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Abstract

The era of proliferation of large language and image generation models begs the
question of what happens if models are trained on the synthesized outputs of other
models. The phenomenon of "model collapse" refers to the situation whereby
as a model is trained recursively on data generated from previous generations of
itself over time, its performance degrades until the model eventually becomes
completely useless, i.e. the model collapses. In this work, we investigate this
phenomenon within the context of high-dimensional regression with Gaussian data,
considering both low- and high-dimensional asymptotics. We derive analytical
formulas that quantitatively describe this phenomenon in both under-parameterized
and over-parameterized regimes. We show how test error increases linearly in the
number of model iterations in terms of all problem hyperparameters (covariance
spectrum, regularization, label noise level, dataset size) and further isolate how
model collapse affects both bias and variance terms in our setup. We show that
even in the noise-free case, catastrophic (exponentially fast) model-collapse can
happen in the over-parametrized regime. In the special case of polynomial decaying
spectral and source conditions, we obtain modified scaling laws which exhibit new
crossover phenomena from fast to slow rates. We also propose a simple strategy
based on adaptive regularization to mitigate model collapse. Our theoretical results
are validated with experiments.

1 Introduction

Model collapse describes the situation where the performance of large language models (LLMs)
or large image generators degrade as more and more AI-generated data becomes present in their
training dataset [44]. Indeed, in the early stages of the generative AI evolution (e.g the ChatGPT-xyz
series of models), there is emerging evidence suggesting that retraining a generative AI model on its
own outputs can lead to various anomalies in the model’s later outputs. This phenomenon has been
particularly observed in LLMs, where retraining on their generated content introduces irreparable
defects, resulting in what is known as “model collapse", the production of nonsensical or gibberish
output [44, 8]. Though several recent works demonstrate facets of this phenomenon empirically in
various settings [23, 32, 33, 8, 9, 21], a theoretical understanding is still missing.

In this work, we initiate a theoretical study of model collapse in the setting of high-dimensional
supervised-learning with linear regression. This is equivalent to kernel regression1, which serves
as an effective proxy for neural networks in various regimes, for instance in the infinite-width limit
[37, 49, 25, 28] or in the lazy regime of training [12]. [11] characterize the power-law generalization
error of regularized least-squares kernel algorithms, assuming a power-decay spectrum of the kernel
(capacity) and of the coefficients of the target function (source). Source and capacity power decay

1we present the linear regression setting for ease, the extension to the kernel setting is straightforward.
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(a) Isotropic covariance spectrum Σ = Id. Here, we
show the evolution of test error for different sample
size (T ), different levels of ridge-regularization (λ), and
training data from different generations (n) of fake data.
The setup is: input-dimension d = 300, sample size
for fake data generator T0 = 600, noise levels σ =
0.1 and σ0 = 0.2. Left plot is for T = 1000 and
different values of λ. Notice the U-shape of the curves
for large values of n, indicating the existence of a sweet
spot (optimal regularization parameter). Right plot is
for λ = 10−3 and different values of T . The broken
lines correspond to the theoretical result established in
Theorem 4.1.
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(b) Power-law covariance spectrum. Refer to Eqn
(23). The setup is: d = 300, T0 = 600, σ = σ0 = 1,
Σ = diag(λ1, . . . , λd), where λk ∝ k−2. Left
plot corresponds to T = 10, 000 and Right plot
corresponds to adaptive regularization λ = T−ℓcrit ,
where λ = λ(T ) as proposed in [14]. See Section
D for details. The broken curves are as predicted by
our Theorem 5.1. Though ℓ = ℓcrit is optimal in
classical case, it is not in the setup of model collapse.
In fact here, the test error diverges with sample size
T . Our theory proposes a corrected value of this
exponent which gracefully adapts to synthesized data.
See Figure 4 (Appendix) for results on MNIST [16].

Figure 1: Demystifying model collapse. Refer to Appendix D for details on the experimental setup.

capture properties of the data and the model that give rise to power law scaling of test error in terms
of data set size and model capacity, as empirically observed e.g. in [26, 24]. More recently, scaling
laws have been shown for kernel models under the Gaussian design, e.g. in [46, 13, 14] for regression
and [15] for classification. [39, 43, 31] study scaling laws for regression in the random feature model.

Summary of Main Contributions. Following the rich tradition in prior works outlined above, we
study the Gaussian design where the input x is sampled from a multivariate zero-mean Gaussian
N (0,Σ) and labels y are determined by a linear ground truth function with independent label noise ϵ
as y = x⊤w0 + ϵ (we present the linear regression setting for ease, the generalization to the kernel
setting is straightforward). At each generation step, an approximation to w0 is learned from the data,
and used to generate new, fake /synthetic labels for the next generation. Note that the machine learner
has no control over the fake data generation process. It only sees data from a stage n of this process,
which is then used to fit a downstream predictor. Our main findings can be summarized as follows:

(1) Exact Characterization of Test Error under Iterative Retraining on Synthesized Data. In Section 4
(Theorem 4.3), we obtain analytic formulae for test error under the influence of training data with
fake / synthesized labels. For n-fold iteration of data-generation, this formula writes

Etest = Eclean
test +∆Bias+ n · σ0ρ(λ, T, T0, σ,Σ), (1)

where Eclean
test is the usual test error of the model trained on clean data (not AI-generated) and σ2

0
the label noise level in the clean data distribution. The non-negative term ρ precisely highlights
the effects of all the relevant problems parameters: the feature covariance matrix Σ, sample size
T , original data size T0, label noise level in the fake data distribution σ2, and regularization λ.
The non-negative term ∆Bias is an increase in bias brought about by the iterative synthetic data
generation process. This term disappears in the under-parametrized regime (Corollary 4.4), if each
stage in the process was fitted on sufficiently many samples T0 compared to the input dimension d
(i.e if T0 ≥ d). In the over-parametrized case where T0 < d, this term is either a constant (Theorem
4.5) or an increasing function of n, depending on whether the design matrix stays the same or is
resampled across different generations (Theorem 4.6). Notably, even in the case of noiseless labels
(when σ0 = 0), the downstream model converges to a Gaussian process around zero exponentially
fast with the number of iterations n, leading to “catastrophic" model collapse.

A direct consequence of (1) is that, as the number of generations n becomes large, the effect of
re-synthesizing will make learning impossible. We note that the multiplicative degradation in scaling
with the number of generations n is completely analogous to what has been shown in [18] for infinite
memory models and their variants and empirically observed there. Illustration in Figures 1a and 2.

(2) Modified Scaling Laws. Turning to the special case of power-law spectra of the covariance matrix
Σ, which allows to derive test-error scaling laws [11, 46, 14, 29], we obtain in Section 5 (see Theorem
5.1) precise new scaling laws of the test error that quantitatively highlight the negative effect of training
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(a) Identical intermediate design matrices Xn = X0 ∀n.
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(b) Independent intermediate design matrices.

Figure 2: Model collapse in the case of noiseless over-parametrized synthetic data generator. Here d = 300,
the sample sizes for the different versions of the fake data generator are equal, i.e Tn = T0 = d/2 for all n, and
noise levels are σ0 = 0 and σ = 0.1. Everything else is as in the setting of Figure 1a. Broken lines correspond
to the theoretical estimates given in Theorem 4.3. As predicted by our theory, the test error of the model fitted on
synthetic data (n ≥ 1) increases (relative to the baseline n = 0, corresponding to training on clean data). The
model collapse here, even in the absence of noise (σ0 = 0), is due to the fact that the synthetic data-generator
does not have access to enough data to capture the true labelling function. (a) Importantly, and in accordance
to our theory, the amount of model collapse in the case Xn ≡ X0 is due to an increase in bias term of the test
error of the model and does not depend on the number of generations n as long as n ≥ 1. (b) In contrast, for the
case where the Xn’s are independent, the increase in bias term grows with n, leading to “catastrophic" model
collapse (Theorem 4.6). Refer to Appendix D for the experimental setup.

on synthetically generated data. Further exploiting our analytic estimates, we obtain (Corollary 5.2)
the optimal ridge regularization parameter λ as a function of all the problem parameters (sample
size, spectral exponents, strength of fake data-generator, etc.). This new regularization parameter
corresponds to a correction of the the value proposed in the classical theory on clean data [14],
and highlights a novel crossover phenomenon where for an appropriate tuning of the regularization
parameter, the effect of training on fake data is a degradation of the fast error rate in the noiseless
regime [14, 11] to a much slower error rate which depends on the amount of true data on which the
fake data-generator was trained in the first place. On the other hand, a choice of regularization which
is optimal for the classical setting (training on real data), might lead to catastrophic failure: the test
error diverges. See Figure 1b for an illustration.

2 Related Work

Current LLMs [17, 30, 10, 47], including GPT-4 [1], were trained on predominantly human-generated
text; similarly, diffusion models like DALL-E [40], Stable Diffusion [42], Midjourney [35] are trained
on web-scale image datasets. Their training corpora already potentially exhaust all the available
clean data on the internet. A growing number of synthetic data generated with these increasingly
popular models starts to populate the web, often indistinguishable from “real" data. Recent works
call attention to the potential dramatic deterioration in the resulting models, an effect referred to as

“model collapse" [44].

Empirical evidence of model collapse has been reported across various domains [23, 32, 33, 8, 9, 21].
Some theoretical studies [44, 7, 2, 18] have begun exploring this phenomenon. [44] attribute collapse
to finite sampling bias and function approximation errors in the (single) Gaussian case but only
provide lower bounds without detailed analytic expressions. [7] analyze the training process at the
distribution level using both clean and synthetic data and provide stability results. However, these
results do not account for finite samples and are only valid locally in parameter space, making them
more relevant to fine-tuning rather than training from scratch. [2] examine “self-consuming loops” in
the Gaussian case by assuming a sampling bias that reduces data variance with each generation—a
(martingale) assumption that we do not require. These studies lack a comprehensive theoretical
framework to quantify model collapse and its impact on scaling laws. Our work addresses these
gaps by providing an analytic theory that captures how model collapse emerges from training on
synthetic data, providing a deeper understanding that goes beyond merely identifying the collapse. A
concurrent study by [18] demonstrate that model collapse in foundation models can be attributed to
a breakdown in scaling laws [26, 24], where increasing the sample size eventually fails to improve
model performance. This finding, theoretically shown for discrete data in variants of the infinite
memory model, complements our analytical results on how synthetic data alters the rate of scaling
laws, as discussed in Section 5.
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3 Theoretical Setup

We now present a setup which is simple enough to be analytically tractable, but rich enough to exhibit
a wide range of regimes to illustrate a range of new phenomena that emerge with model collapse.

Data Distribution and Synthetized Data. Consider the distribution PΣ,w0,σ2 on Rd × R given by

(Input) x ∼ N(0,Σ), (Noise) ϵ ∼ N(0, σ2), indep. of x (Output/Label) y = x⊤w0 + ϵ. (2)

The positive integer d is the input-dimension, the vector w0 ∈ Rd defines the ground-truth labelling
function x 7→ x⊤w0, the matrix Σ ∈ Rd×d is the covariance structure of the inputs. The scalar
σ2 is the level of label noise. Here, we consider the linear case for clarity. We describe the
extension to the kernel setting in Appendix C. Thus, in classical linear regression, given a sample
(X,Y ) ≡ {(x1, y1), . . . , (xT , yT )} of size T from PΣ,w0,σ2 , one seeks a linear model ŵ ∈ Rd with
small test error

Etest(ŵ) := Ex,y[(x
⊤ŵ − y)2]− σ2 = ∥ŵ − w0∥2Σ, (3)

where (x, y) ∼ PΣ,w0,σ2 is a random clean test point. In our setup for studying model collapse, the
training data (X,Y ) is sampled from an iterative loop where each generation of the model serves as
the labeller for the data for the next generation. This process is described below.

Structure of the Synthesized / Fake Data Generator. Consider a sequence of data distributions

PΣ,w0,σ2
0
→ PΣ,ŵ1,σ2

1
→ . . .→ PΣ,ŵn,σ2

n→..., (4)

where ŵn’s is defined recursively by ŵn = w0, and

ŵn = Fit(Xn−1, Y n−1), for n ≥ 1, (5)

where Y n := Xnŵn + En and Fit(A,B) = OLS(A,B) := A†B is ordinary-least squares
(OLS). The design matrices (Xn)n≥0 are of shapes Tn × d, each with iid rows from N(0,Σ).

The sequence of noise vectors (En)n≥0 forms an independent collection, which is independent
of the (Xn)n≥0 ; each En ∈ RTn has iid components ϵn,i from N(0, σ2

n). Refer to Figure 3.

...

Fake / Synthesized Data Generator

Model Generation
Data Sampling
Model Training

Figure 3: Illustration of the theoretical framework. The process begins with the original model
ŵ0(w0) and the original dataset (X0, Y 0). n synthetic data generators ŵ1 to ŵn are iteratively fit on
data labelled by the previous model with label noise σ0, using T0 samples each. We evaluate the
test error (with respect to the ground truth labels from w0) of ŵpred

n , trained on (X,Y ) := (Xn, Y n)
using T samples with label noise σ and a regularization coefficient λ.
Thus, in summary, each ŵn results from fitting a model on a dataset of size Tn−1 from PΣ,ŵn−1,σ2

n−1
,

for every generation index n ≥ 1.

The Downstream Model: Ridge Regression. For a number of iterations n ≥ 0, noise levels σ0 and
σ, dataset sizes T0 and T , and regularization parameter λ ≥ 0, let ŵpred

n = ŵpred
n,T0,σ2

0 ,T,σ,λ
∈ Rd be

the ridge predictor constructed from an iid sample {(x1, y1), . . . , (xT , yT )} of size T from the n-fold
fake data distribution PΣ,ŵn,σ2

n
, where for ease of presentation of our results we will assume that

Tn−1 = . . . = T1 = T0, Tn = T and σn−1 = . . . = σ1 = σ0, σn = σ. (6)

For an n-fold fake data generator PΣ,ŵn,σ2
n

, we denote with X := Xn ∈ RT×d the design matrix
with iid rows from N(0,Σ), with E := En ∈ RT the stage-n label-noise vector with components in
N(0, σ2

n), and Y := Y n = Xŵn+E ∈ RT the labels generated by PΣ,ŵn,σ2
n

. Let Σ̂ := X⊤X/T ∈
Rd×d is the sample covariance matrix, and R = R(λ) := (Σ̂ + λId)

−1 denote its resolvent, so that

ŵpred
n = RX⊤Y/T for λ > 0, and ŵpred

n = X†Y for λ = 0. (7)
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We are interested in the dynamics of the test error Etest(ŵ
pred
n ) of this linear model. Importantly,

the evaluation of the model is performed on the true data distribution PΣ,w0,σ2
0
, even though the

model is trained on the fake data distribution PΣ,ŵn,σ2 . Note that for n = 0, Eclean
test := Etest(ŵ

pred
n )

corresponds to the usual test error when the downstream model is trained on clean data. Importantly,
the downstream model has no control over this process. It will only see training data from a given
version PΣ,ŵn,σ2

n
, but evaluation will be on the true distribution PΣ,w0,σ2

0
.

The mental picture is as follows: each generation ŵn can be seen as a proxy for a specific version of
ChatGPT, for example. The sample size T0 used to create the fake labelling functions ŵn is a proxy
for the strength of the fake data-generator thus constructed. Other works which have considered
model collapse under such a self-looping training process include [44, 2, 7, 18].

4 Exact Test Error Characterization

In this section we establish generic analytic formulae for the test error of the downstream model
ŵpred

n (7) trained on n-fold fake data-generation as outlined in Section 3. The fully general technical
key Theorem F.1 detailing formula (1), with a trace expression for ρ, (as well as proofs) are given in
Appendix F; consult part F.1 for an exposition. Notations are standard (summarized in Appendix E).

4.1 Warm-up: Ordinary Least Squares on Isotropic Data

For a start, let us first consider the case of unregularized regression, where λ = 0 in Equation (7).
Theorem 4.1. For an n-fold fake data generation process with T0 ≥ d+ 2 samples, the test error
for the linear predictor ŵpred

n in Equation (7) learned on T ≥ d+ 2 samples, with λ = 0, is given by

Etest(ŵ
pred
n ) ≃ σ2ϕ

1− ϕ
+
nσ2

0ϕ0
1− ϕ0

, with ϕ =
d

T
, ϕ0 =

d

T0
, (8)

where the notation f(T ) ≃ g(T ) means f(T )/g(T ) → 1, for large T .

The first term Etest(ŵ
pred
0 ) ≃ σ2ϕ/(1 − ϕ) in the above decomposition corresponds to the usual

error when the downstream model is fitted on clean data (see [22], for example). The additional term
nσ2

0ϕ0/(1− ϕ0), proportional to the number of generations n, is responsible for model collapse.

Model collapse versus more training data. Note that the linear degeneration in test error highlighted
by Equation (8) is a direct consequence of using the same dataset size T0 across the fake data generator.
Of course, if the underlying synthetic generating process has access to a larger data budget across
generations, this decay can be significantly alleviated. For instance, if fake data increases gradually
with the number of generations m ≥ 2 as Tm = (m log2m)T0 (and, to simplify, σ = σ0) a trivial
extension of Theorem 4.1 yields

Etest(ŵ
pred
n ) ≃ (1 +

1

2 log2 2
+

1

3 log2 3
+ . . . )Etest(ŵ

pred
0 ) ≃ Etest(ŵ

pred
0 ),

which will keep collapse at bay at the expense of largely increased training data ([44] also has a similar
formula). This does not avoid model collapse; rather, it trades additional data generation and training
effort against deterioration from generations of fake data. Thus, while for clean data increasing the
dataset size n-fold leads to better scaling, with synthetic data, we forfeit this improvement. Also, note
that we do not assume access to samples from any of the intermediate generation steps ŵ0, . . . , ŵn−1;
we only train the downstream model ŵpred

n on data from the last step ŵn.

Model Collapse as Change of Scaling Laws. In the low-dimensional regime (fixed d), Theorem
4.1 already predicts a change of scaling law from σ2T−1 to σ2T−1 + nσ2

0T
−1
0 . Thus, as the sample

size T is scaled up, the test error eventually plateaus at the value nσ2
0T

−1
0 and does not vanish. This

phenomenon, also established in [18] in the context of large language models, is clearly visible in
Figure 1a. In the rest of this section and also in Section 5, we shall establish an analogous picture for
high-dimensional regimes (d→ ∞).

Mitigation via Regularization. Note that the test error of the null predictor wnull = 0 is
Etest(wnull) = ∥w0∥2Σ, and so

Etest(ŵ
pred
n )

Etest(wnull)
=

1

SNR
ϕ

1− ϕ
+

n

SNR0

ϕ0
1− ϕ0

,

5



where SNR := ∥w0∥2Σ/σ2 and SNR0 := ∥w0∥2Σ/σ2
0 . We deduce that if n ≫ SNR0/(1/ϕ0 − 1),

then the learned model is already much worse than the null predictor! This suggests that a possible
strategy for mitigating the negative effects on learning on AI-generated data is regularization, as
empirically illustrated in Figures 1a, 1b, 2, and also in 4 of Appendix D.

Furthermore, in Section 5 we shall establish that the optimal regularization parameter established
in [14], in the case of polynomially decreasing spectra (a regime which is relevant to wide neural
networks), must be modified in the presence of synthetic training data in order to prevent the
generalization error to diverge to infinity (i.e catastrophic failure).

4.2 High-Dimensional Regimes

In order to analyze the trace term ρ appearing in Equation (1) (and spelled out in (32) in Appendix F.1),
we need some tools from RMT, and ultimately obtain analytic formulae for Etest(ŵ

pred
n ) in Theorem

4.3. Such tools have been used extensively to analyze anisotropic ridge regression [41, 22, 4].

Random Matrix Equivalents. For any sample size T ≥ 1 and λ ≥ 0, define κ(λ, T ) implicitly by

κ(λ, T )− λ = κ(λ, T ) · df1(κ(λ, T ))/T, (9)

where, for any λ ≥ 0 and m ∈ N⋆, dfm(λ) is the mth order "degree of freedom" of the covariance
matrix Σ is given by dfm(λ) = dfm(λ; Σ) := trΣm(Σ + λId)

−m.

The effect of ridge regularization at level λ ≥ 0 is to improve the condition of the empirical covariance
matrix Σ̂; what the κ-function does is translate this into regularization on Σ at level κ(λ, T ), so
as control the capacity of the former, i.e. the "effective dimension" of the underlying problem.
Quantitatively, there is an equivalence of the form df1(λ; Σ̂) ≈ df1(κ(λ, T ); Σ). Roughly speaking,
RMT is the business of formalizing such a relationship and derivatives (w.r.t. λ) thereof. A standard
reference on the subject is [5].

Example: Isotropic Data. As an illustration, note that dfm(λ) ≡ d/(1 + λ)m (polynomial decay)
in the isotropic case where Σ = Id. Consequently, we have

κ(λ, T )− λ = ϕ · κ(λ, T )/(1 + κ(λ, T )), with ϕ := d/T.

In this case, it is easy to obtain the following well-known formula for κ = κ(λ, T ):

κ =
λ+ ϕ+

√
(λ+ ϕ)2 + 4λ

2
, with ϕ := ϕ− 1, (10)

which is reminiscent of the celebrated Marchenko-Pastur law [34].

Asymptotic Regime. We shall work in the following so-called proportionate asymptotic scaling
regime which is a standard analysis based on random matrix theory (RMT):

T, d→ ∞, d/T → ϕ, ∥Σ∥op, ∥Σ−1∥op = O(1). (11)

Later in Section 5 when we consider power-law spectra, this scaling will be extended to account for
the more realistic case where d and T are of the same order on log scale, i.e

T, d→ ∞, d1/C ≲ T ≲ dC , ∥Σ∥op, ∥Σ−1∥op = O(1), (12)

for some absolute constant C ≥ 1. Such non-proportionate settings are covered by the theory
developed in [27, 48]. For clarity of presentation, even in this more general regime of Equations (12),
we will still continue to write ϕ0 := d/T0 and ϕ := d/T .

Bias-Variance Decomposition. With everything now in place, let us recall for later use, the classical
bias-variance decomposition for ridge regression (for example, see [41, 22, 4]):
Proposition 4.2. In the RMT limit (12), the test error of a ridge predictor w(λ) based on T iid
samples from the true data distribution PΣ,w0,σ2 is given by

Etest(w(λ)) = E ∥w(λ)− w0∥2Σ ≃ Bias+ V ar, (13)

with Bias ≃ κ2w⊤
0 Σ(Σ + κI)−2w0

1− df2(κ)/T
, V ar ≃ σ2df2(κ)

T
· 1

1− df2(κ)/T
, (14)

where κ = κ(λ, T ) is as given in Equation (9).

6



4.3 Analytic Formula for Test Error

The following result gives the test error for the downstream ridge predictor ŵpred
n defined in Equation

(7), in the context of fake training data, and will be heavily exploited later to obtain precise estimates
in different regimes. Define generic V ar and Bias by:

V ar = E ∥RX⊤E/T∥2Σ = σ2 1

T
tr ΣR2Σ̂ Bias = E ∥Σ̂Rw0 − w0∥2Σ,

and note that Eclean
test := Bias+ V ar, for standard ridge regression fitted on clean data from the true

data distribution PΣ,w0,σ2 (e.g., see Hastie et al. [22]). Let Qn−1 = Pn−1Pn−2 . . . P0 where Pm is
the orthogonal projection unto the subspace of Rd spanned by the rows of Xm and define

∆Bias := E ∥Σ̂R(Qn−1w0 − w0)∥2Σ ≥ 0. (15)

Theorem 4.3. For an n-fold fake data-generation process, the test error of a ridge predictor ŵpred
n

based on a sample of size T with regularization parameter λ, is given in the RMT limit (12) by

Etest(ŵ
pred
n ) ≃ B̃ias+ V ar + nσ2

0ρ, (16)

where ρ is as given in Theorem F.1, and B̃ias satisfies

B̃ias ≥ Bias+∆Bias ≥ Bias (with equality if T0 ≥ d),
and ∆Bias as given in (15). Furthermore, if one of the following conditions holds

T0 ≥ d OR Xn = X0 for all n ≥ 1, (17)
then, we have the following explicit formula for ρ

ρ =
trΣ4(Σ + κ0I)

−2(Σ + κI)−2

T0 − df2(κ0)
+
κ2 tr Σ2(Σ + κ0I)

−2(Σ + κI)−2

T0 − df2(κ0)
· df2(κ)

T − df2(κ)
, (18)

with κ = κ(λ, T ) and κ0 := κ(0, T0) are as given in Equation (9).

Instructively, the term ∆Bias measures how biased the synthetic data-generation process away
from ground-truth model w0. This term disappears if the generator was fitted on sufficiently many
samples (i.e. if T0 ≥ d). More quantitatively, when T0 < d and Xn = X0, it is easy to see that
∆Bias ≥ E [∥Σ1/2Σ̂R∥2op] · Bias0, where Bias0 := E ∥P0w0 − w0∥22 measures the inability due
to lack of enough data, of the first generation (n = 1) to reliably estimate w0 even in the absence
of noise (σ0 = 0) in the data-generating process. This gap propagates over to higher generations
of the process. The situation is illustrated in Figure 2. In the case where T0 < d and the Xn’s are
independent, we shall see in Section 4.5 that this increase in bias actually grows with n, even in the
case of fake data generation without label noise (i.e. σ0 = 0).

4.4 Model Collapse in the Case of Under-Parametrized Fake Data-Generator

We now consider the scenario of under-parameterization, where T0 ≥ d, indicating that the number
of data points exceeds the number of dimensions. This condition typically results in a unique solution
for the regression. In this case, P0 = Id a.s., leading to B̃ias = Bias (given as in formula (14)), and
κ0 = 0 in (18), and so Theorem 4.3 gives

ρ =
df2(κ)

T0 − d
+
κ2 tr (Σ + κI)−2

T0 − d

df2(κ)

T − df2(κ)
. (19)

We have the following corollary to Theorem 4.3.
Corollary 4.4. Consider the setting of Theorems 4.3 and F.1. If T0 ≥ d additionally, then it holds in
the RMT limit (12) that Etest(ŵ

pred
n ) ≃ Bias+ V ar + nσ2

0ρ, where Bias and V ar are as given in
formula (14), and ρ is as given in Equation (19).

Moreover, in the special case of isotropic features, it holds that

Bias+ V ar ≃ κ2∥w0∥22 + σ2ϕ

(1 + κ)2 − ϕ
, ρ ≃ ϕ0

1− ϕ0

(
1

(1 + κ)2
+

1

(1 + κ)2
ϕκ2

(1 + κ)2 − ϕ

)
,

with ϕ := d/T , ϕ0 := d/T0, and κ = κ(λ, T ) as in Equation (10).

Note that Theorem 4.1 is special case of the above result corresponding to λ = 0 and ϕ ≥ 1. A result
like Corollary 4.4 gives us the needed analytical handle for understanding n-fold model collapse in
terms of all problem hyper-parameters (covariance spectrum, regularization, label-noise level, etc.).
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4.5 Model Collapse in the Absence of Label Noise

We now consider the over-parametrized regime, where the different iterations of the synthetic data-
generator (refer to the illustration in Figure 3) are fitted on insufficient data. For simplicity of
exposition, we restrict our presentation to isotropic covariance Σ = Id. Since we will be focusing
on the possible increase ∆Bias above the bias (defined in Equation (14)) due to n ≥ 1 generations
as predicted by Theorem 4.3, we further restrict ourselves to the noiseless regime where the fake
data-generating process has no label noise, i.e. σ0 = 0. Thanks to Lemma F.4, we know that the
generation-n fake labelling vector ŵn (defined in Eqn. (5)) is given explicitly as a series of projections

ŵn = Qn−1w0 = Pn−1Pn−2 . . . P0w0. (20)

Further, for simplicity we will assume T = Tn > d, i.e the downstream model has access to enough
data. We shall focus on two important special cases.

The Dependent Case. We first consider the case where Tm = T0 < d and Xm = X0 for all
m ≤ n− 1. It is clear that Equation (20) reduces to ŵn = P0w0, with rankP0 = T0 < d.

Theorem 4.5. In the limit λ→ 0+ and d, T0 → ∞ with d/T0 → ϕ0 > 1, it holds that

∥ŵn∥2 ≃ ∥w0∥2/ϕ0, ∆Bias ≃ ∥w0∥2(1− 1/ϕ0). (21)

We see that in this setting, the increase in bias ∆Bias ≃ (1−1/ϕ0)∥w0∥2 brought about by synthetic
data is a positive constant which does not grow with the number of generations n ≥ 1. This increase
in bias (i.e compared to training on clean data) is due to the fact that, with probability 1, the random
subspace of Rd spanned by X0 does not contain the ground truth model w0. The expression is
nothing but a RMT estimate of ∥P0w0 −w0∥2, i.e. the squared norm of the projection of w0 onto the
orthogonal complement of this subspace. The result is illustrated in Figure 2(a).

The Independent Case. For our second example, we remove the assumption that Tm = T0 and
Xm = X0 for all m ≤ n− 1 considered in the previous case (Theorem 4.5). We instead assume that
(A) The Xm’s are assumed to be independent, and (B) we are in the following high-dimensional limit

λ→ 0+, d, T1, . . . , Tn−1 → ∞, d/Tm → ϕm, for some ϕ1, . . . , ϕn−1 > 0. (22)

Define η :=
∏n−1

m=0 min(1/ϕm, 1) ∈ (0, 1]. We have the following theorem.

Theorem 4.6. In the limit (22), it holds that ∥ŵn∥2 ≃ ∥w0∥2η and ∆Bias ≃ ∥w0∥2 (1− η) . In
particular, if n→ ∞ with infinitely many ϕm > 1, then ŵn → 0 and ∆Bias→ ∥w0∥2.

The theorem predicts that a sequence of over-parametrized fake data-generators (ŵn)n collapses to
zero (and thus, effectively escapes from the ground truth model w0). Consequently, the downstream
model ŵpred

n convergences to a Gaussian process around zero, instead of the true model w0, leading
to an increase in the bias term of the test error!

For example if ϕn = ϕ0 > 1, then Theorem 4.6 predicts that ∆Bias ≃ (1 − ϕ−n
0 )∥w0∥2, which

grows exponentially fast towards ∥w0∥2, the test error of the null predictor. This compounding effect
is due to the fact that in (20), each projection Pm spins the fake data labelling vector ŵn further away
from the ground-truth w0. The result is illustrated in Figure 2(b).

Comparing the dependent case and the independent case, 4.6 shows that the increase in bias is
proportional to 1− η0η1 . . . ηn−1, which is typically much larger than 1− η0, which is the increase in
the dependent case. Sampling different design matrices results in a more pronounced model collapse.

5 The Case of Heavy Tails (Power Law)

Neural scaling laws [26, 24], relate a model’s test error to the sample size, model size, and computa-
tional resources, and are critical tools for practitioners in strategically allocating resources during
the design and implementation of large language models. Previous theoretical works [11, 41, 14]
have examined scaling laws in our tractable setting of linear regression with Gaussian design in the
context of a power-law covariance spectrum. Now we explore how synthetic data alters these scaling
laws in this setting.

8



Let the spectral decomposition of the covariance matrix Σ be Σ = λ1v1v
⊤
1 + . . .+ λdvdv

⊤
d , where

λ1 ≥ . . . ≥ λd ≥ 0 are the eigenvalues and v1, . . . , vd ∈ Rd are the eigenvectors. For any feature
index j ∈ [d], define a coefficient cj := w⊤

0 vj , i.e the projection of w0 along the jth eigenvector of
Σ. We shall work under the following well studied spectral conditions

(Capacity Condition) λj ≍ j−β for all j ∈ [d],

(Source Condition) ∥Σ1/2−rw0∥ = O(1),

}
(23)

where β > 1 and r > 0. The parameter r measures the amount of dispersion of w0 relative
to the spectrum of Σ; a large value of r means w0 is concentrated only along a few important
eigen-directions (i.e. the learning problem is easy). For later convenience, define δ, r, and c by

δ := 1 + β(2r − 1) ∈ R, r := min(r, 1) ∈ (0, 1), c := 2βr/(2βr + 1) ∈ (0, 1). (24)

As noted in [14], the source condition in (23) is satisfied if cj ≍ j−δ/2 for all j ∈ [d].

Consider adaptive ridge regularization strength of the form

λ = λ(T ) ≍ T−ℓ, (25)

for fixed ℓ ≥ 0. The case where ℓ = 0 corresponds to non-adaptive regularization; otherwise, the
level of regularization decays polynomially with the sample size T . Define

ℓcrit := β/(2βr + 1). (26)

In [14], KRR under normal circumstances (corresponding to n = 0, i.e. no fake data) was considered
and it was shown that this value for the regularization exponent in (25) is minimax-optimal for normal
test error in the noisy regime (σ > 0), namely Etest(ŵ

pred
0 ) ≍ T−c. This represents a crossover

from the noiseless regime where it was shown that the test error scales like Etest(ŵ
pred
0 ) ≍ T−2βr, a

much faster rate. In the context of training on fake data, which is the object of this manuscript, we
shall establish new scaling laws which paint a drastically different picture.

A "Collapsed" Scaling Law. The following result shows that model collapse is a modification of
usual scaling laws induced by fake data. All proofs of this section can be found in Appendix H. Here,
for simplicity of presentation, we restrict to the case T0 ≥ d+ 2 to make the results easier to present.
This condition can be removed as in Theorem 4.3.
Theorem 5.1. Consider n-fold fake-data generation with sample size T0 ≥ d + 2. For a ridge
predictor ŵpred

n given in Equation (7) based on a fake data sample of size T , with regularization
parameter λ = λ(T ) tuned adaptively as in Equation (25) with exponent ℓ ∈ [0, β), the test error
satisfies the following scaling law in the RMT limit (12):

Etest(ŵ
pred
n ) ≍ max(σ2, T 1−2rℓ− ℓ

β )) · T−(1− ℓ
β ) +

nσ2
0

1− ϕ0
max (T/T0, ϕ0) · T−(1− ℓ

β ). (27)

We now provide an instructive interpretation of Theorem 5.1 and outline the effect of regularization.

The Noiseless Regime. First consider the case σ = 0 (or equivalently, exponentially small in
T ) and ϕ0 ∈ (0, 1) is fixed, and consider a number of generations n such that nσ2

0 ≍ T a, where
0 ≤ a ≤ 1− ℓ/β ≤ 1. Note that a = 0 corresponds to a constant number of generations. Also take
T0 = T b, for some constant b ∈ (0,∞). According to Theorem 5.1, if we want to balance out the
model-collapsing negative effect of training on fake data, we should chose ℓ so as to balance the
second term n(T/T0)T

−(1−ℓ/β) = T−(b−ℓ/β−a) and the first term T−2ℓr. We have the following:

Corollary 5.2. In the setting of Theorem 5.1 with T0 ≍ T b and n ≍ T b, the optimal exponent of the
ridge regularization parameter in Equation (25) is ℓ = ℓ⋆, where

ℓ⋆ = min((b− a)ℓcrit, β), (28)

and ℓcrit is as in Eqn. (26), with corresponding optimal test error infℓ≥0Etest(ŵ
pred
n ) ≍ T−(b−a)c.

Observe that when (b − a)c < 2βr, which is the case when n = O(1), r ≥ 1 and b ≤ a + 1,
this corresponds to the condition T ≳ T0. The above result represents a crossover from the fast
rate Etest(ŵ

pred
0 ) ≍ T−2βr in the case of training on clean data [14], to a much slower rate
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Etest(ŵ
pred
n ) ≍ T−(b−a)c, attained by the adaptive regularization λ ≍ T−ℓ⋆ , which is optimal in

this setting. Furthermore, in this setting if we still use λ ≍ T−ℓcrit as proposed in [14] in the clean
data setting, Corollary 5.2 predicts that

Etest(ŵ
pred
n ) ≳ T−(b−ℓcrit/β−a) = T−(c+b−a−1),

which diverges to infinity if b ≥ a + 1 − c. This is a catastrophic form of model collapse, and is
empirically illustrated in Figures 1b and 4.

The Noisy Regime. This discussion can be found in Appendix G.

Remark. In all the analyses above, we quantitatively demonstrate how model collapse manifests as a
change in scaling laws within a setting commonly used to understand scaling behavior in current
foundation models [46, 13, 14]. Our results indicate that, in the presence of synthetic data, scaling
laws with respect to dataset size slow down (i.e., exhibit smaller exponents), meaning a much larger
sample size is needed to achieve the same reduction in test error as with real data. Furthermore, the
optimal scaling law with synthetic data requires different regularization; the optimal settings for real
data could lead to catastrophic model collapse. Related findings are reported in Dohmatob et al. [18]
in the setting of discrete data for infinite memory models and their variants.

6 Experiments

To further support our theoretical findings, we conduct experiments using kernel ridge regression on
the MNIST dataset [16], as detailed in Appendix D.2. Our experiments validate the theoretical pre-
dictions for both RBF and Polynomial kernels, demonstrating the parallels between linear regression
and kernel regression, and highlighting the relevance of our theory to more complex settings.

We also explore the behavior of real neural networks by training two-layer networks in two different
settings: fixing the first layer or training both layers (see Appendix D.3). Consistent with our
theoretical insights, we observe a linear pattern of model collapse when the first layer is fixed.
However, a more severe, nearly quadratic model collapse is observed when both layers are trained,
with our theory providing a lower bound for this behavior. These results reinforce the ability of our
theory to capture the dynamics of model collapse across varying complexities. Full experimental
details and results are provided in Appendix D.

7 Concluding Remarks

As we navigate the "synthetic data age", our findings signal a departure from traditional test error
rates (e.g. neural scaling laws), introducing novel challenges and phenomena with the integration
of synthetic data from preceding AI models into training sets. Our work provides a solid analytical
handle for demystifying the model collapse phenomenon as a modification of usual scaling laws
caused by fake / synthesized training data.

On the practical side, our analysis reveals that AI-generated data alters the optimal regularization
for downstream models and changes the scaling laws. Drawing from the insight that regularization
mirrors early stopping [3], our study suggests that models trained on mixed real and AI-generated
data may initially improve but later decline in performance (model collapse), necessitating early
detection of this inflection point. To preserve model quality when scaling laws are altered, it is
essential to employ data filtering and watermarking techniques to distinguish real data from synthetic
content. Recent studies have also explored methods for data selection [19] and correction [20]. These
observations prompt a re-evaluation of current training approaches and underscores the complexity of
model optimization in the era of synthetic data.
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is inspired by the model collapse phenomenon, where increasingly vast amounts of synthetic data
generated by users is posted online, and will necessarily enter the training set of the next foundation
model. In this case, we do not have ground truth labels, nor is the generation of synthetic data not
controlled by us, but by other users. Therefore, we adopt the setting of solely synthetic labels with
added noise.

Specifically, in our setup, at generation n > 0, we do not have access to the true labels Y0 =

f0(X) + noise for the training samples X , but rather to some Ŷn = f̂n(X) + noise, where f̂n
is an unknown function, which synthesizes fake labels iteratively; the integer n is the number of
iterations. In our work, we make the structural assumption that f̂n is obtained by iterative / successive
regressions on a true dataset D0 = (X0, Y0). We do not have any control over the creation of these
labels, which is reflected by the noise injected at each stage.

In the self-distillation setting, the data generation process actually helps performance of the down-
stream model. The model has access to training labels from the true data distribution Y , but decides
to fit a model on this data, and then use its outputs as the new labels Yn := Fn(X,Y ), iterating this
process possibly over severable steps. Thus, self-distillation has control over the data generating pro-
cess, which is carefully optimized for the next stage training. Specifically, [36] study self-distillation
in the same Gaussian regression model underlying our analysis, but in each distillation generation are
able to tune the regularization parameter for downstream performance as a function of the original
data labels (with the data being the same at each generation). In the setting of model collapse, there
is no control over the data generation process, since it constitutes synthesized data which typically
comes from the wide web.

Self-distillation for linear regression would amount to a very special instance of our analysis where
(1) X0 = X1 = . . . = Xn−1 = Xn = X and (2) σ0 = . . . = σn−1 = 0. That is, there is exactly
one design matrix which is used in the data generation process and in the downstream estimator, and
also no additional source of label noise is present at the end of each generation.

In the general setup considered in our work, (1) is not imposed. We typically assume that
X0, X1, . . . , Xn−1, Xn with Xn = X , are all independent random matrices. An exception is
line 247 (“The Dependent Case") of Section 3.5, where we assume Xm = X0 for all m ≤ n− 1, and
independent of Xn = X . That setup (considered for the purposes of showing that model collapse can
still occur in the absence of label noise) also assumes σm = 0 for all m; the analytic picture which
emerges (Theorem 3.5) is already drastically different from what one would get from self-distllation
(corresponding to additional assumption that X = X0).

B Related work on Kernel Ridge Regression with Gaussian Design

This model has been studied by a vast body of works. For example, Richards et al. [41], Hastie et al.
[22], Bach [4] analyze the classical bias-variance decomposition of the test error for ridge regression
in the high dimensional setting where dataset size and dimension diverge proportionately, using tools
from Random Matrix Theory (RMT). In Section 4 we significantly extend this type of analysis to
training on iteratively generated synthetic data. This model is also particularly attractive because it
allows to analyze an important trade-off: the relative decay of the eigenvalues of the kernel (capacity)
and the coefficients of the target function in feature space (source). Sizeable effort has been dedicated
to characterize the influence on the decay rate of the test error as a function of these two relative
decays (aka power laws) [11, 38, 6, 41, 46, 14, 15]. In Section 5 we extend these efforts, in particular
based on works of Cui et al. [13, 14] which has given a full characterization of all regimes and
test error decay that can be observed at the interplay of noise and regularization, characterizing a
crossover transition of rates in the noisy setting. Our work uncovers fascinating new effects as a result
of iterative training on synthetic data.

C Extension to Kernel Methods

Though we present our results in the case of linear regression in Rd for clarity, they can be rewritten
in equivalent form in the kernel setting. Indeed, as in [11, 45, 14, 29], it suffices to replace x with
a feature map induced by a kernel K, namely ψ(x) := Kx ∈ HK . Here, HK is the reproducing
kernel Hilbert space (RKHS) induced by K. In the data distribution (2), we must now replace the
Gaussian marginal distribution condition x ∼ N(0,Σ) with ψ(x) ∼ N(0,Σ). The ground-truth
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labeling linear function in (2) is now just a general function f0 ∈ L2. The predictor (7) is then given
by (Representer Theorem) f̂predn (x) := K(X,x)⊤ĉn, with ĉn = (G + λTId)

−1Y ∈ Rn, where
K(X,x) := (K(x1, x), . . . ,K(xT , x)), and G = K(X,X) ∈ Rn×n is the Gram matrix.

D Details of Experiments

We perform the following experiments on both simulated and real data to empirically validate our
theoretical results.

D.1 Simulated Data

We consider ordinary / linear ridge regression in Rd, for d = 300 and different structures for the
covariance matrix Σ of the inputs: isotropic (i.e Σ = Id) and power-law (23), with (β, r) = (2, 0.375).
For each value of n (the generation index), the fake data-generator is constructed according to the
process described in (4). Then, for different values of T (between 1 and 1000, 000), a sample of size
T is drawn from this fake data-generator and then a downstream ridge model (7) is fitted. The test set
consists of 100, 000 clean pairs (x, y) form the true data distribution PΣ,w0,σ2 . This experiment is
repeated 10 times to generate error bars. The results for the isotropic setting are shown in Figure 1a
and the results for the power-law setting are shown in Figure 1b. Figure 2 shows the over-parametrized
setting.

D.2 Real Data: Kernel Ridge Regression on MNIST

As in Cui et al. [14], Wei et al. [48] we consider a distribution on MNIST [16], a popular dataset in
the ML community. The classification dataset contains 60, 000 training and 10, 000 test data points
(handwritten), with labels from 0 to 9 inclusive. Like in Cui et al. [14], we convert the labels into
real numbers (i.e a regression problem) as follows: y = label mod 2 + noise , where the variance
of the noise is σ2 = 1 (for simplicity, we also set σ2

0 = 1). The test set consists of 10, 000 pairs
(x, y), with the labels y constructed as described in the previous sentence. The fake data used for
training is generated as in the previous experiment, but via kernel ridge regression (instead of least
squares) with the RBF kernel (bandwidth = 10−4) and the polynomial kernel (degree = 5, bandwidth
= 10−3). Note that it was empirically shown in Cui et al. [14] that these datasets verify (23) with
(β, r) ≈ (1.65, 0.097) in the case of the aforementioned RBF kernel, and (β, r) ≈ (1.2, 0.15) in the
case of the polynomial kernel. Then, for different values of T (between 1 and 1000), a sample of size
T is drawn from this fake data-generator and then a downstream kernel ridge model is fitted. Each of
these experiments are repeated 10 times to generate error bars (due to different realizations of label
noise). The results are shown in Figure 4.

D.3 Neural Networks on MNIST

We now further examine model collapse in two-layer neural networks on the MNIST dataset, beyond
the linear setting and Gaussian data. We consider two scenarios:

• learning with a random features (RF) model, where the first layer is fixed randomly, and
only the second layer is trained, and

• learning with a fully trainable neural network.

For the two-layer network with the first layer fixed, our theory predicts a linear increase in test error
as a function of the number of iterations n. This is because such models belong to the linearized
regimes as finite-width random feature models and can be approximated by kernel regression [25, 45].
For fully-trained neural networks, our theory does not directly apply. However, we anticipate that the
general trends uncovered by our asymptotic theory will hold true — for example, more parameters
are expected to lead to greater model collapse, as shown in Theorem 4.1.

Specifically, the models were trained using stochastic gradient descent (SGD) with a batch size of
128 and a learning rate of 0.1. We employed a regression setting where labels were converted to
one-hot vectors, and the model was trained using mean squared error for 200 epochs to convergence.
When generating the synthetic data, Gaussian label noise with a standard deviation of 0.1 is added.
The test error is consistently evaluated on the test set using clean labels.
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(a) RBF kernel (bandwidth = 10−4)

(b) Polynomial kernel (degree = 5, bandwidth = 10−3)

Figure 4: Model collapse in kernel ridge regression (power-law covariance spectrum) on MNIST.
Here, we use adaptive regularization T−ℓ for different values of the exponent ℓ ≥ 0 (see Section D
for full experimental setup). Top row: RBF kernel. Bottom row: polynomial kernel. In each plot,
we show test error curves as a function of sample size T , from different generations (n) of fake data.
The broken vertical line corresponds to T = T0, where T0 is the number of samples (from the true
data distribution) which was used to train the label faker. The value of the exponent regularization
ℓ = ℓ⋆ (broken curves) is the optimal value in the presence of iterative data relabeling, while ℓ = ℓcrit
(solid curves) corresponds to the optimal value without iterative re-labelling (i.e n = 0) proposed in
Cui et al. [14] (see (26)). Specifically, we take ℓ⋆ = (b− a)ℓcirt = bℓcrit, where b = log T0/ log T
(so that T0 = T b), as proposed in Theorem 5.1, formula (28). Notice how the effect of fake data
makes the test error become non decreasing in sample size T . This is effectively a collapse of the
learned model.

The results for RF models of width (i.e number of hidden dimensions) k of 20,000 are presented in
Figure 5. We observe that, with the exception of the first two generations, the decay in MSE loss
generally follows a linear trend, which is consistent with the predictions of our theory.

Next, we consider the scenario of training the entire neural network. By varying the width k, we
adjust the number of parameters to further explore the theoretical predictions on how the number of
parameters influences model collapse.

Observations. From Figure 6, we can observe that

• More parameters (wider neural networks, i.e large k) lead to increased model collapse. This
observation is consistent with our results proved in the linear regime (Theorem 4.1). For
linear models, the number of parameters is proportional to d (the input dimension), whereas
in two-layer neural networks, the number of parameters is of order kd (i.e proportional to
the width k).

• The dependence of model collapse on the number of iterations n is linear for small values of
n (with n ≤ 4 in our experiments), and becomes superlinear (possibly quadratic) for larger
values of n (with n ≥ 4). Recall that n = 0 corresponds to training on clean data from the
data distribution. Thus, possibly, model collapse neural networks appears to be even more
severe than in linear regression.
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Figure 5: Performance of RF model on MNIST,
with one-hidden layer NN (width k = 20, 000).
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9876543210
Number of iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n 
sq

ua
re

d 
er

ro
r

Two-layer Neural Networks
Num_samples = 100
Num_samples = 200
Num_samples = 800
Num_samples = 4000

Figure 6: The performance of two-layer neural
network on MNIST with varying hidden dimen-
sions.

E Notations

The set of integers from 1 through d is denoted [d]. Given a variable z (which can be the input
dimension d or the sample size T , etc.) the notation f(z) ≲ g(z) means that f(z) ≤ Cg(z) for
sufficiently large z and an absolute constant C, while f(z) ≍ g(z) means f(z) ≲ g(z) ≲ f(z).
Further, f(z) ≃ g(z) means f(z) = (1 + o(1))g(z), where o(1) stands for a quantity which tends
to zero in the limit z → ∞. We denote with A† the Moore-Penrose pseudo-inverse any matrix
A, and by ∥A∥op is operator norm, while the trace of a square matrix A is denoted trA. Finally,
∥u∥Σ :=

√
u⊤Σu is the Mahalanobis norm induced by a positive-definite matrix Σ.

F Exact Characterization of Test Error Under Model Collapse

F.1 A General Formula for Test Error

We now consider the case of general ridge penalty λ > 0, and drop the requirements T ≥ d+ 2 and
T0 ≥ d+2. Recall the definitions of X,Y,E and the random matrices R and Σ̂ appearing in (7). For
later reference, define

Bias := E ∥Σ̂Rw0 − w0∥2Σ, (29)

V ar = E ∥RX⊤E/T∥2Σ = σ2 1

T
tr ΣR2Σ̂. (30)

These are respectively the bias and variance terms in the classical bias-variance decomposition

Eclean
test := Bias+ V ar, (31)

for standard ridge regression fitted on clean data from the true data distribution PΣ,w0,σ2 (e.g., see
Hastie et al. [22]).
Theorem F.1. For an n-fold fake data generation process, the test error of a ridge predictor ŵpred

n
based on a sample of size T ≥ 1 with regularization parameter λ is given by

Etest(ŵ
pred
n ) = B̃ias+ V ar + nσ2

0ρ,

B̃ias = E ∥Σ̂RQn−1w0 − w0∥2Σ,

ρ :=
1

n

n−1∑
m=0

E trCn−1,mΣ̂RΣRΣ̂,


(32)

where V ar is as given in (30) and Ck,m := Qk,mQ
⊤
k,m for Qk,m = Qk,mX

†
m, Qk,m :=

PkPk−1 . . . Pm, Qk := Qk,0 = PkPk−1 . . . P0, with Pm = X†
mXm being the orthogonal pro-

jection matrix onto the subspace of Rd spanned by the rows of Xm.
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In particular, if T0 ≥ d+ 2 (under-parametrized data-generator), then B̃ias = Bias as in (29), and

Etest(ŵ
pred
n ) ≃ Eclean

test + nσ2
0ρ,

ρ =
1

T0 − d− 1
E tr Σ−1Σ̂RΣΣ̂R.

 (33)

In the second part of the theorem, the term Eclean
test (introduced earlier in (31)) corresponds to the

usual test error when the downstream model is trained on real (not fake) data, for which well-known
formulae exist in a variety of scenarios (see Proposition 4.2).

Remark F.2. We show in Theorem 4.3 that B̃ias ≥ Bias + ∆Bias, where ∆Bias ≥ 0 in the
appropriate asymptotic limit, with equality if T0 ≥ d + 2 (the under-parametrized regime). Thus,
apart from the variance term, an over-parametrized (T0 < d+ 2) synthetic data-generator harms
the bias term of the test error of downstream models. In contrast, an under-parametrized synthetic
data-generator (T0 ≥ d + 2) only harms the variance. The increase in bias suffered in the over-
parametrized regime is precisely quantified in Section 4.5, and shown to be an increasing function of
the number of generations n.

The test error decomposition in Theorem F.1 is thus of the promised form (1). This additional term
means that there is competition between the usual test error Eclean

test and the additional term induced
by the fake labeling process. Understanding the interaction of these two terms is key to demystifying
the origins of model collapse.

Low-Dimensional Limit. Observe that if d is fixed and T → ∞, then the empirical covariance
matrix Σ̂ converges to2 its population version Σ, and so for T0 ≥ d+ 2, we have

ρ ≃ tr Σ2(Σ + λId)
−2

T0 − d
=

df2(λ)

T0 − d
,

where for any λ ≥ 0 and m ∈ N⋆, dfm(λ) is the mth order "degree of freedom" of the covariance
matrix Σ is given by

dfm(λ) = dfm(λ; Σ) := trΣm(Σ + λId)
−m.

Note that dfm(λ) ≤ d always. In the high-dimensional setting (where d can grow beyond T0), the
precise analysis of ρ will be carried out via random matrix theory (RMT).

F.2 Proof of Theorem 4.1 (Rigeless Regression)

The proof is by induction on the number of generations n of fake data. For n = 0, we have

Etest(ŵ
pred
0 ) = E ∥ŵpred

0 − w0∥2Σ = E ∥ŵpred
0 − ŵ0∥22 = E∥(X⊤

0 X0)
−1X⊤

0 E0∥22

= σ2E tr(X⊤
0 X0)

−1 = σ2 d

T − d− 1
≃ σ2ϕ

1− ϕ
,

(34)

where ϕ := d/T ∈ (0, 1) and the last step has made use of Lemma F.3 below. This is a well-known
result for the test error of linear regression in the under-parametrized regime, without any AI pollution
(fake / synthesized training data).

2e.g. weakly, w.r.t. operator-norm.
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Analogously, for n = 1 one computes the test error after the first generation of fake data as follows

Etest(ŵ
pred
1 ) = E∥ŵpred

1 − w0∥2Σ = E∥ŵpred
1 − ŵ0∥22

= E∥ŵpred
1 − ŵ1 + ŵ1 − ŵ0∥22

= E∥(X⊤
1 X1)

−1X⊤
1 E1 + ŵpred

0 − ŵ0∥22
= E ∥w0 − ŵpred

0 ∥22 + E ∥(X⊤
1 X1)

−1X⊤
1 E1∥22

= Etest(ŵ
pred
0 ) +

σ2
1d

T1 − d− 1

= Etest(ŵ
pred
0 ) +

σ2
0d

T0 − d− 1

≃ σ2ϕ

1− ϕ
+

σ2
0ϕ0

1− ϕ0
,

where ϕ0 = d/T0 ∈ (0, 1). Continuing the induction on n, we obtain the result.
Lemma F.3. Let X0 be an T0 × d random matrix with iid rows from N(0,Σ). If T0 ≥ d+ 2, then
the empirical covariance matrix Σ̂0 := X⊤

0 X0/T0 is invertible a.s and

E [Σ̂−1
0 ] =

T0
T0 − d− 1

Σ−1.

F.3 Proof of Theorem F.1 (Ridge Regression + General Covariance)

F.3.1 Representation of ŵn and ŵpred
n

We first obtain explicit formulae for the labelling vectors ŵn used in the fake-data generation process
(5). For any integerm ≥ 0, define Pm = X†

mXm, the orthogonal projection matrix onto the subspace
of Rd spanned by the rows of Xm. Observe from (5) that

ŵn = X†
n−1Y n−1 = X†

n−1(Xn−1ŵn−1 + En−1) = Pn−1ŵn−1 +X†
n−1En−1

= Pn−1X
†
n−2(Xn−2ŵn−2 + En−2) +X†

n−1En−1

= Pn−1Pn−2ŵn−2 + Pn−1X
†
n−2En−2 +X†

n−1En−1

...

= Pn−1Pn−2 . . . P0w0 + Pn−1Pn−2 . . . P1X
†
1E1 + Pn−1Pn−2 . . . P2X

†
2E2 + . . .

...

= Pn−1Pn−2 . . . P0w0 +

n−1∑
m=0

Pn−1Pn−2 . . . PmX
†
mEm.

(35)

We get the following result.
Lemma F.4. For any n ≥ 0, the following formula holds

ŵn =

{
w0, if n = 0,

Qn−1w0 +
∑n−1

m=0Qn−1,mEm, if n ≥ 1,
(36)

where Qk,m := Qk,mX
†
m, Qk,m := PkPk−1 . . . Pm and Qk := Qk,0 = PkPk−1 . . . P0. Moreover,

ŵn ∈ ImPn−1 as soon as n ≥ 1.

In particular, under the simplifying condition (17), it holds that

ŵn =

{
w0, if n = 0,

P0w0 +X†
0En−1 ∈ ImP0, if n ≥ 1.

(37)

where En−1 :=
∑n−1

m=0Em, a random vector of length T0, with iid entries from N(0, nσ2
0), and

independent of X0. Moreover, ŵn ∈ ImP0 as soon as n ≥ 1.
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Note that the second part of the result uses the elementary linear-algebraic fact that PmX
†
m = X†

m.
In the special case where T0 ≥ d, we have P0 = I a.s., and so ŵn = w0 +X†

0En−1. Otherwise,
even in the absence of generator noise (σ0 = 0), the fake data labeller ŵn = P0w0 drifts away from
the truth w0, into a subspace of Rd spanned by the rows of X0.

Next, let us obtain a decomposition for the downstream predictor ŵpred
n defined in (7). As usual, let

Σ̂ := X⊤X/T be the empirical covariance matrix with resolvent R = (Σ̂ + λI)−1, and observe that
the downstream model writes

ŵpred
n = RX⊤Y n(X)/T = RX⊤(Xŵn + E)/T

= RX⊤(XQn−1w0 +X

n−1∑
m=0

Qn−1,mEm + E)/T

= RΣ̂Qn−1w0 +RX⊤E/T +RΣ̂

n−1∑
m=0

Qn−1,mEm.

(38)

F.3.2 Proof of Theorem F.1

Using the decomposition (38) for the downstream model ŵpred
n , we deduce that

Etest(ŵ
pred
n ) = E ∥ŵpred

n − w0∥2Σ

= E ∥RΣ̂P0w0 +RX⊤E/T +RΣ̂

n−1∑
m=0

Qn−1,mEm − w0∥2Σ

= E ∥RΣ̂P0w0 − w0 +RX⊤E/T +RΣ̂

n−1∑
m=0

Qn−1,mEm∥2Σ

= E∥RΣ̂P0w0 − w0∥2Σ + E ∥RX⊤E/T∥2Σ + E

∥∥∥∥∥RΣ̂
n−1∑
m=0

Qn−1,mEm

∥∥∥∥∥
2

Σ

= B̃ias+ V ar + nσ2
0ρ,

(39)

where Σ̂ := X⊤X/T , B̃ias, V ar, and ρ are as given in the theorem. On the second line, we have
used independence (of X , X0, E, and En−1) and the fact that E and En−1 are centered Gaussian
random vectors, with iid components of variances σ2 and nσ2

0 respectively.

F.4 Proof of Theorem 4.3

Analysis of Bias-like Term. An exact analysis of the B̃ias term appearing in Theorems F.1 and
4.3 is presumably a treacherous enterprise given dependency on X (via R and Σ̂) and X0 (via
P0). In place of such an analysis, we shall settle for the following result which gives an instructive
lower-bound.
Proposition F.5. In the RMT limit (12), it holds that

lim B̃ias− limBias ≥ limE ∥RΣ̂P0w0 −RΣ̂w0∥2Σ ≥ 0.

Thus, training on fake / synthesized data increases the bias term of the downstream model’s test error!

Proof. Letting A := RΣ̂, one computes

B̃ias−Bias = ∥AP0w0 − w0∥2Σ − ∥Aw0 − w0∥2Σ
= ∥AP0w0 −Aw0 +Aw − w∥2Σ − ∥Aw0 − w0∥2Σ
= ∥AP0w0 −Aw0∥2Σ + 2w⊤

0 (A− P0A)Σ(I −A)w0

= ∥AP0w0 −Aw0∥2Σ + 2w⊤
0 (I − P0)AΣ(I −A)w0.

It then suffices to observe that, in the RMT limit (12), it holds that
limEw⊤

0 (I − P0)AΣ(I −A)w0 ≥ 0,

as can be seen from repeated application of Propositions 1 and 2 of Bach [4].
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Analysis of ρ Term. Define a d × d random psd matrix H := Σ̂RΣΣ̂R. Under the simplifying
assumption (17), the matrices Qk,m defined in the theorem all equal Q0,0 = X†

0 . It follows that the
ρ-term in (32) then writes

ρ =
1

n

n−1∑
m=0

E [Qn−1,mQ
⊤
n−1,mH] = E [trX†

0(X
†
0)

⊤H] = EHE [trX†
0(X

†
0)

⊤H | H]. (40)

Now, one computes the conditional expectation as follows

E [trX†
0(X

†
0)

⊤H | H] = E [trX⊤
0 (X0X

⊤
0 )−2X0H | H]

= lim
λ0→0+

1

T0

∂

∂λ0
E [trX⊤

0 (X0X
⊤
0 + λ0T0I)

−1X0H | H].

Furthermore, defining A := Σ1/2HΣ1/2 and Z0 = X0Σ
−1/2, we have

trX⊤
0 (X0X

⊤
0 + λ0T0I)

−1X0H = trΣ1/2Z⊤
0 (Z0ΣZ

⊤
0 + λ0T0I)

−1Z0Σ
1/2H

= trAZ⊤
0 (Z0ΣZ

⊤
0 + λ0T0I)

−1Z0,

We deduce from Proposition 2 of Bach [4] that

E [trX⊤
0 (X0X

⊤
0 + λ0T0I)

−1X0H | H] ≃ trA(Σ + κ(λ0, T0)I)
−1

= trH(Σ + κ(λ0, T0)I)
−1Σ.

Differentiating w.r.t. λ0 and letting this parameter tend to zero from above gives

E [trX†
0(X

†
0)

⊤H | H] = − 1

T0
lim

λ0→0+

∂

∂λ0
E [trX⊤

0 (X0X
⊤
0 + λ0T0I)

−1X0H | H]

≃ − 1

T0
lim

λ0→0+

∂κ(λ0, T0)

∂λ0
· ∂
∂t

trH(Σ + tI)−1Σ

∣∣∣∣
t=κ(λ0,T0)

≃ trH(Σ + κ0I)
−2Σ

T0 − df2(κ0)
,

where κ0 = κ(0, T0), and we have made use of Lemma I.2. Combining with (40) and then applying
Proposition 1 of Bach [4] to compute EH trH(Σ + κ0I)

−2Σ = EX tr Σ̂RΣΣ̂R(Σ + κ0I)
−2Σ

gives the following result.

Proposition F.6. In the RMT limit (12), it holds for any λ > 0 that

ρ =
trΣ4(Σ + κ0I)

−2(Σ + κI)−2

T0 − df2(κ0)
+
κ2 tr Σ2(Σ + κ0I)

−2(Σ + κI)−2

T0 − df2(κ0)
· df2(κ)

T − df2(κ)
, (41)

where κ0 := κ(λ0, T0) and κ = κ(λ, T ).

In particular, if T0 ≥ d, then

ρ ≃ df2(κ)

T − df2(κ)

(
1 +

κ2 tr(Σ + κI)−2

T0 − df2(κ0)

)
. (42)

This result completes the proof of Theorem 4.3.

F.5 Proof of Corollary 4.4

For the first part, we know from Theorem F.1 that

Etest(ŵ
pred
n ) = Etest(ŵ

pred
0 ) + nσ2

0ρ, with (43)

ρ :=
E tr Σ−1Σ̂(Σ̂ + λI)−1Σ(Σ̂ + λI)−1Σ̂

T0 − d
. (44)
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The Etest(ŵ
pred
0 ) term is taken care of by Proposition 4.2, since this corresponds to generalization

error on clean training data. For the ρ term, we use Proposition 1 of Bach [4] with A = Σ−1 and
B = Σ to get

ρ ≃ tr(Σ + κI)−2Σ2

T0 − d
+
κ2 tr(Σ + κI)−2)

T0 − d

tr(Σ + κI)−2Σ2

T − df2(κ)

=
df2(κ)

T0 − d
+
κ2 tr(Σ + κI)−2

T0 − d

df2(κ)

T − df2(κ)
,

which proves the first part of the result.

For the second part, note that df2(κ) = d/(1 + κ)2 when Σ = I , (10) holds, and so

(1− 1/ϕ0)ρ ≃ 1

(1 + κ)2
+

κ2

(1 + κ)4
d

T − d/(1 + κ)2

≃ 1

(1 + κ)2
+

κ2

(1 + κ)4
ϕ

1− ϕ/(1 + κ)2

=
1

(1 + κ)2
+

1

(1 + κ)2
ϕκ2

(1 + κ)2 − ϕ
,

and the result follows.

F.6 A Note on Proposition 4.2

As mentioned in the main text, the result is classical Richards et al. [41], Hastie et al. [22], Bach
[4]). Only the second part needs a comment which we now provide. Indeed, the second part
of the result follows from the first as we now see. Indeed, w⊤

0 Σ(Σ + κI)−2w0 = r2/(1 + κ)2,
df2(κ) = d/(1 + κ)2 and so we deduce from the first part that

V ar ≃ σ2ϕ
1

(1 + κ)2
1

1− ϕ/(1 + κ)2
=

σ2ϕ

(1 + κ)2 − ϕ
,

Bias ≃ κ2∥w0∥22
1

(1 + κ)2
1

1− ϕ/(1 + κ)2
=

κ2∥w0∥22
(1 + κ)2 − ϕ

,

from which the result follows.

We now need to estimate δ⊤Hδ for a deterministic psd matrix H . Observe that

δ⊤Hδ = (Qn−1w0 − w0)
⊤H(Qn−1w0 − w0)

= w⊤
0 Q

⊤
n−1HQn−1w0 − 2w⊤

0 Q
⊤
n−1Hw0 + w⊤

0 Hw0.
(45)

F.7 Proof of Theorem 4.5 and Theorem 4.6 (Model Collapse in the Absence of Label Noise)

We first prove Theorem 4.6. Note that since we are in the isotropic case, ∆Bias defined in (15) is
now given by ∆Bias := E ∥Σ̂R(Qn−1w0 − w0)∥2, where Qn−1 := Pn−1Pn−1 . . . P0. Moreover,
since T > d and λ = 0 by assumption, we have ΣR = Id, and so we further have ∆Bias :=
E ∥Qn−1w0 − w0∥2. Now, one computes

∥Qn−1w0 − w0∥2 = ∥w0∥2 − 2w⊤
0 Qn−1w0 + w⊤

0 Q
⊤
n−1Qn−1w0

= ∥w0∥2 − w⊤
0 Qn−1w0

≃ ∥w0∥2 − w⊤
0

(
n−1∏
m=0

(I + κmI)
−1

)
w0

= ∥w0∥2 − ∥w0∥2
n−1∏
m=0

min(1/ϕm, 1),

(46)

where on the 2nd line we have used the fact that Q⊤
n−1Qn−1 = Qn−1 because the Pm’s are

projections; on the 3rd line we have used Lemma F.7 with Σ = I and u = v = w0; on the 4th line
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we have used the fact that κm := κ(0, Tm) = max(ϕm − 1, 0) = max(ϕm, 1)− 1. This completes
the proof of Theorem 4.6.

The proof of Theorem 4.5 is completely analogous, with Qn−1 replaced with Q0.
Lemma F.7. Let X0, . . . , Xn−1 be independent random matrices of shapes Tm × d for m =
0, . . . , n− 1, with rows iid from N(0,Σ), and let Qn−1 := Pn−1Pn−2 . . . P0, where Pm = X†

mXm

is the orthogonal projection onto the subspace of Rd spanned by the rows of Xm. Then, in the
limit d, T0, . . . , Tn−1 → ∞ such that d/T0 → ϕ0 ∈ (0,∞), . . . , d/Tn−1 → ϕn−1 ∈ (0,∞) with
∥Σ∥op, ∥Σ−1∥op = O(1), it holds that for deterministic L2-bounded sequences of vectors u and v

u⊤Qn−1v ≃ u⊤

(
n−1∏
m=0

(Σ + κmI)
−1

)
v, (47)

where κm = κ(0, Tm) is as defined in (9).

Proof. The prof is by induction on n ≥ 1. For n = 1, we have Qn−1 = Q0 = P0. Thus,
u⊤Q0v = u⊤P0v = lim

t→0+
u⊤X⊤

0 (X0X
⊤
0 + tI)−1X0v

≃ lim
t→0+

u⊤(Σ + κ(t, T )I)−1v = u⊤(Σ + κ0I)
−1v,

(48)

where κ0 := κ(0, T ) and we used Proposition 2 of Bach [4] at the beginning of the 2nd line. Now,
suppose the claim holds for n, and let’s prove that it holds for n+ 1. Indeed,

u⊤Qnv = u⊤PnQn−1v ≃ u⊤Pn−1

n−1∏
m=0

(Σ + κm)−1v ≃ u⊤
n∏

m=0

(Σ + κm)−1v,

where the second step is an application of the induction hypothesis with Pnu in place of u.

The following lemma can be used to compute ∥Qn−1w0 − w0∥2Σ in the case of anisotropic Σ.
Lemma F.8. Under the hypothesis of Lemma F.7, it holds that

u⊤Qn−1v ≃ u⊤Σn

(
n−1∏
m=0

(Σ + κmI)
−1

)
v, (49)

u⊤Q⊤
n−1ΣQn−1v ≃ u⊤Σn

(
n−1∏
m=0

Am

)
v, (50)

with Am := (Σ + κmI)
−2

(
Σ2 +

κ2mdf2(κm)

T − df2(κm)
I

)
, (51)

where κm := κ(0, Tm) as defined in (9).

Proof. The first formula follows directly from Lemma F.7 with u replaced with Σu. For the second
formula, we can write

u⊤Q⊤
n−1MQn−1v = u⊤P0P1 . . . Pn−2Pn−1MPn−1Pn−2 . . . P0P1v

= ũ⊤n−1Pn−1MPn−1ṽn−1,

where ũn−1 := Pn−2 . . . P0u. So we really only need to prove the result for n = 1; the general
case will follow by induction and due to multiplicativity. Indeed, defining A = Σ1/2uv⊤Σ1/2,
B = Σ1/2MΣ1/2, and Z0 = X0Σ

−1/2, we have
u⊤P0MP0v = lim

t→0+
u⊤X⊤

0 (X0X
⊤
0 + tI)−1X0MX⊤

0 (X0X
⊤
0 + tI)−1X0v

= lim
t→0+

trAZ0(Z0ΣZ
⊤
0 + tI)−1Z0BZ

⊤
0 (Z0Z

⊤
0 + tI)−1Z0

≃ trA(Σ + κ0I)
−1B(Σ + κ0I)

−1 + κ20 trA(Σ + κ0I)
−2 · trB(Σ + κ0I)

−2

T − df2(κ0)

= u⊤(Σ + κ0I)
−1ΣMΣ(Σ + κ0I)

−1v + κ20u
⊤Σ(Σ + κ0I)

−2v · trMΣ(Σ + κ0)
−2

T − df2(κ0)

= u⊤ΣA0v, for M = Σ,

where the 3rd line is an application of Proposition 2 of Bach [4].
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G The Noisy Regime for Power Law Spectra

Here we discuss the consequences of Theorem 5.1 for the noisy regime.

Now fix σ2 ̸= 0 and ϕ0 ∈ (0, 1). In this regime, Theorem 5.1 predicts that consistency (i.e.
Etest(ŵ

pred
n )

T→∞−→ 0) is only possible if ℓ ≤ ℓ⋆. First consider values of ℓ for which the clean
variance σ2T−(1−ℓ/β) is less than the clean bias T−2rℓ in (27) i.e. 0 ≤ ℓ ≤ ℓcrit. We get

Etest(ŵ
pred
n ) ≍ T−2ℓr + T−(b−a−ℓ/β),

which is minimized by taking ℓ = min(ℓ⋆, ℓcrit). For other values of ℓ, variance dominates, giving

Etest(ŵ
pred
n ) ≍ T−(1−ℓ/β) + T−(b−ℓ/β−a) ≍ T−(γ−ℓ/β),

where γ := min(1, b− a). This is minimized by taking ℓ = ℓcrit, leading to

Etest(ŵ
pred
n ) ≍ T−(γ−1/(2βr+1)).

This tends to zero with T → ∞ only if b > a+ 1/(2βr + 1).

H Proof of Results for Power-Law Covariance Spectrum

H.1 Proof of Theorem 5.1

From Theorem F.1, we need to analyze the quantity

ρ ≃ df2(κ(λ))

T0 − d
+
κ(λ)2 tr (Σ + κ(λ)Id)

−2

T0 − d
· df2(κ(λ))

T − df2(κ(λ))
. (52)

Now, for small λ, κ := κ(λ) is small and one can compute

dfm(κ) ≍
∑
i

λmi
(λi + κ)m

= κ−m
∑
i

λmi
(1 + κ−1λi)m

≍ κ−mκ(m−1/β) = κ−1/β ,

where we have used Lemma I.1 with D = κ−1 and n = m in the last step. On the other hand, we
can use some of the results of Appendix A (Section 3) of [14] to do the following. It can be shown
(see aforementioned paper) that

• If ℓ > β, then κ ≍ T−β , and so dfm(κ) ≍ T for all m ≥ 1.

• If ℓ < β, then κ ≍ λ ≍ T−ℓ, and so dfm(κ) ≍ T ℓ/β = o(T ) for all m ≥ 1.

For ℓ < β, plugging this into (52) gives

ρ ≍ T ℓ/β

T0 − d
+

d

T0 − d

T ℓ/β

T − T ℓ/β
≍ T−1

0 T ℓ/β +
ϕ0

1− ϕ0
T−(1−ℓ/β)

≍ 1

1− ϕ0
max (T/T0, ϕ0)T

−(1−ℓ/β),

where ϕ0 := d/T0. Combining our Theorem F.1 with (57), we get the claimed result.

H.2 Representation of Clean Test Error

We make a small digression to present the following curiosity: with a slight leap of faith, the main
results of [14] can be obtained in a few lines from the tools developed in [4], namely Proposition
4.2. This is significant, because the computations in [14] were done via methods of statistical physics
(replica trick), while [4] is based on RMT.

Indeed, for regularization parameter λ ≍ T−ℓ given in (25), we have κ = κ(λ) ≃ λ. Thus

κ ≍ T−ℓ, df2(κ) ≍ κ−1/β ≍ T ℓ/β . (53)
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Now, since λi ≍ i−β (capacity condition) and (w⊤
0 vi)

2 = c2i ≍ i−δ (source condition), we deduce

κ2w⊤
0 Σ(Σ + κI)−2w0 ≍ w⊤

0

(∑
i

λi
(λi + κ−1λi)2

viv
⊤
i

)
w0 =

∑
i

c2iλi
(λi + κ−1λi)2

=
∑
i

c2iλi
(λi + κ−1λi)2

≍
∑
i

λ
1+δ/β
i

(λi + κ−1λi)2
≍ κ−γ ≍ T−ℓγ ,

(54)

where γ = min(2, 1 + δ/β − 1/β) = min(2, 2r) = 2r, with r := min(r, 1). The exponent is so
because δ = 1 + β(2r − 1), and so δ/β = 1/β + 2r − 1 by construction. The estimation of the last
sum in (54) is thanks to Lemma I.1 applied with D = κ−1, n = 1 + δ/β, and m = 2. Therefore,
invoking Proposition 4.2 gives

Bias ≃ κ2w⊤
0 Σ(Σ + κ)−2w0

1− df2(κ)/T
≍ T−ℓγ

1− T−(1−ℓ/β)
≍ T−ℓγ = T−2ℓr (55)

V ar ≃ σ2 df2(κ)

T
· 1

1− df2(κ)/T
≍ σ2T

ℓ/β

T

1

1− o(1)
≍ σ2T−(1−ℓ/β). (56)

We deduce the scaling law

Etest ≃ Bias+ V ar ≍ T−2ℓr + σ2T−(1−ℓ/β) ≍ max(σ2, T 1−2ℓr−ℓ/β))T−(1−ℓ/β), (57)

which is precisely the main result of [14].

Low-Noise Regime. In the low noise regime where σ2 = O(T−2βr), one may take ℓ = β; the
variance is then much smaller than the bias, and one has the fast rate

Etest ≍ T−2βr . (58)

High-Noise Regime. Now, consider the case where σ2 = Θ(1). Setting 2ℓr = 1− ℓ/β to balance
out the bias and variance gives ℓ = ℓcrit, where

ℓcrit :=
β

2βr + 1
∈ (0, β). (59)

With this value of the exponent ℓ, we get the error rate

Etest ≍ T−2ℓcrit·r = T−c, with c :=
2βr

2βr + 1
, (60)

which is precisely the main result of [14], known to be minimax optimal (de Vito [11], etc.) !

I Auxiliary Lemmas

Lemma I.1. Let the sequence (λk)k≥1 of positive numbers be such that λk ≍ k−β for some constant
β > 0, and let m,n ≥ 0 with nβ > 1. Then, for D ≫ 1, it holds that

∞∑
k=1

λnk
(1 +Dλk)m

≍ D−c

{
logD, if m = n− 1/β,

1, else,
(61)

where c := min(m,n− 1/β) ≥ 0.

Proof. First observe that

λnk/(1 +Dλk)
m ≍ λnk min(1, (Dλk)

−m)

=

{
λnk = k−nβ , if Dλk < 1, i.e if k > D1/β ,

D−mλ
−(m−n)
k = D−mk(m−n)β , else.

We deduce that
∞∑
k=1

λnk
(1 +Dλk)m

≍ D−m
∑

1≤k≤D1/β

k(m−n)β +
∑

k>D1/β

k−nβ . (62)
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By comparing with the corresponding integral, one can write the first sum in (62) as

D−m
∑

1≤k≤D1/β

k(m−n)β ≍ D−m

∫ D1/β

1

u(m−n)βdu

≍ D−m


(D1/β)1+(m−n)β = D−(n−1/β), if n− 1/β < m,

logD, if m = n− 1/β,

1, else.

=


D−(n−1/β), if n− 1/β < m,

D−m logD, if m = n− 1/β,

D−m, else.

= D−c

{
logD, if m = n− 1/β,

1, else,

where c ≥ 0 is as given in the lemma.

Analogously, one can write the second sum in (62) as∑
k>D1/β

k−nβ ≍
∫ ∞

D1/β

u−nβdu ≍ (D1/β)1−nβ = D−(n−1/β),

and the result follows upon putting things together.

Lemma I.2. For κ = κ(λ, T ) defined as in (9), it holds that

∂κ

∂λ
=

1

1− df2(κ)/T
≥ 1. (63)

The formula given in the above lemma is useful because it can be combined with the identities

Bias = w⊤
0 Σ(Σ + κI)−2w0

∂κ

∂λ
, (64)

V ar = σ2 df2(κ)

T

∂κ

∂λ
. (65)

The RHS of (64) is usually referred to as the omniscient risk Hastie et al. [22], Cui et al. [13], Wei
et al. [48].

Proof of Lemma I.2. By definition of κ, we know that

κ− λ = κdf1(κ)/T = κ tr Σ(Σ + κI)−1/T.

Let κ := ∂κ
∂λ . Differentiating the above identity w.r.t. λ gives

κ′ − 1 = κ′(tr Σ(Σ + κI)−1 − κ tr Σ(Σ + κ)−2)/T = κ′ tr Σ2(Σ + κI)−2/T = κ′df2(κ)/T,

and the result follows upon rearranging. Note that we have used the identity

I − κ(Σ + κI)−1 = Σ(Σ + κI)−1,

to rewrite Σ(Σ + κI)−1 − κΣ(Σ + κI)−2 = Σ2(Σ + κI)−2.
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2. Limitations
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the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compared to most contributions, our experiments, which accompany our
theory, do not require any significant compute whatsoever.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: our research does not involve human participants, and never uses private data
or models.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper provides toy theory that underlines the point that retraining on data
generated from currently available models might lead to a vicious loop of model collapse,
which might have societal impact. We call for attention to this matter.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not release any models or new data.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The only public dataset we use is MNIST [16], which we properly credit. The
MNIST dataset is made available under the terms of the Creative Commons Attribution-
Share Alike 3.0 license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research on humon subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not involve crowdsourcing nor research on humon subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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