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ABSTRACT

Deep Machine Learning methods have been proven to be effective in solving the
travelling salesman problem and general vehicle routing problems. In this paper,
we use reinforcement learning to learn effective and fast constructive heuristics for
solving a problem with dynamic customer requests, the partially dynamic travel-
ling repairman problem, and variants with customer demands and time windows.
We perform an ablation study on the policy network that maps between state and
action spaces of arbitrary size to investigate which features from previous litera-
ture translate well to this new domain and introduce a recurrent neural network
component to the decoder that tracks arrivals of dynamic customers improving
performance on problems with time windows. The encoder-decoder network can
map between state and action spaces of arbitrary dimension so we investigate how
it generalizes to problems of different sizes. The performance of the construction
heuristic is compared with several baselines on real world examples and different
spatio-temporal customer request distributions of different sizes.

1 INTRODUCTION

We develop and deploy a graph neural network (GNN) encoder-decoder framework in a reinforce-
ment learning approach to solving the partially dynamic travelling repairman problem (PDTRP;
Larsen et al., |2002), an evolution of the travelling salesman problem in which customers arrive
while the tour is being executed. Our work builds on Joshi et al.|(2019), but introduces dynamism in
the routing model to produce solutions that better capture the challenges faced in modern domains
of application, such as repair call-outs, rapid courier services, restocking of industrial fuels, vehicle
sharing services and emergency vehicle dispatch (Larsen et al., [2002; [Pillac et al., |2013). We also
extend the problem to include features, common in routing applications, such as time windows for
service and customer demands, demonstrating the flexibility and efficacy of the learning framework.

Vehicle routing problems (VRPs) have been aiding dispatchers in planning routes in a wide range of
logistical contexts since its inception as a generalization of the travelling salesman problem (Dantzig
& Ramser,[1959). The PDTRP is an example of a dynamic vehicle routing problem (DVRP). DVRPs
are distinguished from the more conventional VRPs by the input on the problem being received and
updated concurrently with the determination of the route (Psaraftis et al.,2016). In practice these
updates can have a dramatic effect on the success of a planned route. It is therefore useful to design
solvers that, thanks to advances in communication technology, can make adaptations to a route in
progress to react to dynamic information (Crainic et al., |2009).

A DVRP solver must be fast as solutions must be adapted in real-time in response to dynamic in-
formation. One of the most promising new methods for solving VRPs is to utilize reinforcement
learning (RL) to learn policies that construct routes in a step-by-step fashion. This method has been
shown to be competitive with exact solvers for the TSP and VRP (Kool et al.,|2018)). The iterative
route construction lends itself very favourably to DVRPs because any dynamic information that ar-
rives between steps can then be incorporated into the decision strategy at the next step. Furthermore,
once trained, the policy can be queried very quickly which makes it ideal for use in real-time.

An interesting aspect of the PDTRP is that when modelled using a Markov Decision Process (MDP),
the state space varies in size depending on the current number of customers awaiting service. When
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applying the model to real situations, the total number of customers is unknown a priori. This means
that the neural network architecture must be able to encode a state space of arbitrary size; we find a
GNN to be an effective architecture for this purpose (Joshi et al.l 2019). The action space is simply
to select the next node to visit, and therefore also varies in size with the state space; our decoder
takes an aggregate embedding of the full state space, and combines this with the embeddings of
individual nodes through a transformer architecture to select the next node to visit. The problem
requires the architecture to be agnostic to the state size, but can be trained efficiently on relatively
small examples using masking and deployed on larger instances.

Reinforcement Learning based methods, and methods from the closely related field of approximate
dynamic programming (ADP), have been applied to create solvers for a range of different DVRPs.
These methods all begin by modelling the DVRP as an MDP. |Ulmer et al.| (2019) uses table lookup
based value function approximation with online lookahead to solve a DVRP with stochastic cus-
tomers where the aim is to maximize the number of customers served. ADP approaches that utilize
linear function approximation and neural networks have also been utilized for DVRPs (Zhang et al.,
2022; |He et al.l [2018). [Zhou et al.| (2023 combine supervised learning based on historical deliv-
ery routes with policy gradient methods. [Iklassov et al|(2024a3b)) apply reinforcement learning to
DVRPs where the amount of customer demand and also travel times are dynamic. |Akkerman et al.
(2025) compare different ADP and RL approaches for DVRPs.

However a common theme across these DVRP papers is that they do not utilize many of the newest
methods that apply sophisticated deep learning models to combinatorial optimization problems in-
cluding routing. The catalyst for this stream of work is|Vinyals et al.| (2015]) who tested their pointer
network architecture on the TSP, training it to predict tours using supervised learning on optimal
instances. Bello et al.[(2016)) trained the pointer network with policy gradient and actor critic RL to
construct TSP tours in a step-by-step fashion and|Nazari et al.| (2018]) applied a very similar approach
to a single vehicle capacitated VRP. Both |Deudon et al.| (2018)) and |[Kool et al.| (2018)) replaced the
RNN based encoder in the pointer network policy with multi-headed attention (Vaswani et al.| [2017)
improving tour quality for the TSP. Kool et al.|(2018) also developed a more performant critic base-
line, a modified decoder, and demonstrated their method on the CVRP, VRP with split deliveries,
the orienteering problem and the prize collecting TSP. In Joshi et al.| (2019) the encoder is replaced
with a graph neural network which gives another boost in performance.

Aside from making improvements to the model, there are several papers that propose new learning
algorithms that improve performance. For constructive RL, [Kwon et al.| (2020), Kim et al.| (2022)
and Drakulic et al.|(2023)) improved performance by exploiting the symmetry present in RL solutions
to combinatorial optimizations. Other deep learning paradigms other than RL have been explored
for solving routing problems such as diffusion processes (Li et al.,[2023)) and unsupervised learning
(Min et al.,|2023). However, for the dynamic vehicle routing problems the RL based methods are the
obvious choice due to their step-by-step solving aligning with the staggered arrival of new inputs.

In this paper, we develop an RL construction heuristic that can solve the PDTRP and variants with
demands and time windows effectively, obtaining performance that is very close to or better than a
sophisticated meta-heuristic based static solver (OR-Tools; [Furnon & Perron, 2025) that is adapted
to solve the PDTRP by solving a static “snapshot” of the problem every time the input is updated.
Our method outperforms the heuristic methods suggested in the original paper (Larsen, [2000) and
the method of Joshi et al.| (2019) applied to static “snapshots” in the same manner as for OR-Tools.
Notably, the RL construction heuristic produces its solutions very quickly with the time taken to
solve PDTRP instances being comparable to the heuristic methods and orders of magnitude faster
than the static resolving methods.

We also present an ablation study which tests the performance of different policy and learning com-
ponents that have been developed in the literature for static problems and test some ideas we devised
for improving performance in dynamic problems. We also demonstrate an ability to train on small
instances and generalise to large problem instances that have not previously been experienced, which
is particularly effective when there are no explicit time windows in the problem formulation.
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2 PROBLEM DESCRIPTION

Adding dynamism to the already large taxonomy of VRPs has resulted in a similarly large taxonomy
of DVRPs. Categories of DVRPs differ both in how dynamism presents itself and also how the
solution can choose to react to dynamism. The main sources of dynamism in DVRPs are travel
times, service times, demands and customer arrivals (Rios et al., [2021). There are problems in
which the vehicle can choose to wait or reposition itself to better anticipate the arrival of dynamic
information or reject dynamic requests that it will not be able to service given constraints upon it
(Bent & Van Hentenryckl, |[2004). In others, including the PDTRP, the solver has the opportunity for
limited anticipation through its choice of route but lacks these more powerful options.

Early solution methods for DVRPs were modified static solvers that either re-solved a static problem
each time new input information appeared or modified a static solution in response to new informa-
tion using an insertion heuristic (Psaraftis| [1988)). This was made more efficient in |Gendreau et al.
(1999) where a tabu search meta-heuristic solves multiple routes in parallel to improve the quality
of the solution obtained in the limited time between decision points. [Bent & Van Hentenryck](2004)
took this multiple plan approach and used probability models of future inputs or historical data
(Bent & Van Hentenryckl 2005) to produce solutions that are better designed to receive dynamic
customers. There are a number of other papers that apply meta-heuristics from VRPs to DVRPs
by employing a resolving approach. For example, Schyns| (2015)) uses the ant colony optimization
meta-heuristic, |[Sarasola et al.| (2016) uses variable neighbourhood search and [Novaes et al.[ (2015
uses genetic algorithms.

Some of the fastest solutions are achieved using heuristics such as the ones suggested in the original
PDTRP paper (Larsen et al.,2002). The nearest neighbour and first come first served heuristics used
here produce good quality solutions. Insertion heuristics have also been applied to DVRPs (Psarattis,
1988)), typically starting with the best static solution possible and letting the heuristic decide where
to insert dynamic customers into the route.

In this article we focus on the PDTRP as defined by [Larsen et al.| (2002)):

* A repairman travels at constant velocity, u, in a bounded region A of area A.

* A subset of customers are dynamic and arrive according to a Poisson process with parame-
ter A between opening time at ¢ = 0 and a time horizon 7'. The locations of the customers
are independently and uniformly distributed in A.

* An N node instance consists of N — 1 customers plus a centrally located depot. N,q4, is
the number of advanced request customers (plus the depot) present at the beginning of the
problem. N;,,,, is the number of immediate request customers that arrive dynamically. A
key metric for the dynamism of a particular problem instance is the ‘degree of dynamism
(dod)’, defined to be Nimm/(Nady + Nimm )-

* Each customer requires an independently and identically distributed amount of on-site ser-
vice time ¢; that becomes known once the service is completed.

* The route is updated only at customer locations; a vehicle cannot change its destination
while travelling.

* The objective is to minimize the repairman routing cost.

As we will apply reinforcement learning to this problem, we model it as an MDP. As is common
practice for VRPs, the state, sy, at each discrete time step, k, is represented as a graph, G, =
(Vi, Ex), where the nodes, v; € Vj, represent customers and are labelled with their co-ordinates
in the unit square, (z;,;). The edges, e;; € Ej, represent paths that the repairman can traverse
between customers and are labelled with the travel distance, d;;, of the path. The action set, Ay, is
the subset of nodes corresponding to customers who have not yet received service. The state also
tracks the current time ¢. Each episode starts at a centrally located depot at time ¢ = 0 and terminates
when the repairman has serviced all customers, including dynamic ones, and returns to the depot.

Between time steps in the MDP, the repairman moves from node v; in state s to node v,, in state
Sk+1,and tis updated to t' = d; 4, /u+ dq, . The state sy, is updated to s,11 by adding any dynamic
customers whose arrival time occurred in the interval (¢, ] to the graph. The objective function for
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Figure 1: Illustration of the policy network architecture.

an instance of the PDTRP is defined as:
N

L= § :dvT(’i)vT(’i+l)’

=0

for a tour 7 = (vg, v1, ..., o) consisting of N + 1 total nodes where the starting and ending node are
the depot vg. For problems with time windows, we introduce an alternative objective function that
penalizes lateness:

N N
L= do oy + O max(0, () — lri))s
1=0 =1

when ¢ ;) is the time at which customer ¢ in the tour was visited and [ (;) is the end of that customer’s
time window.

For problems with customer demands, each customer has a randomly generated demand and in
order to service a customer, the repairman must have a current capacity exceeding that demand. The
repairman can return to the depot at any time to increase capacity. More details of these problems

and their associated simulations are given in|[Appendix A

3 REINFORCEMENT LEARNING

We use an actor-critic policy gradient algorithm (Sutton et al., |{1999) to train a policy to construct
solutions to these problems. The policy neural network is an Encoder-Decoder architecture and is
depicted in [Figure 1} In state, sy, the graph G = (Vj, Ey) is input to the encoder which outputs
a d-dimensional embedding of each node in the graph. The decoder component then takes this
embedding and uses additional contextual inputs to output a probability distribution over active
customer requests.

3.1 ENCODER

As inJoshi et al.|(2020), the encoder consists of first pruning the input graph’s edge set F; by using
a k nearest neighbour algorithm (based on Joshi et al. (2019), k is equal to the 20% of the total
customers) to remove all edges that do not belong to a node’s set of nearest neighbours.

After being pruned, the graph is passed to a GNN. In the GNN, the node and edge features are
projected into RY by linear layers to obtain feature vectors {h},,cv, and {e;}c, cr, which are
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then passed through a stack of L message passing layers. Each message passing layer updates each
node’s features by a weighted aggregation of its own features with those of its neighbouring nodes
in the graph. The functional form of the message passing layers for node features is given by,

¢ ,
hitt = hf + ReLU (NORM (U*h{ + AGGR;e;, (a(ef;) ® V'hY))),
Here, ¢ indexes the message passing layer. U’ and V¢ are network parameters, o indicates the
application of a sigmoid function, AGGR indicates the application of an aggregation function over

the set of neighbouring vertices \; and NORM indicates the application of a batch normalization
layer. The ® symbol is the element-wise multiplication operator.

The edge features are updated by a weighted aggregation of the edge features and the features of the
two vertices connected by the edge. The functional form is given by,

eit! = ef; + ReLU (NorRM(A'el; + B'hf + C*hY) ,
A’, B and C* are network parameters. For a network with L message passing layers, the final
output of the encoder, {hf }'Uievk, , is a d-dimensional vertex embedding for each vertex in Gy.

3.2 DECODER

The decoder component of the network builds from Kool et al.| (2018). It operates sequentially,
taking the encoder node embeddings at each time step k, and additional context, to produce a prob-
ability distribution over available customers.

From the encoder node embeddings, a graph embedding, i, is obtained by aggregating over the
node embeddings. This is concatenated with the embedding of the node that was visited by the
repairman at the previous time step in the tour hf( k—1) to create a context vector, h¢. Depending on
the problem being solved, we add more information to the decoder’s context vector: for capacitated
problems, the vehicle’s current capacity; for problems with time windows, the current time ¢; we
also experiment with adding the hidden state of a LSTM layer which takes as input the node features
of any dynamic arrivals when they arrive in the problem.

The context vector h,. is used as the sole query vector in a multi-headed attention (MHA) layer. The
value and key vectors are the node embeddings h:

Q= Wgthe, K" =Withy, V" = W{'hy,
where W', W' and W' are attention parameters for each attention head m. The output of this
attention layer is an updated context vector h./,
M
he =Y Wik,

m=1
(QZ”)TKZ")
exXp (7
I =Y Vi

s > @mTry\
jexp e

where WO are parameters applied to the output of each of the M attention heads, which we index
using m, and d g is the query/key dimension.

m

The updated context vector h. is input to another MHA layer, again with M heads, but this time we
are only interested in the attention weights. The attention weight of each node is taken and clipped
to lie within the range [—C, C] to obtain log-probabilities of each node:

Qu Ki
e

Here Q.. = W@h,. is the query vector associated with the updated context and k; is the same key
vector as in the previous layer. Nodes which are already part of the tour are masked; u; is set to —oo

for these nodes. The log-probabilities are then input to a softmax function to obtain the probability
of selecting each vertex:

usztanh<

W@(ak|8k) =

Zj el ’
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3.3 TRAINING

When training the model, we solve batches of simulated instances. Details of the simulations are
given in[Appendix A]l The model is trained for one specific problem at a time as each problem has
different node features and decoder contexts. Based on the results of the ablation study (Section[4.T)),
for problems without time windows, we utilize a “simplified” model that doesn’t include features
relating to dynamism like the arrival LSTM; this model has ~ 350, 000 parameters. For problems
with time windows, we utilize the full model with the arrival LSTM in the decoder context; this
model has ~ 500, 000 parameters.

The model is trained by a policy gradient algorithm with a unique critic baseline b, introduced by
Kool et al.| (2018), in which b is obtained by running a cached policy in which actions are selected
greedily rather than by sampling. The policy gradient is then given by:

w(e):%z: S [(E(r) = b)V log mo(axlse)]-

=1 (ar,sk)ET

At the end of an epoch, the cached policy is compared with the current policy and if the reward
obtained by the current policy is a statistically significant improvement on the cached version, as
determined by a t-test, then the cached model is replaced by the current policy. Fuller details of the

training setup and parameters are given in

4 EXPERIMENTAL RESULTS

For the experimental results, we consider representative examples of the PDTRP problem:

Uniform-uniform (U.U.) instances: For this problem, we take the most straightforward approach
to customer request generation and the one used in the original PDTRP paper. Customers’
locations are generated uniformly in the unit square. Customer arrival times are generated
uniformly between time 0 and the time horizon T'.

Skewed spatial-temporal (S.T.) instances: For this example there is spatial and temporal depen-
dency between the customer locations motivated by applications like courier services where
we might expect customer requests to shift from commercial to residential areas over the
course of a day. In these instances, the unit square is divided into four subregions, with
different arrival rates in different subregions. Customers are more likely to be located in
either the lower-left or upper-right subregion and dynamic customers in the lower-left are
more likely to arrive in the first half of the time horizon, [0, %} and customers in the upper-

right are more likely to arrive in the second half of the time horizon, [£,T]. Exact details
are provided in|Appendix Al

Real world (R.W.) instances: These real world instances were provided in the EURO meets
NeurIPS vehicle routing competition (Kool et al} [2022). The instances provided have an
“explicit duration matrix providing (non-Euclidean) real world road driving times between
customers”. These instances are for the vehicle routing problem with time windows and
therefore needed modifying to use them as test instances for the PDTRP and its variants.
Details of the modification are given in Appendix

In each case we consider the standard PDTRP with no time windows or capacities, and in addition
the same problem with time windows (PDTRPTW) and a capacitated version with time windows
(PDCTRPTW). We also consider three degrees of dynamism (dod). Every model is trained on
instances with dod ranging from 0.2 — 0.8.

For the U.U. test instances, we present results for two learned models: a 20-50 model trained on
U.U. instances with size between 20 and 50 nodes, and a 20-100 model trained on U.U. instances
with size between 20 and 100 nodes. We use these two models and test on U.U. instances with
N = 50and N = 100 to test how well the model is able to generalize for each problem.

For the S.T. test instances, we present results for the 20-50 model trained on U.U. instances and a
20-50 model trained on S.T. instances. Similarly for the R.W. test instances, we present results for
the 20-50 model trained on U.U. instances and a 20-50 model trained on R.W. instances. We choose



Under review as a conference paper at ICLR 2026

to test these models to see how performance differs between a “generic” model and one specifically
trained for the test instances.

As comparison methods, we use the Nearest Neighbour (NN) and First Come First Served (FCFS)
heuristics from |Larsen et al.| (2002). For each problem, we report results for the best performing of
the two heuristics. We also use a resolving method based on OR Tools (Furnon & Perron) [2025)).
OR Tools contains a meta-heuristic based routing solver. Each time a customer request arrives, we
resolve the problem with a 3 second time limit. Further details are in Appendix [E] To compare our
method with other RL approaches, we also apply a resolving approach with the method from [Joshi
et al.| (2020) (‘Joshi’).

The table shows the average objective cost (obj.) over 100 test instances for each method applied to
each problem. Recall the different objective costs for the problems with time windows which causes
the objective costs to be higher for these problems. A percentage gap (% gap) is given to a static
baseline where OR Tools is given 10 seconds to solve a static counterpart of each dynamic instance,
in which all nodes are visible in advance (see [Appendix F). The average time taken to solve an
instance is reported. Hardware details and tables showing the results for PDCVRP and larger R.W.

and S.T. instances are given in

The results for PDTRP on the U.U. test instances show that RL is able to quickly construct solutions
that are only marginally worse than those produced by the OR Tools solver, in much faster times,
and beats the other methods which produce solutions in a similar amount of time on most test
sets. The performance of the RL policy compared to the OR tools baseline improves as the dod of
instances becomes larger but for the other baselines it is more consistent suggesting this is due to the
unsurprising fact that the method based on a static solver performs better on less dynamic instances.

For PDTRP, the models have good generalization performance with the 20 — 50 model performing
with almost parity to the 20 — 100 model on instances with N = 100. The results also show
that training on instances that are the same size as those seen in training confers an advantage and
also that training on larger instances can cause performance to drop slightly on smaller instances,
motivating a judicious choice of training instance sizes depending on the application.

The policy achieves remarkably good performance on PDTRPTW, even managing to beat the static
benchmark. For the PDCTRPTW, the results achieve parity with OR Tools but do not match the
performance we see for PDTRPTW. We hypothesise that this is a result of the capacity constraints
restricting the choices of possible routes and leaving less room for the policy to adapt to the time
windows.

When time windows are part of the problem, the model does not show the same generalization
ability from small to large problems as in the PDTRP, although by increasing the training range
of N satisfactory results on a wider range of instance sizes can be achieved. We hypothesise that
the weaker generalization on the problems with time windows is due to the scaling of instances in
these problems. We keep the time horizon and vehicle speed the same whilst increasing the number
of customers. This leads to a situation in which the vehicle will struggle to meet a lot of the time
windows, hence the high objective costs across the board for the larger problems.

When looking at the R.W. instances, we see a similar pattern to the U.U. when it comes to compar-
ing the performance of the model to the baselines, although in this case the model performance is
noticeably better for the PDCTRPTW. We see that being trained on R.W. instances leads to a large
performance boost over the model trained on U.U. instances.

4.1 ABLATION STUDY

We carried out an ablation study to determine which of the modelling innovations made in the
literature for static VRPs are relevant for the dynamic setting and also which newly introduced
model components for dealing with dynamic elements help model performance. When comparing
training methods and edge features, we choose to use the simplest problem variation, the PDTRP.
When we compared model features for the PDTRP, we didn’t find much difference between the
different models (see[Appendix D). So we compare them for the PDCTRPTW instead.

For the training method comparison, we can clearly see that training on dynamic instances gave a
noticeable boost in performance over training with static instances when we directly port the method
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Table 1: Our method vs. baselines

Uniform - Uniform N = 50

dod =0.2 dod =0.5 dod = 0.8

Method | Obj. %Gap Time | Obj. %Gap Time | Obj. %Gap Time

20-50 930  63.63 0.07s | 1406 1474 0.10s | 1851 225.7 0O.11s

& 20-100 [9.40  65.39 0.04s | 14.11 1483 0.05s | 18.62 227.6 0.06s
E ORTools | 8.83 5536 14.8s | 14.02 146.7 33.7s | 18.46 224.8 56.0s
&, Joshi 947  66.62 0.17s| 1440 1534 0.27s | 1859 227.1 0.28s
Heur. 9.53  67.67 0.01s | 1430 151.6 0.02s | 18.65 228.1 0.02s

a. 20-50 351  -5322 0.08s | 447 -40.43 0.11s | 84.3 11.37  0.12s
ﬁ = 20-100 |46.0 -38.69 0.04s|47.1 -37.23 0.05s|75.9 028 0.06s
E &= ORTools | 69.8  -6.97 25.5s|92.6 2341 478s|121.6 60.65 60.0s
Heur. 11609 15372 0.04s | 10353 13698 0.04s | 9315 12206 0.04s

& 20-50 146.9 1372 0.06s | 152.7 1064 0.07s | 199.2 1445 0.08s
== 20-100 |93.1 584  0.06s | 100.2 354 0.07s | 119.3 464  0.08s
8 &= ORTools | 58.2  -6.03 27.6s| 1104 49.2 574s | 1374  68.7 74.8s
~ Heur. 12259 19694 0.08s | 11693 15703 0.10s | 9728 11334 0.07s

Uniform - Uniform N = 100

20-50 1256  59.12  0.15s | 1521 92.67 0.19s | 17.72 1245 0.21s

@ 20-100 | 12.44 57.60 0.07s | 15.19 9242 0.10s | 17.74 1247 0.11s
E Joshi 14.00 77.37 0.79s | 17.82 125.73 1.28s | 20.68 162.0 1.22s
&, ORTools | 11.74 4873 48.8s | 15.17 92.17 112s | 1793 127.1 147s
Heur. 12.33  56.21 0.03s | 15.17 92.17 0.03s | 17.81 125.6  0.03s

a. 20-50 7413 359.2  0.17s | 7878  305.74 0.21s | 9021  268.2 0.23s
ﬁ = 20-100 | 3891 141.0 0.08s | 4287 120.8 0.11s | 5057 1064 0.12s
E &= ORTools | 1695 5.00 50.7s | 1988  2.39 97.0s | 2819  15.07 121s
Heur. 32819 1933  0.03s | 31213 1508  0.03s | 19251 686 0.03s

& 20-50 10754 280.7 0.11s | 10683 2359  0.14s | 11294 2129 0.15s
== 20-100 | 4929 7447 O0.11s| 5362 68.6 0.14s | 6175 71.1 0.15s
8 &=  ORTools | 4802 6998 63s | 5233 645 102s | 5745 59.2 129s
A~ Heur. 34280 1113 0.04s | 32653 926.6  0.08s | 30204 736.7 0.06s

Real World Instances N = 50

a U.U. 790 4187 0.05s| 880  58.03 0.05s | 10.03 80.12 0.05s
ﬁ R.W. 742 3325 0.05s|824 4797 0.05s | 9.67  73.66 0.05s
E ORTools | 6.79 2194 19.3s|7.99 4339 24.6s|9.38 6845 259s
Heur. 7.07 2696 0.02s|796 4295 0.02s | 926 66.29 0.02s

a. U.U. 2604  -18.69 0.03s | 2579  -19.14 0.04s | 3062 -39 0.04s
ﬁ = RW. 1377 -57.0 0.03s | 1399 -56.14 0.04s | 1994 -37.42 0.04s
E & ORTools | 3224  0.67 13.0s | 3201  0.36 15.8s | 3825  20.05 15.6s
Heur. 8883 177.4 0.01s | 8093 153.8 0.01s | 7867 1469 0.01s

& U.U. 4450  44.04 0.06s | 4269 3635 0.06s | 4597 48.12 0.06s
= RW 1867 -39.57 0.05s | 1933  -38.26 0.05s | 2405 -22.51 0.05s
8 &= ORTools | 3510 13.61 15.0s | 3783 20.83 18.7s | 4279 37.88 17.8s
A~ Heur. 12259 296.8 0.03s | 11694 273.5 0.03s | 9728 213.5 0.03s

Skewed Spatio-Temporal Instances N = 50

a. U.U. 8.69  63.13 0.09s | 12.26 130.1 0.12s | 15.87 197.8 0.14s
ﬁ S.T. 8.44 5843 0.04s | 12.03 125.8 0.05s | 15.76 195.8 0.06s
E ORTools | 8.19  53.74 14.5s | 12.03 1258 31.1s| 1593 199.0 48.5s
Heur. 8.71 63.5 0.02s | 12.30 130.8 0.02s | 1591 198.6 0.02s

o U.U. 302 -57.46 0.04s | 28.9  -59.06 0.05s | 108.2 56.9 0.06s
E = ST 43.1 -39.29 0.04s | 33.2  -5297 0.05s | 122.8 78.09 0.06s
E &=  ORTools | 964 3579 2455|856 2126 469s|943 3676 589s
Heur. 9075 12683 0.02s | 9220 12961 0.02s | 9735 14018 0.03s

& U.U. 149.7 1563 0.06s | 200.1 181.5 0.07s | 244.1 257.7 0.08s
== ST 79.6 363 0.06s | 81.3 1438 0.07s | 153.6 125.1 0.08s
8 &= ORTools | 128.7 1204 279s| 1134 59.54 547s|127.5 86.86 72.0s
A~ Heur. 10196 17358 0.03s | 10352 14464 0.03s | 10461 15231 0.03s
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Figure 2: The ablation study was conducted on seven uniform-uniform test sets consisting of 64
instances each, each test is labelled with the N and DOD for its instances. The top-row’s plots are
instances of PDTRP and the bottom-row’s are instances of PDCVRPTW.

from[Joshi et al.| (2019), which we consider to be the base model. Training on instances with a larger
spread of N gives better performance on larger datasets but slightly worse on the smaller ones.
Implementing the POMO (Kwon et al.} 2020) training method, in which single instances are trained
on multiple times by choosing a different initial node (not counting the depot) each time and a
different baseline is used, didn’t give any noticeable performance boost although the training time
on the same number of instances (counting each choice of starting node as an instance for POMO)
compared to the other methods was shorter.

When looking at edge features, we compared an adjacency based edge feature which assigns every
edge a fixed embedding vector with using distances, d;;, as edge features. This likely indicates
that the encoder can learn to calculate the distances from the node locations. Since we find that the
performance is effectively identical between these two embeddings, we suggest using the distance
based embedding because for problems in which the distance between nodes does not correspond
to a Euclidean distance, this edge feature will be the only way of supplying this information to the
model.

Finally, we look at the results for the model features, this plot is split into in training distribution and
out of training distribution performance due to the much larger costs associated with larger instances
in this problem. Here we can see that including customer arrival times as part of the node features
gives a boost to performance and this is further improved by adding a long short term memory RNN
hidden state to the decoder context.

5 CONCLUSION

The results presented here demonstrate the effectiveness of deep reinforcement learning based con-
structive heuristics on the partially dynamic vehicle routing problem and its variants. Our key in-
novations are the use of reinforcement learning alongside GNN’s to encode the node features in the
network, aggregation to achieve summarise the network state, and use of a transformer to value each
node in the context of the other nodes in the system. One of the great advantages of this framework
is that it will remain broadly the same across similar applications with only changes needing to be
made to how states and actions are represented to the policy. All code is freely available at XXXXX.
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6 REPRODUCIBILITY STATEMENT

To aid reproducibility of our results, we have attached the code used to generate all of the results in
this paper. The test datasets used to produce the results are available there and the training runs can
even be reproduced by supplying the correct seeds. The appendix contains details of the simulations,
training and baselines.
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A  PROBLEM SIMULATION

Al

UNIFORM-UNIFORM INSTANCES

We use the following procedure to generate uniform-uniform instances.

Start with specified total number of nodes, IV, or sample it uniformly at random between a
specified minimum and maximum value. In training, once N is set for a batch, it will apply
to every instance in that batch.

Generate the customer locations uniformly in the unit square by sampling the x and y
coordinates from independent uniform distributions. The depot location is set at the center
of the unit square.

Generate arrival times for all customers by sampling uniformly on the interval [0, T'] where
T is the time horizon. For every training and test set in this paper, we have a time horizon
of 8 hours.

Generate customer service times by sampling from a log-normal distribution. For every
training and test set in this paper, we set the parameters of the log-normal distribution to
give a mean service time of 3 minutes with a standard deviation of 5 minutes.

Get the number of immediate request customers by multiplying a specified dod by N or
sampling the dod uniformly between a specified minimum and maximum value and multi-
plying by V. The dod can vary between instances in a training batch.

Get the number of advanced request customers Nyq, = N — Nimm and randomly sample
N4y customers from the set of customers to be advanced request customers. The depot
must be in the set of advanced requests.

Set the arrival times of advanced request customers to 0

For problems with time windows, add time windows following the procedure in Appendix

[Ad
For problems with demands, add demands following the procedure in Appendix[A.3]

When generating instances and solving them, it is important that the vehicle velocity is specified.
We use a vehicle velocity of 4 units per hour. Where 1 unit is the edge length of the unit square.

A.2 REAL WORLD INSTANCES

The real world instances used in the paper are derived from a particular real world instance of the
VRPTW from the Euro meets NeurIPS competition (Kool et al.| 2022). This particular instance is
included in the code repository accompanying this paper.

Include the depot designated in the VRPTW instance as the first node. Sample N — 1
additional customers randomly from the customers in the VRPTW instance for a total of
N nodes.

Divide the driving time matrix by the vehicle speed and then scale it so that locations lie
within the unit square.

Set the arrival time for customers equal to the start of their time window in the VRPTW
and then scale the arrival times so that the locations which share the earliest arrival time
now have arrival time 0 and are therefore treated as advanced request customers.

scale the arrival times so that they all occur before the time horizon

For problems with capacities, we generate demands in the same way as described in Ap-
pendix[A.3]
For problems with time windows, we take the time window starts and ends from the in-

stance and shift them so that the starts coincide with their arrival times and the ends are
scaled to be before the latest end time.

13
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Figure 3: Diagram showing how the unit square is divided into subregions and assigned arrival
weights and arrival skews for the skewed spatio-temporal test sets. Regions I and III have larger
arrival weights and thus receive a larger share of customers that II and IV. The regions have arrival
times generated by a Beta distribution. For regions labelled with Uniform, the parameters are (o =
1,8 =1), forearly, (o« = 2,5 =5), for late, (o = 5,8 = 2)

A.3 SKEW SPATIO-TEMPORAL INSTANCES

shows the simulation scheme for customers in the skew spatio-temporal instances. In the
code accompanying the paper, an unlimited number of different generation schemes can be created
by varying the number of subregions, the weightings between subregions and the arrival time skews
within subregions.

A.4 TIME WINDOWS

For the PDTRPTW and PDCTRPTW, the time windows are generated based on a method from
Larsen et al. (2004) as follows:
* A minimum and maximum time window duration is specified.

* A latest time window end is calculated by specifying an amount of time after the time
horizon by which all time windows must be closed.

* For immediate customers the time window start is set to the customer arrival time plus a
fixed reaction time. For advanced customers the time window start is sampled at any time
between, the earliest possible service time, which is the travel time from the depot to the
customer, and the latest time window end minus the minimum window duration.

* The time window ends are then generated by sampling the time window duration between
the minimum and maximum for each customer and adding that to the time window start.

A.5 VEHICLE CAPACITY AND DEMANDS

For the PDCTRP and PDCTRPTW, demands are generated as follows:

* The vehicle capacity is set to 1 for convenience.

* The minimum required number of trips that the repairman will need to make back to the
depot to service every customer is sampled uniformly between a specified upper and lower
bound.

* A total demand is sampled based on the minimum required number of trips.

* Raw demands are sampled for customers uniformly between a minimum demand and the
capacity of the vehicle.

e The raw demands are then scaled so that their total matches the total demand.

14
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Table 2: Our method vs. baselines for all uniform-uniform test sets

Uniform - Uniform N = 50

dod =0.2 dod =0.5 dod =0.8
Method | Obj. %Gap Time | Obj. %Gap Time | Obj. %Gap Time
20-50 9.30 63.63 0.07s | 14.06 1474 0.10s | 18.51 225.7 O0.11s
20-100 9.40 65.39 0.04s | 14.11 1483 0.05s | 18.62 227.6 0.06s
ORTools | 8.83 5536 14.8s | 14.02 146.7 33.7s | 1846 224.8 56.0s
Joshi 9.47 66.62 0.17s | 1440 1534 0.27s | 1859 227.1 0.28s
Heur. 9.53 67.67 0.01s | 14.30 151.6 0.02s | 18.65 228.1 0.02s
20-50 1224 4643 0.11s | 15.86 89.43 0.14s | 19.40 131.6 0.16s
20-100 1220 4595 0.05s | 15.76 88.24 0.07s | 19.42 131.8 0.08s
ORTools | 11.20 3399 29.6s | 15.34 8322 66.0s | 19.28 130.7 91.82s
Heur. 12.85 5473 0.02s | 16.94 102.33 0.03s | 21.24 153.6 0.03s
20-50 35.1 -53.22  0.08s | 44.7 -40.43  0.11s | 84.3 11.37 0.12s
20-100 46.0 -38.69 0.04s | 47.1 -37.23 0.05s | 75.9 0.28 0.06s
ORTools | 69.8 -6.97 25.5s|92.6 2341 478s | 121.6 60.65 60.0s
Heur. 11609 15372 0.04s | 10353 13698 0.04s | 9315 12206 0.04s
20-50 146.9 1372 0.06s | 152.7 106.4 0.07s | 199.2 1445 0.08s
20-100 98.1 58.4 0.06s | 100.2 354 0.07s | 119.3 46.4 0.08s
ORTools | 58.2 -6.03 27.6s| 1104 492 57.4s | 137.4 68.7 74.8s
Heur. 12259 19694 0.08s | 11693 15703 0.10s | 9728 11334 0.07s
Uniform - Uniform N = 100
20-50 1256 59.12 0.15s | 1521 92.67 0.19s | 17.72 1245 0.21s
20-100 1244 5760 0.07s | 15.19 9242 0.10s | 17.74 1247 0.11s
Joshi 14.00 77.37 0.79s | 17.82 12573 1.28s | 20.68 162.0 1.22s
ORTools | 11.74 48.73 48.8s | 15.17 92.17 112s | 17.93 127.1 147s
Heur. 12.33 5621 0.03s | 1517 92.17 0.03s | 17.81 125.6 0.03s
20-50 1579 5095 0.20s | 1821 72.71 0.24s | 2043 93.65 0.27s
20-100 1536 46.84 0.10s | 17.59 66.83 0.12s | 19.88 88.44 0.14s
ORTools | 13.98 33.64 539s|16.70 5839 113s |19.23 82.28 150s
Heur. 1545 4770 0.04s | 17.72 68.06 0.05s | 19.94 89.01 0.04s
20-50 7413 3592 0.17s | 7878  305.74 0.21s | 9021 268.2 0.23s
20-100 3891 141.0 0.08s | 4287 120.8  0.11s | 5057 1064 0.12s
ORTools | 1695 5.00 50.7s | 1988  2.39 97.0s | 2819  15.07 121s
Heur. 32819 1933 0.03s | 31213 1508 0.03s | 19251 686 0.03s
20-50 10754 280.7 0.11s | 10683 2359 0.14s | 11294 2129 0.15s
20-100 4929 7447 0.11s | 5362 68.6 0.14s | 6175 71.1 0.15s
ORTools | 4802 69.98 63s 5233 64.5 102s | 5745 59.2 129s
Heur. 34280 1113 0.04s | 32653 926.6  0.08s | 30204 736.7 0.06s

PDTRP

™

PDCTRP| PDTRP | PDCTRP
™

PDTRP

™

PDCTRP| PDTRP | PDCTRP
™

B COMPLETE EXPERIMENTAL RESULTS

To obtain the timing results for the tables in this paper. The RL methods and Joshi baseline ran on a
single Nvidia L40 48G GPU. Training of our models were also performed using this GPU. The OR
Tools and heuristic baselines ran on a Intel Xeon(R) Gold 6248R CPU @ 3.00GHz x 4.

C TRAINING DETAILS

We train each model for 100 epochs consisting of 12, 800 instances per epoch. At the end of each
epoch, the model solves 1280 instances greedily and it’s average performance is compared with the
performance of the cached baseline model using a t-test with p = 0.05. The dimension of the hidden
layers in the encoder and decoder is set to 128. This affects the message passing and linear layers in
the network. The normalization layers in the encoder are batch normalization layers with e = 1le—5,
a momentum argument of 0.1 and learnable affine parameters. The number of heads in the MHA
layers is 8. When time features are used, they are scaled by dividing by the time horizon. The Adam
optimizer (Kingma & Bal |2014) is used with a learning rate of 1e — 5. The grad norm is clipped to
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Table 3: Our method vs. baselines for all real-world test sets

Real World Instances N = 50

16

dod =0.2 dod=0.5 dod =0.8

Method | Obj. %Gap Time | Obj. %Gap Time | Obj. %Gap Time
a U.U. 790 4187 0.05s | 8.80  58.03 0.05s | 10.03 80.12 0.05s
ﬁ R.W. 7.42 33.25 0.05s | 824 4797 0.05s | 9.67 73.66  0.05s
E ORTools | 6.79 2194 19.3s|7.99 4339 24.6s | 9.38 68.45 2509s

Heur. 7.07 2696 0.02s | 796 4295 0.02s|9.26 66.29 0.02s
& U.U. 11.58 3746 0/07s | 12.16 45.18 0.07s | 12.93 5520 0.07s
= R.W. 10.59 25770 0.05s | 11.02 31.57 0.05s | 11.83 41.90 0.05s
8 ORTools | 9.39 11.46  19.7s | 10.13 20.95 24.8s | 11.27 35.27 2509s
A~ Heur. 10.61 2594 0.02s | 11.42 3635 0.02s | 12.34 48.11 0.03s
a. U.U. 2604  -18.69 0.03s | 2579  -19.14 0.04s | 3062 -3.90 0.04s
ﬁ = RWwW 1377  -57.0 0.03s | 1399 -56.14 0.04s | 1994 -37.42 0.04s
E &= ORTools | 3224  0.67 13.0s | 3201 0.36 15.8s | 3825 20.05 15.6s

Heur. 8883 1774 0.01s | 8093 153.8 0.01s | 7867 1469 0.01s
& U.U. 4450 44.04 0.06s | 4269 3635 0.06s | 4597 48.12  0.06s
== RW 1867 -39.57 0.05s | 1933  -38.26 0.05s | 2405  -22.51 0.05s
8 = ORTools | 3510 13.61 15.0s | 3783 20.83 18.7s | 4279 37.88 17.8s
A~ Heur. 12259 296.8 0.03s | 11694 2735 0.03s | 9728 213.5 0.03s

Real World Instances N = 100

a U.U. 1233 5497 0.09s | 12.92 6249 0.09s | 13.68 72.00 0.09s
ﬁ R.W. 11.27 41.65 0.09s | 11.71 4727 0.09s | 12.53 57.55 0.09s
E ORTools | 8.78 1035 23.6s|9.68 21.74 26.6s |10.46 31.52 27.1s

Heur. 9.68 21.67 0.02s | 10.27 29.16 0.02s | 11.11 36.69 0.02s
& U.U. 16.13  54.89 0.12s | 16.71 60.66 0.13s | 17.38 66.69 0.13s
[ R.W. 1455 39.72 0.08s | 14.97 4393 0.08s | 15.61 49.72  0.09s
LQ) ORTools | 11.13  6.88 23.6s | 11.77 13.16 26.8s | 12.60 20.85 27.1s
A~ Heur. 12.81 23.01 0.04s | 13.44 2922 0.04s | 14.32 3734 0.04s
a. U.U. 30739 15.17 0.06s | 30675 14.74 0.07s | 30545 13.54 0.07s
ﬁ =z RW 26646 -0.16 0.06s | 26699 -0.07 0.07s | 27029 0.47 0.07s
E &= ORTools | 27363 2.52 15.6s | 27671 3.56 17.5s | 27918 3.78 18.0s

Heur. 32819 2297 0.03s | 31213 16.82 0.03s | 29251 8.73 0.03s
& U.U. 40753 49.49 0.11s | 39544 4483 0.11s | 39147 4343 0.11s
== RW 28552 4.73 0.09s | 28612 4.79 0.09s | 28732 5.27 0.09s
8 &= ORTools | 29573 8.48 19.8s | 29958 9.72 23.5s | 30711 12.52  20.8s
A~ Heur. 34280 25.75 0.04s | 32653 19.60 0.04s | 30204 10.66 0.04s
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Table 4: Our method vs. baselines for all skew spatio-temporal test sets

Skewed Spatio-temporal Instances N = 50
dod=0.2 dod =0.5 dod =0.8

Method | Obj. %Gap Time | Obj. %Gap Time | Obj. %Gap Time
o u.u. 8.69  63.13 0.09s| 1226 130.1 0.12s | 15.87 197.8 0.14s
g S.T. 844 5843 0.04s | 12.03 125.8 0.05s | 15.76 195.8 0.06s
E ORTools | 8.19  53.74 14.5s | 12.03 125.8 31.1s| 1593 199.0 48.5s

Heur. 8.71 63.5 0.02s | 12.30 130.8 0.02s | 1591 198.6 0.02s
& U.U. 11.69 4211 0.10s | 1451 77.33 0.12s | 17.89 117.6 0.14s
= S.T. 11.40 3858 0.05s | 14.17 73.18 0.07s | 17.52 113.1 0.08s
8 ORTools | 10.62 29.10 29.5s | 14.06 71.83 66.5s | 17.66 114.8 93.8s
A Heur. 12.24 4879 0.02s | 1548 89.19 0.03s | 19.06 131.8 0.03s
A, uU.u. 30.2  -57.46 0.04s | 289  -59.06 0.05s | 108.2 569  0.06s
ﬁ = ST 43.1 -39.29 0.04s | 33.2  -5297 0.05s | 122.8 78.09 0.06s
E &= ORTools | 96.4 3579 24.5s|85.6 2126 46.9s|943 3676 58.9s

Heur. 9075 12683 0.02s | 9220 12961 0.02s | 9735 14018 0.03s
& u.u. 149.7 156.3 0.06s | 200.1 181.5 0.07s | 244.1 257.7 0.08s
== ST 79.6 363 0.06s | 81.3 1438 0.07s | 153.6 125.1 0.08s
8 = ORTools | 128.7 1204 279s | 1134 59.54 54.7s|127.5 86.86 72.0s
A~ Heur. 10196 17358 0.03s | 10352 14464 0.03s | 10461 15231 0.03s

Skewed Spatio-temporal Instances N = 100

a. U.u. 11.70 58.06 0.17s | 14.10 90.49 0.22s | 16.48 122.6 0.25s
ﬁ S.T. 12.60 70.22 0.07s | 15.77 113.1 0.09s | 18.55 150.6 0.10s
E ORTools | 10.69 4442 50.0s | 13.61 83.87 111s | 16.18 118.6 149s

Heur. 11.18 51.04 0.03s | 13.78 86.17 0.03s | 16.07 117.1 0.03s
& U.U. 14.84 4444 0.19s | 16.72 6721 0.22s | 19.05 90.47 0.24s
[ S.T. 1553 5534 0.10s | 17.67 76.71 0.12s | 20.17 101.7 0.13s
8 ORTools | 12.81 28.13 54.8s | 1494 4941 115s |17.05 70.47 148s
A~ Heur. 1423 4234 0.04s | 1592 5921 0.04s | 18.01 80.07 0.04s
A, U.U. 6369 365.1 0.08s | 6920 302.1 0.11s| 7322 241.1 0.12s
E = ST 8344 509.3 0.08s | 8907 417.6 0.11s | 9426  339.1 O0.11s
E B ORTools | 1687 23.19 50.7s | 1864  8.32 95.7s | 2284  6.39 117s

Heur. 32239 2254  0.03s | 30492 1672  0.03s | 27248 1169  0.03s
& U.U. 11153 336.5 0.12s | 11158 293.3  0.14s | 11922 270.4 0.15s
== ST 10216 299.8 0.11s | 10211 260.0 0.13s | 11172 247.1 0.14s
8 &= ORTools | 3750 46.76 55.5s | 4674 6476 104s | 5391 67.49 126s
A~ Heur. 34090 1234  0.04s | 32296 1038  0.05s | 28679 791.0 0.05s
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1.0. The function used for neighbourhood aggregation in the message passing layer was maximum
and the function for aggregation to a graph embedding was mean.

During training, due to the requirement of most machine learning libraries to have dimensions fixed
across a batch of training samples, the number of total customers, N, for instances in a batch is
sampled uniformly between a minimum and maximum value and is fixed across instances in the
batch. The number of dynamic customers, N;,,m,, is then sampled uniformly between a minimum
and maximum degree of dynamism. The arrival times for the dynamic customers are then sampled
from a Poisson distribution conditional on N;,,,,.

To stop the accumulation of gradient information during training (which can lead to out of memory
errors), rather than passing the graph, Gy, through the encoder at each time step, the graph containing
nodes for every customer v; € N is passed through the encoder at the start of the simulation of
an instance. To obtain an appropriate encoding of the graph Gj at each time step, encodings of
customers not present at that time step are masked before being passed to the decoder.

D ADDITIONAL ABLATION RESULTS

The results of the ablation test investigating the effect of model features in the PDTRP problem is
shown in| 4

Model Features
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Figure 4: The ablation test for different model features on the PDTRP problem, notice that the base
model performs best in all cases which is why we chose to utilize it for problems without time
features in the experimental study. ‘Time feature’ included the current time in the decoder context
for the PDTRP. The time feature was included by default for problems with time windows which is
why this model feature doesn’t appear for the PDCTRPTW ablation test.

E OR TooLS RESOLVING

OR Tools (Furnon & Perron, [2025)) is an open source optimization software suite that implements a
wide range of meta-heuristic routing solvers such as guided local search, tabu search and simulated
annealing and can be applied to most types of vehicle routing problem. It is possible to fix part
of a route during the solving process which makes adapting it to dynamic problems an easier task.
For the comparisons in this paper, for each re-solve, we use a first solution search which creates an

18



Under review as a conference paper at ICLR 2026

initial solution based on which edges are the most constrained and then spends 3 seconds improving
that solution using guided local search.

F STATIC BASELINE

In the literature, a performance metric exists for online algorithms, called the competitive ratio
(Sleator & Tarjan,|1985), that compares the cost of solutions found by an online algorithm with those
found by an offline algorithm that had access to the entire instance, including dynamic requests.
Following this line of thinking, we list the gap between each of our solution’s average performance
and the average performance of OR Tools applied to offline counterparts of each instance. The
offline instances are generated by simply taking the online dynamic instances and setting the arrival
times of all of the immediate request customers to 0 making them into advanced request customers.
We then let OR Tools have 10 seconds to solve this offline instance.

Due to the complexity of VRPs, it is not possible to employ an exact solver even on the offline
instances. This can lead to rare situations where this baseline is outperformed. We see a few cases
of this with the PDTRPTW and PDCVRPTW where we get a negative % gap.
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