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Abstract

Vision-Language Pre-trained Models (VL-PTMs) have achieved impressive performance
across a wide range of tasks, but their success often hinges on access to large-scale mul-
timodal datasets. While effective in high-resource settings, these models tend to struggle
in data-scarce regimes. In this work, we investigate Emergent Communication (EC) as
a mechanism to improve sample efficiency in VL-PTMs. We pre-train a Vision-Language
Model (VLM) using EC tokens generated through a referential game between two artificial
agents. Across three diverse cross-modal matching and reasoning benchmarks, EC pre-
training yields substantial gains, improving Visual Referring Expression (VRE) accuracy
by 108.6% and Visual Entailment (VE) by 69.6%. To further validate the the effective-
ness of EC pretraining, we introduce LLaVA-1.5-EC, a LLaVA variant trained entirely on
EC tokens. LLaVA-1.5-EC outperforms strong LVLM baselines, including BLIP-2 (13B),
achieving relative gains of 104.23% on VizWiz, 34.8% on GQA, and 10.8% on VQAv2, and
top performance on MMBench, a challenging instruction-following benchmark. These results
highlight the transferability and generalization capacity of EC pretraining and underscore
the potential of leveraging grounded EC tokens to enhance vision-language reasoning in
low-resource settings, especially in settings with limited natural language data. We discuss
implications and propose avenues for future research to explore the connections between EC
and VL for multimodal understanding and effective human-machine communication. Code
and data are available at anonymized link.

1 Introduction

Vision-Language Pre-trained Models (VL-PTMs) have achieved remarkable progress across tasks such as
image-text retrieval, referring expression comprehension, and visual question answering (Li et al., 2023; Liu
et al., 2023a). The prevailing approach has been to build larger models, incorporating more parameters
in order to enhance their generalizability (Du et al., 2022). Alternative efforts have been directed toward
devising improved architectures for the fusion of text and image representations, such as fusion encoders,
dual encoders, or a combination thereof (Radford et al., 2021; Li et al., 2020a). Despite these advancements,
robust generalization in low-resource settings remains a persistent challenge, largely due to the scarcity of
aligned vision-language data across many real-world tasks (Xu et al., 2023).

Self-supervised learning (SSL) has emerged as a key strategy for addressing label scarcity in vision-language
learning, with models like CLIP (Radford et al., 2021) and VisualBERT (Li et al., 2019) learning cross-modal
representations via contrastive or pretext tasks. However, SSL methods encounter several challenges that
can limit practical utility, e.g., task design dependency, computational complexity, sensitivity to the choice of
hyper-parameters, and catastrophic forgetting (Purushwalkam et al., 2022; Tian et al., 2020; Ericsson et al.,
2021). Recent advances in discrete latent representation learning, such as Vector Quantized Variational
Autoencoders (VQ-VAE) (Van Den Oord et al., 2017) and unified tokenization schemes (Ge et al., 2023),
have shown promise in bridging the modality gap. While VQ-VAE relies on two-stage training and gradient
approximations that can hinder optimization, unified tokenizers typically introduce early modality fusion
that may limit flexibility for task-specific adaptation. Both approaches also assume access to large-scale
vision-language pairs or pretrained model weights, which restricts their utility in low-resource settings.
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Emergent Communication (EC) offers a compelling alternative for discrete representation learning in multi-
modal contexts, particularly in settings where labeled data is scarce. EC explores how artificial agents develop
structured, functional communication protocols through interaction, typically in service of collaborative task
completion. In multi-agent environments, agents are jointly trained to achieve a shared objective by max-
imizing cumulative reward, with communication emerging as a means to improve coordination (Lazaridou
et al., 2017; 2018; Havrylov & Titov, 2017). A common instantiation of EC is the referential game (Evtimova
et al., 2018; Lazaridou et al., 2018; Li et al., 2020b; Yao et al., 2022), where a Speaker agent observes an image
and generates a discrete message intended to describe it. The Listener agent receives this message and must
identify the correct image from a set of distractors. Through repeated interaction and shared supervision,
agents converge on a discrete token protocol that reflects visual structure and supports grounded inference.

In the context of Vision-Language Pretraining and Large Vision Language Models (LVLMs), Emergent
Communication (EC) offers a promising alternative to natural language supervision—particularly in resource-
constrained settings. EC tokens have been shown to exhibit key linguistic properties such as compositionality,
structure, and symbolic abstraction (Yao et al., 2022; Li et al., 2020b), while being learned entirely from
interaction. As such, EC provides a grounded and task-driven learning signal that can substitute for or
complement human-annotated text. If effective, EC could serve as a scalable strategy for pretraining vision-
language models when parallel image-text data is limited or unavailable. More broadly, studying EC in this
setting may shed light on how communication protocols emerge in artificial agents, offering a new lens on
the inductive biases underlying vision-language understanding.

Building on prior work demonstrating the benefits of emergent communication in language modeling (Li
et al., 2020b), we extend EC to vision-language pretraining, demonstrating its broader applicability in mul-
timodal learning. Specifically, we examine how EC tokens, learned through interaction alone, can serve
as an effective pretraining signal for downstream vision-language tasks. Through a comprehensive series
of experiments, we evaluate the transferability of EC pretraining across diverse VL tasks, including Visual
Referring Expression (VRE), Visual Entailment (VE), Visual Question Answering (VQA), and Image Cap-
tioning (IC). For example, EC pretraining improves OFA’s Wang et al. (2022a) VRE accuracy from 29.8%
to 62.2%, and VE accuracy from 50.3% to 85.3%, showcasing strong task transfer from EC-generated text.
These results indicate that EC tokens effectively capture visual context and support fine-grained semantic
reasoning. To further underscore the robustness and importance of EC pretraining, we construct LLaVA-1.5-
EC, a variant of LLaVA-1.5 (Liu et al., 2024a) trained entirely on EC tokens. Despite being trained without
natural language captions, LLaVA-1.5-EC outperforms strong vision-language baselines across task-oriented
and instruction-following benchmarks, highlighting the transferability and generalization potential of EC
pretraining at scale.

These findings demonstrate the broad potential of EC pretraining for vision-language modeling, particularly
in low-resource or weakly supervised settings. The contributions of our work can be summarized as follows:

(1) We introduce a vision-language pretraining framework that leverages emergent communication be-
tween agents to pretrain vision-language models. We evaluate EC pretraining on diverse downstream
tasks and show strong transfer and generalization across reasoning scenarios.

(2) We provide empirical and qualitative analysis showing that EC tokens encode structured, composi-
tional semantics that generalize across modalities and tasks, positioning EC as a scalable, annotation-
free signal for multimodal learning. These findings open up new possibilities for leveraging EC to
improve performance in other cross-modal tasks.

(3) We provide insights into the structure of emergent language and its potential applications in VL-
PTMs. We discuss the implications of our findings and propose potential extensions for future
research to delve into the intricate connections between EC and VL for multimodal understanding
and effective human-machine communication.
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2 Related Work

2.1 Emergent Communication

Recently, there has been a growing interest in investigating the emergence of language within deep agent
networks for task completion (Lazaridou et al., 2017; 2018; Lazaridou & Baroni, 2020; Mordatch & Abbeel,
2018; Raviv et al., 2019a; Das et al., 2019). Pioneering works simulate communication while training agents
(Lazaridou et al., 2017; Evtimova et al., 2018). Building upon these foundations, Mordatch & Abbeel (2018);
Raviv et al. (2019b) further explored the compositionality aspect of the emerged language. Several works
have also attempted to interpret the structure and linguistic properties of the emergent language. For
instance, Chaabouni et al. (2019) discovered that networks develop an anti-efficient encoding scheme, where
longer messages are associated with the most frequent inputs, contrary to human language where the most
frequent words are usually represented by shorter strings. Additionally, Patel et al. (2021) observed the
emergence of egocentric grounded messages when agents were initialized in complex environments. In our
work, instead of analyzing or explaining the emerging language, we leverage it as a source of inductive bias
and investigate its potential to enhance cross-modal vision and language learning. To this end, we explore
the benefits of Emergent Communication (EC) for Vision Language pre-training and, interestingly, we gain
valuable insights that contribute to a better understanding of EC language dynamics.

2.2 Corpus Transfer of Synthetic or Emergent Communication Language

While significant progress has been made in analyzing the properties of emergent communication language
(Mordatch & Abbeel, 2018; Resnick et al., 2020; Lazaridou & Baroni, 2020; Chaabouni et al., 2019), a different
line of research has explored the potential transfer benefits of synthetic, artificial or emergent language in
improving learning and generalization in language models (Yao et al., 2022; Li et al., 2020b; Papadimitriou
& Jurafsky, 2020). For instance, Papadimitriou & Jurafsky (2020) investigated the impact of language
structure on model learning, finding that exposure to diverse structured data, such as music, Java code, and
nested symbols can improve transferability to natural language. Similarly, Yao et al. (2022) demonstrated the
efficacy of pre-training on emergent languages for downstream natural language tasks, achieving performance
comparable to models trained on natural language data, notably in low-resource settings. Furthermore,
Li et al. (2020b) showed that emergent communication protocols, even when pre-trained without human
language data, can benefit downstream NLP applications such as machine translation, leading to improved
accuracy and efficiency. We enrich this body of work by investigating the benefits of EC pertaining to
Vision-Language learning. Specifically, we investigate whether a corpus of EC tokens, generated through
referential games grounded in both vision and language, can serve as an effective pretraining signal for cross-
modal learning. Our results show that EC corpus transfer significantly enhances downstream performance
in vision-language tasks.

2.3 Pre-training for Vision Language Transfer Learning

In cross-modal machine learning, the standard practice has been to pre-train Vision-Language Models
(VLMs) on multimodal data and then fine-tune them on downstream tasks (Wang et al., 2022a; Gan et al.,
2022; Du et al., 2022) such as Visual Question Answering (Antol et al., 2015), Phrase Grounding (Yu et al.,
2016), and Image Captioning (Lin et al., 2014). Several successful architectures have been proposed to model
cross-modal (visual-linguistic) interactions (Li et al., 2020a; 2019). For instance, fusion encoders (Li et al.,
2019; Su et al., 2020) apply attention mechanisms over joint image-text inputs, while dual encoders (Radford
et al., 2021; Wang et al., 2022b) process each modality with separate encoders, making them highly efficient
for tasks like image-text retrieval (Du et al., 2022; Lu et al., 2019). Different pretraining paradigms have
also emerged. Contrastive learning, exemplified by CLIP (Radford et al., 2021), aligns image-text pairs in a
shared embedding space using large-scale caption datasets. Generative modeling via image captioning has
also proven effective. Tschannen et al. (2024) show that pretraining vision encoders using only captioning
can yield robust results across classification and vision-language benchmarks. Other common objectives
include Cross-Modal Masked Language Modeling (MLM)(Liu et al., 2023b; Kim et al., 2021), where masked
text tokens are predicted using visual context, and Masked Region Prediction (MRP)(Chen et al., 2020),
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which involves predicting masked regions in the image from surrounding features. While much of the field
has focused on scaling models, refining architectures, or optimizing pretraining objectives, this work explores
fundamental questions on the potential of EC as a powerful paradigm for pre-training vision language tasks.

3 Background

Lewis Referential Game. The Lewis referential game involves two agents: a speaker S and a listener L.
The speaker observes a target image sampled from the environment and sends a message intended to describe
it. The listener receives this message and must identify the correct image from a set of distractors. The
game’s objective is for the listener to successfully recover the speaker’s input, and success is measured by the
listener’s accuracy in selecting the correct image. This setup is a standard framework for studying emergent
communication in artificial agents, following prior work (Lazaridou et al., 2018; Li et al., 2020b; Lazaridou
& Baroni, 2020; Yao et al., 2022). The speaker and listener are jointly trained to maximize a shared reward,
encouraging the development of an effective communication protocol through repeated interaction.

Speaker’s Message. At each training step, an input image feature Ii ∈ Rd is randomly selected
from the entire set of feature representations for N images D = {Ii}N

i=1, where d denotes the dimen-
sionality of the image feature vectors. Similarly, a set of K confounding images (i.e., the distractors)
Ci ={Iij}K

j=1,j ̸=i is selected from D. The speaker takes the input image feature Ii and generates a message
Mi = ⟨m1, m2, mi, . . . , mT ⟩, mi ∈ V , a sequence of discrete symbols that describes the image, where T is
the sequence length limit and V is the message’s vocabulary size. The generation process ends when either
of the two conditions is satisfied: the special end-of-sentence symbol [EOS] is generated, or the maximum
message length Tmax is reached. Initially, at t = 0, m0 = [CLS] and h0

S = Ii. At each time step t > 0, the
generation of the i-th speaker message token mt

i can be described by

ht
S = GRUS

(
mt−1

i , ht−1
S

)
, (1)

mt
i = Gumbel-Softmax

(
MLPS(ht

S)
)

, (2)

where the Gumbel-Sofmax trick (Jang et al., 2017) is employed to draw samples from categorical distributions
of emergent tokens in an end-to-end differentiable way. Here, ht

S stands for the hidden state at time step t,
while MLPS denotes the multilayer perception speaker S utilizes to project each hidden state into vectors
with dimensionality equal to the vocabulary size of the emergent language.

Listener’s Inference. The listener agent tries to guess the correct Image Ii from the set of K confounding
images Ci, after receiving the generated speaker message Mi. To do so, the listener utilizes a GRU layer to
decode the speaker’s generated message, i.e.,

h0
L = GRUL (m0, 0) , (3)

ht
L = GRUL

(
mt

i, ht−1
L

)
, (4)

where ht
L represents the listener’s hidden state at time step t.

Speaker-Listener Optimization. The listener scores each candidate in the image set, which consists of
all distractor images and the correct reference image. Given a message M and an image I ∈ {Ii ∪ Ci}, the
score is defined as

score (M, I) =
∥∥∥h|M|

L − MLPL(I)
∥∥∥−2

2
. (5)

The likelihood of a selected image Ij is:

p (Ij |Mi, Ij , Ci) =

 escore(M,Ik)∑
Ik∈Ii∪Ci

escore(M,Ik)

 , (6)
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Figure 1: Overview of our EC Pretraining Framework. A speaker-listener pair engages in a referential
game, where the speaker generates an Emergent Communication (EC) message to describe a target image,
and the listener must identify the correct image among distractors. The resulting EC tokens serve as
pretraining supervision for a Vision-Language Model (VLM). This EC-pretrained VLM is then fine-tuned
on a range of downstream vision-language tasks, including Visual Entailment, Visual Referring Expression,
Image Captioning, and Visual Question Answering. The framework enables transferable visual grounding
from synthetic EC messages to natural language tasks.

where softmax sampling across scores is used to select an image from the candidate set. Speaker and listener
parameters are jointly optimized by maximizing the expected log-likelihood

L = −EMEIj

[
log p (Ij |M, Ii, Ci)

]
. (7)

Once training is complete, the speaker can generate a corpus of emergent language (EC) by producing
discrete messages conditioned on input images. In this work, we investigate whether such a corpus can be
leveraged to pretrain models for vision-language (VL) tasks and whether the structure of EC tokens offers
benefits for multimodal learning. We hypothesize that EC tokens, although globally scoped, may implicitly
encode information relevant to specific regions or semantic elements in the image.

To evaluate EC corpus transfer on cross-modal matching and reasoning downstream tasks, we generate EC
messages for the images in various vision-language benchmarks, as shown in Figure 1: Visual Referring
Expression (VRE), Visual Question Answering (VQA), and Visual Entailment (VE), and Image Captioning
(IC). In VRE, the agent is presented an image along with a referring expression that identifies a specific object
or region within the image, and the agent is required to accurately localize the bounding box corresponding
to the referred expression. In VQA, the agent must reason over visual input and answer natural language
questions. We evaluate both in the standard setting (e.g., VQAv2) and in instruction-following setups. In
VE, the agent needs to determine whether a textual hypothesis (e.g., a statement, a question, or a sentence)
is entailed, contradicted, or neutral with respect to an image. In IC, the agent generates fluent natural
language captions that describe the visual content. For all tasks, we pretrain models using EC tokens in
place of natural language and then fine-tune them on distinct sets of downstream instances with natural
language annotations to assess generalization and cross-modal reasoning performance.

4 Experimental Setup

We experiment with a unified vision-language model (VLM) capable of handling a range of VL tasks. Specifi-
cally, we adopt OFA (Wang et al., 2022a), a Transformer-based architecture designed for both generation and
classification tasks. OFA encodes inputs as sequences of discrete tokens from a unified vocabulary, enabling
seamless processing of visual, linguistic, and other modalities. The model is pre-trained on multimodal VL
datasets, including visual grounding and visual question answering, as well as several unimodal datasets,
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including image infilling, object detection, and text infilling. These tasks allow the model to develop infor-
mative cross-modal representations for relevant input modalities. Despite its generative nature, OFA also
supports classification tasks like VQA by constraining generation to a candidate answer set (Wang et al.,
2022a). For grounding, it directly predicts bounding box coordinates, avoiding reliance on region proposals.
This unified modeling approach makes OFA an ideal backbone for evaluating the transfer effects of emergent
communication (EC) pretraining. We evaluate OFA on four standard VL benchmarks, RefCOCO+ (VRE),
VQAv2 (VQA), SNLI-VE (VE), and MSCOCO (IC), under three settings: (1) Zero-shot baseline using the
released OFA base model without additional pretraining or fine-tuning; (2) EC pretraining, where we pre-
train OFA on EC-labeled versions of each dataset before fine-tuning on natural language annotations; and (3)
Natural language (NL) pretraining, where we pretrain on the original captioned datasets before fine-tuning.
We utilize the officially released OFA base model weights and checkpoints. The zero-shot results serve as
a lower bound, allowing us to isolate the contribution of EC pretraining in improving downstream task
performance. To further examine the scalability of EC pretraining, we extend our experiments to LLaVA-
1.5(Liu et al., 2024a), a state-of-the-art Large Vision-Language Model (LVLM). LLaVA-1.5 is trained in two
stages: vision-language feature alignment, connecting a CLIP-based vision encoder(Radford et al., 2021) to
a frozen Vicuna LLM (Chiang et al., 2023), followed by visual instruction tuning. We construct LLaVA-
1.5-EC, a variant in which natural language captions in the pretraining corpus are replaced with EC tokens
generated by our trained speaker. The standard LLaVA-1.5 fine-tuning pipeline is retained, allowing us to
assess how EC-based representations influence performance on instruction-following benchmarks. Additional
implementation details can be found in Appendix A.

4.1 Datasets

Visual Referring Expression (VRE). We evaluate on the standard RefCOCO benchmark suite (Yu
et al., 2016), which includes RefCOCO, RefCOCO+, and RefCOCOg, all derived from the MS-COCO image
dataset (Lin et al., 2014). These benchmarks contain natural language expressions referring to specific
objects or regions within images, collected through human annotation (Kazemzadeh et al., 2014; Yu et al.,
2016). RefCOCO contains 142,209 expressions for 50,000 objects across 19,994 images. RefCOCO+ includes
141,564 expressions for 49,856 objects and focuses on appearance-based descriptions by filtering out location-
based cues. Each dataset is split into three subsets: val, testA, and testB, where testA contains images with
people and testB consists of non-person images, enabling more fine-grained evaluation. We use the OFA-
preprocessed version of these datasets (Wang et al., 2022a), where each referring expression is paired with a
unique bounding box to standardize model input and supervision.

Visual Question Answering (VQA). We conduct experiments on the VQAv2 dataset (Goyal et al., 2017).
VQAv2 comprises a collection of approximately 1.1M samples from 200, 000 images accompanied by a 13M
natural language answers (Goyal et al., 2017). As per OFA, instances for which multiple potential answers
exist for a given question-image pair were split into individual samples for each potential answer (Wang et al.,
2022a). This OFA-adapted version of the VQAv2 dataset includes training, validation, and test sets, with
∼1.8M, 10,402, and 447,793 samples, respectively. To enable EC pretraining, we divide the training set into
two halves. For the first half, we replace the original natural language answers with emergent communication
(EC) tokens generated by the speaker model, producing an EC-labeled corpus. The second half retains the
original human annotations and is used for fine-tuning the model on the standard VQA task. This setup
allows us to assess how well EC pretraining transfers to natural language question answering.

Visual Entailment (VE). In VE, an image I serves as a premise along with a hypothesis text Htext. The
objective is to determine whether the hypothesis can be inferred from the image, i.e., if the image entails the
hypothesis (Xie et al., 2019). The model must classify the pair into one of three categories:entailment (if there
is sufficient evidence in I to conclude that Htext is true), a contradiction (if there is enough evidence in I to
conclude that Htext is false), or neutral (if there is insufficient evidence in I to make a conclusion about Htext).
VE shares similarities with VQA as both tasks require the model to reason and make logical deductions
based on an image. However, VE is more complicated than VQA, in the sense that choosing whether a
text entails an image requires complex fine-grained reasoning beyond answering a question. We evaluate VE
performance using the SNLI-VE dataset (Xie et al., 2019; 2018), which contains 529,527 training samples,
17,858 validation samples, and 17,901 test samples derived from 29,783 unique images. To examine the effect
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of EC pretraining under different supervision levels, we conduct experiments using the full training set as
well as reduced subsets of 50,000 and 10,000 samples. These settings allow us to assess the generalization
benefits of EC across varying data regimes.

Image Captioning (IC). We evaluate image captioning performance using the Microsoft COCO
dataset (Lin et al., 2014), a widely used benchmark for vision-language tasks. Image captioning in-
volves generating fluent, semantically rich captions that accurately describe input images. We adopt
the OFA-preprocessed version of MSCOCO, which is split into four subsets: caption_stage1_train, cap-
tion_stage2_train, caption_val, and caption_test. Each image in caption_stage1_train is paired with a
single caption, while images in the other subsets are associated with approximately five captions each. The
dataset includes ∼566K samples in caption_stage1_train, 113K in caption_stage2_train, 5K in the valida-
tion set, and 5K in the test set. For evaluation, we follow the Karpathy split (Karpathy & Fei-Fei, 2015) and
report results using established automatic metrics: BLEU-4 (Papineni et al., 2002), METEOR (Banerjee &
Lavie, 2005), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016).

Instruction-Following Benchmarks. We adopt the LlaVA-1.5 pretraining and fine-tuning dataset, with
modified captions from natural language to EC tokens during pretraining. In LlaVA-1.5, pretraining utilizes
approximately 558K images sampled from the LAION (Schuhmann et al., 2022), CC (Changpinyo et al.,
2021), and SBU (Ordonez et al., 2011) synthesized captioning datasets, where captions are reformatted into
simple instruction-following prompts. To construct the instruction-following dataset, natural image-text
pairs are augmented with human-issued instructions. In the visual instruction tuning stage, we fine-tune
the model end-to-end on a mixture of ∼665K multimodal instruction-following examples, synthesized and
sampled from a variety of VQA data sources, including GPT-generated content, GQA (Hudson & Manning,
2019), COCO (Lin et al., 2014), and TextVQA (Singh et al., 2019).

4.2 EC Pre-training

Pretraining on Visual Referring Expression (VRE). We pre-train the OFA base model for VRE on
the RefCOCO train set. We use the EC-generated text from the referential game speaker agent as captions
for pre-training. To obtain the EC text, we employ a ResNet-18 model He et al. (2016) and extract 512-
dimensional image features from each image in the RefCOCO training set. These image features are then
passed to a speaker agent that generates a set of Emergent Communication (EC) tokens describing the image.
Finally, we replace the original natural language RefCOCO caption that describes a bounding box with the
EC-generated tokens. As the EC tokens encompass information about the image, we hypothesize that they
implicitly capture information relevant to the associated bounding box, thus offering potential pre-training
benefits. The resulting RefCOCO dataset, post-processed with EC tokens as captions, serves as the basis
for pre-training the OFA base VRE model.

Pretraining on Multiple Tasks. To assess the broader utility of EC tokens, we conduct multitask
pretraining on a unified dataset combining Visual Referring Expression (RefCOCO), Image Captioning
(MSCOCO), and Visual Question Answering (VQAv2). We construct two versions of this dataset: one
using natural language (NL) annotations and another using EC-generated tokens in place of all NL captions
and answers. EC text is generated using the same pipeline as in the VRE experiment, where ResNet-18
features are passed to the speaker agent to produce discrete messages that replace the original text with
these EC-generated tokens. After pretraining, we finetune the best-performing checkpoints for both the EC
and NL-pretrained models independently on downstream vision-language tasks: Visual Referring Expression
(VRE) and Visual Entailment (VE). The baseline is an OFA model with randomly initialized weights trained
from scratch on each task without any pretraining. These experiments aim to elucidate the added value of
EC text in comparison to models trained without pretraining or those pretrained solely with NL data, thus
offering a comprehensive understanding of the role of emergent language in enhancing vision-language tasks.

Instruction-Following Tasks. We benchmark the effectiveness of EC pretraining on instruction-following
tasks using LLaVA-1.5 (Liu et al., 2024a), a state-of-the-art, open-source VLM. LLaVA-1.5 integrates a
CLIP-based vision encoder (Radford et al., 2021) with a Vicuna language model (Chiang et al., 2023) and
is trained end-to-end to handle both visual and language modalities, achieving GPT-4-level performance on
multimodal chat benchmarks. LLaVA-1.5 is trained in two stages: (1) a feature alignment stage, where the
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CLIP visual encoder is aligned with the Vicuna LLM via image-caption pairs, and (2) a visual instruction
tuning stage using a diverse set of vision-language instruction-following data. In the original LLaVA-1.5, the
alignment phase uses ∼558K image-text pairs drawn from LAION (Schuhmann et al., 2022), Conceptual
Captions (Changpinyo et al., 2021), and SBU (Ordonez et al., 2011), with captions refined into simplified
instruction templates to balance conceptual coverage. To evaluate the utility of EC tokens in this high-
capacity setting, we introduce LLaVA-1.5-EC, a variant trained using the same images from LAION-CC-
SBU but replacing all natural language captions with EC sequences. These EC tokens are generated using our
trained EC speaker models, which produce discrete symbolic messages per image. The resulting EC-based
dataset is then used for the entire alignment phase in place of natural language captions. We hypothesize that
these emergent tokens, though artificial, capture visually grounded and compositional semantics sufficient
to train a competitive instruction-following LVLM.

4.3 NL Fine-tuning

Visual Referring Expression (VRE). We fine-tune the best-performing EC-pretrained VRE model check-
point on RefCOCO+. By using different visual grounding datasets in pre-training and fine-tuning stages
(RefCOCO for pre-training and RefCOCO+ for fine-tuning), we ensure that information does not overlap
between the two phases. Subsequently, we evaluate the performance of the finetuned model on all Ref-
COCO+ splits (val, testA, and testB). For NL fine-tuning, we fine-tune the OFA base model on the VRE
task, employing natural language captions from the RefCOCO+ dataset. We consider this as an upper-
bound model for comparison against the EC pretraining experiment. Following fine-tuning, we evaluate the
finetuned model performance on all RefCOCO+ validation and test sets.

Visual Question Answering (VQA). To examine the performance of EC pretraining on the Visual
Question Answering task, we considered the Unified EC model obtained after pretraining on multiple tasks
detailed in 4.2. We fine-tune the best-performing Unified models (both EC and NL) on half of the VQAv2
dataset with natural language question-answer pairs. The other half was used during pretraining. This helps
avoid data overlap and overfitting. We consider NL fine-tuning as an upper bound for comparison against
EC pretraining. Subsequently, we evaluate the fine-tuned models on the VQAv2 validation and test-dev sets.

Visual Entailment (VE). To assess the potential of emergent communication (EC) models for transferring
knowledge to new vision language tasks, we employ the EC pre-trained model obtained from VRE as pre-
training for the VE task. We fine-tune the best EC pre-trained model checkpoint on the SNLI-VE training
set and evaluate on the SNLI-VE test and dev validation sets. To further understand the impact of EC
under varying sampling conditions, we conduct fine-tuning on randomly sampled sets with different sizes,
e.g., 10,000 and 50,000 samples. For the NL experiment, we fine-tune the OFA base model on SNLI-VE. To
assess the impact of training set sample size on model performance, we similarly perform fine-tuning with
different training set sample sizes and evaluate our models on the SNLI-VE validation and test sets.

Image Captioning (IC). To further assess the transferability of EC pretraining, we evaluate performance
on the MS COCO image captioning benchmark (Lin et al., 2014). Specifically, we fine-tune the best-
performing EC-pretrained model – initially trained on RefCOCO for visual referring expressions – on the
MSCOCO captioning task. This experiment probes whether EC-based grounding can generalize to open-
ended image description generation. For comparison, we fine-tune the OFA base model directly on MSCOCO
using natural language (NL) captions, treating it as an upper-bound reference. Evaluation is performed on the
MS COCO test split using standard automatic metrics: BLEU-4 (Papineni et al., 2002), METEOR (Banerjee
& Lavie, 2005), CIDEr (Vedantam et al., 2015), and SPICE (Anderson et al., 2016).

Instruction-Following Tasks. The visual instruction tuning phase involves end-to-end fine-tuning on a
curated mixture of approximately 665k multimodal instruction-following samples from VQA datasets such
as GQA (Hudson & Manning, 2019), COCO (Lin et al., 2014), and TextVQA (Singh et al., 2019), as
well as GPT-generated instruction-following content. This phase is designed to align the model’s responses
with natural language instructions grounded in visual input. In our LLaVA-1.5-EC model, we adopt the
same instruction tuning protocol used in the original LLaVA-1.5 framework (Liu et al., 2024a). The only
modification lies in the pretraining phase, where we substitute natural language captions with discrete EC
tokens. To benchmark the effectiveness of EC-based pretraining, we compare against the original LLaVA-1.5
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(a) White uniform left.
[2358 3708 3638 2557 3563 3731 1270
1357 2251 1037 829 3958 3352 629 0]

(b) Right elephant.
[1215 318 3702 1583 608 3672 787 3647
1451 1508 2777 380 1733 2522 0]

(c) Top left banana piece.
[1692 3465 828 2906 2108 3307 1509
3767 101 1010 2694 3134 1508 3823 0]

Figure 2: Qualitative examples on the VRE Task. RefCOCO images and their corresponding emergent
and natural language referring expressions.

model trained entirely with natural language and various mainstream open-source VLMs, including BLIP-2
(Li et al., 2023), Instruct-BLIP (Dai et al., 2023), Shikra (Chen et al., 2023), IDEFICS (IDEFICS, 2023),
and Qwen-VL (Bai et al., 2023).

5 Experimental Results

5.1 Visual Referring Expression (VRE)

Table 1: VRE Accuracy on RefCOCO+
splits. Base: OFA without pretraining.
+EC: EC-pretrained, then NL fine-tuned.
+NL: NL-pretrained and fine-tuned.

Model val testA testB
Base 29.81 31.49 27.53

+EC 62.17 67.15 51.16
+NL 81.91 86.60 73.49

Table 1 reports accuracy on the RefCOCO+ Visual Referring
Expression (VRE) task across three configurations: Base (OFA
without pretraining), +EC (EC-pretrained, then fine-tuned on
NL), and +NL (NL-pretrained and fine-tuned on NL). Pre-
training on EC tokens yields a substantial improvement over the
Base model, increasing accuracy by over 2× on all splits. This
demonstrates the strong transferability of EC tokens, which are
generated without any natural language supervision and yet en-
code rich semantic structure grounded in visual input. While
NL pretraining still achieves the highest scores, which is expected due to the compositional and grounded
nature of natural language, EC pretraining reaches approximately two-thirds of the performance of NL
pretraining across all evaluation splits. This finding highlights the potential of EC-based pretraining in
low-resource or label-scarce settings, where collecting large-scale image-text pairs is infeasible. Notably, the
EC referential game and the generation of EC tokens by the speaker agent can be performed on unlabeled
images in the wild, effectively producing descriptive captions for these images. Consequently, EC tokens
contain valuable semantic information about the images, which can prove advantageous for vision-language
pretraining tasks. These findings emphasize the potential of leveraging EC pre-training for vision-language
tasks. Figure 2 shows qualitative examples of referring expressions generated in both EC and NL formats. A
deeper qualitative analysis in Appendix B reveals that EC tokens exhibit latent compositional syntax, pol-
ysemy, and prosodic-like structures, often paralleling natural language in their ability to encode semantics,
disambiguate meaning through repetition, and refine concepts via positional cues.

5.2 Pretraining on Multiple Tasks Table 2: Unified Pretraining. EC pretraining
yields consistent gains. Base: OFA without pre-
training. +EC: EC-pretrained, then NL-finetuned.
+NL: NL-pretrained and NL-finetuned.

VRE (RefCOCO+) VQA (VQAv2)
Model val testA testB val test-dev
Base 10.03 13.88 9.72 49.33 40.80

+EC 23.77 28.89 18.84 50.61 45.49
+NL 40.15 45.90 31.34 56.66 51.26

Table 2 demonstrates the effectiveness of EC pre-
training as a general-purpose initialization for mul-
timodal tasks. In the context of VRE, EC pretrain-
ing surpasses a baseline model trained directly on vi-
sual grounding tasks without additional pretraining,
achieving an impressive relative gain of over 108%.
Similarly, in VQA, EC improves test-dev accuracy
by 11.5%. These gains highlight the ability of EC
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Figure 3: Visual Entailment (VE) Accuracy with Varying Training Sizes. EC pretraining substan-
tially improves VE accuracy compared to the baseline across all training sizes, and approaches NL pretraining
performance as more downstream data becomes available. Base, +EC Pretraining, and +NL Pretrain-
ing, corresponding to training no pretraining, EC pretraining followed by natural language (NL) fine-tuning,
and NL pretraining followed by NL fine-tuning.

Table 3: Image Captioning Accuracy. +EC model consistently outperforms the base model on all 8
metrics, often doubling or quadrupling performance. Base: OFA without pretraining. +EC: EC-pretrained
then NL fine-tuned. +NL: NL-pretrained then NL fine-tuned.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE
Base 48.70 26.58 14.92 8.45 12.11 35.65 0.12 3.94

+EC 70.54 52.46 38.08 27.39 22.77 50.95 0.83 15.78
+NL 75.15 58.60 44.13 32.71 26.31 54.98 1.06 19.76

tokens, learned without human annotation, to transfer semantic and structural information across vision-
language tasks. While NL pretraining still leads to the highest overall performance, EC pretraining achieves
notable improvements despite not relying on natural language supervision. These findings suggest that EC-
based pretraining can be a viable alternative or complementary strategy in settings with limited access to
natural language annotations, enabling more scalable and generalizable vision-language learning.

5.3 Visual Entailment (VE)

Figure 3 presents results for the visual entailment task using models initialized from EC-VRE pretraining.
Across varying training set sizes, EC pretraining consistently improves VE performance over the baseline
model. These results provide compelling evidence of the utility of EC tokens for transferring knowledge
between VL tasks. When comparing EC pre-training with the natural language fine-tuning of OFA, it is
expected that the latter would achieve better performance. However, it is surprising to observe that EC
pre-training can yield comparable performance in certain settings. For instance, when fine-tuned on the
full training data, EC achieves an accuracy of 85.01% on the test set, whereas NL achieves 88.95%. The
relatively small performance gap between EC-VRE pre-training and natural language fine-tuning highlights
the transferability benefits of EC pre-training and opens up future directions in utilizing emergent language
for complex vision language tasks and more efficient VL modeling.

5.4 Image Captioning (IC)

To further evaluate the transferability of EC pretraining, we fine-tune the EC-VRE model – originally pre-
trained on RefCOCO – on an image captioning task. As shown in Table 3, EC pretraining yields substantial
improvements across all standard evaluation metrics. Most notably, it achieves more than a 4× increase in
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Table 4: Comparing LLaVA-1.5-EC with SoTA Instruction-Following Models. LLaVA-1.5-EC,
pretrained solely on EC tokens, achieves strong performance across five diverse VQA tasks, despite not using
natural language during pretraining. While slightly trailing LLaVA-1.5 on VQAv2 and GQA, it matches or
outperforms BLIP-2 and InstructBLIP in most settings. Results highlight the transferability and robustness
of EC-based pretraining for downstream multimodal reasoning tasks. ∗Training images/annotations of the
datasets are observed during training. †Includes in-house data that is not publicly accessible.

Method LLM Image Sample Size VQAv2 GQA VizWiz SciQA TextVQA
Size Pretrain Finetune IMG

BLIP-2 Vicuna-13B 2242 129M - 65.0 41 19.6 61 42.5
InstructBLIP Vicuna-7B 2242 129M 1.2M – 49.2 34.5 60.5 50.1
InstructBLIP Vicuna-13B 2242 129M 1.2M – 49.5 33.4 63.1 50.7
Shikra Vicuna-13B 2242 600K 5.5M 77.4∗ – – – –
IDEFICS-9B LLaMA-7B 2242 353M 1M 50.9 38.4 35.5 – 25.9
IDEFICS-80B LLaMA-65B 2242 353M 1M 60.0 45.2 36.0 – 30.9
Qwen-VL Qwen-7B 4482 1.4B† 50M† 78.8∗ 59.3∗ 35.2 67.1 63.8∗

Qwen-VL-Chat Qwen-7B 4482 1.4B∗ 50M† 78.2∗ 57.5∗ 38.9 68.2 61.5∗

LLaVA-1.5 Vicuna-7B 3362 558K 665K 78.5∗ 62.0∗ 50.0 66.8 58.2
LLaVA-1.5-EC Vicuna-7B 3362 558K 665K 72.03∗ 55.27∗ 40.03 64.45 48.61

CIDEr score compared to the baseline model and more than doubles performance on several other metrics.
Despite having no access to human-written captions during pretraining, the EC-pretrained model approaches
the performance of models initialized with natural language (NL) pretraining. These results underscore the
representational strength of EC tokens for open-ended generation tasks and point to their potential utility
in multimodal learning scenarios with limited supervision.

5.5 Instruction-Following Tasks

Table 4 compares LLaVA-1.5-EC, which is trained exclusively on EC tokens, against a range of state-of-
the-art LVLMs across five benchmarks: VQAv2, GQA, VizWiz, SciQA-IMG, and TextVQA. Despite using
only 558K images and no natural language supervision, LLaVA-1.5-EC achieves competitive performance,
outperforming well-established models such as BLIP-2 (13B) and InstructBLIP (13B) across most datasets.
For instance, relative to BLIP-2, LLaVA-1.5-EC achieves a 104.23% gain on VizWiz, 34.8% on GQA, and
10.8% on VQAv2. It also outperforms InstructBLIP, which is trained on 129M captioned image-text pairs
and fine-tuned on 1.2M additional examples, highlighting the impressive representational capacity of EC
pretraining. While LLaVA-1.5-EC does not surpass Qwen-VL – trained with over a billion curated image-
text pairs – it achieves strong results despite having seen 2–3 orders of magnitude fewer samples and no
human-written captions. For example, on VizWiz, LLaVA-1.5-EC even outperforms Qwen-VL (40.03 vs.
35.2), showing its effectiveness on visually grounded tasks. While LLaVA-1.5 still outperforms EC in absolute
terms (as expected due to the use of curated human language), the relatively small performance gap highlights
the surprising generalization capacity of emergent communication and its potential as a scalable pretraining
strategy in low-resource or text-scarce settings. Results so far also reveal that emergent language may
encode compositional and semantic patterns that are beneficial for downstream reasoning, a hypothesis we
investigate more deeply in Section 5.6 through targeted ablation studies.

Figure 4 compares LLaVA-1.5-EC against leading vision-language models on MMBench (Liu et al., 2024b),
a rigorous benchmark suite for evaluating instruction-following and multimodal reasoning in LVLMs. Both
MMBench (EN) and its Chinese-translated variant (MMBench-CN) include a broad set of multimodal ques-
tions across diverse topics, assessing a model’s capacity to follow instructions, ground language in visual
input, and make fine-grained distinctions. Despite being trained exclusively on discrete EC tokens without
any natural language captions, our 7B parameter LLaVA-1.5-EC model achieves the highest accuracy across
both English (67.3%) and Chinese (64.01%) MMBench sets. It outperforms significantly larger models such
as InstructBLIP-8B, IDEFICS-80B, and Qwen-VL, the latter trained on over a billion in-house images. Even
more impressively, LLaVA-1.5-EC surpasses both the original LLaVA-7B and the improved LLaVA-1.5-7B
models, despite relying on entirely synthetic pretraining. These results underscore the strength of EC-based
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Figure 4: Comparison of LLaVA-1.5-EC with SoTA Instruction-Following Models on the MM-
Bench Benchmark (English and Chinese). LLaVA-1.5-EC, pretrained using Emergent Communication
tokens, surpasses all baselines, highlighting the potential of EC-based pretraining.
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Figure 5: Unigram distributions for Natural Language (NL) and EC tokens (L=5). Each plot
shows token frequency ranks for the first 10K samples from RefCOCO and VQAv2 datasets. Compared to
NL, EC token distributions are more peaked and concentrated on fewer symbols, resulting in lower entropy
(RefCOCO: 4.52 vs 5.32; VQAv2: 4.63 vs 5.08). This suggests that shorter EC messages rely on fewer reused
tokens to convey meaning efficiently.

pretraining when combined with LLaVA-1.5’s visual instruction tuning, and demonstrate the potential of
emergent language as an effective and scalable pretraining signal for multimodal reasoning tasks.

5.6 Ablations

We conduct ablations to analyze the statistical and structural properties in EC tokens and identify factors
driving its transferability. Specifically, we aim to address two central questions: (1) To what extent are
EC tokens consistent and meaningful across tasks? and (2) Does the structure of EC messages, beyond
token identity, contribute to transfer performance? To this end, we analyze unigram distributions to study
vocabulary usage across datasets and conduct word-order perturbation experiments to probe the role of
compositional structure in EC representations.

Unigram Distributions. We compare the unigram distributions of natural language (NL) and emergent
communication (EC) across RefCOCO and VQAv2. For EC, we generate sequences of fixed lengths (L={5,
15, 25}) from the first 10K training samples using a trained speaker model. All text is tokenized using the
NLTK word tokenizer1, and unigram counts are computed and sorted to generate the respective unigram
distributions for each corpus. Figure 5 unigram distribution plots reveal notable differences in lexical diver-
sity between natural language (NL) and emergent communication (EC) corpora. For both RefCOCO and
VQAv2 datasets, NL sequences show substantially higher entropy (5.33 and 5.08 for RefCOCO and VQAv2,
respectively), indicating broader token usage and greater linguistic variability. In contrast, EC texts gener-
ated with fixed length L=5 exhibit lower entropy (4.52 for RefCOCO, 4.63 for VQAv2), suggesting a more

1https://www.nltk.org/api/nltk.tokenize.html
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Table 5: Effect of Structure and Semantics in EC Language. ECorig, ECreordered, ECrandom represent
the original EC language generated by the speaker, perturbed EC language by reshuffling, and random EC
tokens, respectively. All models are fine-tuned on RefCOCO+. ECorig, the model pre-trained on the original
EC language, exhibits higher downstream performance on all evaluation splits compared to the models pre-
trained on shuffled EC language and random EC language. Results confirm that the structure and token
semantics of EC language play a critical role in its transferability for vision-language tasks.

Zero-Shot ECorig ECreordered ECrandom

val 29.81 42.50 42.10 42.10
testB 27.53 34.49 33.63 33.34

concentrated and repetitive token usage. This implies that EC, despite being artificially generated, converges
on a smaller, more structured vocabulary that is reused efficiently, likely to optimize communication within
tight length constraints. The more peaked EC distributions further support the idea that emergent messages
encode semantics compactly, relying on structure and positional encoding rather than lexical diversity.

Investigating the Importance of Structure in EC Tokens. To better understand the role of structure
and semantics in EC language, we conduct an ablation study using three variations of EC pretraining data:
(1) ECorig: the original EC tokens generated by the referential game speaker, (2) ECreordered: EC tokens
with their order randomly shuffled, and (3) ECrandom: sequences of randomly sampled tokens of matching
length. Each variant is used to pretrain a task-agnostic OFA model on a 30K subset of RefCOCO. After
pretraining, we fine-tune each model on 10K samples of RefCOCO+ and evaluate on standard validation and
test splits. Results in Table 5 show that ECorig yields the best downstream performance, highlighting the
importance of both token order and semantic content in emergent communication. These findings suggest
that EC tokens encode nontrivial structure and meaning that support generalization in vision-language tasks.

6 Conclusion

This work investigates the potential of Emergent Communication (EC) as a learning signal for vision-language
models. We explore whether discrete messages generated by referential game agents can serve as effective
supervision for cross-modal pretraining. Through extensive experiments across diverse tasks, including visual
referring expression, visual question answering, visual entailment, and image captioning, we demonstrate that
EC pretraining significantly improves performance over strong non-pretrained baselines and, in some cases,
approaches or surpasses models trained with natural language. We further validate EC’s generalization
by scaling to instruction-following tasks, demonstrating that LLaVA-1.5-EC achieves competitive accuracy
on instruction-following benchmarks despite being trained solely on synthetic EC tokens. Ablations reveal
that EC tokens encode structural and semantic signals crucial for transfer learning. These findings suggest
that EC can serve as a scalable and complementary resource for vision-language pretraining, particularly in
low-resource or weakly supervised settings.

This work opens up a new line of inquiry into the role of emergent communication in vision-language
modeling. One promising direction is to develop a new class of pretraining objectives grounded entirely in
interaction, i.e., replacing static captioning supervision with agent-driven communication. Another exciting
possibility is to evolve EC into a fully expressive representational language that can interface directly with
downstream models, prompting them as effectively as human language. Further, future research could explore
the emergence of syntax or compositional grammar within EC tokens, and whether EC can self-organize into
hierarchies aligned with semantic or spatial structures in images. Finally, we envision agent ecosystems where
EC evolves dynamically over time through open-ended interaction with multimodal environments, offering
a path toward continual, self-supervised vision-language learning without reliance on human annotations.
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A Implementation Details

The EC speakers used to generate the EC datasets are directly trained on the COCO image features from
the codebase2 of Yao et al. (2022) for 2000 epochs. Training is performed on a P100 GPU, and the sequence
length limit is set to 15. Generating EC sequences of length 15, the speakers draw from a vocabulary size of
4035 tokens. In the Visual Referring Expression (VRE) experiments, we adopt the codebase of OFA3 (Wang
et al., 2022a) and mostly follow their default setup. Initially, we pre-train the OFA model on the RefCOCO
training set with EC annotations via continuous pretraining (Wang et al., 2022a). The pretraining data was
prepared to align with OFA’s structure, as outlined on their GitHub page. The pretraining process consists
of 17 epochs and 492,000 updates. Subsequently, we fine-tune the pre-trained model for 10 epochs and
18,500 updates. Pretraining was conducted on a single NVIDIA A100 GPU for 2 days, while the fine-tuning
phase required 2 NVIDIA A100 GPUs and took 2 days to complete. For the Visual Question Answering
(VQA) task, we again adopt the OFA codebase and follow the default setup provided in both the continuous
pretraining and VQA fin-tuning and evaluation scripts. Continuous pretraining was executed on a single
NVIDIA V100 GPU for 4 days, encompassing 960,000 updates, which corresponded to approximately 4 to
5 epochs. Fine-tuning for 5 epochs required around 90 hours on 2 P100 GPUs. In the Visual Entailment
(VE) task, we utilize the pre-trained model that was obtained in the VRE task. We finetune this model
on the SNLI-VE dataset (Xie et al., 2019) for 5 epochs and 20,500 updates. The fine-tuning process was
distributed across 4 NVIDIA A40 GPU workers and took approximately 15 hours to complete. For the rest
of the training process, we largely adhered to the OFA setup. For Image Captioning (IC), fine-tuning is
conducted in two stages: (1) cross-entropy optimization for two epochs with a batch size of 128, learning
rate of 1e-5, and label smoothing of 0.1; (2) CIDEr optimization for three additional epochs using a batch
size of 64, disabling dropout and stochastic depth for stability.

B Qualitative Examples

We conduct an in-depth qualitative analysis to uncover potential patterns in the generated Emergent Com-
munication (EC) text. For this analysis, we train three EC speakers over 1000 epochs, utilizing a vocabulary
size of 4035 and sequence lengths of 5, 15, and 25. The speakers are trained using COCO features from the
EC game introduced by (Yao et al., 2022). To generate EC text, we pass the first 1000 unique images from
the refCOCO training dataset through each speaker. We track the positions of EC text n-grams within the
generated sequences. If more than 5 images produce the same n-gram in the same position of the text se-
quence, we group those images together for manual observation. Specifically, we examine bigrams, trigrams,
and 4-grams for EC sequences of length 5, 15, and 25, respectively.

Figure 7 highlights groupings in EC sequences of length 5. For example, token 2430 is strongly associated with
broccoli, while token 222 is frequently utilized to describe food as a broader category earlier in the sequence.
In Figure 8, which presents examples with a sequence length of 15, we observe that token 3293 exhibits a
strong visual grounding to zebras, suggesting consistent semantic alignment. Figure 9 further illustrates how
the same tokens, when placed in different positions, convey similar yet more refined meanings. For instance,
token 309 corresponds to vehicles, but its count and position within the sequence determine whether it
refers to a truck or a motorbike. This behavior implies that EC tokens may encode coarse-grained semantics
individually while achieving finer-grained distinctions through compositional patterns, akin to polysemy and
contextual disambiguation in natural language.

Furthermore, we observe that token 3355 appears across diverse semantic contexts, hinting at its potential
structural or delimitative role within the EC syntax, perhaps analogous to punctuation or function words.
This pattern aligns with the hypothesis that certain tokens may be repurposed as syntactic scaffolds to
organize more semantically meaningful tokens within the EC grammar.

Additionally, Figure 10 illustrates how n-gram patterns contribute to broader sequence-level structure. For
instance, the bigram (1599, 1599) appears consistently across multiple sequences, sometimes at position 0
and other times at position 1. This observation suggests that its semantic contribution is preserved regardless

2https://github.com/ysymyth/ec-nl/tree/master/ec-game
3https://github.com/OFA-Sys/OFA
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(d) VQAv2 EC (L=25)
Figure 6: Unigram distributions for EC tokens at longer sequence lengths (L=15, 25). Compared
to L=5, longer EC sequences exhibit lower entropy. EC communication remains compact and token-efficient,
indicating that it is optimized for information transfer rather than expressiveness.

of its exact position. This invariance hints that n-gram identity, rather than absolute position, may carry
semantic weight, or that a higher-level structural framework governs EC sequence composition.

Interestingly, some images appear in both bigram and trigram configurations of token 1599, indicating a
repetition-based mechanism for refining semantic precision, e.g., a trigram (1599, 1599, 1599) could empha-
size a salient visual features more strongly than a single token, akin to prosodic stress or syntactic repetition
in human language. This repetition may reflect a form of emergent hierarchical encoding. Much like fixed
phrases in natural language, EC subsequences may preserve meaning even when shifted in position, pointing
to latent compositionality in the learned token space. Results suggest that the emergent communication pro-
tocol not only encodes discrete semantics but may also develop primitive mechanisms for emphasis, structure,
or saliency highlighting. Remarkably, these patterns emerge without any predefined linguistic structure or
grammar, indicating that EC self-organizes to support both grounding and discriminative specificity.

C Additional Ablation Results on Unigram Distribution

In Figure 6, EC unigram distributions with longer sequence lengths (L=15 and L=25) in both RefCOCO
and VQAv2 reveal a clear trend toward lower entropy and flatter distributions. Entropy decreases from 4.35
(RefCOCO, L=15) to 3.98 (L=25) and from 4.40 (VQAv2, L=15) to 4.01 (L=25), indicating that usage
remains concentrated among a core subset of tokens. While the vocabulary size increases, token frequency
becomes more structured and repetitive, suggesting the EC relies more heavily on compositional patterns
rather than expanding lexical diversity. This supports the hypothesis that EC develops structured but
efficient communication protocols, optimized for information transfer rather than expressiveness.

D Limitations

While our work provides strong empirical evidence for the benefits of EC pre-training across several core
vision-language tasks, it does not exhaustively evaluate the generalizability of EC tokens across the full
spectrum of multimodal tasks. Although we specifically focused on visual referring expression, visual question
answering, visual entailment, and image captioning, our findings revealed significant improvements in learning
and task generalization. Nonetheless, our proof-of-concept sets the stage for future investigations into the
advantages of EC pre-training across additional Vision Language tasks, such as image-text retrieval (ITR),
image-text matching (ITM), and Grounded Captioning (GC), among others.

A key limitation of our current approach lies in its reliance on EC sequences generated from referential
games grounded solely in literal image descriptions. While effective for certain tasks, these EC tokens may
lack the structural flexibility or pragmatic nuance required by tasks involving abstract reasoning, multi-turn
dialogue, or context-rich instructions. As such, direct substitution of natural language with EC tokens may
not always be straightforward. This limitation prompts further exploration into expanding the applicability
of EC pre-training, ensuring its compatibility with a broader array of modalities and capturing diverse
linguistic aspects. In a broader context, our work underscores the potential of harnessing the strength of EC
tokens, which are more accessible in data-constrained settings, in conjunction with structured and complex
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natural language corpora. This fusion enables improved and promising vision language learning, yet it also
highlights the need for continued research into optimizing the integration of EC tokens with more complex
and comprehensive natural language resources.

E Broader Impact

Our work has several potential broader impacts. Firstly, the possibility of integrating emergent language pre-
training from Emergent Communication (EC) into Vision Language Models (VLMs), paves the way for the
development of more robust and generalizable vision-language learning methods. This could have a positive
impact on various applications, such as image-text retrieval, visual search, visual question answering, and
image captioning, in addition to important implications for enabling VLMs to perform effectively in real-
world settings where representative data is limited, thus enhancing their practical utility.

Secondly, our research contributes to advancing communication between humans and machines. By inves-
tigating how agents learn to communicate in EC games and establishing connections with vision language
systems, we gain deeper insights into the cognitive and computational mechanisms that underlie effective
communication. This understanding can fuel the development of more efficient and intuitive communication
systems, benefiting both humans and machines in various domains. Investigating how agents might develop
compositional, grounded communication from scratch could inform the design of future human-AI inter-
faces that are more adaptive, interpretable, or robust in dynamic environments, such as assistive robotics or
collaborative decision-making.

Third, our study lays foundational groundwork for a new pretraining paradigm, one that complements
natural language supervision with self-discovered symbolic communication. By doing so, it contributes to
broader efforts in artificial intelligence to develop agents that reason over multiple modalities using internal,
compact representations that do not depend solely on human-curated semantics. This, in turn, contributes
to the evolution of AI technologies that better understand and interact with the world around them.

We do not anticipate significant negative impacts associated with this work. However, we acknowledge that
emergent communication tokens, though not authored by humans, are ultimately learned from data-driven
interactions and shaped by the distribution of visual inputs, optimization objectives, and task definitions.
As such, they may still encode or amplify underlying biases present in the training data. For example,
if image datasets exhibit imbalance or stereotype-reinforcing correlations, EC tokens might reflect these
patterns in unexpected ways. Moreover, EC tokens lack the interpretability of natural language, which may
complicate transparency or accountability in downstream applications. As EC-based representations are
further explored and integrated into vision-language systems, it will be crucial to develop auditing tools
and safeguards to ensure their robustness, fairness, and alignment with human values. Overall, our findings
highlight EC not as a substitute for natural language, but as a complementary, scalable signal that can
support vision-language learning—particularly in domains where natural language is limited or unavailable.
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Figure 7: Examples of EC Sequences Exhibiting Semantic Clustering. (a) The repeated occurrence
of token 2430 is consistently associated with images containing broccoli. (b) Token 222 functions as a higher-
level food category marker. (c) Varying the tokens that follow 222 refines the type of food being described,
suggesting contextual disambiguation. (d) The bigram 222 3967 remains food-associated but often appears in
scenes involving people interacting with food, such as eating or holding it, indicating compositional encoding
of both object and action.
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Figure 8: EC Sequences Reveal Visual Grounding, Compositionality, and Latent Structure. (a)
Token 3293 consistently appears in zebra-related images, demonstrating strong visual grounding. (b) A
variation in the third token of the trigram suggests fine-grained visual distinctions between zebra scenes,
pointing to contextual compositionality. (c) The same trigram from (a) appears at a different sequence
position, indicating positional flexibility and implying that EC meaning is carried by token patterns rather
than fixed positions — a possible marker of syntactic invariance. Occasional co-occurrence with giraffes
suggests token reuse across visually related concepts and hints at fuzzy semantic boundaries between visually
similar classes. (d) The trigram from (b), when shifted to position 1, remains strongly correlated with zebra
images, reinforcing compositional consistency and semantic robustness.
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Figure 9: EC Sequences Exhibit Semantic Specificity and Structural Roles. (a) Token 309 is
associated with vehicles, and its position appears to modulate meaning, e.g., at position 2, it tends to refer
to motorbikes. (b) The same token in different positions corresponds to trucks, suggesting context-dependent
semantic refinement. (c) Token 2512 may denote giraffes, while (d) token 1915 appears to generalize to a
broader animal category. Notably, token 3355 occurs across all examples, suggesting a structural or functional
role, potentially indicating count, emphasis, or grouping within the sequence.
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Figure 10: Semantic Consistency and Repetition Effects in EC Sequences. Images are grouped
based on the occurrence of the bigram (1599, 1599), which consistently appears in EC sequences describing
scenes with vibrant red, yellow, and green produce. (a) When this bigram appears in position 0, it strongly
correlates with fruits and vegetables featuring these colors. (b) When shifted to position 1, the bigram still
retrieves visually related scenes, though with slightly more variation. These patterns suggest that certain
EC n-grams carry consistent semantics across positions and that repetition may emphasize salient visual
features akin to prosodic stress or syntactic repetition in natural language.
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