t=1

h0:t−1(xt)−
(

T∑
t=1

h0:t(ut) + f̃T+1(uT )−
T∑
t=1

h0:t−1(ut)

)

=

T∑
t=1

h0:t(xt)−
T−1∑
t=0

h0:t(xt+1)−
(
h0:T (uT ) + f̃T+1(uT ) +

T−1∑
t=1

h0:t(ut)−
T−1∑
t=0

h0:t(ut+1)

)

13
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≤
T∑
t=1

h0:t(xt)−
T−1∑
t=1

h0:t(xt+1)−
(
h0:T (xT+1) + f̃T+1(xT+1) +

T−1∑
t=1

h0:t(ut)−
T−1∑
t=1

h0:t(ut+1)

)

=

T∑
t=1

h0:t(xt)−
T∑
t=1

h0:t(xt+1)−
(
T−1∑
t=1

h0:t(ut)−
T−1∑
t=1

h0:t(ut+1))

)
− f̃T+1(xT+1).

The inequality holds because of the update rule for each xt+1 for any t. I.e.,

h0:T (xT+1) + f̃T+1(xT+1) ≤ h0:T (uT ) + f̃T+1(uT ).

Also, h0(ut+1) = 0,∀t ≤ T − 1.

Writing ht of the LHS explicitly we get

T∑
t=1

(⟨pt,xt⟩+ rt(xt)− ⟨pt,ut⟩ − rt(ut))− f̃T+1(uT )

≤
T∑
t=1

(h0:t(xt)− h0:t(xt+1)) +

T−1∑
t=1

(h0:t(ut+1)− h0:t(ut))− f̃T+1(xT+1).

Since f̃T+1(·) does not affect the algorithm, we can set it to 0. Rearranging:

T∑
t=1

⟨pt,xt⟩ − ⟨pt,ut⟩ ≤
T∑
t=1

(h0:t(xt)− h0:t(xt+1)− rt(xt) + rt(ut)) +

T−1∑
t=1

(h0:t(ut+1)− h0:t(ut)) .

Noting that by (20), the LHS upper-bounds the regret, we get the result.

B.2. Bounding the First Part (I):

We bound (I) : h0:t(xt)−h0:t(xt+1)−rt(xt) in two ways, which results in the min(·, ·) term. We present in this subsection
Lemmas B.2 and 4.2, corresponding to each argument of the min(·, ·).
First, we begin with Lemma B.1, which provides an additional characterization of the iterate xt as the minimizer not only of
the original update rule, but also of a related linearized expression.

Lemma B.1. For any xt ∈ X , xt = argminx h0:t−1(x) + f̃t(x) =⇒ xt = argminx h0:t−1(x) + ⟨g̃t,x⟩ + ⟨gIt ,x⟩,
where g̃t ∈ ∂f̃t(xt) and gIt is selected according to (19).

Proof. We are given that xt = argminx h0:t−1(x) + f̃t(x). Thus, from the optimality condition for constrained problems
(e.g., (Beck, 2017, Thm. 3.67)), the negative (sub)gradient must belong to the normal cone at xt:

−∇h1:t−1(xt)− g̃t ∈ NX (xt) (By definition of g̃t). (21)

Next, we examine the optimality condition for h0:t−1(x) + ⟨g̃t,x⟩ + ⟨gIt ,x⟩ and show that xt satisfies it. For y to be
minimizer of h0:t−1(x) + ⟨g̃t,x⟩+ ⟨gIt ,x⟩, it must satisfy:

−∇h1:t−1(y)− g̃t − gIt ∈ NX (y).

Substituting xt in the above we get

−∇h1:t−1(xt)− g̃t − gIt ∈ NX (xt). (22)

Now, note that according to the linearization choices in (19), we have that either (i): gIt = 0, or (ii): gIt = −(p1:t−1 + g̃t +
σ1:t−1xt).

In case (i), (22) reduces to the given (21), meaning that xt satisfies (22).

In case (ii), Note that −(p1:t−1 + g̃t + σ1:t−1xt) = −∇h1:t−1(xt)− g̃t, and hence (22) reduces to 0 ∈ NX (xt), which is
always true. Thus, xt satisfies (22) in this case too.

14
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It follows that xt satisfies the optimality condition for h0:t−1(x)+ ⟨g̃t,x⟩+ ⟨gIt ,x⟩ and hence is a minimizer10 thereof.

Lemma B.2. Let each function h0:t(·) be 1-strongly convex with respect to a norm ∥ · ∥t defined as in Lemma 4.1. Let
xt = argminx h0:t−1(x) + f̃t(x). Then, we have the inequality

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤ 2Rϵt.

Proof.

h0:t(xt)− h0:t(xt+1)− rt(xt) = h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(xt+1)− ⟨pt,xt+1⟩ − rt(xt+1)

(a)

≤ h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(xt+1)− ⟨pt,xt+1⟩
(b)

≤ h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(yt)− ⟨pt,yt⟩, (23)

where (a) follows by dropping the negative −rt(xt+1) term and (b) by defining yt
.
= argminx h0:t−1(x) + ⟨pt,x⟩. Then,

h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(yt)− ⟨pt,yt⟩
= h0:t−1(xt) + ⟨g̃t + gIt ,xt⟩+ ⟨pt,xt⟩ − h0:t−1(yt)− ⟨pt,yt⟩ − ⟨g̃t + gIt ,xt⟩
(c)

≤ h0:t−1(yt) + ⟨g̃t + gIt ,yt⟩+ ⟨pt,xt⟩ − h0:t−1(yt)− ⟨pt,yt⟩ − ⟨g̃t + gIt ,xt⟩
= ⟨g̃t + gIt ,yt − xt⟩+ ⟨pt,xt − yt⟩ = ⟨pt,xt − yt⟩ − ⟨g̃t + gIt ,xt − yt⟩
= ⟨pt − g̃t − gIt ,xt − yt⟩ = ⟨gt − g̃t,xt − yt⟩ ≤ 2R∥gt − g̃t∥ = 2Rϵt,

where we added & subtracted ⟨g̃t + gIt ,xt⟩ in the first equality, and (c) holds because xt is the minimizer of h0:t−1(x) +
⟨g̃t + gIt ,x⟩ (shown by Lemma B.1). Overall, we obtain

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤ 2Rϵt. (24)

To produce the other argument in the min(·, ·), we use the following lemma.

Lemma 4.2. Let each function h0:t(·) be 1-strongly convex with respect to a norm ∥ · ∥t defined as in Lemma 4.1. Let
xt = argminx h0:t−1(x) + f̃t(x). Then, we have the inequality

h0:t(xt)− h0:t(xt+1)− rt(xt) ≤
1

2
∥gt − g̃t∥2t−1,∗ .

Proof.

h0:t(xt)− h0:t(xt+1)− rt(xt)

= h0:t−1(xt) + ⟨pt,x⟩ − h0:t−1(xt+1)− ⟨pt,xt+1⟩ − rt+1(xt+1)

≤ h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(xt+1)− ⟨pt,xt+1⟩
≤ h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(yt)− ⟨pt,yt⟩, yt

.
= argmin

x
h0:t−1(x) + ⟨pt,x⟩

Where again the inequality follows by dropping the non-positive rt+1(·). Next, we invoke Lemma D.1 with

ϕ1(x)
.
= h0:t−1(x) + ⟨g̃t,x⟩+ ⟨gIt ,x⟩,

ϕ2(x)
.
= h0:t−1(x) + ⟨pt,x⟩ = h0:t−1(x) + ⟨gt,x⟩+ ⟨gIt ,x⟩ = ϕ1(x) + ⟨gt − g̃t,x⟩︸ ︷︷ ︸

ψ(x)

.

10Since h0:t(·) is strongly convex, the minimizer of the two expressions in the lemma statement always exist and unique. In the case
σ1:t = 0, we abuse notation by writing “ = argmin ” instead of “ ∈ argmin ”. This is not problematic because we do not require the
equivalence of the minimizers.
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Under these definitions, we indeed have that

xt = argmin
x

h0:t−1(x) + f̃t(x)

(Lem. B.1)
= argmin

x
h0:t−1(x) + ⟨g̃t,x⟩+ ⟨gIt ,x⟩ = argmin

x
ϕ1(x) = y1.

and thus selecting y′ of Lemma D.1 as yt, the result of the same (Lemma D.1) gives:

h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(yt)− ⟨pt,yt⟩ ≤
1

2
∥gt − g̃t∥2t−1,∗ , (25)

noticing that ∂ψ(xt) = gt − g̃t.

From (25) and (24), we have that

(I) ≤ min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
(26)

B.3. Bounding the Second Part (II):

The second part does not have the structure exploited in the first one (ut and ut+1 are arbitrary). Hence, we must resort to
the strong convexity property to obtain

h0:t(ut+1)− h0:t(ut) ≤ ⟨qt,ut+1 − ut⟩ −
σ1:t
2

∥ut+1 − ut∥2

≤ ∥qt∥∥ut+1 − ut∥ −
σ1:t
2

∥ut+1 − ut∥2,

where

qt ∈ ∂h0:t(ut+1).

Nonetheless, we will still exploit problem properties to bound ∥qt∥:

∂h0:t(x) = p1:t +

t∑
τ=1

στx+NX (x),

which gives

qt = p1:t +

t∑
τ=1

στut+1,

where we chose the 0 vector from NX (ut+1). Hence, the length of qt satisfies:

∥qt∥ ≤ ∥p1:t∥+
t∑

τ=1

στ∥ut+1∥ = ∥p1:t∥+ σ1:t∥ut+1∥ ≤ ∥p1:t∥+Rσ1:t

Overall

h0:t(ut+1)− h0:t(ut) ≤ (∥p1:t∥+Rσ1:t) ∥ut+1 − ut∥ −
σ1:t
2

∥ut+1 − ut∥2. (27)

From (27) it follows that

(II) ≤ (∥p1:t∥+Rσ1:t) ∥ut+1 − ut∥ −
σ1:t
2

∥ut+1 − ut∥2 (28)

≤ (∥p1:t∥+Rσ1:t) ∥ut+1 − ut∥ (29)

Note that the negative term in (28) admits a tight lower bound of 0 and will therefore be omitted. Next, we derive a bound
on the state vector’s length ∥p1:t∥.
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Lemma 4.3. (Optimistically Bounded State) Let {pt}Tt=1 be a sequence of vectors such that each pt = gt + gIt , where
gt ∈ ∂ft(xt), and gtI ∈ ∂IX (xt) is chosen according to the construction in (5). That is, pt corresponds to the linearization
of the composite function ft(·) + IX (·) around xt. Then, for any t, the following holds:

∥p1:t∥ ≤ Rσ1:t−1 + ϵt.

Proof. The proof of this lemma was stated in the paper.

C. Missing Proofs for Section 3
Recall the problem parameters described by the following settings:

Settings 1: Let X ⊂ Rd be a compact, convex set such that ∥x∥ ≤ R for all x ∈ X . Let {ft(·), f̃t(·)}Tt=1 be any sequence
of L-Lipschitz convex functions, and define the following quantities.

The cumulative-squared prediction error: ET
.
=

T∑
t=1

ϵ2t , ϵt
.
= ∥gt − g̃t∥.

The path length: PT
.
=

T−1∑
t=1

∥ut+1 − ut∥

The prediction-weighted path length: HT
.
=

T−1∑
t=1

ϵt∥ut+1 − ut∥

C.1. Proof of Theorem 3.1

Consider the following regularization strategy

σ =
1

4R
, and σ1 = σϵ1, σt = σ

(√
Et −

√
Et−1

)
,∀t ≥ 2. (30)

Theorem 3.1. Under Settings 1, Alg. 1 run with the regularization strategy in (30) produces points {xt}Tt=1 such that, for
any T , the dynamic regret RT satisfies:

RT ≤
(
5.8R+ (1/2)PT

)√
ET +HT = O

(
(1 + PT )

√
ET

)
.

Proof. We begin by substituting the bounds of (I) and (II), from (26) and (29), respectively, back in the result of Lemma
4.1:

RT ≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)
+

T−1∑
t=1

((Rσ1:t + ∥p1:t∥) ∥ut+1 − ut∥)

(a)

≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)
+

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

(b)

≤
T∑
t=1

min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+
R2

2
σ1:T +

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

=

T∑
t=1

min

(
ϵ2t

2σ0:t−1
, 2Rϵt

)
+
R2

2
σ1:T +

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

=

T∑
t=1

min

(
ϵ2t

2σ
√
Et−1

, 2Rϵt

)
+
R2

2
σ
√
ET +

T−1∑
t=1

((
2Rσ

√
Et + ϵt

)
∥ut+1 − ut∥

)
(c)

≤ 4
√
2R
√
ET +

R

8

√
ET +

T−1∑
t=1

1

2

√
Et∥ut+1 − ut∥+HT
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(d)

≤ 5.8R
√
ET +

1

2

√
ET−1

T−1∑
t=1

∥ut+1 − ut∥+HT

= 5.8R
√
ET +

1

2

√
ETPT +HT

where (a) follows by Lemma 4.3 which bounds ∥p1:t∥, and by the fact that σ1:t−1 ≤ σ1:t, (b) by bounding each ∥ut∥ in
rt(ut) by R, (c) by Lemma D.3, which is a common tool to bound the sum of a decreasing function (on Et−1), with the
choice of σ = 1

4R , and (d) by the fact that
√
Et are non-decreasing.

Remark C.1. On the growth rate of the hybrid term HT .

Note that by Cauchy-Schwarz, we have that

HT =

T−1∑
t=1

ϵt∥ut+1 − ut∥ ≤

√√√√T−1∑
t=1

ϵ2t

√√√√T−1∑
t=1

∥ut+1 − ut∥2 ≤
√
2R

√√√√T−1∑
t=1

ϵ2t

√√√√T−1∑
t=1

∥ut+1 − ut∥ =
√
2R
√
ET−1

√
PT .

Hence, HT is also O
(√
PTET

)
.

C.2. Proof of Theorem 3.2

Consider the following regularization strategy:

σ =
1

2
√
2RP ′

T

, where P ′
T is the augmented path length: P ′

T
.
= 2R+ PT .

σ1 = σϵ1, σt = σ
(√

Et −
√
Et−1

)
,∀t ≥ 2.

(31)

Theorem 3.2. Under Settings 1, Alg. 1 run with the regularization strategy in (31) produces points {xt}Tt=1 such that, for
any T , the dynamic regret RT satisfies:

RT ≤
(
4
√

2R2+PT +
R

8
+

√
RPT
2

)√
ET +HT = O

(
(1 +

√
PT )

√
ET

)
.

Proof. Similarly to Theorem 1, we begin by substituting the bounds of (I) and (II), from (26) and (29), respectively, back in
the result of Lemma 4.1:

RT ≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)
+

T−1∑
t=1

((Rσ1:t + ∥p1:t∥) ∥ut+1 − ut∥)

(a)

≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)
+

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

(b)

≤
T∑
t=1

min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+
R2

2
σ1:T +

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

=

T∑
t=1

min

(
ϵ2t

2σ0:t−1
, 2Rϵt

)
+
R2

2
σ1:T +

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

=

T∑
t=1

min

(
ϵ2t

2σ
√
Et−1

, 2Rϵt

)
+
R2

2
σ
√
ET +

T−1∑
t=1

((
2Rσ

√
Et + ϵt

)
∥ut+1 − ut∥

)
(c)

≤ 4
√
R
√
P ′
TET +

R2

4
√
2RP ′

T

√
ET +

T−1∑
t=1

((
R√
2RP ′

T

√
Et + ϵt

)
∥ut+1 − ut∥

)
(d)

≤ 4
√
R
√
P ′
TET +

R

8

√
ET +

√
R

2

T−1∑
t=1

√
Et

∥ut+1 − ut∥√
PT

+HT
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(e)

≤ 4
√
R
√
P ′
TET +

R

8

√
ET +

√
R

2

√
ET−1

PT√
PT

+HT

≤ 4
√
R
√
P ′
TET +

R

8

√
ET +

√
R

2

√
ETPT +HT

≤
(
4
√
RP ′

T +
R

8
+

√
R

2

√
PT

)√
ET +HT

≤
(
4
√
R(2R+ PT ) +

R

8
+

√
R

2

√
PT

)√
ET +HT

= O
(
(1 +

√
PT )

√
ET

)
,

where (a) follows by Lemma 4.3 which bounds ∥p1:t∥, and by σ1:t−1 ≤ σ1:t, (b) by bounding each ∥ut∥ in rt(ut), t ≤ T
by R, (c) by lemma D.3, with the choice of σ = 1

2
√

2RP ′
T

, (note that this choice still satisfies the Lemma’s condition since

P ′
T ≥ 2R),(d) also used that used 2R ≤ P ′

T , (e) used that Et is non-decreasing, and finally the O(·) expression follows
from Remark C.1.

Remark C.2. On guaranteeing
√
PTET ,∀ut.

To obtain a minimax bound that holds uniformly over all comparator sequences (i.e., without assuming prior knowledge of
their path length, and without assuming that they are observable online), one can instantiate Θ(log T ) sub-learners, each
with a halving σ starting from 1/

√
T . Then, using the meta-learner of (Zhao et al., 2020), the minimax bound can be

recovered. The gist of this approach is that eventually ∃ an expert i such that ∀PT , σ(i) ≥ 1/
√
PT ≥ 1/2σ(i).

C.3. Proof of Theorem 3.3

Define the augmented seen path length at t as:

P ′
t
.
= 2R+ Pt = 2R+

t−1∑
τ=1

∥uτ+1 − uτ∥.

and consider the following regularization strategy

σ =
1

2
√
2R

, σ1 =
σϵ1√
P ′
1

, σt=σmax

(
0,

√
Et
P ′
t

−
√
Et−1

P ′
t−1

)
,∀t ≥ 2. (32)

Theorem 3.3. Under Settings 1, Alg. 1 run with the regularization strategy in (32) produces points {xt}Tt=1 such that, for
any T , the dynamic regret RT satisfies:

RT ≤ 5.5
√
R
√
ETP ′

T +HT +
√
R/2 AT = O

(
(1 +

√
PT )

√
ET +AT

)
where

AT
.
=

T∑
t=1

∑
τ∈[t]+

(√
Eτ−1

P ′
t−1

−
√
Eτ
P ′
τ

)
∥ut+1 − ut∥, with [t]+ =

{
2 ≤ τ ≤ t

∣∣∣∣
√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

≥ 0

}
.

Before proceeding to prove the theorem, we will make use of the following two lemmas, which we present independently to
streamline the presentation.

Lemma C.3. The squared norm ∥gt − g̃t∥2t−1 = σ0:t−1∥gt − g̃t∥2 = σ0:t−1ϵ
2
t can be written as:

∥gt − g̃t∥20,∗ = 0,

∥gt − g̃t∥2t−1,∗ ≤ 1

σ

√
P ′
t−1

Et−1
ϵ2t , ∀t ≥ 1
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Proof. Recall first that the dual norm of ∥ · ∥t−1,∗ is 1√
σ0:t−1

∥ · ∥. The first part is immediate from ∥x∥0,∗ =
√

E0

P ′
0
∥x∥ = 0,

since E0 = 0 and P ′
0 = 2R. For the second part:

∥gt − g̃t∥2t−1,∗ =
∥gt − g̃t∥2
σ1:t−1

=
ϵ2t

σϵ1√
P ′

1

+
∑t−1
τ=2 σmax

(
0,
√

Eτ

P ′
τ
−
√

Eτ−1

P ′
τ−1

)
≤ ϵ2t

σϵ1√
P ′

1

+
∑t−1
τ=2 σ

(√
Eτ

P ′
τ
−
√

Eτ−1

P ′
τ−1

) =
ϵ2t

σ
√

Et−1

P ′
t−1

,

where the inequality follows by dropping the max in the denominator.

Lemma C.4. The strong convexity parameter σ1:t in (32) can be written as the cumulative term
√

Et

P ′
t

plus a corrective
term:

σ1:t = σ

√Et
P ′
t

+
∑
τ∈[t]+

√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

 .

Proof.

σ1:t =
σϵ1√
P ′
1

+ σ

t∑
τ=2

max

(
0,

√
Eτ
P ′
τ

−
√
Eτ−1

P ′
τ−1

)

= σ

(
ϵ1√
P ′
1

+

t∑
τ=2

√
Eτ
P ′
τ

−
√
Eτ−1

P ′
τ−1

)
+ σ

∑
τ∈[t]+

√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

,

where the last equality holds from the definition of [t]+. That is, for the slot τ when the max evaluates to 0, we write it as(√
Eτ

P ′
τ
−
√

Eτ−1

P ′
τ−1

)
+
(√

Eτ−1

P ′
τ−1

−
√

Eτ

P ′
τ

)
. Now, by telescoping

σ1:t = σ

(
ϵ1√
P ′
1

+

√
Et
P ′
t

−
√
E1

P ′
1

)
+ σ

∑
τ∈[t]+

√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

= σ

√
Et
P ′
t

+ σ
∑
τ∈[t]+

√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

.

Proof of Theorem 3.3. We begin by substituting the bounds of (I) and (II), in (26) and (29), respectively, back in the result
of Lemma 4.1:

RT ≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)
+

T−1∑
t=1

((Rσ1:t + ∥p1:t∥) ∥ut+1 − ut∥)

(a)

≤
T∑
t=1

(
min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+ rt(ut)

)
+

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

(b)

≤
T∑
t=1

min

(
1

2
∥gt − g̃t∥2t−1,∗, 2Rϵt

)
+
R2

2
σ1:T +

T−1∑
t=1

2Rσ1:t∥ut+1 − ut∥+HT

(c)

≤
T∑
t=1

min

( √
P ′
t−1ϵ

2
t

2σ
√
Et−1

, 2Rϵt

)
+

T∑
t=1

2Rσ1:t∥ut+1 − ut∥+HT
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(d)

≤
T∑
t=1

min

( √
P ′
t−1ϵ

2
t

2σ
√
Et−1

, 2Rϵt

)
+ 2Rσ

T∑
t=1

√
Et
P ′
t

∥ut+1 − ut∥+HT

+ 2Rσ

T∑
t=1

∑
τ∈[t]+

(√
Eτ−1

P ′
t−1

−
√
Eτ
P ′
τ

)
∥ut+1 − ut∥︸ ︷︷ ︸

.
=AT

(e)

≤
T∑
t=1

√
P ′
T min

(
ϵ2t

2σ
√
Et−1

,
2R√
P ′
T

ϵt

)
+ 2Rσ

T∑
t=1

√
Et
P ′
t

∥ut+1 − ut∥+HT + 2RσAT

(f)

≤
T∑
t=1

√
P ′
T min

(
ϵ2t

2σ
√
Et−1

,
√
2Rϵt

)
+ 2Rσ

√
ET

T∑
t=1

∥ut+1 − ut∥√
P ′
t

+HT + 2RσAT

(g)

≤ 4
√
R
√
P ′
TET +

√
R

2

√
ET

T∑
t=1

∥ut+1 − ut∥√
2R+

∑t−1
τ=1 ∥uτ+1 − uτ∥

+HT +

√
R

2
AT

(h)

≤ 4
√
R
√
P ′
TET +

√
R

2

√
ET

T∑
t=1

∥ut+1 − ut∥√∑t
τ=1 ∥uτ+1 − uτ∥

+HT +

√
R

2
AT

(i)

≤ 4
√
R
√
P ′
TET +

√
2R
√
ETP ′

T +HT +

√
R

2
AT

= (4 +
√
2)
√
R
√
P ′
TET +HT +

√
R

2
AT

where (a) follows by Lemma 4.3 which bounds ∥p1:t∥, and the fact that σ1:t−1 ≤ σ1:t, (b) by bounding each ∥ut∥ in
rt(ut), t ≤ T by R, (c) by using Lemma C.3 for the first sum, and by selecting11 uT+1 such that ∥uT+1 − uT ∥ ≥ R

4 ,
which allows us to append the R2

2 σ1:T term to the second sum as the summand with index T , (d) by using Lemma C.4 to
re-write σ1:t, (e) since P ′

t is non-decreasing, (f) from P ′
t ≥ 2R, (g) by σ = 1/2

√
2R and Lemma D.3, (h) by the fact that

2R ≥ ∥ut+1 − ut∥,∀t, and finally (i) by Lemma D.2 with at = ∥ut+1 − ut∥.

C.3.1. BOUNDING THE AT TERM

In this subsection, we show that the term AT cannot be worse than the result of Theorem 1 in all cases.

AT
.
=

T∑
t=1

∑
τ∈[t]+

(√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

)
∥ut+1 − ut∥ =

T∑
t=1

∥ut+1 − ut∥
∑
τ∈[t]+

(√
Eτ−1

P ′
τ−1

−
√
Eτ
P ′
τ

)
(a)

≤
T∑
t=1

∥ut+1 − ut∥
∑
τ∈[t]+

(√
Eτ
P ′
τ−1

−
√
Eτ
P ′
τ

)
=

T∑
t=1

∥ut+1 − ut∥
∑
τ∈[t]+

√
Eτ

(√
1

P ′
τ−1

−
√

1

P ′
τ

)
(b)

≤
T∑
t=1

∥ut+1 − ut∥
√
Et

∑
τ∈[t]+

(√
1

P ′
τ−1

−
√

1

P ′
τ

)
(c)

≤
T∑
t=1

[
∥ut+1 − ut∥

√
Et

t∑
τ=2

(√
1

P ′
τ−1

−
√

1

P ′
τ

)]
(d)
=

T∑
t=1

[
∥ut+1 − ut∥

√
Et

(√
1

P ′
1

−
√

1

P ′
t

)]
11Note that uT+1 does not affect the algorithm and hence we can set it without loss of generality
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(e)
=

T∑
t=1

[
∥ut+1 − ut∥

√
Et

√
1

P ′
1

]
(f)

≤
√
ET
P ′
1

T∑
t=1

∥ut+1 − ut∥

=
1√
P ′
1

√
ETP

′
T = O(

√
ET (PT + 1)),

where (a) is from Eτ ≥ Eτ−1 for all τ by definition; (b) holds similarly because Eτ is non-decreasing on τ (or t); (c) holds
because P ′

τ−1 ≤ P ′
τ for all τ (for any slot t) and hence we can add additional positive terms and create the entire sum from

τ = 2 to τ = t, instead of only the partial sum of terms in [t]+; (d) holds by writing the telescoping sum; (e) holds by
dropping the last term which is negative; and finally in (f) we used the fact that ET ≥ Et,∀t.

C.4. Proof of Theorem 3.4

Consider the following regularization strategy

σ =
1

8R2
; σt = σδt

δ1 = ⟨g1,x1⟩ − min
x∈X

⟨g1,x⟩; δt = h0:t−1(xt) + ⟨pt,xt⟩ − min
x∈X

(h0:t−1(x) + ⟨pt, x⟩) ,∀t ≥ 2;
(33)

Clarification on the term “recursive”: In previous regularization strategies, the strong convexity at time t, σ1:t, can be
expressed in closed form as σ1:t = σ

√
Et. This follows from defining each σt to be exactly σ(

√
Et −

√
Et−1) ≤ σϵ2t

2
√
Et−1

.

However, when σt is defined more generally as a scalar σδt, where δt can take any value in [0, σ(
ϵ2t

2
√
Et−1

)], we lose this

compact form. Instead, σ1:t is now recursively defined as σ1:t−1 + σδt. As discussed, this ensures minimal regularization,
impacting both the algorithm’s behavior and the analysis.

Theorem 3.4. Under Settings 1, Alg. 1 run with the regularization strategy in (33) produces points {xt}Tt=1 such that, for
any T , the dynamic regret RT satisfies:

RT ≤ 1.1 δ1:T +

T−1∑
t=1

1

4R
δ1:t∥ut+1 − ut∥+HT

≤ (3.7R+ PT )
√
ET +HT = O

(
(1 + PT )

√
ET

)
.

Proof. We begin from the result of Lemma 4.1 but without substituting the upper bound on part (I), in order to characterize
it more tightly via the δt terms. For the term (II), we use the upper bound from (29):

RT ≤
T∑
t=1

(h0:t(xt)− h0:t(xt+1) + rt(ut)− rt(xt)) +

T−1∑
t=1

((Rσ1:t + ∥p1:t∥) ∥ut+1 − ut∥)

(a)

≤
T∑
t=1

(h0:t(xt)− rt(xt)− h0:t−1(xt+1)− rt(xt+1)− ⟨pt,xt+1⟩+ rt(ut))

+

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

(b)

≤
T∑
t=1

(h0:t−1(xt) + ⟨pt,xt⟩ − h0:t−1(xt+1)− ⟨pt,xt+1⟩+ rt(ut))

+

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)
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(c)

≤
T∑
t=1

(δt + rt(ut)) +

T−1∑
t=1

((2Rσ1:t + ϵt) ∥ut+1 − ut∥)

(d)

≤ δ1:T +
R2σ

2
δ1:T +

T−1∑
t=1

2Rσ1:t∥ut+1 − ut∥+HT

(e)

≤ 1.1 δ1:T +

T−1∑
t=1

1

4R
δ1:t∥ut+1 − ut∥+HT (34)

where (a) follows by Lemma 4.3 which bounds ∥p1:t∥, and by the fact that σ1:t−1 ≤ σ1:t, (b) by dropping the non-negative
−rt(xt+1), (c) by the definition of δt, (d) by bounding each ∥ut∥ in rt(ut), t ≤ T by R, (e) since σ = 1/8R2.

C.4.1. BOUNDING THE RECURSION

Note for each δt we have that

δt ≤ 2Rϵt.

The above follows from Lemma B.2. Specifically, note that δt is equal to the expression in (23). In addition, we know from
Lemma 4.2 that

δt ≤
ϵ2t

2σ1:t−1
,

by noticing that δt is the LHS in the inequality (25). Substituting the strong convexity term σ1:t for the choices made in this
section in (33), we get

δt ≤
4R2ϵ2t
δ1:t−1

.

Overall,

δt ≤ min

(
2Rϵt,

4R2ϵ2t
δ1:t−1

)
.

We can now invoke the auxiliary Lemma D.4 on the last term with at
.
= 2Rϵt, ∆t

.
= δ1:t to get that for any t,

δ1:t ≤ 2
√
3R
√
Et.

Going back to (34), we get

RT ≤ 17
√
3

8
R
√
ET +

T−1∑
t=1

√
3

2

√
Et∥ut+1 − ut∥+HT

≤17
√
3

8
R
√
ET +

√
3

2

√
ETPT +HT = O

(
(1 + PT )

√
ET

)
.

D. Auxiliary Lemmas
Lemmas/theorems here are (specialized) results from the literature with potentially modified notation.

Lemma D.1. (McMahan, 2017, Lemma 7) Given a convex function ϕ1(·) with a minimizer y1
.
= argminy ϕ1(y) and a

function ϕ2(·) = ϕ1(·) + ψ(·) that is 1-strongly convex w.r.t some norm ∥ · ∥. Then,

ϕ2(y1)− ϕ2(y
′) ≤ 1

2
∥b∥2∗,

for any y′, and any (sub)gradient b ∈ ∂ψ(y1).
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Lemma D.2. (Auer et al., 2002, Lemma 3.5) For any at ≥ 0,∀t ∈ [T ]

T∑
t=1

at√
a1:t

≤ 2

√√√√ T∑
t=1

at,

with the convention that 0√
0

.
= 0.

Lemma D.3. (Orabona, 2022, Section 7.6) Let R, σ be positive real numbers that satisfy σ ≤ 1
2b , b > 0. Then, for any

at ≥ 0,∀t ∈ [T ]:

T∑
t=1

min

 a2t

2σ
√∑t−1

τ=1 aτ

, bat

 ≤
√
2

σ

√√√√ T∑
t=1

at.

Proof. The proof of this lemma closely follows the argument presented in the cited section. However, due to the inclusion
of the term R in the second part of the min, we adapt the proof accordingly to account for this difference.

T∑
t=1

min

 a2t

2σ
√∑t−1

τ=1 a
2
τ

, bat

 ≤
T∑
t=1

√√√√min

(
a4t

4σ2
∑t−1
τ=1 a

2
τ

, b2a2t

)

=
1

2

T∑
t=1

√√√√min

(
a4t

σ2
∑t−1
τ=1 a

2
τ

, 4b2a2t

)
(a)

≤ 1

2

T∑
t=1

√√√√ 2
σ2

∑t−1
τ=1 a

2
τ

a4t
+ 1

4b2a2t

=
1

2

T∑
t=1

√√√√ 2
4b2σ2

∑t−1
τ=1 a

2
τ+a

2
t

4b2a4t

(b)

≤ 1

2

T∑
t=1

2
√
2 b a2t√

4b2σ2
∑t
τ=1 a

2
τ

=

√
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τ=1 a

2
τ

,

where (a) follows by min(a, b) ≤ 2
1/a+1/b , and (b) used the assumption on σ to append a2t to the sum. The result then

follows by lemma D.2.

Lemma D.4. (Orabona & Pál, 2018, Lemma 7) Let at ≥ 0, ∀t ∈ [T ], and ∆t be a sequence of positive numbers satisfying
the recurrence

∆t = ∆t−1 +min

(
at,

a2t
∆t−1

)
.

with ∆0
.
= 0. Then, for any T , we have that

∆T =

√√√√3

T∑
t=1

a2t .

E. Comparison with the Literature
We summarize the key differences between our work and the relevant existing results on optimistic dynamic regret. The
selected references represent the best known regret bounds (there are many other works that focus on different aspects, such
as efficiency, unbounded domain, etc, but have the same structure as these bounds). It is important to note that some of these
works derive bounds in terms of quantities other than the gradient prediction error, such as the extended “temporal variation”
in (Scroccaro et al., 2023) or the “comparator loss” in (Zhao et al., 2024). For the sake of consistency, we restrict the
comparison to bounds involving ET , choosing ET in cases where a min(ET , ·) term is present in the literature. Extending
FTRL-based algorithms to handle comparator loss and temporal variations, dynamic regret bounds remain open. Lastly, in
the comparison below, “best-case” refers to the scenario where ET = 0, corresponding to perfect predictions.

Bounds without tuning for PT :

24



On the Dynamic Regret of FTRL: Optimism with History Pruning

• (Jadbabaie et al., 2015) Obtains a bound of O((PT + 1)
√
ET + 1), which is O(PT ) in the best case.

• (Scroccaro et al., 2023) Obtains a bound of O((PT + 1)
√
DT + 1), where DT

.
= ∥∑T

t=1 ∇ft(yt−1)−∇f̃t(yt−1)∥.
which is O(PT ) in the best case.

• (Zhao et al., 2024) Obtains a bound O(
√

(VT + PT + 1)(1 + PT )), which is O(PT ) in the best case. Note that all PT
appear under the root. Hence, this bound still matches the optimal min-max bound of

√
T (1 + PT ) in the worst case.

• This work achieves a dynamic regret bound of RT = O((1 + PT )
√
ET , which is 0 in the best case.

Bounds with online PT estimation:

• (Jadbabaie et al., 2015) Obtains a bound of O(log(T )
√

(PT + 1)(ET + 1)), which is O(log(T )
√
PT ) in the best case.

• (Scroccaro et al., 2023) Obtains a bound of O(
√

(PT + 1)(DT + θT )), where θT is the sum of corrective terms θt,
which are added to the learning rate to ensure monotonicity, and it holds that in the perfect gradient prediction case
θT = O(1 + PT ) and the regret bound is also O(PT ).

• (Zhao et al., 2024) Maintains the same bounds since, as detailed in the main paper, this meta learning framework
provides bounds that hold simultaneously for all PT . The bound is O(

√
(VT + PT + 1)(1 + PT )), which is O(PT ) in

the best case.

• This work achieves a dynamic regret bound of O((1 +
√
PT )

√
ET +AT ), which is 0 in the best case.

F. Numerical Examples
In this section, we present numerical examples comparing the performance of three standard implementations of OCO
algorithms across multiple non-stationary environments (sequences of cost functions). The algorithms considered are:

• FTRL with adaptive Euclidean regularization, which corresponds to a lazy projected Online Gradient Descent (OGD)
but with Adagrad style tuning (McMahan, 2017, Sec. 3.5)

• OMD with data-adaptive learning rates, which corresponds to a greedy projection OGD (Orabona, 2022, Sec. 4.2).

• Our proposed algorithm, OptFPRL, with the vanilla tuning strategy (i.e., in Sec. 3.1).

The implementation code for the algorithms, along with the code to reproduce all experiments, is available at the following
repository: (Mhaisen, 2025). Since the FTRL and OMD variants used in our experiments neither assume prior knowledge
of PT nor attempt to estimate it online, we compare them to OptFPRL using the tuning strategy described in Sec. 3.1 to
ensure a fair evaluation. In scenarios where no predictions are used, the predicted functions fed to the algorithms are set to
zero. This allows us to understand their performance initially, independent of prediction quality. Even without predictions,
the proposed algorithm outperforms the two benchmarks in many scenarios, demonstrating its performance in dynamic
environments.

Numerical setup. X .
= {x ∈ R16|∥x∥ ≤ 2} ft(x) = ⟨ct,x⟩, T = 5000, with

• Scenario 1: c1, . . . , c1000 = −1, c1000, . . . , c5000 = 1.

• Scenario 2: c1, . . . , c1000 = −1, c2000, . . . , c2500 = −1, c3500, . . . , c3750 = −1, ct = 1 otherwise.

• Scenario 3: c1, . . . , c1000 = −1, c2000, . . . , c2500 = −5, c3500, . . . , c3750 = −10, ct = 1 otherwise.

• Scenario 4: ct alternates between 1 and -1 every 50 steps.

• Scenario 5: ct alternates between 1 and -0.1 every 50 steps.

• Scenario 6: ct alternates between 1 and -1 every 50 steps; Predictions c̃t = ct − ct

0.1t ,∀t ∈ [T ]

The observed behavior across different scenarios in the above figure aligns with theoretical expectations. In Scenario 1,
where the cost function shifts at t = 1000, standard FTRL struggles to adapt due to its reliance on accumulating all past
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(a) Scenario 1

0 1 2 3 4 5
Horizon T

0

2

4

6

8

10

12

A
ve

ra
ge

 re
gr

et
 R

T
/T

FTRL
FTRL, xt xt

OptFPRL
OptFPRL, xt xt

OMD
OMD, xt xt

×103

(b) Scenario 2
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(c) Scenario 3
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(d) Scenario 4
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(e) Scenario 5
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(f) Scenario 6

Figure 2: Average dynamic regret over time across various non-stationary scenarios. Dashed lines indicate time slots where
the computed iterate differs from the comparator x⋆t .

costs. This inertia makes it slow to respond and leads to continued suboptimal actions until t = 2000, resulting in high
regret. In contrast, OMD reacts immediately to the shift, adjusting its actions accordingly. Similarly, OptFPRL adapts
directly, resulting in lower regret.

In Scenario 3, where cost directions change multiple times with increasing magnitudes, the limitations of FTRL become
evident. The average regret fails to diminish, demonstrating its inability to handle such non-stationarity. While both OMD
and OptFPRL respond to these variations, OptFPRL achieves lower regret. The advantages of OptFPRL are even more
pronounced in Scenario 4, which involves high-frequency cost changes. That said, the observed difference between the
implemented versions of OMD and OptFPRL is primarily due to the parameter tuning of each algorithm. The tested
configurations use the theoretically optimal learning rate ηt for OMD and regularization parameter σt for OptFPRL, but
different choices may lead to considerably different behavior. In contrast, the poor performance of vanilla FTRL cannot be
mitigated by tuning theoretically motivated parameters–its failure is more fundamental, as discussed in the main text.

We also highlight a scenario in which OptFPRL performs the worst (Scenario 5): high-frequency cost switches with
alternating magnitudes (large and small). This setting is deliberately designed to exploit our method’s extra agility, forcing
“undue” frequent adjustments. As expected, OptFPRL exhibits higher regret in this case, consistent with the theoretical
results. Nonetheless, this tradeoff is inherent to the design and provides insights into potential extensions that balance agility
and stability.

Lastly, we highlight in Scenario 6 the role of very high-quality predictions in the performance of the optimistic versions of
the three algorithms ((Jadbabaie et al., 2015) for OMD and (Joulani et al., 2020, Sec. 7.1) for FTRL). We plot the average
regret under predictions constructed as the original functions plus adversarial noise. Specifically, the adversarial noise is set
as the negative of the original cost functions, with magnitude decaying quickly as 1/(0.1t), becoming negligible by t ≈ 100.
As noted in the paper, standard FTRL can be easily “trapped”, accumulating redundant gradients and failing to track the
comparators. Optimistic OGD and our OptFPRL react immediately when losses change direction.
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