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ABSTRACT

Many advances that have improved the robustness and efficiency of deep rein-
forcement learning (RL) algorithms can, in one way or another, be understood as
introducing additional objectives or constraints in the policy optimization step. This
includes ideas as far ranging as exploration bonuses, entropy regularization, and
regularization toward teachers or data priors. Often, the task reward and auxiliary
objectives are in conflict, and in this paper we argue that this makes it natural to
treat these cases as instances of multi-objective (MO) optimization problems. We
demonstrate how this perspective allows us to develop novel and more effective RL
algorithms. In particular, we focus on offline RL and finetuning as case studies,
and show that existing approaches can be understood as MO algorithms relying on
linear scalarization. We hypothesize that replacing linear scalarization with a better
algorithm can improve performance. We introduce Distillation of a Mixture of
Experts (DiME), a new MORL algorithm that outperforms linear scalarization and
can be applied to these non-standard MO problems. We demonstrate that for offline
RL, DiME leads to a simple new algorithm that outperforms state-of-the-art. For
finetuning, we derive new algorithms that learn to outperform the teacher policy.

1 INTRODUCTION

Deep reinforcement learning (RL) algorithms have solved a number of challenging problems, includ-
ing in games (Mnih et al., 2015; Silver et al., 2016), simulated continuous control (Heess et al., 2017;
Peng et al., 2018), and robotics (OpenAI et al., 2018). The standard RL setting appeals through its
simplicity: an agent acts in the environment and can discover complex solutions simply by maximiz-
ing cumulative discounted reward. In practice, however, the situation is often more complicated. For
instance, without a carefully crafted reward function or sophisticated exploration strategy, learning
may require hundreds of millions of environment interactions, or may not be possible at all.

A number of strategies have been developed to mitigate the shortcomings of the pure RL paradigm.
These include strategies that regularize the final solution, for instance by maximizing auxiliary
rewards (Jaderberg et al., 2017) or the entropy of the policy (Mnih et al., 2016; Haarnoja et al., 2018).
Others facilitate exploration, for instance via demonstrations (Brys et al., 2015), shaping rewards (Ng
et al., 1999), exploration bonuses (Bellemare et al., 2016; Pathak et al., 2017), or guidance from a
pre-trained teacher policy, known as policy finetuning (Xie et al., 2021). Strategies for reusing old
environment interactions can in the extreme case enable agents to learn solely from a fixed dataset,
known as offline RL (Fu et al., 2020; Gulcehre et al., 2020). In this case regularization is needed to
ensure that the learned policy is well supported by the data distribution.

These approaches may seem quite different at first glance, but they can all be understood as introducing
additional objectives, or constraints, in the policy optimization step. Since reward maximization and
the additional objective(s) are usually in conflict, these algorithmic approaches can also be understood
as solving a multi-objective RL (MORL) problem. In practice, the solution to this MORL problem
is usually implemented via a form of linear scalarization (LS), i.e., by taking a weighted sum of
the objectives. However, LS suffers from a number of limitations: it is sensitive to the scale of the
objectives (Abdolmaleki et al., 2020) and is limited in the solutions it can find (Das & Dennis, 1997).
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Our key insight is that an interpretation of algorithmic approaches, such as the above, in terms of
MORL provides us with novel tools to solve fundamental challenges in RL. To demonstrate this,
we focus on offline RL and finetuning as case studies. We show recent offline RL algorithms (e.g.,
CRR (Wang et al., 2020), AWAC (Nair et al., 2020)) can be understood as using LS to solve the MO
problem. We hypothesize that by replacing LS with a more appropriate approach, we can obtain better-
performing algorithms. We thus propose a new MORL approach, called Distillation of a Mixture of
Experts (DiME), that can replace LS in this setting. We derive novel algorithms for finetuning and
offline RL, based on DiME. In offline RL, this new algorithm outperforms state-of-the-art (Sec. 6).

Our main contributions are as follows:

• We propose that MORL can be used as a tool for tackling fundamental challenges in RL.
We show that existing algorithms (e.g., for offline RL) rely on LS to solve the MO problem.
Based on this insight, we explore replacing LS with a new, improved MO algorithm.
• By replacing LS, we derive a novel offline RL algorithm from the multi-objective perspective

(Sec. 5.2), that is simple, intuitive and outperforms the state-of-the-art (Sec. 6.2).
• In a similar manner, we also derive new finetuning algorithms (Sec. 5.1), and show that

these algorithms can train policies that exceed the teacher’s performance (Sec. 6.3).
• To replace LS, we introduce a new MORL approach, DiME. We support DiME by theoretical

derivations (Sec. 4.1) and show it outperforms LS on standard MORL tasks (Sec. 6.1).

2 RELATED WORK

Offline RL and Finetuning. Our case studies in this work will involve two related learning
problems: offline (or batch) RL (Levine et al., 2020; Lange et al., 2012) and policy finetuning (Xie
et al., 2021). Both leverage existing information, either in the form of a dataset or a teacher policy. In
this work, we use proximity to the dataset or policy as an additional objective in a MORL problem.

In offline RL, the goal is to learn a policy from a given, fixed dataset of transitions. While classical
off-policy RL algorithms can be used, they perform worse than bespoke algorithms (Fujimoto et al.,
2019). This is likely due to the extrapolation errors incurred when learning a Q-function—naïve
policy optimization could optimistically exploit such errors. Therefore, many existing approaches
attempt to constrain the policy optimization to stay close to the samples present in the available
dataset (Peng et al., 2019; Nair et al., 2020; Siegel et al., 2020; Wang et al., 2020). Finetuning seeks
to improve upon an expert (or teacher) policy, which can be specified either nonparametrically via
a dataset of transitions or as a parametric model. In contrast to offline RL, finetuning happens in
an online setting, where the agent is able to interact with the environment. Existing approaches for
finetuning minimize the cross-entropy between the teacher and agent policies (Schmitt et al., 2018),
based on distillation or mimicking (Rusu et al., 2015; Parisotto et al., 2015).

Multi-Objective RL. MORL algorithms train policies for environments with multiple sources of
reward. There are single-policy and multi-policy approaches. The former finds a policy that is optimal
for a single preference trade-off across rewards. One common technique is to use the trade-off to
combine the rewards into a single scalar reward, and then use standard RL to optimize this (Roijers
et al., 2013). Typically linear scalarization is used, but it is sensitive to reward scales and cannot
always find optimal solutions (Das & Dennis, 1997). Non-linear scalarizations exist (Van Moffaert
et al., 2013; Golovin & Zhang, 2020), but are hard to combine with value-based RL. Instead of
scalarization, recent work on MO-MPO (Abdolmaleki et al., 2020) relies on constrained optimization.

Multi-policy approaches seek to find a set of policies that cover the Pareto front. Various techniques
exist, for instance repeatedly calling a single-policy approach with strategically-chosen trade-off
settings (Roijers et al., 2014; Mossalam et al., 2016; Zuluaga et al., 2016), simultaneously learning a
set of policies by using a multi-objective variant of Q-learning (Moffaert & Nowé, 2014; Reymond
& Nowé, 2019; Yang et al., 2019), learning a manifold of policies in parameter space (Parisi et al.,
2016; 2017), or combining single-policy approaches with an overarching objective (Xu et al., 2020).

In contrast, here we consider objectives that are not only environment rewards, but also learning- or
regularization-focused such as staying close to a behavioral prior. State-of-the-art MORL approaches,
including MO-MPO, cannot be readily applied. We thus introduce a new algorithm, DiME, which is
on-par with state-of-the-art and can handle these non-standard objectives (Sec. 4). We use DiME as a
vehicle to demonstrate the benefits of taking a multi-objective perspective toward challenges in RL.
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Algorithm Step 1: Improvement Step 2: Projection

LS q(a|s) ∝ πi(a|s) exp
(∑

kαkQk(s,a)

η

)
argminθ Es∼µ

[
DKL

(
q(·|s)|‖πθ(·|s)

)]
MO-MPO qk(a|s) ∝ πi(a|s) exp

(
Qk(s,a)
ηk(αk)

)
argminθ Es∼µ

[∑
kDKL

(
qk(·|s)‖πθ(·|s)

)]
DiME qk(a|s) ∝ πi(a|s) exp

(
Qk(s,a)
ηk

)
argminθ Es∼µ

[∑
kαkDKL

(
qk(·|s)‖πθ(·|s)

)]
Table 1: Comparison of policy improvement step for existing approaches versus DiME. Adjustments to the
single-objective setting to accommodate multiple objectives are highlighted in red.

3 BACKGROUND

We consider the RL problem defined by a Markov Decision Process (MDP). An MDP consists of
states s ∈ S , actions a ∈ A, an initial state distribution p(s0), transition probabilities p(st+1|st, at),
a reward function r(s, a) ∈ R, and a discount γ ∈ [0, 1). A policy πθ(a|s) is a state-conditional
distribution over actions, parametrized by θ. Together with the transition probabilities, this gives rise
to a state visitation distribution µ(s). The action-value function is the expected return from choosing
action a in state s and then following policy π: Qπ(s, a) = Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a].
This can also be written as Qπ(s, a) = Es′∼p[r(s, a) + γV π(s′)], where V π(s) = Ea∼π[Qπ(s, a)].

In this paper, both the LS and DiME approaches to multi-objective RL follow a policy iteration
scheme, repeatedly alternating between policy evaluation and policy improvement. In the policy
evaluation step, at iteration i the current policy πθi is evaluated by training a separate value function
Qik for every objective k. This requires bootstrapping1 according to Q-decomposition (Russell &
Zimdars, 2003). Any policy evaluation algorithm can be used to learn these Q-functions. In the policy
improvement step, given the previous policy πi (short for πθi when clear from context) and associated
Q-functions {Qk}Kk=1, the aim is to improve the policy for a given state visitation distribution µ.2

3.1 POLICY IMPROVEMENT: SINGLE OBJECTIVE

DiME introduces a new way to perform policy improvement with respect to multiple objectives,
so we will now describe the policy improvement step, first for the single-objective setting. Policy
improvement can itself be decomposed into the following two alternating steps (Ghosh et al., 2020).

Improvement. This step finds a (nonparametric) policy q that improves with respect to the Q-
function, while staying close to the current iterate πi, leading to the Lagrangian objective function

F (q; θi) = Es∼µ
a∼q

[
Q(s, a)

]
− η Es∼µ

[
DKL

(
q(·|s)‖πi(·|s)

)]
, (1)

with the known analytic solution q(a|s) ∝ πi(a|s) exp(Q(s, a)/η) (Peters et al., 2010).

Projection. This step projects the improved policy to the space of parametric policies by maximizing
the following (which simplifies to policy gradient if one uses a parametric q in the improvement step):

J(θ) = −Es∼µ DKL

(
q(·|s) ‖πθ(·|s)

)
. (2)

3.2 POLICY IMPROVEMENT: MULTIPLE OBJECTIVES

Suppose the policy must improve with respect to K objectives instead. In multi-objective problems,
a solution is Pareto-optimal if there is no other solution with better performance for one objective
without worse performance for another. The set of all Pareto-optimal solutions is the Pareto front. To
find a specific Pareto-optimal policy, let α = {αk}Kk=1 define a preference trade-off across objectives,
such that all αk ≥ 0. We can further enforce

∑
k αk = 1. A larger αk means the k-th objective is

more important, and should lead to increased influence of objective k on the policy optimization.

Linear Scalarization. Here the trade-off is used to produce a single scalar reward via a weighted
sum of the objectives. This leads to the nonparametric solution for q in Table 1, while the projection
step is the same as for a single objective. A drawback of LS is that not only the trade-offs, but also
the scales of the Qk, influence the contribution of each objective.

1Not all objectives are necessarily evaluated via bootstrapping, but we denote all as Qk to lighten notation.
2We will drop the superscript i on Qik, always assuming the latest iterate of the policy evaluation algorithm.
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MO-MPO. In contrast, Abdolmaleki et al. (2020) optimizes (1) separately for each objective, to
obtain K improved policies {qk}Kk=1. The trade-offs {αk} specify the constraint threshold on the
KL-divergence between qk and πi. As seen in Table 1, this leads to nonparametric solutions with
temperatures ηk, that are each a solution to a convex optimization problem involving αk.

A main advantage of MO-MPO is that it combines objectives in a scale-invariant way3, unlike LS.
However, because the trade-offs in MO-MPO define KL-constraints, the improvement operator used
for qk must be able to meet this constraint exactly. This means MO-MPO cannot be easily applied to
non-standard settings like offline RL, as we will discuss later in Sec. 5.2. Thus we propose DiME,
which can be applied to non-standard settings and maintains the benefit of scale-invariance.

4 DISTILLED MIXTURE OF EXPERTS

Like MO-MPO, DiME computes a separate qk per objective. As seen in Table 1, the nonparametric
solution is almost identical, with the crucial exception that the temperature ηk no longer depends on
αk. Unlike LS and MO-MPO, DiME only incorporates the trade-offs in the projection step objective

JDiME(θ) = −Es∼µ
K∑
k=1

αkDKL

(
qk(·|s) ‖πθ(·|s)

)
, (3)

so any improvement operator can be used to obtain qk. This allows us to apply DiME to offline
RL and other non-standard settings. In addition, the trade-offs in DiME are more interpretable than
those in MO-MPO, since they are weights on local experts qk, rather than KL-divergence constraints.
Appendix B describes DiME in more detail, including how the temperature ηk is computed.

However, we may not a priori know what the preference trade-off across objectives should be. In this
case we can extend DiME to learn a conditional policy, thereby distilling the entire Pareto front of
optimal policies into a single πθ(·|s, α). We train this policy by augmenting states with normalized
trade-offs α sampled from some distribution ν, and then optimizing the following objective:

JαDiME(θ) = −Es∼µα∼ν

K∑
k=1

αkDKL

(
qk(·|s, α) ‖πθ(·|s, α)

)
, (4)

where qk(a|s, α) ∝ πi(a|s, α) exp(Qk(s, a, α)/ηk). Note that in order to evaluate this policy, we
must also learn an α-conditioned value function Qk(s, a, α). Appendix A contains more details.

After training an α-conditioned policy, one can use Qk(α) = Es∼µ
∫
π(a|s, α)Qk(s, a, α) da fully

offline to pick the best trade-off α with respect to objective k, using any hyperparameter optimization
(HPO) algorithm, including a simple search. If the learned Qk are inaccurate, which is often true in
offline RL, we can instead deploy the policy to search for the best trade-off. This is cheap; in our case
studies α is between 0 and 1. In this paper we aim to learn high-quality α-conditioned policies, which
we will show is possible using DiME. Investigating other ways of picking α is out of this scope.

4.1 MULTI-OBJECTIVE RL AS PROBABILISTIC INFERENCE

We will now derive LS and DiME from the RL as inference perspective for MORL, showing that
both optimize for the same high-level problem, but differ in their choice of variational distribution.
Consider a binary random variable R indicating a policy improvement event: R = 1 indicates the
policy has improved, while R = 0 indicates that it has not. Policy optimization then corresponds to
maximizing the marginal likelihood Eµ log pθ(R|s) with respect to θ. Employing the expectation-
maximization (EM) algorithm and assuming a conditional probability p(R|s, a) ∝ exp(Q(s, a)/η),
one can recover many algorithms in the literature (Levine, 2018).

Let us instead define a separate indicator Rk for each objective, with similarly defined conditional
probabilities, and consider the following weighted log-likelihood objective:

F (θ) = Eµ log
K∏
k=1

pθ(Rk|s)αk =

K∑
k=1

αkEµ log pθ(Rk|s) , (5)

3if the improvement step is scale-invariant, which is true for the known nonparametric solution if we optimize
the temperature η to meet a constraint on the KL-divergence, as is done in e.g. MPO (Abdolmaleki et al., 2018).

4



Under review as a conference paper at ICLR 2022

where Eµ is a shorthand for Es∼µ and α ∈ RK+ specify a preference trade-off across the K objectives.
This generalization has a few nice properties. First, when all objectives are equally preferred, the
αk are all equal and it reduces to a straightforward probabilistic factorization of independent events:
p({Rk}Kk=1) =

∏
k p(Rk). Second, any vanishing αk leads to an objective being ignored.

Linear Scalarization. To apply EM, we could introduce a variational distribution q(a|s) and use it
to decompose and lower-bound (5). This choice of variational distribution results in LS: the E-step
corresponds to (1) with Q(s, a) replaced by

∑
k αkQk(s, a), and the M-step is identical to (2).

DiME. We could instead introduce a separate variational distribution qk for each log pθ(Rk|s),
which results in DiME. The E-step now corresponds to K independent copies of the improvement
step in (1), each with its own Qk(s, a). The M-step is the projection step introduced in (3).

This reveals that both standard LS and DiME optimize the same information-theoretic objective (see
Appendix B.1 for a complete derivation). Both employ EM, but differ in their choice of variational
decomposition. We hypothesize that fitting a separate variational distribution per objective allows
DiME to find a tighter variational lower bound, which may lead to better optimization.

5 CASE STUDIES

Our primary aim in this work is to showcase MORL as a tool for tackling fundamental challenges in
deep RL. We therefore demonstrate its benefits in two active areas of research: finetuning and offline
RL. Finetuning is concerned with improving upon an expert (or teacher) policy, whether it is available
in the form of a parametric model or a dataset of transitions. Meanwhile in offline RL, one must learn
a policy from a given fixed dataset of transitions. In contrast to offline RL, finetuning happens in an
online fashion so the agent interacts with the environment to collect additional experience.

These two settings share a fundamental similarity—they both use behavioral priors to make learning
more efficient. Existing algorithms in both settings constrain the policy optimization, either explicitly
or implicitly, to stay close to the given priors (Levine et al., 2020; Monier et al., 2020; Schmitt et al.,
2018). Instead, we propose to explicitly formulate these in the MORL framework with two objectives:

1. one for the task return via the task Q-function Q(s, a) learned via bootstrapping,
2. and one for staying close to the behavioral prior via the log-density4 ratio log πb(a|s)

πi(a|s) ,

where πi is the current policy and πb is the behavioral prior. When we have direct access to the
density πb, we can evaluate the log-density ratio pointwise. However, in many real-world applications,
we only have access to samples from πb via a dataset of historical interactions. In the following
subsections, we dive into each of these cases, deriving the corresponding policy losses for both LS
and DiME. We use a scalar α ∈ [0, 1] to specify the preference trade-off between the two objectives.

5.1 FINETUNING

Equipped with the MORL perspective, we introduce two novel finetuning algorithms by substituting
the objectives above in the LS and DiME rows of Table 1, yielding the policy optimization functions:5

JLS(θ) = E s∼µ
a∼πi

[
1

Z0(s)
exp

(
(1− α)Q(s, a)

η
+
α

η
log

πb(a|s)
πi(a|s)

)
log πθ(a|s)

]
and (6)

JDiME(θ) = E s∼µ
a∼πi

 (1− α)
Z1(s)

exp

(
Q(s, a)

η1

)
+

α

Z2(s)
exp

(
log πb(a|s)

πi(a|s)

η2

) log πθ(a|s)

 . (7)

All functions Z∗(s) normalize the product of πi and the corresponding tempered and exponentiated
objective; though analytically intractable, they can be estimated from sampled actions for each state.
Note that both of the equations above are equivalent at the extreme values of α = 0 and 1.

Relation to existing approaches. We can recover existing algorithms with slight modifications to
these policy objectives. In particular, setting η2 = 1 in the DiME row of Table 1 yields q2 = πb and

4The log-density ratio is typically used as reward for distribution matching (Arenz & Neumann, 2020).
5Here, and in our finetuning experiments, we assume the prior is a parametric model. If the prior is instead a

dataset of transitions, then the update rules are identical to the ones derived later for offline RL.
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the following policy objective function:

(1− α)E s∼µ
a∼πi

[
1

Z1(s)
exp

(
Q(s, a)

η

)
log πθ(a|s)

]
− αEs∼µDKL

(
πb‖πθ

)
, (8)

which is similar to the finetuning approach in (Schmitt et al., 2018). Similarly, taking instead the LS
approach to MORL and employing the policy gradient (which uses a parametric q in Sec. 3.1) as the
underlying policy optimization, we get:

E s∼µ
a∼πθ

[
(1− α)Q(s, a) + α log

πb(a|s)
πθ(a|s)

]
= (1− α)E s∼µ

a∼πθ
Q(s, a)− αEs∼µDKL

(
πθ‖πb

)
, (9)

which is similar to (Galashov et al., 2019). Both simply add a weighted KL regularization to a
standard RL objective, but they differ in the direction of the KL.

5.2 OFFLINE RL

Recall that in offline RL, we only have access to the behavioral prior πb via a dataset Dπb of sampled
transitions (s, a, r, s′); we cannot evaluate its density and thus cannot directly compute the objective
function for staying close to the prior. Instead, we must simplify both JLS and JDiME from the
finetuning subsection so that they only require samples from πb and µ, for which we can rely on Dπb .
Linear Scalarization. By tying the preference and scale parameters so that α = η, we can change
the expectation over actions in (6) analytically to be with respect to the behavior policy πb

JLS(θ) = EDπb

[
exp

(
Q(s, a)

β
− logZ0

)
log πθ(a|s)

]
, (10)

where β = α/(1− α). There are close similarities between this LS-based policy objective and other
policy losses used in recent offline RL algorithms. For example, β corresponds to the temperature
in CRR (Wang et al., 2020) and AWAC (Nair et al., 2020), and we can recover them exactly by
replacing the task return objective with the advantage function. As an other example, BEAR (Kumar
et al., 2019) and BCQ (Fujimoto et al., 2019) can both be formulated as using LS, but with the policy
gradient as their underlying policy optimizer as in (9). However, unlike the objective function in (10),
which only requires samples from πb, these methods have the limitation that they require modeling
πb to evaluate the second term in (9) (Levine et al., 2020; Monier et al., 2020).

DiME. Setting η2 = 1 and renaming η1 = η in (7), we obtain

JDiME(θ) = (1− α)E s∼µ
a∼πi

[
1

Z1(s)
exp

(
Q(s, a)

η

)
log πθ(a|s)

]
+ αEDπb log πθ(a|s). (11)

Notice that the first term is the loss used by policy optimization methods such as REPS (Peters et al.,
2010) and MPO (Abdolmaleki et al., 2018), and the second term is exactly a behavioral cloning loss.
We call this new algorithm DiME (BC). This is a simple way of adapting online algorithms for offline
RL, while being theoretically grounded in a multi-objective perspective. Intuitively, since both terms
are independent of the scale of the Q-values, optimizing the weighted sum is a reasonable thing to do.
This is in contrast to recent concurrent work that adds a behavioral cloning loss to a policy gradient
loss, which depends on the scale of the Q-values (Fujimoto & Gu, 2021).

Remark on drawbacks of LS approaches. First, the preference α and scale η can no longer be set
independently; they are coupled together in the temperature β. This means we cannot efficiently
train a trade-off-conditioned policy using the LS-based loss in (10), because the normalization
constant Z0 =

∫
(s,a)∼Dπb

exp(Q(s, a)/β) depends on the choice of the trade-off—this would
require estimating (10) via samples separately per trade-off. Second, since JLS only involves an
expectation with respect to the expert behavior policy, the policy cannot evaluate and exploit the
Q-value estimates for actions beyond those taken by the expert. One could argue that this is by design,
in order to avoid fitting extrapolation errors in the Q-function. However, with JDiME this is a choice
we can make by setting the preference parameter independently (and perhaps adaptively).

Remark on using other MORL approaches. Although there exist many MORL algorithms that
outperform LS on standard MORL tasks, they typically require that the rewards for all objectives
are given. Thus it is not straightforward to apply these algorithms for offline RL, where we cannot
directly compute the reward for staying close to the prior. We tried getting around this in order to use
MO-MPO for offline RL, but it was very complicated to implement (for details see Appendix B.4).
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Figure 1: Each point is a solution found for a different tradeoff α. (a) DiME can find solutions on a concave
Pareto front (right) whereas linear scalarization (LS) cannot. (b,c) For humanoid, DiME finds better solutions
and obtains higher hypervolume. Above (i.e., higher task reward) and to the right (i.e., lower cost) is better.

6 EXPERIMENTS

We first investigate how DiME performs on standard MORL tasks, compared to LS (Sec. 6.1). Since
our focus is on applying MORL for general challenges in RL, we do not consider MORL algorithms
that cannot be applied to offline RL. Then we investigate the application of DiME in two case studies,
offline RL (Sec. 6.2) and finetuning (Sec. 6.3), where our aim is to evaluate whether replacing LS
with DiME leads to better-performing algorithms. Implementation details are in Appendix C.

6.1 MULTI-OBJECTIVE RL

Toy Domain. Our bandit task has action a ∈ R and reward r(a) ∈ R2, with the reward defined by
either the Schaffer or Fonseca-Fleming function (Okabe et al., 2004). The Pareto front is the set of all
points of the function. By varying the trade-off, DiME finds solutions along the entire Pareto front
for both functions. However, no matter what the trade-off is, LS only finds solutions at the extremes
of Fonseca-Fleming, because this Pareto front is concave (Fig. 1a). This is a fundamental limitation
of LS—it cannot find solutions on the concave portions of a Pareto front (Das & Dennis, 1997).

Humanoid. We also evaluate on two humanoid tasks from the DeepMind Control Suite (Tassa
et al., 2018). For each, the original task reward objective is augmented with an “energy”-expenditure
penalty on actions: −‖a‖2. In both tasks, the Pareto front found by DiME is superior to that found by
LS, both qualitatively (Fig. 1b) and in terms of hypervolume, which is a standard metric for capturing
the overall quality of a Pareto front (Table 1c).

Additional Experiments. We also find that DiME is scale-invariant—it obtains similar performance
when the energy cost is scaled up by ten times, whereas LS no longer can learn the task. DiME also
performs on-par with MO-MPO, which is state-of-the-art. Please refer to Appendix D for details.
Recall that DiME can be applied to non-standard settings like offline RL, whereas MO-MPO cannot.

6.2 OFFLINE RL

Baselines. For offline RL, our main baseline uses LS to trade off between the task return and staying
close to the behavioral prior, with the advantage function as the task return objective. This optimizes
for E(s,a)∼Dπb exp(

(1−α)/αA(s, a)) log πθ(a|s). This is the same policy loss as CRR-exp (Wang
et al., 2020) and AWAC (Nair et al., 2020), two state-of-the-art offline RL algorithms. Our behavioral
cloning (BC) baseline optimizes for E(s,a)∼Dπb log πθ(a|s), which is LS or DiME with α = 1.

Variations of DiME. For offline RL, our DiME-based algorithm optimizes for (11), where the
second term is a behavior cloning loss; we call this DiME (BC). For this second term, we could
instead use an advantage-weighted behavior cloning loss, Eπb(a|s)[exp(A(s, a)) log πθ(a|s)], which
is exactly the CRR policy loss with a temperature of 1; we call this DiME (AWBC). Since training a
separate policy per trade-off is computationally expensive, we also experiment with training a single
trade-off-conditioned policy πθ(a|s, α), that can optimize for all trade-offs in the range [0, 1]. We
refer to this as DiME multi, and combine it with both BC and AWBC. We choose to train a single
policy that can optimize for all trade-offs, rather than learning the best trade-off during training,
because it is a well-known problem that policy evaluation is inaccurate in offline RL.
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Task BRAC CRR† MZU BC
LS

(CRR)
α=.3

DiME
(BC)
α=.45

DiME
(AWBC)
α=.5

LS
(CRR)

DiME
(BC)

DiME
(AWBC)

DiME
(BC)
multi

DiME
(AWBC)

multi
cartpole swingup 869 664 343 380 677 865 832 843 882 881 878± 1 878± 1
cheetah run 539 577 799 376 628 705 759 796 733 759 808± 7 802± 9
finger turn hard 227 714 405 132 360 741 837 515 885 892 899± 7 903± 4
fish swim 222 517 585 493 566 652 665 613 652 669 721± 4 701± 6
humanoid run 10 586 633 390 507 596 582 635 638 660 636± 3 661± 2
manip insert ball 56 625 557 370 575 554 578 603 652 626 699± 5 709± 3
manip insert peg 50 387 433 261 409 304 281 410 386 435 432± 7 436± 8
walker stand 829 797 760 286 672 783 861 706 955 951 964± 1 967± 1
walker walk 786 901 902 361 865 842 796 868 955 957 961± 1 962± 1

mean score 399 641 602 339 584 671 688 665 749 759 778 780

Task BRAC BEAR AWR BCQ CQL BC
LS

(CRR)
α=.63

LS
(CRR)

DiME
(BC)
multi

DiME
(AWBC)

multi
antmaze mean score 0.23 0.23 0.22 0.25 0.48 0.15 0.78 0.89 0.78 0.88
kitchen mean score 0.0 0.80 0.33 0.47 1.90 2.09 2.16 2.49 2.55 2.13

Table 2: Offline RL results for state-of-the-art approaches (left columns), and our baselines and DiME with
either a single trade-off across all tasks (middle) or the best trade-off per task (right). Tasks are from RL
Unplugged (above) and D4RL (below). For DiME multi we include standard error bounds across ten random
seeds. Numbers within 5% of the best score are in bold. DiME performs on par or better than LS across all
tasks. Even when the trade-off is fixed across all tasks (for a more fair comparison with prior work), DiME still
outperforms state-of-the-art on the RL Unplugged tasks. For RL Unplugged, the results for BRAC are from
Gulcehre et al. (2020); CRR is from Wang et al. (2020), referred to as “CRR exp” in their paper; and MZU
(MuZero Unplugged) is from Schrittwieser et al. (2021). For D4RL, the results for the italicized algorithms are
from Fu et al. (2020). †Note that the CRR results are for the best checkpoint from training, whereas all other
results denote performance after a fixed number of learning steps. Per-task results for D4RL are in Appendix D.

Evaluation. We evaluate on tasks from two offline RL benchmarks, RL Unplugged (Gulcehre et al.,
2020) and D4RL (Fu et al., 2020), with results in Table 2. For LS, DiME (BC), and DiME (AWBC),
we train one policy per trade-off α, linearly spaced from 0.05 to 1. For DiME (BC) multi and DiME
(AWBC) multi, we train ten policies with different random seeds. We train all policies for one million
learner steps. After training, we evaluate the policy in the test-time environment once per trade-off.

From RL Unplugged, we evaluate on the nine Control Suite tasks. For both LS and DiME, the setting
of α has a significant impact on performance, and the optimal setting is different per task (Fig. 2).
Comparing the best performance obtained for each task (across all trade-offs), all DiME variants
outperform LS. In addition, training a single tradeoff-conditioned policy (with DiME multi) is not
only more efficient, but also leads to better performance. This may be because conditioning on α
regularizes learning. With LS though, we cannot efficiently train α-conditioned policies because α
controls both the trade-off and scaling. To make a more fair comparison against prior work, we also
find the best fixed trade-off across all tasks for LS and DiME (BC/AWBC), and report these results in
the middle columns of Table 2. Both DiME variants still outperform existing approaches.

From D4RL, we evaluate on the six Ant Maze tasks and three Franka Kitchen tasks. We only evaluate
the DiME multi variants, with one random seed, since they perform best on the Control Suite tasks and
have low variance. LS and DiME perform on par, and both outperform state-of-the-art approaches.

6.3 FINETUNING

Finally, we will evaluate whether our new finetuning algorithms, derived from the multi-objective
perspective, can improve upon the performance of a teacher policy. We evaluate both the LS-based
and DiME-based algorithm with either a fixed or learned tradeoff. To learn the tradeoff, we update
α based on the loss J(α) = α (Es∼µ,a∼πiQ(s, a) − c). This is analogous to the update for the
Lagrange multiplier in Lagrangian relaxation for constrained optimization. The resulting strategy is
intuitive: stay close to the behavioral prior while the expected return is below the threshold c, and
otherwise optimize for the bootstrapped Q-function. We pick c based on the expected return from
fully imitating the prior for the given task (i.e., α = 1); these values are given in Appendix C.
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Figure 2: Per-tradeoff performance for a representative subset of tasks; Appendix D contains plots for all
fifteen tasks. On some tasks, the best solution found by DiME (any variation) obtains significantly higher task
performance than the best found by LS. In addition, DiME multi can train a single policy for a range of trade-offs,
that performs comparably to learning a separate policy for each tradeoff, after the same number of learning steps.
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Figure 3: Finetuning learning curves, for DiME (left three) and LS (right three). (Appendix D contains plots for
all five tasks.) For both DiME and LS, learning the tradeoff (orange) converges to better performance than fully
imitating the teacher (dashed purple), while learning as quickly. Error bars show standard deviation for ten seeds.

We evaluate on the humanoid and manipulator tasks from the DeepMind Control Suite. For the three
humanoid tasks, we start with a suboptimal humanoid stand policy as the behavioral prior. For the
two manipulator tasks, the behavioral prior is a policy trained for that task.

The choice of fixed tradeoff impacts the result significantly, and the optimal choice depends on the
task, so either searching over or learning the tradeoff is necessary. Across all five tasks, for both LS
and DiME, the learned tradeoff converges to better performance than fully imitating the prior (α = 1)
and learns much more quickly than learning from scratch (α = 0). This has the advantage of training
only a single policy, as opposed to training a separate policy per fixed tradeoff. Adapting the trade-off
helps because in finetuning, the agent is able to gather online interactions. An adaptive scheduling
for the trade-off allows the agent to initially copy the teacher and then eventually deviate from the
teacher to achieve better performance based on its new experiences. In contrast, in the offline RL
setting, we needed to use fixed trade-offs because such online interactions are not allowed.

7 CONCLUSION AND FUTURE WORK

In this work, we propose using multi-objective optimization as a tool for tackling challenges in RL.
We explored the benefits of this in offline RL and finetuning, both of which involve staying close to a
behavioral prior. Our derivations revealed that existing approaches optimize for a linear scalarization
of two objectives, task return and a log-density ratio. We proposed a new MORL algorithm, DiME,
as an alternative to LS. Applying DiME to offline RL leads to state-of-the-art performance.

A key takeaway is the impact of the trade-off α on performance, and the need to either search over
or optimize for it. As a first solution we explored either training trade-off-conditioned policies or
adapting the trade-off during training; it is worth exploring other approaches in future work.

In offline RL, a limitation of optimizing for the trade-off is that it requires being able to accurately
evaluate the policy for multiple trade-offs. We chose the simplest option in our experiments: deploy
the fully-trained policy for each trade-off in the test-time environment, and pick the best-performing
trade-off. But this may not be feasible in real-world applications, for instance if it is expensive or
dangerous to deploy a policy. One option is to use recent offline policy evaluation algorithms to
accurately estimate a policy’s test-time performance (for all trade-offs) without requiring deployment.
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REPRODUCIBILITY STATEMENT

In Appendix C, we provide full implementation details for DiME, our novel algorithms for finetuning
and offline RL, and the baselines. We report hyperparameter settings and network architectures in
Tables 3 and 4, also in Appendix C. Our code is based on the open-sourced implementations of
MO-MPO and MPO in Acme (Hoffman et al., 2020), which is an open-source RL framework. We
are in the process of open-sourcing the code.
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A TRAINING TRADE-OFF-CONDITIONED POLICIES

In this section we provide details on training a trade-off-conditioned policy πθ(a|s, α) conditioned
on preference parameters α ∼ ν(α). (Note that here α corresponds exactly to α from the main body
of this manuscript; we had to distinguish it from the single scalar that appears in our case studies, but
we drop the underline here to lighten notation.) Conditioning the policy on the trade-off α requires
that the Q-functions are also trade-off-conditioned. We also use hindsight relabeling of trade-offs to
perform off-policy learning.

Preference-conditioned policy evaluation. We evaluate the current policy πi(a|s, α) via off-policy
learning of per-objective Q-functions Qik(s, a, α). When training the Q-network, every sampled
transition (s, a, {rk}Kk=1, s

′) is augmented such that the states include a sampled trade-off parameter
α ∼ ν, resulting in transitions ([s, α], a, {rk}Kk=1, [s

′, α]). From here, any critic learning algorithm
can be used; we use distributional Q-learning (Bellemare et al., 2017; Barth-Maron et al., 2018). See
Section C for more details.

Preference-conditioned policy improvement. The policy improvement step produces a trade-off-
conditioned policy πi+1(a|s, α) that improves upon its predecessor πi.

Improvement: To find per-objective improved action distributions qk(a|s, α), we optimize the follow-
ing policy optimization problem for each objective:

max
qk

Es∼µ
α∼ν

[
Ea∼qk(·|s,α)Q

i
k(s, a, α)

]
(12)

s.t. Es∼µ
α∼ν

DKL(qk(a|s, α)‖πi(a|s, α)) ≤ εk. (13)

Similarly, from here we can follow steps analogous to those in Section B.1, but with trade-off-
conditioned policies and Q-functions. This means that this set of trade-off-conditioned problems
have solutions that are analogous to (38) for each objective.

Projection: After obtaining per-objective improved policies qk, we can use supervised learning to
distill these distributions into a new parameterized policy:

max
θ

Es∼µ
α∼ν

K∑
k=1

αkDKL

(
qk(·|s, α) ‖πθ(·|s, α)

)
(14)

s.t. Es∼µ
α∼ν

[
DKL(πi(·|s, α)‖πθ(·|s, α))

]
≤ β,

subject to a trust region with bound β > 0 for more stable learning. To solve this optimization, we
use Lagrangian relaxation as described in Abdolmaleki et al. (2018; 2020).

In practice. To approximate the expectations over the state and trade-off distributions, we draw
states from a dataset (or replay buffer in online RL) and augment each with a sampled trade-off
α ∼ ν. To approximate the integrals over actions a, for each (s, α) pair we sample N actions from
the current policy πi(a|s, α).

B ALGORITHMIC DETAILS AND DERIVATIONS

B.1 MULTI-OBJECTIVE RL AS PROBABILISTIC INFERENCE

In this section we present further details of our derivation, which unifies both linear scalarization
and DiME, relying on the RL as inference framework. We begin by recalling some of the motivation
behind the objective.

Consider a set of binary random variables Rk indicating a policy improvement event with respect to
objective k; Rk = 1 indicates that our policy has improved for objective k, while Rk = 0 indicates
that it has not. We seek a policy that improves with respect to all objectives given some preferences
over objectives. Concretely, we seek policy parameters θ that maximize the following marginal
likelihood, given preference trade-off coefficients {αk}:

max
θ

Eµ log pθ({Rk = 1}Kk=1|{αk}Kk=1). (15)
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Assuming independence between improvement events Rk we use the following model to enforce
trade-offs between objectives, i.e,

F (θ) = Eµ log
K∏
k=1

pθ(Rk|s)αk =

K∑
k=1

αkEµ log pθ(Rk|s). (16)

This generalization has a few nice properties. First, when all objectives are equally preferred, the
αk are all equal and it reduces to a straightforward probabilistic factorization of independent events:
p({Rk}Kk=1) =

∏
k p(Rk). Second, any vanishing αk leads to an objective being ignored.

Consider the intractable marginal likelihood L that we wish to maximize, then introduce variational
distributions qk and expand as follows

F (θ) =

K∑
k=1

αkEµ log pθ(Rk|s) (17)

=

K∑
k=1

αkEµEqk log pθ(Rk|s) (18)

=

K∑
k=1

αkEµEqk log
pθ(Rk, a|s)
pθ(a|Rk, s)

(19)

=

K∑
k=1

αkEµEqk log
qk(a|s) pθ(Rk, a|s)
pθ(a|Rk, s) qk(a|s)

(20)

=

K∑
k=1

αkEµ [DKL(qk(a|s) ‖ pθ(a|Rk, s))−DKL(qk(a|s) ‖ pθ(Rk, a|s))] (21)

=

K∑
k=1

αkEµ [DKL(qk(a|s) ‖ pθ(a|Rk, s))−DKL(qk(a|s) ‖ p(Rk|s, a)πθ(a|s))] (22)

Let us denote the second term as F , defined as follows

L(θ; {qk}) := −
K∑
k=1

αkEµDKL(qk(a|s) ‖ p(Rk|s, a)πθ(a|s)) (23)

Then one can rearrange terms in the expansion of the marginal likelihood F to yield

F (θ)−
K∑
k=1

αkEµDKL(qk(a|s) ‖ pθ(a|Rk, s)) = L(θ; {qk}). (24)

Since the KL divergence is a non-negative quantity and the αk are all positive, this last equation
shows that L lower-bounds the quantity we wish to maximize, namely F . Whether we call it
expectation-maximization or improvement-projection, the steps are as follows:

1. tighten the gap between the lower bound L and F at the current iterate θi, by maximizing L
with respect to qk while keeping θ = θi fixed, then

2. maximize the lower bound L with respect to θ, holding qk fixed to the solution of step 1.

Formally, these two steps result in the following optimization problems

max
{qk}

L(θi; {qk}) = min
{qk}

K∑
k=1

αkEµDKL(qk(a|s) ‖ p(Rk|s, a)πi(a|s)) (25)

max
θ
L(θ; {qk}) = min

θ

K∑
k=1

αkEµDKL(qk(a|s) ‖πθ(a|s)), (26)

where in the second step we removed terms that do not depend on θ. These steps are respectively
referred to as the E- and M-step in the statistics literature, and improvement and projection in policy
optimization. While these two optimization problems seem decoupled from the original goal of
maximizing F , the connection with the EM algorithm allows us to benefit from the guarantee that
iterates θi obtained in this way lead to improvements in F .
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B.2 IMPROVEMENT OR E-STEP

In the next sections we detail the two steps in turn, beginning with the improvement E-step, where
we first notice that the objective is a weighted sum of K independent terms that can all be minimized
separately

argmin
{qk}

K∑
k=1

αkEµDKL(qk(a|s) ‖ p(Rk|s, a)πi(a|s)) (27)

⇔ argmin
qk

EµDKL(qk(a|s) ‖ p(Rk|s, a)πi(a|s)), ∀k = 1, . . . ,K. (28)

These separate problems can be solved analytically by making the KL vanish with the following
solution

qk(a|s) =
p(Rk|s, a)πi(a|s)∫
πi(a|s)p(Rk|s, a) da

(29)

This nonparametric distribution reweights the actions based on the improvement likelihood p(Rk|s, a).
This likelihood is free for us to model as follows and as is standard in the RL as inference literature

p(Rk|s, a) ∝ exp
Qk(s, a)

ηk
, (30)

where ηk is a objective-dependent temperature parameter that controls how greedy the solution
qk(a|s) is with respect to its associated objective Qk(s, a). Substituting this choice of p(Rk|s, a)
into the independent problems (28) we obtain the following objective

DKL(qk(a|s) ‖ p(Rk|s, a)πi(a|s)) = Eqk log
qk(a|s)

p(Rk|s, a)πi(a|s)
(31)

= Eqk
[
log

qk(a|s)
πi(a|s)

− log p(Rk|s, a)
]

(32)

= DKL(qk(a|s) ‖πi(a|s))− Eqk log p(Rk|s, a), (33)

= DKL(qk(a|s) ‖πi(a|s))− Eqk
Qk(s, a)

ηk
. (34)

After multiplying this objective by −ηk, we obtain the following equivalent maximization problem

max
qk

EµEqkQk(s, a)− ηkEµDKL(qk(a|s) ‖πi(a|s)), (35)

where we recognize a KL regularization term that materializes naturally from this derivation. Indeed
this last optimization problem can be seen as a Lagrangian, imposing a soft constraint on the KL
between the improved policy qk and the current iterate θi. If we instead impose a hard such constraint,
we obtain the following problem:

max
qk

EµEqkQk(s, a) (36)

s.t. EµDKL(qk(a|s) ‖πi(a|s)) ≤ εk.
This problem’s Lagrangian form is as follows, and is nearly identical to (35)—albeit with a different
dual variable instead of ηk; nevertheless we reuse the notation ηk instead of introducing a new dual
variable:

L(qk, ηk) = EµEqkQk(s, a)− ηk [EµDKL(qk(a|s) ‖πi(a|s))− εk] . (37)

Putting everything together. Since the original problem is equivalent to the Lagrangian relaxation
of this one, we can simply substitute our improvement likelihood (30) into the solution to the original
problem (29) to obtain the solution:

qk(a|s) =
1

Zk(s)
πi(a|s) exp

Qk(s, a)

ηk
, where (38)

Zk(s) =

∫
πi(a|s) exp

Qk(s, a)

ηk
da. (39)
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Adaptively varying ηk. Finally, this solution can in turn be substituted back into (37) to obtain the
following convex dual function:

L∗(ηk) = EµEqkQk(s, a) + ηkEµ

εk − Eqk log
1

Zk(s)
πi(a|s) exp Qk(s,a)

ηk

πi(a|s)

 (40)

= EµEqkQk(s, a) + ηkEµ
[
εk − Eqk log

(
1

Zk(s)
exp

Qk(s, a)

ηk

)]
(41)

= EµEqkQk(s, a) + ηkEµ
[
εk + logZk(s)− Eqk

Qk(s, a)

ηk

]
(42)

= EµEqkQk(s, a) + ηkEµ [εk + logZk(s)]− EµEqkQk(s, a) (43)
= ηk [εk + Eµ logZk(s)] (44)

L∗(ηk) = ηk

[
εk + Eµ logEπi exp

Qk(s, a)

ηk

]
, (45)

where in the final step we substitute (39) to reveal the hidden dual variable. In practice, this function
is optimized alongside of θ in order to adapt the dual variable ηk and mitigate overfitting to Qk.

B.3 PROJECTION OR M-STEP

Let us now look at the projection step (M-step in EM terminology), which produces the next iterate
θi+1 for our parametric policy. Recall the optimization problem involved in the M-step is the
following

min
θ
L(θ; qk) = min

θ

K∑
k=1

αkEµDKL(qk(a|s) ‖πθ(a|s)), (46)

= min
θ

K∑
k=1

αkEµEqk log πθ(a|s), (47)

where qk is fixed to the solution from the improvement step, namely (38). This problem corresponds
to finding the policy πθ that acts as a barycentre between the nonparametric policies qk, each weighted
by its specified preference trade-off coefficient αk.

Other than this important difference, the multi-objective follows from the single-objective case in a
straightforward way. Substituting the solution qk from (38) into the expression for L(θ; qk) yields

JDiME(θ) := L(θ; qk) = Eµ

[
K∑
k=1

αkEqk log πθ(a|s)
]

(48)

= Eµ

[
K∑
k=1

αk

∫
1

Zk(s)
πi(a|s) exp

Qk(s, a)

ηk
log πθ(a|s) da

]
(49)

= Eµ

[
K∑
k=1

αk
Zk(s)

Eπi exp
Qk(s, a)

ηk
log πθ(a|s)

]
(50)

= EµEπi

[
K∑
k=1

αk
Zk(s)

exp
Qk(s, a)

ηk

]
log πθ(a|s). (51)

This is the objective function that is optimized to obtain the next iterate in practice. At this stage we
can further impose a trust-region or soft KL constraint on this optimization problem.

In practice. We compute this policy objective via Monte Carlo, sampling states s from a replay
buffer, then sampling actions for each state from our previous iterate πi. We use these samples to
compute weights exp(Qk(s, a)/ηk) and normalize them across states, which corresponds to using
a sample-based approximation to Zk(s) as well. Finally, we take the convex combination of these
weights, according to the preference trade-offs, which yields the ultimate weights—seen in brackets
in (51).
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B.4 ON HOW DIME IS BETTER SUITED THAN MO-MPO FOR OFFLINE RL.

In this section we expand on precisely why MO-MPO in its current published form is not readily
suitable for offline RL and how our proposed method improves on it in this aspect. Let us begin by
revisiting the MO-MPO objective function (Eq. 1; Abdolmaleki et al., 2020) and substituting in the
offline RL objectives discussed in the paper.

JMO−MPO(θ) = −Eµ
[
K∑
k=1

DKL[πie
Qk/ηk‖πθ]

]
(52)

= Eµ

[
K∑
k=1

EπieQk/ηk log πθ

]
+ C (53)

= Eµ
[
EπieQ/η1 log πθ + Eπi

(
exp

log πb
πi

η2

)
log πθ

]
+ C. (54)

where we deliberatly omit the normalization constants to lighten the notation. Recall that MO-MPO
enforces the preference trade-off across objectives by setting the KL-constraint thresholds εk between
the improved policies and the current policy iterate as in (45). Therefore the preference trade-offs are
implicit in the varying temperatures ηk, which are continuously adapted throughout training to ensure
the satisfaction of the corresponding constraint εk. As a result, when applying the same simplifying
trick as used for DiME—setting η2 = 1 and renaming η1 = η—we forfeit control of the trade-off
completely. Concretely, the second term above reduces to an expectation with respect to the behavior
dataset Dπb as follows:

= EµEπieQ/η log πθ + EDπb log πθ + C, (55)

where we recover the now common form of an RL objective combined with an additional BC
regularization term. Notice that not only is there no trade-off α but the temperature η2, which
implicitly controls it, has also disappeared. Let us now compare this expression to that of DiME:

JDiME ∝ EµEπieQ/η log πθ +
α

1− αEDπb log πθ, (56)

where we highlight the key difference between the two losses, namely that the preference parameter α
allows us to explicitly control the relative importance of the task’s Q-value objective and the objective
that keeps the policy close to the one that generated the offline dataset. In contrast, MO-MPO can
no longer satisfy the preference setting specified by the choice of εk, because of the simplifying
assumption that η2 = 1.

An alternative approach would be to use the dataset Dπb to learn a distilled behavior policy π̂b to
model πb, effectively performing behavioral cloning as a preliminary subroutine. This would allow
us to compute the log-density ratio directly, to use it as an objective in the original expression (54).
This strategy introduces approximation errors in the form of assumptions made on the form of πb
and generalization to states that are not present in Dπb . While we tried both this and the MO-MPO
objective in (55) in preliminary experiments, neither proved to be competitive with the LS / CRR
baseline and were thus omitted from further investigations.

C IMPLEMENTATION DETAILS

This section describes how we implemented our algorithm, DiME, and the linear scalarization (LS)
and behavioral cloning (BC) baselines. To ensure a fair comparison, we use the same hyperparameters
and network architectures for DiME and the baselines, wherever possible. All algorithms are
implemented in Acme (Hoffman et al., 2020), an open-source framework for distributed RL.

Training Setup. For the multi-objective RL and finetuning settings, we use an asynchronous
actor-learner setup, with multiple actors. In this setup, actors fetch policy parameters from the learner
and act in the environment, storing those transitions in the replay buffer. The learner samples batches
of transitions from the replay buffer and uses these to update the policy and Q-function networks. For
the offline RL setting, the dataset of transitions is given and fixed (i.e., there are no actors) and the
learner samples batches of transitions from that dataset.
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To stabilize learning, we use the common technique of maintaining a target network for each trained
network. These target networks are used for computing gradients. Every fixed number of steps, the
target network’s weights are updated to match the online network’s weights. For optimization, we
use Adam (Kingma & Ba, 2015). For the offline RL experiments, we use Adam with weight decay to
stabilize learning.

Gathering Data. The actors gather data and store it in the replay buffer. When the policy is
conditioned on trade-offs, the trade-off is fixed for each episode. In other words, at the start of each
episode, the actor samples a trade-off α′ from the distribution ν, and acts based on π(a|s, α′) for the
remainder of the episode. At the start of the next episode, the actor samples a different trade-off, and
repeats.

Hyperparameters and Architecture. The policy and Q-function networks are feed-forward
networks, with an ELU activation after each hidden layer. For both, after the first hidden layer, we add
layer normalization followed by a hyperbolic tangent (tanh); we found that this improves stability of
learning. The policy outputs a Gaussian distribution with a diagonal covariance matrix.

The default hyperparameters we use in our experiments are reported in Table 3; setting-specific
hyperparameters are reported in Table 4.

Distributional Q-learning. For our policy evaluation we use a distributional Q-network, C51 (Belle-
mare et al., 2017). It has proven to be a very effective critic in actor-critic methods for continuous
control (Barth-Maron et al., 2018; Hoffman et al., 2020). We use the exact same training procedure
as published and in open-source implementations (Barth-Maron et al., 2018; Hoffman et al., 2020),
i.e., n-step return bootstrap targets and a projected cross-entropy loss. See Table 3 under Q-learning
for our chosen hyperparameters.

Evaluation. We evaluate a deterministic policy, by using the mean of the output Gaussian distribution
rather than sampling from it. When we evaluate a trade-off-conditioned policy, we condition it on
trade-offs linearly spaced from 0.05 to 1.0. For each trade-off α′, we perform several rollouts where
we execute the mean action from π(a|s, α′). Recall that this trade-off specifies a convex combination
for two objectives.

For the multi-objective RL experiments, all policies are evaluated after 500 million actor steps. For
offline RL, all policies are evaluated after 1 million learner steps.

Learned Trade-off for Finetuning. In our finetuning experiments, the learned trade-off is passed
through the sigmoid function (i.e., 1/(1 + exp(−x))) to ensure it is bounded between 0 and 1.

Compute Resources. To train a single policy for the multi-objective RL experiments (humanoid
walk and run), we used an NVIDIA v100 GPU for about 24 hours. To train a single policy for
finetuning, we used a NVIDIA V100 GPU for 9-12 hours. To train a single policy for offline RL, we
used a v2-32 TPU for about 6 hours for the RL Unplugged tasks, and for about 3 hours for the D4RL
tasks. These computational costs were the same for all algorithms we ran: LS and the DiME variants.

D EXPERIMENTS: DETAILS AND ADDITIONAL RESULTS

This section provides details regarding our experiment domains, as well as additional experiments
and plots.

D.1 MULTI-OBJECTIVE RL

D.1.1 TOY DOMAIN

Our toy domain is a bandit with a continuous action a ∈ R. The reward r(a) ∈ R2 is specified by
either the Schaffer function or the Fonseca-Fleming function, f : R 7→ R2. Each point along this
function is optimal for a particular tradeoff between the two reward objectives, so the function can be
seen as a Pareto front.

The Schaffer function corresponds to a convex Pareto front, and is defined as

f1(a) = a2 and f2(a) = (a− 2)2 .
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Category Hyperparameter Default

training setup batch size 512
number of actors 4
replay buffer size 3× 10−7

target network update period 100
Adam learning rate 10−4

policy & Q-function networks layer sizes (1024, 1024, 1024, 1024, 1024, 512)

Q-learning support [−150, 150]
number of atoms 101
n-step returns 5
discount γ 0.99

policy loss actions sampled per state 30
KL-constraint on qk(a|s), εk 0.1
KL-constraint on policy mean, βµ 0.0025
KL-constraint on policy covariance, βΣ 10−5

initial temperature η 10
Adam learning rate (for dual variables) 10−2

Table 3: Default hyperparameters for all approaches, with decoupled KL-constraint on mean and covariance of
the policy M-step.

Multi-Objective RL
training setup number of actors 32

replay buffer size 106

target network update period 200

experiment setup trade-offs (DiME) αtask = 1
αpenalty ∈ linspace(0.3, 1.5)

trade-offs (MO-MPO) εtask = 0.1
humanoid walk εpenalty ∈ linspace(0, 0.3)
humanoid run εpenalty ∈ linspace(0, 0.15)

trade-offs (LS) αtask = 1− αpenalty

αpenalty ∈ linspace(0, 0.15)

policy loss actions sampled per state 20
KL-constraint on policy mean, βµ 0.001
KL-constraint on policy covariance, βΣ 10−7

Offline RL
training setup Adam weight decay (RL Unplugged) 0.999999

Adam weight decay (D4RL) 0.99999

experiment setup trade-offs α ∈ linspace(0.005, 1)
trade-off distribution, ν U(0.005, 1)

policy loss KL-constraint ε (LS) 0.01
KL-constraint ε (RL Unplugged) 0.5
KL-constraint ε (Kitchen) 0.001
KL-constraint ε (Maze, DiME multi) 0.5 (BC), 0.01 (AWBC)

Finetuning
training setup batch size 1024

experiment setup initial trade-off (for learned trade-offs) 0.5

Table 4: Hyperparameters that are either setting-specific or differ from the defaults in Table 3.

20



Under review as a conference paper at ICLR 2022

−1000 0
0

500

1000

ta
sk

re
w

ar
d

walk

−2000 0

run

DiME LS

negative action norm cost

(a)

−1000 0
0

500

1000

av
er

ag
e

ta
sk

re
w

ar
d

walk

−2000 0

run

DiME MO-MPO

average negative action norm cost

(b)

Figure 4: (a) This plot shows the per-episode task reward and action norm cost, rather than the average across
episodes. Note that the linear scalarization (LS) cannot find solutions along the Pareto front for walk, because it
is likely concave. In contrast, DiME can find solutions that compromise between the two objectives. (b) DiME
finds similar Pareto fronts as MO-MPO, a state-of-the-art multi-objective RL algorithm.

The Fonseca-Fleming function corresponds to a concave Pareto front, and is defined as

f1(a) = 1− exp(−(a− 1)2) and f2(a) = 1− exp(−(a+ 1)2) .

These are standard test functions in multi-objective optimization, where the aim is to minimize
them (Okabe et al., 2004). Since in RL we want to maximize reward, we define the reward to be the
negative of these functions.

D.1.2 HUMANOID

We also evaluate on the humanoid walk and run tasks from the open-sourced DeepMind Control
Suite (Tassa et al., 2018), with the two objectives proposed in Abdolmaleki et al. (2020). The first
objective is the original task reward, which is a shaped reward that is given for moving at a target
speed (1 meters per second for walking and 10 m/s for running), in any direction. The second
objective is the negative `2-norm of the actions, −‖a‖2, which can be seen as encouraging the agent
to be more energy-efficient.

The observations are 67-dimensional, consisting of joint angles, joint velocities, center-of-mass
velocity, head height, torso orientation, and hand and feet positions. The actions are 21-dimensional
and in [−1, 1]; these correspond to setting joint accelerations. Each episode has 1000 timesteps. At
the start of every episode, the configuration of the humanoid is randomly initialized.

Additional Results. When we plot the per-episode performance (rather than an average across
episodes), we see that linear scalarization only finds solutions at the two extremes for the humanoid
walk task, i.e. policies that achieve high task reward but with high action norm cost, or incur zero
cost but fail to obtain any reward (Fig. 4a). We hypothesize that this may be because the humanoid
walk task has a concave Pareto front of solutions; recall that linear scalarization is fundamentally
unable to find solutions on a concave Pareto front (Das & Dennis, 1997). In contrast, DiME is able to
find solutions that trade off between the two objectives.

On both tasks, DiME finds a similar Pareto front as MO-MPO, which is a state-of-the-art approach
for multi-objective RL (Fig. 4b).

DiME requires training a separate policy per trade-off, which can be computationally expensive. In
contrast, our trade-off-conditioned version of DiME, which we call DiME multi, trains a single policy
for a range of trade-offs. This obtains a similar Pareto front compared to that found by DiME (Fig.
5), after the same number of actor steps (500 million).

We also ran an experiment to test the scale-invariance of DiME. We modified the humanoid run task
such that the action norm cost is now multiplied by ten. We used DiME and linear scalarization to
train policies for three random seeds, for each of two trade-off settings. For both the original task and
the task with scaled-up action norm costs, DiME trains policies with similar performance (Fig. 6,
right). This is the case for both trade-off settings—note the two clusters of differently-colored points
in the plot. In contrast, linear scalarization is not scale-invariant: task performance suffers when the
cost is scaled up (Fig. 6, left). With a trade-off of 0.05, although this obtains better performance than
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Figure 5: DiME multi trains a single trade-off-conditioned policy, that finds a similar Pareto front as DiME
does for humanoid (a) walk and (b) run. Each plot for DiME multi shows five trained policies, for different
random seeds; these seeds vary somewhat in their performance because the policy learns different strategies
(e.g., spinning, running sideways, etc.). Each policy is conditioned on trade-offs α linearly spaced between 0
and 1. The color denotes the trade-off. For DiME, αtask = 1; DiME multi uses a convex combination (i.e.,
αtask = 1− αcost).
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Figure 6: With the original objective scales for humanoid run, both linear scalarization (left plot) and DiME
(right) obtain similar performance. When the action norm cost is scaled up by ten times, DiME’s performance is
unaffected because its trade-off setting is invariant to reward scales—note the two clusters of differently-colored
points. The color denotes the tradeoff α and the marker symbol denotes whether the action norm cost is scaled
by ten times. Note that in the plots, the y-axis is the unscaled value of action norm cost.
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Figure 7: Per-objective learning curves for humanoid run. During training, DiME (below) is able to improve on
both objectives simultaneously. In contrast, LS (above) can typically only improve on one objective at a time.
This helps DiME find better solutions—in each column, the LS and DiME policies converge to similar action
norm cost, but the DiME policy performs substantially better on the task.

the trade-off of 0.01 with the original objectives (i.e., gets higher reward with lower cost), with the
scaled-up action norm cost, policies do not obtain any task reward at all with a trade-off of 0.05.

Finally, we delve into why DiME outperforms LS. Our hypothesis is that this is because DiME
computes an improved policy for each objective (before projecting them), and is thus more likely to
ensure improvement with respect to all objectives. In contrast, since LS combines rewards directly,
it cannot guarantee improvement with respect to all objectives. To test out this theory, we plotted
how policies trained by LS and DiME perform with respect to each objective over the course of
training, for humanoid run. We found that policies trained with DiME indeed exhibit improvement
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Figure 8: Per-tradeoff performance for all nine Control Suite tasks from RL Unplugged. Across all nine tasks,
the best solution found by DiME (any variation) obtains either higher or on-par task performance than the best
found by linear scalarization (LS). In addition, DiME can train a single policy for a range of tradeoffs (DiME
multi, dark orange and dark blue), that performs comparably to learning a separate policy for each tradeoff
(orange and blue), after the same number of learning steps.
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Figure 9: Across nine tasks from D4RL, DiME and LS (CRR) perform on-par.

with respect to both objectives simultaneously over the course of training, whereas policies trained
with LS typically suffer from worsening performance for one objective while improving for the other.

D.2 OFFLINE RL

In our offline RL experiments, we evaluate on two open-sourced benchmarks for offline RL: RL
Unplugged (Gulcehre et al., 2020) and D4RL (Fu et al., 2020). We use the nine Control Suite tasks
from RL Unplugged, the six Ant Maze tasks from D4RL, and the three Franka Kitchen tasks from
D4RL. For each task, we train policies on the dataset of transitions provided by the benchmark.
These are continuous control tasks, that include particularly challenging ones that state-of-the-art
approaches perform poorly on (e.g., Ant Maze large play and large diverse). For a comprehensive
description of the environments, please refer to Gulcehre et al. (2020) and Fu et al. (2020).
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Task BRAC BEAR AWR BCQ CQL BC
LS

(CRR)
α=.63

LS
(CRR)

DiME
(BC)
multi

DiME
(AWBC)

multi
antmaze umaze 0.7 0.7 0.6 0.8 0.7 0.42 0.83 0.97 0.99 0.95
antmaze umaze diverse 0.7 0.6 0.7 0.6 0.8 0.45 0.87 0.88 0.83 0.86
antmaze medium play 0 0 0 0 0.6 0.02 0.66 0.87 0.86 0.86
antmaze medium diverse 0 0.1 0 0 0.5 0.01 0.88 0.95 0.90 0.91
antmaze large play 0 0 0 0.1 0.2 0 0.76 0.87 0.62 0.87
antmaze large diverse 0 0 0 0 0.1 0 0.67 0.78 0.51 0.83
kitchen complete 0 0 0 0.3 1.8 2.18 2.70 3.09 2.99 2.63
kitchen partial 0 0.5 0.6 0.8 1.9 1.77 1.89 1.93 2.08 1.67
kitchen mixed 0 1.9 0.4 0.3 2.0 2.32 1.90 2.46 2.58 2.08

mean score 0.16 0.42 0.26 0.32 0.96 0.80 1.24 1.42 1.37 1.30

Table 5: Results for LS and DiME (average cumulative reward) obtained for the best tradeoff per algorithm,
on tasks from D4RL. The results for the italicized algorithms are taken from Fu et al. (2020); these are the
best-performing algorithms from their comprehensive evaluation. Numbers within 5% of the best score are in
bold.

Additional Results. Here we show plots for per-tradeoff performance for all nine Control Suite
tasks from RL Unplugged (Fig. 8) and for the Ant Maze and Franka Kitchen tasks from D4RL (Fig.
9). We also provide the full table of results for the D4RL tasks (Table 5). Across all 18 tasks, the best
tradeoff found by DiME obtains either higher or on-par performance compared to the best tradeoff
found by LS. Recall that LS is equivalent to CRR, a state-of-the-art approach for offline RL, in terms
of the policy loss it optimizes for.

D.3 FINETUNING

For finetuning, we evaluate on three humanoid tasks (stand, walk, and run) and two manipulator
tasks (insert ball and insert peg) from the DeepMind Control Suite. There are two main differences
between finetuning and offline RL: 1) in finetuning the policy is able to interact with the environment,
whereas in offline RL it cannot, and 2) in finetuning the behavioral prior may be in the form of a
teacher policy that we can query to obtain πb(a|s), whereas in offline RL the behavior prior is in the
form of a dataset of transitions.

For the humanoid tasks, we trained a policy for humanoid stand with standard deep RL (using
MPO (Abdolmaleki et al., 2018)) and stopped it midway through training, when it reached an average
task reward of about 400. We then used this teacher policy for finetuning in all three humanoid tasks.
However, for the manipulator tasks, training a policy from scratch is highly sample-inefficient, as can
be see by the learning curves for learning from scratch (i.e., α = 0) in Fig. 10. So for manipulator
insert ball and insert peg, we took the best policy trained using DiME in our offline RL experiments,
and used that as the teacher policy for finetuning in that task.

Fig. 10 shows learning curves for all five tasks. When the tradeoff is learned (in orange), DiME and
linear scalarization perform on-par. However, when the tradeoff is fixed, for linear scalarization it is
more difficult to pick an appropriate tradeoff, because the appropriate tradeoff depends on the relative
scales of the rewards. In fact, for the humanoid tasks, none of the fixed (non-zero) tradeoffs for LS
perform better than learning from scratch.
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Figure 10: Learning curves for finetuning, for DiME (top row) and linear scalarization (LS, bottom row). α = 1
corresponds to fully imitating the behavioral prior, while α = 0 corresponds to learning from scratch. The
optimal fixed tradeoff α depends on the task. For both DiME and LS, learning the tradeoff (orange) converges to
better performance than fully imitating the behavioral prior (dashed purple), while learning as quickly. The error
bars show standard deviation across ten seeds.
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