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Abstract

Modern large language models (LLMs) excel at
fitting finetuning data, but often struggle on un-
seen examples. In order to teach models genuine
reasoning abilities rather than superficial pattern
matching, our work aims to better understand
how the learning dynamics of LLM finetuning
shapes downstream generalization. Our analy-
sis focuses on reasoning tasks, whose problem
structure allows us to distinguish between memo-
rization (the exact replication of reasoning steps
from the training data) and performance (the cor-
rectness of the final solution). We find that a
model’s performance on test prompts can be ef-
fectively characterized by a training metric we
call pre-memorization train accuracy: the accu-
racy of model samples on training queries before
they begin to copy the exact reasoning steps from
the training set. On the dataset level, this met-
ric is able to almost perfectly predict test accu-
racy, achieving R2 of ≥ 0.9 across various mod-
els (Llama3 8B, Gemma2 9B), datasets (GSM8k,
MATH), and training configurations. On a per-
example level, this metric is also indicative of
whether individual model predictions are robust to
perturbations in the training query. By connecting
a model’s learning dynamics to test performance,
pre-memorization train accuracy can inform train-
ing decisions, such as the makeup of the training
data. Our experiments on data curation show that
prioritizing examples with low pre-memorization
accuracy leads to 1.5-2x improvements in data ef-
ficiency compared to i.i.d. data scaling and other
data scaling techniques.
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1. Introduction
Large language models (LLMs) have demonstrated remark-
able problem-solving capabilities, yet the mechanisms by
which they learn and generalize remain largely opaque. For
instance, consider a set of LLMs, each derived from the
same pretrained model and finetuned on the same reasoning
dataset but with varying learning rates (Fig. 1). While sev-
eral of these models reach near-perfect accuracy on training
data, their test performances were vastly different. This
raises the question: what factors in an LLM’s finetuning
training lead to differences in its generalization behavior?
Understanding these factors could help us design better
training methods that foster genuine reasoning abilities in
models, rather than mere pattern matching.

We focus on mathematical problem-solving tasks, whose
structure is particularly amenable for investigating this ques-
tion. In reasoning tasks, models are trained to generate both
a final answer and intermediate reasoning steps. Although
each problem has a single correct answer, the reasoning
steps in the target solution trace represent just one of many
valid ways to solve a problem. Therefore, a model that
has memorized the training data is likely to replicate exact
reasoning steps from the training data, while a model with
general problem-solving skills may produce the correct final
answer but follow a different reasoning path. By analyz-
ing model responses on training queries, focusing on both
the accuracy of the final answer and the similarity of the
response to the target solution trace, we can gain insights
into the generalizability of the model’s learned solution.

Our findings reveal that, while LLMs often fully memo-
rize the finetuning dataset by the end of training, model
predictions for training queries prior to memorization are
strongly indicative of final test performance. For certain
examples, models first learn to generate diverse solution
traces (distinct from the target solution trace) that lead to
the correct final answer, before later memorizing the target
solution trace. For other training examples, models only
produce incorrect responses before memorizing the target
trace. To capture this distinction, we introduce the concept
of pre-memorization train accuracy: the highest accuracy
a model achieves on a training example through the course
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Figure 1. Relationship between train accuracy (left), pre-memorization train accuracy (right), and test accuracy for models finetuned on
GSM8k using Llama3 8B. Each line represents a training run, and each point represents an intermediate checkpoint. Pre-memorization
train accuracy strongly correlates with test accuracy, while train accuracy does not.

of training before exactly memorizing the target solution
trace. We find that a model’s average pre-memorization
train accuracy is highly predictive of the model’s test accu-
racy, as illustrated in Fig. 1. Our experiments show that this
phenomenon holds across different models (e.g., Llama3
8B (Dubey et al., 2024), Gemma2 9B (Team et al., 2024)),
tasks (e.g., GSM8k (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021)), dataset sizes, and hyperparameter settings,
with coefficients of determination around or exceeding 0.9.

We further find that the pre-memorization train accuracy
can provide insights into the robustness of model predic-
tions at a per-example level. For train examples with low
pre-memorization accuracies, adding small perturbations to
the training prompt causes the accuracy of model predic-
tions to significantly degrade. In contrast, for train examples
with high pre-memorization accuracies, models are gener-
ally able to maintain high performance under perturbations.
Thus, by measuring pre-memorization accuracy, we can
identify specific training examples for which a model’s pre-
dictions are not robust, which can inform targeted improve-
ments to the training strategy. As an example, we leverage
our findings to guide data curation. Our experiments show
that training on data distributions that prioritize examples
with low pre-memorization accuracy leads to a 1.5-2× im-
provement in sample efficiency over i.i.d sampling, and
outperforms other standard curation techniques.

The main contributions of this work are as follows: (1) we in-
troduce the concept of pre-memorization train accuracy, and
show that it is highly predictive of test accuracy for LLM rea-
soning problems, (2) we show that pre-memorization train
accuracy can also predict the robustness of individual model
predictions for train examples, and (3) we leverage our ob-
servations to improve the sample efficiency of data curation.
By offering a deeper understanding of how a model’s learn-
ing dynamics shape its generalization, we hope our work
can bring about more targeted and principled interventions
for improving a model’s reasoning capabilities.

2. Related Works
A number of works have studied the phenomenon of mem-
orization during training, but consider different definitions
of memorization. One definition quantifies memorization
with the “leave-one-out” gap, i.e., how much a model’s
prediction for an example changes if we were to remove
it from the training data (Feldman & Zhang, 2020; Arpit
et al., 2017; Zhang et al., 2017). Using this definition, some
works argue that more memorization during training leads
to worse generalization (Bousquet & Elisseeff, 2000), while
others contend that memorization is actually necessary for
generalization in long-tail distributions (Feldman, 2020).
These works generally produce worst-case bounds on gen-
eralization error within some class of training distributions.
In contrast, our work presents a direct, empirical connec-
tion between a model’s train behavior and its test accuracy
without relying on the computationally expensive “leave-
one-out” metric. In the context of language models, oth-
ers have defined memorized examples as those where the
model’s output closely matches examples in the training
data (Carlini et al., 2021; Tirumala et al., 2022; Inan et al.,
2021; Hans et al., 2024), which is similar to our definition
of memorization. However, these works mainly focus on
privacy and copyright concerns, rather than connections to
generalization.

Beyond memorization, a number of prior works have stud-
ied how other aspects of the learning process relate to
generalization. Some works focus on metrics related to
model complexity, such as VC dimension or parameter
norms (Neyshabur et al., 2015; Bartlett et al., 2019), while
other works focus on empirically motivated measures, such
as gradient noise (Jiang et al., 2019) or distance of trained
weights from initialization (Nagarajan & Kolter, 2019).
Jiang et al. (2019) conducted a comprehensive compari-
son of these measures and found that none were consistently
predictive of generalization, though their work primarily fo-
cused on image classification. Other approaches have used
unlabeled, held-out data to predict generalization, leverag-
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ing metrics such as the entropy of model predictions or the
disagreement between different training runs (Garg et al.,
2022; Platanios et al., 2016; Jiang et al., 2021). Our find-
ings show that pre-memorization accuracy can be a much
stronger predictor of generalization in LLM reasoning tasks.

Finally, our work seeks to improve data curation, which has
also been studied in a number of prior works. Specific to
LLM finetuning, prior data curation approaches largely fall
into three categories: optimization-based, model-based, and
heuristic-based approaches. Optimization-based methods
frame data selection as an optimization problem, where the
objective is model performance, and the search space con-
sists of the training data distribution (Engstrom et al., 2024;
Grosse et al., 2023). Model-based approaches leverage char-
acteristics of the learning process (Mekala et al., 2024; Liu
et al., 2024), such as comparing the perplexity of exam-
ples (Li et al., 2023). Lastly, heuristic-based methods rely
on simpler criteria, such as difficulty scores generated by off-
the-shelf LLMs such as GPT, to classify desirable training
data (Chen et al., 2023; Lu et al., 2023; Zhao et al., 2023).
Our data curation approach aligns most closely with model-
based strategies, as we use the model’s pre-memorization
accuracy, a characteristic of the learning process, to inform
the selection of training examples. Our experiments show
that pre-memorization train accuracy can serve as an ef-
fective metric for data curation, and outperforms previous
approaches.

3. Preliminaries
We focus on training LLMs to perform reasoning tasks
via finetuning. We are provided with a training dataset
Dtrain = {(xi, yi)}, where queries xi are drawn from P (x)
and solution traces yi are drawn from P (y|x). We assume
the test dataset, Dtest, is generated from the same distribution
as the training data. The model is finetuned by minimizing
next-token prediction loss. We denote the finetuned model
as fθ(y|x), and model predictions as ŷ ∼ fθ(y|x).

In reasoning tasks, solution traces y consist of both inter-
mediate reasoning steps and a final answer, denoted as
Ans(y). Our goal in a reasoning task is for the model
to generate solution traces with the correct final answer
when faced with previously unseen queries. We measure
the accuracy of model samples for a given query xi using
Acc(fθ(y|xi), yi) = Eŷi∼fθ(y|x)[1(Ans(ŷi) = Ans(yi))].
In our experiments, we approximate this accuracy by sam-
pling from the model with a temperature of 0.8 and averag-
ing the correctness attained by the samples.

While different solution traces drawn from P (y|x) should
all have the same final answer, the target solution trace
yi of an example represents only one of many valid so-
lution traces for solving xi. Thus, model samples for a

train query may contain reasoning steps that differ from
the target solution trace, while still arriving at the correct
final answer. To quantify this difference, we will measure
the distance between a model’s prediction fθ(y|xi) and
the target reasoning trace yi with perplexity, defined as
Perp(fθ(y|xi), yi) = exp(−1

ni
log(fθ(yi|xi))), where ni is

the number of tokens in yi.

4. Connecting Learning Dynamics to
Generalization

In this section, we will investigate the relationship between a
model’s learning dynamics during finetuning and its ability
to generalize. Our findings show that, while models tend
to memorize most of the training data after some number
of epochs, their generated samples display varying levels
of accuracy before memorization occurs. We find that this
accuracy before memorization has a strong connection to
the model’s downstream generalization behavior.

4.1. Characterizing the Learning Dynamics of LLM
Reasoning Finetuning

We begin by more precisely characterizing an LLM’s learn-
ing process when finetuning on reasoning tasks. We focus
on two key aspects of the model’s behavior when presented
with train queries: (1) whether the model’s samples arrive
at the correct final answer, and (2) the distance between
the model’s prediction and the target solution trace, mea-
sured by perplexity. These two metrics, visualized in Fig.
2, offer different perspectives on the model’s behavior, be-
cause while there is only one correct final answer for each
query, there may exist many different valid reasoning traces.
Tracking both metrics through the course of training allows
us to measure how effectively the model is able to solve
training queries, and the extent to which this is accomplish
by replicating the target solution trace.

In Fig. 3, we visualize the learning progression, as charac-
terized by the two metric described above, for three models
finetuned on GSM8K. Each model is trained for six epochs,
with a distinct peak learning rate that decays to zero by the
end of training. As expected, training accuracy improves
over time as the model minimizes the loss (color gradient
from dark to light), and the distance between predictions and
target solution traces decrease (from pink to yellow). For
some learning rate settings, models approach near-perfect
accuracy by the end of training, and their predictions closely
match the target reasoning traces (mostly yellow in bottom
row). However, during early stages of training, we observe
significant differences in model behavior. For some train
queries, models initially produce incorrect samples (black),
and then directly transition to replicating the target trace
(yellow). For other examples, models first learn to generate
correct answers with solution traces that differ from the tar-
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Train Example

Solution Trace: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 
48+24 = <<48+24=72>>72 clips altogether in April and May. #### 72

Prompt: Natalia sold clips to 48 of her friends in April, and then she sold half as 
many clips in May. How many clips did Natalia sell altogether in April and May?

Model Samples
A: In May, Natalia sold half as many clips as in April, so she sold 48 / 2 = 
<<48/2=24>>24 clips. She sold altogether 48 + 24 = <<48+24=72>>72 clips in 
April and May. #### 72

B: In April, Natalia sold 48 * 2 = <<48*2=96>>96 clips. In May, Natalia sold 96 / 2 
= <<96/2=48>>48 clips. Natalia sold 96 + 48 = <<96+48=144>>144 clips 
altogether in April and May. #### 144

C: Natalia sold 48/2 = <<48/2=24>>24 clips in May. Natalia sold 48+24 = 
<<48+24=72>>72 clips altogether in April and May. #### 72

A

B

C

Figure 2. Visualizations of different learning progressions, as measured by the accuracy of model samples (light vs. dark) and the
perplexity of target solution traces under model predictions (pink vs. yellow). Right side presents examples of model samples with (A)
high accuracy+high perplexity, (B) low accuracy+high perplexity, and (C) high accuracy+low perplexity. Black text represents exact
match with the target solution trace, while grey text represents parts that do not match.

Figure 3. Predictions of 3 different models through the course of training. X-axis represents individual training examples. Y-axis represents
the training epoch. Color represents model predictions for each example in terms of accuracy and perplexity (legend in Fig. 2).

get trace (pink), before later transitioning to fully replicating
the target trace (yellow).

In this work, we will refer to model predictions with low dis-
tance to target solution traces as memorization. We can see
that when finetuned with different learning rates, different
models exhibit different capacities for generating accurate
samples before memorizing target solution traces (amount
of pink). Models with low accuracy before memorization
may be largely learning verbatim mappings from training
queries to target traces, which would not generalize to new
queries. In contrast, models with high accuracy before mem-
orization demonstrate an ability to arrive at correct answers
through varied reasoning paths, suggesting that they have
developed more generalizable problem-solving capabilities.

To better quantify this phenomenon, we introduce a met-
ric called pre-memorization accuracy. We consider a train
example (xi, yi) ∈ Dtrain to be memorized by fθ(y|x) if

Perp(fθ(y|xi), yi) < p, where p is a threshold (fixed across
examples). We further define a modified measure of accu-
racy, whose value is masked to zero if the model’s prediction
for that example is considered memorized, as follows:

MaskedAcc(fθ(y|xi), yi, p)

=Acc(fθ(y|xi), yi) · 1[Perp(fθ(y|xi), yi) > p].

Now let fθm denote the model at epoch m of training. Us-
ing our definition of masked accuracy, we define the pre-
memorization accuracy as follows:

PreMemAcc(fθ1:m(y|xi), yi, p)

=min
{

max
1≤m′≤m

MaskedAcc(fθm′ (y|xi), yi, p),

Acc(fθm(y|xi), yi)
}

This quantity can be roughly interpreted as the best accu-
racy that the model achieves for a training prompt thus far
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Figure 4. Evaluating the relationship between pre-memorization train accuracy and test accuracy. Each line corresponds to a training
run, and each marker corresponds to a specific checkpoint. Pre-memorization train accuracy strongly predict test accuracy across tasks,
models, and training settings.

in training before it memorizes the target trace. Unlike
standard accuracy, which evaluates performance at specific
checkpoints, pre-memorization accuracy evaluates the en-
tire training process up to epoch m. There is an additional
minimum taken with the accuracy of model predictions at
epoch m, which compensates for examples whose accura-
cies decrease through training (though this is uncommon).

4.2. Pre-Memorization Train Accuracy Strongly
Predicts Test Accuracy

We next use pre-memorization accuracy to analyze the con-
nection between learning dynamics and downstream general-
ization. We find that a model’s average pre-memorization
train accuracy is highly predictive of its test accuracy
across a variety of training runs and checkpoints. More
concretely, we find that there exists a value of p for
which a model’s average pre-memorization train accuracy,
EDtrain [PreMemAcc(fθ1:m(y|xi), yi, p)], closely approxi-
mates the model’s test accuracy, EDtest [Acc(fθm(y|xi), yi)].
The value of the memorization threshold p is fixed across
examples and training parameters, but may need to be re-
calibrated for different tasks or models. We calibrate p by

sweeping across a range of values (see Appendix A).

In Fig. 4, we plot the pre-memorization training accuracy
and test accuracy across different training runs. We used
Llama3 8B and Gemma2 9B as base models and GSM8K
and MATH as the reasoning tasks. To evaluate different
generalization behaviors, we finetuned the models by adjust-
ing the peak learning rate (ranging from 5e-7 to 5e-4), the
number of training epochs (1, 3, 6), and the dataset size (full,
half, or quarter of the original dataset). We use the same
value for p within each plot. A full list of the training runs
in our experiments and other details can be found in Ap-
pendix B. We observe a strong linear relationship between
pre-memorization training accuracy and test accuracy, with
the results closely following the y = x line across different
models, tasks, and hyperparameter settings. More quantita-
tively, the coefficients of determination associated with each
plot are 0.94 (GSM8k Llama), 0.95 (MATH Llama), 0.97
(GSM8k Gemma), and 0.88 (MATH Gemma). Our results
show that pre-memorization training accuracy is a reliable
predictor of test accuracy.

As discussed in Section 2, various metrics have been pro-
posed in previous studies to predict the generalization gap,
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Figure 5. Evaluating different generalization metrics vs. the ground truth generalization gap for models finetuned on GSM8k using
Llama3 8B (legend in Fig. 4).

the difference between train and test accuracy. In Fig. 5, we
compare several of these existing metrics, including gradient
variance (Jiang et al., 2019), distance between current model
weights and initialization (Nagarajan & Kolter, 2019), and
an estimate of test accuracy via Average Thresholded Con-
fidence (ATC) (Garg et al., 2022) (details in Appendix C).
The correlation coefficients associated with each metric (left
to right) are 0.98, -0.72, 0.59, -0.04, which shows that the
prior metrics do not correlate as strongly with test accuracy
as our proposed metric.

5. Per-Example Analysis of Generalization
In this section, we go beyond aggregate test accuracy and
show that tracking per-example pre-memorization accuracy
offers a window into the model’s behavior at the level of
individual training examples. Specifically, we find that the
pre-memorization train accuracy of a given example is pre-
dictive of the robustness of the model’s prediction for that
example. This example-level accuracy helps us identify
subsets of the training data for which the model struggles to
learn robust solutions and offers opportunities to improve
training through targeted interventions. We explore how
this insight can inform data curation strategies, showing
that prioritizing examples with low pre-memorization train
accuracy during data collection can lead to significant im-
provements over i.i.d. data collection and other common
data curation methods.

5.1. Predicting Model Robustness with
Pre-Memorization Train Accuracy

We begin by examining the relationship between an indi-
vidual example’s pre-memorization train accuracy and the
robustness of the model’s predictions for that example. Our
findings show that model predictions tend to be less robust
for train examples with low pre-memorization accuracy.

To assess the robustness of model predictions, we analyze
how the model responds to small perturbations in the input
prompt. We present the model with both the original training
queries, as well as training queries appended with short

preambles to the solution trace—phrases such as “First” or
“We know that”—that deviate from the target solution trace,
which we visualize in Fig. 6. Because these generic phrases
are plausible preambles to valid reasoning traces, we would
expect a model which has learned a robust solution to an
example to still be able to arrive at the correct final answer.
In contrast, if the model is unable to produce the correct final
answer given these generic phrases, then the model is likely
to have learned to only regurgitate the training response.

In Fig. 6, we show the prediction behavior of two models,
both trained for six epochs with a learning rate of 2e-5, on
the GSM8K and MATH datasets. We can see that while
model predictions are near-perfect for unaltered training
prompts, their accuracy significantly degrades when pre-
sented with perturbed prompts. Furthermore, we see that
the accuracy of train examples with low pre-memorization
train accuracy tends to degrade much more than those with
high pre-memorization train accuracy. These findings sug-
gest that pre-memorization train accuracy can predict the
robustness of model predictions for individual train exam-
ples. Note that while our perturbation analysis makes use
of manually-constructed, task-dependent preambles, pre-
memorization train accuracy does not require any domain
knowledge. Therefore, pre-memorization train accuracy
provides a practical way to identify fragile examples where
the model may have learned overly specific or non-robust
patterns, which offers practical applications for improving
model generalization.

5.2. Curating Data with Pre-Memorization Train
Accuracy

By offering insights into the robustness of individual model
predictions, pre-memorization train accuracy can provide
targeted guidance for improving a model’s generalization.
In this section, we explore data curation as a practical ap-
plication of our findings. Prior work has suggested that
focusing on “harder” examples, where the model struggles
to learn robust solutions, can lead to more sample-efficient
improvements (Li et al., 2023; Chen et al., 2023). However,
identifying useful metrics for determining example diffi-
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Train
Prompt ####72

Natalia …

First, …

We know that …

Robust Solution Non-Robust Solution

####72
Natalia …

First, …

We know that …

####105

####63

Train
Prompt

Train Solution Trace

Figure 6. Visualization of the robustness of model predictions to perturbations in the prompt, including the original training prompt
(purple), original prompt + “First” (pink), and original prompt + “We know that” (teal). A robust model prediction would arrive at the
correct final answer even if the perturbations changes the reasoning steps. In contrast, a non-robust model prediction produces incorrect
final answer when the prompt diverges from the training data.

Figure 7. Accuracies of model samples (y-axis) when faced with the original prompt (left) and prompts with perturbations (middle,
right). The x-axis represents bins of pre-memorization train accuracies associated with each prompt. Solid line denotes the average, and
violins denote distributions within each bin. While the accuracy of model samples is almost perfect when faced with original prompts, it
significantly degrades when faced with prompts with perturbations. Furthermore, the degradation of accuracy is much more significant
for train examples with low pre-memorization accuracy than those with high pre-memorization accuracy, showing that per-example
pre-memorization train accuracy can provide insight into the robustness of a model’s individual predictions.

culty remains an open challenge. We investigate the use of
pre-memorization train accuracy as a metric for guiding data
curation, and find that it outperforms i.i.d. sampling and
other standard data curation approach in sample efficiency
for reasoning tasks.

We will first more precisely define our data curation prob-
lem. Given an existing set of N training examples with
queries distributed as P (x), we aim to collect N ′ exam-
ples, denoted as D′

train, to augment the dataset. The goal
is to specify a new distribution P ′(x) that maximizes the
test performance of a model trained on both the original
and the newly collected examples. While defining the true
distribution of queries can be challenging, we assume that
by approximating it with an empirical distribution from the
current dataset, we can collect new data with similar prop-

erties. In our experiments, we take Dtrain to be the original
dataset, and collect new examples by using GPT to rephrase
examples in the original dataset, similar to the procedure
in (Setlur et al., 2024). By only collecting new examples
that derive from the specified empirical distribution, we can
ensure the new dataset approximates P ′(x). This setup can
also be used when collecting new human-generated data, by
providing the specified empirical distribution of examples
as references for human labelers.

Our approach for data collection prioritizes examples with
low pre-memorization accuracy. First, we calculate the
pre-memorization accuracy for each example in the current
dataset and then define P ′(x) as the distribution of exam-
ples whose pre-memorization accuracy falls below a certain
threshold t. We then collect new data according to this dis-
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Algorithm 1 Our Data Collection Process
1: Input: N ′ = N ′

1 + · · ·+N ′
n, t

2: Output: Updated dataset D′
train

3: Initialize D′
train = {}

4: for i = 1 to n do
5: Train model on Dtrain +D′

train
6: Evaluate model on Dtrain and compute pre-memorization accuracy for each example
7: Set P ′

i (x) as the distribution of examples with pre-memorization accuracy below t
8: Collect N ′

i new examples from P ′
i (x) and add them to D′

train
9: end for

> 2x > 1.5x

Figure 8. Comparison of different approaches for data curation. Each line represents a different data curation approach, and each point
represents a different training run. Our approach acheived the best sample efficiency compared to the other approaches.

tribution. If N ′ is large, we can split the data collection
process into multiple iterations (N ′

1 + ...+N ′
n = N ′). In

each iteration, we collect N ′
i new examples according to

P ′
i (x), retrain a model on the combined dataset, calculate

the pre-memorization accuracy with the model, and update
P ′
i+1(x) for the next round of data collection. This process

is summarized in Algorithm 1.

We compare our strategy to i.i.d. sampling and two existing
approaches commonly used in data curation. Both of these
approaches propose a metric of example difficulty and pri-
oritize difficult examples during data collection. The first
metric, called Instruction-Following Difficulty (IFD) (Li
et al., 2023), computes the ratio between the perplexity of
training labels given inputs and the perplexity of only labels
using a model finetuned for the task. The second metric uses
heuristic notions of difficulty measured by external sources
such as humans or more capable models (Chen et al., 2023;
Lu et al., 2023; Zhao et al., 2023). For GSM8K, we use the
number of lines in the target solution traces as a heuristic
for difficulty, while for MATH, we use the difficulty levels
provided in the dataset itself.

In Fig. 8, we evaluate the different data curation approaches
for finetuning on GSM8k with Llama3 8B and MATH lev-
els 1-3 with DeepSeekMath 7B (Shao et al., 2024). Our
approach outperforms all three prior approaches, achieving
2× the sample efficiency for the same target test accuracy

compared to i.i.d scaling in GSM8k, and 1.5× sample ef-
ficiency on MATH levels 1-3. Furthermore, we find the
gap in performances increases with dataset size, which sug-
gests that better data curation metrics may become more
important as models become more capable. These results
highlight the effectiveness of pre-memorization accuracy as
a criterion for targeted data collection, leading to enhanced
generalization with fewer data points. We provide more
details about our implementations in Appendix D.

6. Conclusion
Our work studies the relationship between learning dynam-
ics and generalization in LLMs finetuned for reasoning
tasks. We introduce the concept of pre-memorization train
accuracy and show that it is a strong predictor of its test
accuracy. We further show that a model’s per-example pre-
memorization train accuracy can be an indicator of the ro-
bustness model predictions for those examples. Finally, we
leverage this insight for data curation, and show that priori-
tizing examples with low pre-memorization train accuracy
can be more effective than i.i.d. data scaling and other data
curation techniques. We hope that by providing a way at-
tribute a model’s generalization to specific aspects of the
training process, our work can enable the design of more
effective and principled training strategies.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Selection of Memorization Threshold
We find the threshold p by sweeping across a range of values, calculating the pre-memorization train accuracy across
different training runs, and selecting the value which yields the strongest predictor of test accuracy. In Fig. 9, we illustrate
how the value of p influences the R2 for predicting average test accuracy. We can see that R2 degrades smoothly with
respect to p, which makes it is relatively easy to find a good value of p by sweeping a range of values.

This calibration process only requires a small number of training runs (e.g. 1-3) to arrive at a robust value of p which can
generalize to new training runs on the same model and finetuning dataset, illustrated in Fig. 10. However, it is important the
the training runs used for calibration exhibit some spread over test accuracies, and memorization during training.

Finally, we also show that the calibration process generalizes to new test examples. We divide the test set into two halves:
a calibration test set, and a heldout test set. We calibrate p on the calibration test set, and evaluate the coefficient of
determination of the heldout test set. In Fig. 11, we can see that the value of p is able to generalize robustly to new examples
on which it had not been calibrated, achieving high coefficient of determination.

Figure 9. Relationship between the value of p and the coefficient of determination (R2) with respect to pre-memorization train accuracy
and test accuracy. The R2 is taken in aggregate of all the corresponding training runs in Fig. 4.

Figure 10. Calibrating p on a subset of training runs, and evaluating R2 on heldout training runs using GSM8k and Llama3 8B. We can
see that calibrating on just 1-3 training runs was able to yield a robust value of p which leads to high R2 on heldout training runs.
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Figure 11. Calibrating p using a subset of of the test set (calibration test set), and evaluating R2 on a heldout test set using GSM8k and
Llama3 8B. We can see that calibrating on just the calibration test set was able to yield a robust value of p which leads to high R2 on the
heldout test set.

B. Section 4.2 Training Runs Details
In this section, we will enumerate all training runs shown in Fig. 4 and their training details. For our half and quarter training
runs, we fix the total number of training steps to be equivalent to training for 3 epochs on the full dataset.

B.1. GSM8k LLama3 8B

For all training runs with GSM8k and Llama3 8B, we use the AdamW optimizer, with a linear decay learning rate scheduler
with 20 warmup steps, a batch size of 128, and a max gradient norm of 2.

Learning Rate Epochs Dataset Size
5e-5 6 full
2e-5 6 full
5e-7 6 full
2e-4 6 full
5e-5 3 full
2e-5 3 full
5e-7 3 full
2e-4 3 full
5e-5 1 full
5e-7 1 full
2e-4 1 full
2e-5 6 half
2e-5 12 quarter

B.2. MATH LLama3 8B

For all training runs with MATH and Llama3 8B, we use the AdamW optimizer, with a linear decay learning rate scheduler
with 20 warmup steps, a batch size of 24, and a max gradient norm of 2.
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Learning Rate Epochs Dataset Size
5e-5 6 full
5e-7 6 full
2e-4 6 full
5e-5 3 full
5e-7 3 full
2e-4 3 full
5e-5 1 full
5e-7 1 full
2e-4 1 full
2e-5 6 half
2e-5 12 quarter

B.3. GSM8k Gemma2 9B

For all training runs with GSM8k and Gemma2 9B, we use the Adam optimizer, with a cosine decay learning rate scheduler
with (0.1*total steps) warmup steps, a batch size of 32, and a max gradient norm of 1.

Learning Rate Epochs Dataset Size
5e-4 6 full
5e-5 6 full
5e-6 6 full
5e-7 6 full
5e-4 3 full
5e-5 3 full
5e-6 3 full
5e-7 3 full
5e-4 1 full
5e-5 1 full
5e-6 1 full
5e-7 1 full
5e-5 6 half
5e-5 12 quarter

B.4. MATH Gemma2 9B

For all training runs with MATH and Gemma2 9B, we use the Adam optimizer, with a cosine decay learning rate scheduler
with (0.1*total steps) warmup steps, a batch size of 32, and a max gradient norm of 1.

Learning Rate Epochs Dataset Size
5e-4 6 full
5e-5 6 full
5e-6 6 full
5e-7 6 full
5e-4 3 full
5e-5 3 full
5e-6 3 full
5e-7 3 full
5e-4 1 full
5e-5 1 full
5e-6 1 full
5e-7 1 full
5e-5 6 half
5e-5 12 quarter
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C. Section 4.2 Prior Generalization Metrics
In this section we will more precisely describe each generalization metric.

C.1. Gradient Variance

We calculate the gradient of the model for 5 different minibatches, take the variance across the 5 samples for each element
of each weight matrix, and take the average over each element of the model weights.

C.2. Distance from Initialization

We calculate the squared difference between each element of the model weights at initialization and after finetuning, and
take the sun across all elements.

C.3. Average Thresholded Confidence (ATC)

ATC computes a threshold on a score computed on model confidence such that the fraction of examples above the threshold
matches the test accuracy. For the score, we use the likelihood of greedily sampled responses under the model. We
calculate the the score over the training data using a model trained for 3 epochs using learning rate 2e-5, and calculate the
threshold over the score using the test dataset. We then predict the test accuracies over different models in our experiment by
calculating the score associated with the training data using each model, and measuring the percentage of examples whose
score surpass the threshold that we previously calculated.

D. Section 5.2 Implementation Details
For our approach for data curation, we implemented the process described in Algorithm 1, with 5 iterations (n) and using
threshold (t) 0.75 for both GSM8k and MATH.

For the IFD approach for data curation, we calculated the IFD score using a model that was train on the test set associated
each dataset for 2 epochs. This is because, in order to calculated the IFD score, we need a model which has been briefly
trained for the task of interest, but which has not been exposed to the dataset for which we want to calculate the IFD score
over. Note that this model is only used for calculating for the IFD score, and not used for evaluations in our experiments, so
there is no data leakage.

For both the IFD approach and the heuristic approach, we take P ′(x) to be top 50 percentile of examples for GSM8k, and
top 75 percentile of examples for MATH. We designed these percentiles to roughly match the percentile of examples that
our approach selects from.

For all training runs, we use the AdamW optimizer, with a linear decay learning rate scheduler with 20 warmup steps, a
batch size of 128, a max gradient norm of 2, a learning rate of 2e-5, and 3 epochs of training.
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