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Abstract

As language models become more general pur-001
pose, increased attention needs to be paid to002
detecting out-of-distribution (OOD) instances,003
i.e., those not belonging to any of the distribu-004
tions seen during training. Existing methods005
for detecting OOD data are computationally006
complex and storage-intensive. We propose a007
novel soft clustering approach for OOD detec-008
tion based on non-negative kernel regression.009
Our approach greatly reduces computational010
and space complexities (up to 11× improve-011
ment in inference time and 87% reduction in012
storage requirements) and outperforms existing013
approaches by up to 4 AUROC points on four014
different benchmarks. We also introduce an015
entropy-constrained version of our algorithm,016
which leads to further reductions in storage re-017
quirements (up to 97% lower than comparable018
approaches) while retaining competitive perfor-019
mance. Our soft clustering approach for OOD020
detection highlights its potential for detecting021
tail-end phenomena in extreme-scale data set-022
tings.023

1 Introduction024

Despite the successes of generalized models of nat-025

ural language, the challenge of generalization to026

out-of-distribution (OOD) data—data that differs027

from the training data distribution— remains (El-028

sahar and Gallé, 2019; Liu et al., 2024). This can029

be a limiting obstacle in known, sensitive domains030

like medicine and finance (Yang et al., 2023; Salehi031

et al., 2022), or even in “domains” which are un-032

known or imperceptible to humans (Plank, 2016).033

OOD shifts are also important in detecting long tail034

phenomena (Lewis et al., 2021; Liu et al., 2022),035

which are critical to ensure robust and reliable ap-036

plication of modern language models.037
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Figure 1: Illustration comparing KNN (top) with
kMeans (middle) and our proposed NNK-Means (bot-
tom). The use of soft-clustering allows our method to
detect OOD instances even when they are close to ID
training data. It also better captures the underlying data
geometry, enabling more accurate identification of ID
data points than kMeans.

While OOD detection has been extensively stud- 038

ied (§2), most approaches have limitations prevent- 039

ing them from being applied broadly. Existing 040

distance-based approaches for OOD detection (Sun 041

et al., 2022; Breunig et al., 2000; Kriegel et al., 042

2009) are often not scalable as they rely on storing 043

the entire in-distribution (ID) training set. This is 044

particularly challenging given the size of training 045

data for LLMs. Approaches that improve scalabil- 046

ity make strong assumptions about the distribution 047

of data (e.g., the ID data does not have small clus- 048

ters (He et al., 2003)) or are applicable only when 049

the data is labeled (Lee et al., 2018). 050

While requiring lower storage and computation, 051

classification-based approaches for OOD detection 052

are typically limited to cases where labeled data 053
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is available (Hendrycks and Gimpel, 2017). More-054

over, they perform worse than distance-based ap-055

proaches (Liang et al., 2018).056

In this work, we present a clustering approach057

for OOD detection that (i) makes no assumptions058

about the underlying data distribution, (ii) applies059

to both labeled and unlabeled data, (iii) is scalable,060

and (iv) is compute and storage-efficient. Our OOD061

detection method builds on a dictionary-based ap-062

proach that leverages a non-negative kernel regres-063

sion (NNK)-based soft clustering technique called064

NNK-Means (Shekkizhar and Ortega, 2022) (see065

Figure 1). Soft clustering, i.e., associating each066

sample with multiple cluster centers in the data067

manifold, leads to a better approximation of the068

ID data and, consequently, improved OOD detec-069

tion. It also requires fewer clusters and is there-070

fore storage-efficient. We are the first to lever-071

age soft clustering for OOD detection with text.072

Moreover, to avoid dependence on the number of073

cluster centers—the critical limitation in most clus-074

tering algorithms—we introduce a new, improved075

formulation of NNK-Means, proposing an entropy-076

constrained data-driven selection process.077

We empirically validate the performance of078

NNK-Means for OOD detection on 4 benchmark079

datasets. We show that it consistently achieves su-080

perior or comparable performance relative to state-081

of-the-art approaches (Liu et al., 2020; Sun et al.,082

2022) while requiring over an order of magnitude083

lower storage and inference time. We also find that084

our approach is applicable across a variety of set-085

tings, effectively leveraging ID labels when they086

are present but providing competitive performance087

when they are not, and maintains high performance088

when using different types of embeddings. Over-089

all, we find that our soft-clustering based approach090

yields state-of-the-art OOD detection performance,091

while improving memory and computational ef-092

ficiency - particularly when using our improved093

formulation with entropy constraints.094

2 Related Work095

OOD detection methods in NLP broadly fall into096

two categories: (i) post-hoc methods that detect097

OOD instances after deriving their representations098

from pre-trained language models (PLMs) and (ii)099

works focused on learning representations that im-100

prove OOD detection.101

Post-hoc OOD Detection These methods are102

typically applied to the dataset representations,103

which can either be Pre-trained Representations 104

obtained directly from PLMs or Fine-tuned Rep- 105

resentations obtained after fine-tuning the PLMs 106

for a particular task. Post-hoc methods can be 107

further divided into two categories. First, distance- 108

based methods compute the minimum distance 109

to new data from ID training data as the OOD 110

score. For example, Lee et al. (2018) computes 111

the class-wise Mahalanobis distance between class 112

centroids and a query point to obtain an OOD score. 113

Xu et al. (2020) proposed Gaussian Discriminant 114

Analysis (GDA), which leverages Euclidean and 115

Mahalanobis distances with generative classifiers 116

to identify OOD instances. Sun et al. (2022) di- 117

rectly uses the distance to the kth nearest neighbor 118

(KNN). However, these approaches require storing 119

the entire ID training set, significantly increasing 120

memory requirements. Alternatively, based on the 121

intuition that a classifier output distribution tends to 122

reflect training distribution, classifier-based meth- 123

ods leverage the output logits to get a confidence 124

score for OOD detection. The most frequently 125

used and simple such method uses the Maximum 126

Softmax Probability (MSP) of the classifier as con- 127

fidence, as introduced by Hendrycks and Gimpel 128

(2017) and later improved by ODIN (Liang et al., 129

2017) by adding temperature scaling and input pre- 130

processing. To tackle the over-confidence prob- 131

lem of MSP, Liu et al. (2020) introduces Energy, 132

an energy-based scoring function to better detect 133

OOD data. Yilmaz and Toraman (2022) instead 134

proposes Distance-to-Uniform (D2U) to find the 135

OOD data whose output distribution is closer to a 136

uniform distribution. 137

Learning Representations for OOD Detection 138

Many methods employ Supervised or Margin- 139

based Contrastive Loss (Zhou et al., 2021a) for 140

OOD detection, which increases the similarity of 141

instance pairs if they belong to the same class 142

and decreases it otherwise. Various variants 143

have introduced multiple improvements to enhance 144

discrimination performance, such as Adversarial 145

Contrastive Learning (Zeng et al., 2021), KNN- 146

enhanced Contrastive Learning (KNN-CL) (Zhou 147

et al., 2022), and Reassigned Contrastive Learning 148

(RCL) (Wu et al., 2022). Apart from Contrastive 149

Learning, Xu et al. (2021) utilizes features from all 150

layers of PLMs to form Mahalanobis Distance Fea- 151

tures (MDF), and GNOME (Chen et al., 2023) com- 152

bines MDF from both pre-trained and fine-tuned 153

models, while Avg-avg (Chen et al., 2022) simply 154
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averages all token representations in each interme-155

diate layer to form the sentence representation for156

OOD detection.157

Additionally, obtaining OOD data in real-world158

scenarios is challenging; thus, many methods159

use pseudo-OOD data for representation learning160

(Zhan et al., 2021; Shu et al., 2021; Lang et al.,161

2022; Xu et al., 2022; Kim et al., 2023). Besides162

these, methods like DATE (Manolache et al., 2021),163

PTO (Ouyang et al., 2023), and BLOOD (Jelenić164

et al., 2023) do not fit into these categories but have165

also achieved notable results.166

Our work is a post-hoc method, which focuses167

primarily on techniques to detect OOD samples168

irrespective of the representations used. Our pro-169

posed method is computationally efficient, provid-170

ing the memory benefits of clustering and classifier-171

based techniques while performing comparably172

with distance-based methods.173

3 NNK-Means and Variants174

We briefly present the background on soft cluster-175

ing via NNK-Means (Shekkizhar and Ortega, 2022)176

for modeling a data distribution (§3.1). Next, we177

present our extension of the method via the intro-178

duction of an entropy constraint (§3.2).179

3.1 Background180

Conventional clustering methods, such as kMeans181

(He et al., 2003), are trained in two steps: (i) cod-182

ing: each training item is assigned to one existing183

cluster (corresponding to the nearest cluster center),184

and (ii) dictionary update: new cluster centers are185

computed, where each cluster center (dictionary186

atom) is the average of all training items assigned187

to the cluster (see Figure 1, middle).188

In contrast, a soft-clustering approach such as189

NNK-Means operates as follows. (i) Coding: each190

training item is assigned to multiple cluster cen-191

ters (sparse coding), with non-negative weights192

that quantify similarity to the cluster center (larger193

weights for higher similarity between input and194

cluster center). This soft clustering allows more195

flexible representations with lower storage (fewer196

clusters can represent the data). (ii) Dictionary Up-197

date: the new cluster centers (atoms) are obtained198

as weighted averages of the inputs assigned to the199

cluster, where the weights are non-negative. The200

set of cluster centers is designed to minimize re-201

construction error on the training data. Figure 1202

(bottom) illustrates this approach.203

Formally, given a dataset of N data points repre- 204

sented by a matrix X ∈ Rd×N , the goal is to learn 205

a dictionary matrix D ∈ Rd×M (where each col- 206

umn represents a cluster center) and a sparse weight 207

matrix W ∈ RM×N which generates sparse linear 208

combinations of the columns of D that approxi- 209

mate the training data: 210

D̂, Ŵ = argmin
D,W :∀i,wi≥0,

∥wi∥0≤k

∥X −DW ∥22 (1) 211

Here, each column of W , wi, is sparse, with at 212

most k non-zero entries. To achieve this, NNK- 213

Means alternates between sparse coding and dictio- 214

nary/cluster update as follows, until a convergence 215

criterion is reached. 216

Sparse Coding We find a W that minimizes re- 217

construction error with the current dictionary. We 218

can rewrite the objective in (1) to instead use a 219

kernelized representation of the input data Φ = 220

ϕ(X) ∈ RN×N . Since each atom is a nonnegative 221

linear combination of elements of Φ, the dictionary 222

matrix can be written D = ΦA ∈ Rd×M , where 223

A ∈ RN×M is the dictionary coefficients matrix 224

containing the weights. Then, we can kernelize 225

the minimization objective from (1) and find each 226

column of Ŵ as 227

ŵi = argmin
wi≥0,∥wi∥0≤k

∥ϕi −ΦAwi∥22 , (2) 228

where ϕi corresponds to the kernel representation 229

of data xi. Finding ŵi from (2) involves han- 230

dling an N × N kernel matrix, resulting in run 231

times that would scale poorly with the dataset size. 232

Shekkizhar and Ortega’s (2020) geometric insight 233

into the NNK objective enables the efficient com- 234

putation of each ŵi from a small subset of the data, 235

specifically the k-nearest neighbors of each point. 236

Thus, (2) can be rewritten for each data point and 237

solved with NNK as 238

ŵi,S = argmin
θi≥0

∥ϕi −ΦASθi∥22 and ŵi,Sc = 0,

(3)

239

where the set S corresponds to a subset of the dic- 240

tionary atoms ΦA that can have nonzero influence. 241

The resulting sparse coefficients have a geometric 242

interpretation, such that the sparse set of selected 243

atoms forms a convex polytope around each point 244

in the dataset (Shekkizhar and Ortega, 2020). 245
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Dictionary Update Given the sparse codes W246

computed in the first step, this second step updates247

the dictionary coefficients matrix A to minimize248

the reconstruction error:249

A = W⊤(WW⊤)−1. (4)250

This update rule is similar to the Method of Op-251

timal Directions (Engan et al., 1999) and has the252

advantage of keeping the cluster centers in the same253

space as input data.254

A limitation of NNK-Means is that the number255

of atoms in the dictionary, M , is a hyperparameter.256

While dictionaries with a larger set of atoms can im-257

prove representation, they increase the complexity258

of coefficient selection, while also requiring more259

storage. In NNK-Means, there is no obvious way260

to adjust the number of atoms other than training261

the system with a new choice of M .262

3.2 Entropy-Constrained NNK-Means263

To address these limitations, we propose Entropy-264

Constrained NNK-Means (EC-NNK-Means).265

Our new approach estimates the number of points266

that select each cluster from the sparse coding267

weights in W . The percentage of points select-268

ing a cluster can be viewed as “cluster probabil-269

ity,” which quantifies the importance of the cluster.270

Then, we introduce an entropy-based regularization271

term into the cluster optimization, which favors se-272

lecting atoms representing more data points (i.e.,273

higher probability/lower entropy atoms).274

Consider a query q = xi and the set S of its275

k-nearest dictionary atoms. We can expand the276

minimization objective in (3) for each θ:277

θi = argmin
θ≥0

1

2
θ⊤KS,Sθ − θ⊤KS,q, (5)278

where KY,Z = ϕ(Y )⊤ϕ(Z) is the chosen kernel279

function that encodes similarity between any given280

sets of vectors Y and Z.281

In (5), cluster assignments are influenced by282

the similarities between the query and its nearest283

cluster centers (KS,q) and between cluster centers284

(KS,S). This results in each point being assigned285

to a non-redundant set of its most similar atoms but286

does not account for the size of each cluster. The287

NNK-Means assignment objective can be modified288

to consider also the probability that a given point289

belongs to each cluster, represented by p ∈ RM .290

To do this, we include an entropy regularization291

term that penalizes the least selected (lower proba- 292

bility/higher entropy) clusters: 293

θi = argmin
θ≥0

1

2
θ⊤KS,Sθ−θ⊤KS,q+λθ⊤ log pS ,

(6) 294

where pS corresponds to the probability of each 295

atom in the set S, and λ is a hyperparameter that 296

controls the relative influence between the kernel 297

similarity and probability. 298

The probability pi of atom i being chosen is 299

determined by: 300

pi =

∑
j I(W i,j > 0)∑

i

∑
j I(W i,j > 0)

(7) 301

where I(·) is an indicator function that is equal to 302

1 if the condition inside is true. This probability 303

is defined as the number of data points assigned 304

to atom i data with a non-zero weight normalized 305

over the size of the dataset. 306

The additional entropy term added to the NNK- 307

Means objective (θ⊤ log pS) can also be regarded 308

as the cross-entropy between the new sparse code 309

θ and the current log pS . Minimizing this term 310

leads to an assignment that aligns both distributions 311

as closely as possible. Consequently, atoms that 312

are assigned more elements during training have a 313

higher probability of being selected by a new data 314

point, while the reverse is true for atoms having 315

less data assigned during training. 316

To adaptively learn a dictionary of a size appro- 317

priate to the data, we iteratively prune the set of 318

M dictionary atoms to a final dictionary of size 319

M̂ . Atoms with a lower probability will have fewer 320

data points assigned in future weight assignments 321

and eventually, their corresponding pi will reach 0 322

and they will be removed from the dictionary. This 323

process allows for the selection of a larger initial 324

number of atoms than the original NNK-Means, 325

enhancing the likelihood of choosing atoms that 326

are representative of the underlying data, while also 327

improving efficiency by eliminating unimportant 328

atoms. The full training procedure is described in 329

Algorithm 1. 330

4 NNK-Means for OOD Detection 331

In this section, we formally formulate the OOD 332

detection problem (§4.1) and describe how to use 333

NNK-Means for OOD detection (§4.2). 334
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Algorithm 1 Entropy-Constrained NNK-Means
Input: Dataset X , training steps I , dictionary ini-
tial size N

1: A = {Dictionary initialized with kMeans++}
2: p =

[
1
N , 1

N , . . . , 1
N

]
1×N

3: for iter in I do
4: W = EC-NNK sparse codes
5: pi =

∑
j I(W i,j>0)∑

i

∑
j I(W i,j>0)

6: A = W⊤(WW⊤)−1

7: Â = A \Ai, ∀i : pi = 0
8: end for

Output: Dictionary Â of size N̂

4.1 OOD Detection Formulation335

Define an in-distribution (ID) training dataset336

DID = {(x1, y1), (x2, y2), . . . , (xN , yN )} where337

xi is a text entry and yi ∈ {1, . . . , C} is the cor-338

responding label. We also assume access to an339

encoder E : x → Rd that maps the text to a d-340

dimensional feature space. We formulate our OOD341

Detection problem as a binary classification task342

to determine whether or not a sample is OOD with343

respect to the training distribution, DID, follow-344

ing prior work (Liu et al., 2020; Xu et al., 2021;345

Chen et al., 2023). The goal is to generate an OOD346

score O(x;E) which represents the probability of347

an instance being out-of-distribution, and the final348

decision Gϵ(x;E) can be made by:349

Gϵ(x;E) =

{
ID if O(x;E) ≥ ϵ

OOD if O(x;E) < ϵ
, (8)350

where ϵ represents a chosen threshold. In practice,351

the threshold is chosen to ensure about 95% recall.352

Pipeline Our pipeline is as follows: for a given353

sample x, we first obtain its representations using354

the encoder E. These representations E(x) are355

then passed to OOD detection methods, which can356

be either classifier-based or post-hoc (described357

in §2), finally yielding an OOD score, O(·). The358

backbone model of encoder E can be a PLM or a359

fine-tuned version E′, which is trained on a classi-360

fication task using the ID training data.361

4.2 Generating OOD Scores with NNK-Means362

The dictionary and assignments learned by NNK-363

Means are optimized to minimize the reconstruc-364

tion error of the training data. New data that cannot365

be properly reconstructed using this dictionary, i.e.,366

data with a higher reconstruction error, is more367

likely to be out-of-distribution. Therefore, we can 368

use the definition of reconstruction error from (5) 369

as an OOD score. For any query q ∈ Rd, we define 370

its OOD score O(q) as 371

O(q) =
1

2
θ⊤
SKS,SθS − θ⊤

SKS,q (9) 372

Note that the value of θ is obtained by minimizing 373

the objective in (5), and S represents the set of 374

k-nearest dictionary atoms to q. 375

We also propose C-NNK-Means, a class-wise 376

extension incorporating label information when la- 377

beled ID data is available. Here, rather than learn- 378

ing one dictionary D for the entire ID dataset, we 379

learn a separate dictionary Dc for each ID class. 380

Then, the OOD score is: 381

Oc(q) = min
c

1

2
θ⊤
Sc
KSc,ScθSc − θ⊤

Sc
KSc,q (10) 382

For EC-NNK-Means, we set λ = 0 for the last 383

two epochs of training and during inference. There- 384

fore, the OOD scores for EC-NNK-Means and C- 385

EC-NNK-Means are computed using (9) and (10), 386

respectively, but using a dictionary that was learned 387

under entropy constraints. 388

5 OOD Detection Experiments 389

5.1 Datasets 390

We used three datasets to empirically measure 391

OOD detection performance: 20 Newsgroups 392

(Lang, 1995), Banking77 (Casanueva et al., 2020), 393

and CLINC150 (Larson et al., 2019). For 20 News- 394

groups and Banking77, we randomly selected 25%, 395

50%, and 75% of the classes to form the ID train- 396

ing set DID, following Zhang et al. (2021). The 397

remaining classes were used as OOD data at test 398

time. CLINC150 contains a designated OOD la- 399

bel, and the rest of the dataset was used as DID 400

following Lin and Gu (2023). We also report re- 401

sults on the larger AG News (Zhang et al., 2015) 402

in Appendix A. Dataset statistics, splits, and other 403

details can be found in Appendix B. 404

5.2 Baselines and Models 405

We compared NNK-Means, our extended EC- 406

NNK-Means, and their respective class-wise ver- 407

sions, C-NNK-Means and C-EC-NNK-Means, 408

with 8 popular or recently proposed methods. 409

For classifier-based OOD detection methods, we 410

chose Maximum Softmax Probability (MSP) 411

(Hendrycks and Gimpel, 2017), Energy (Liu et al., 412
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20 Newsgroups Banking77 CLINIC-150
% ID Classes → 25% 50% 75% 25% 50% 75%

L
ab

el
-B

lin
d KNN 78.50 81.40 82.28 93.21 92.34 92.29 97.89

kMeans 78.75 81.94 83.19 93.21 92.34 92.35 97.89

NNK-Means† 79.24 81.00 82.23 93.38 92.68 92.56 98.16
EC-NNK-Means† 79.07 80.76 81.86 93.27 92.72 92.30 98.23

L
ab

el
-A

w
ar

e

MSP 72.80 79.52 81.84 88.00 88.26 89.63 96.43
Energy 72.58 80.35 83.94 88.34 88.95 90.27 97.07
D2U 73.38 80.54 83.69 87.84 89.10 90.24 97.15
BLOOD 66.11 71.86 69.75 73.93 70.09 69.72 87.12
Mahalanobis 75.61 73.16 75.92 93.17 92.63 92.78 97.81
C-kMeans 78.64 82.01 82.99 93.02 92.21 92.25 97.90

C-NNK-Means† 79.30 81.96 83.06 93.32 92.62 92.69 97.97
C-EC-NNK-Means† 79.12 82.45 83.21 93.48 92.73 92.75 98.03

Table 1: AUROC for OOD detection on 3 datasets with fine-tuned Sentence-BERT representations. Label-aware
methods incorporate ID labels during training, while label-blind methods are unable to do so. Results are averaged
over 5 random seeds. The best (↑) label-aware and label-blind methods in each column are bolded. NNK-Means
and its variants, marked with †, are our methods.

2020), and Distance-to-Uniform (D2U) (Yilmaz413

and Toraman, 2022). For distance-based OOD414

detection methods, we evaluated Mahalanobis415

(Lee et al., 2018) and KNN (Sun et al., 2022).416

We also compare against BLOOD (Jelenić et al.,417

2023), which leverages between-layer representa-418

tions, as well as kMeans and its class-wise ver-419

sion C-kMeans. For better illustration, we re-420

classified these methods into Label-Aware and421

Label-Blind methods, as shown in Table 1. Label-422

Aware methods incorporate ID labels during train-423

ing, while Label-Blind methods do not. Details of424

each method are provided in the Appendix C.425

We used Sentence-BERT (Reimers and426

Gurevych, 2019) (82M parameters) as the encoder427

E. Implementation details can be found in Ap-428

pendix D. Appendix F details our hyper-parameter429

tuning process for some OOD detection methods.430

5.3 Evaluation Metrics431

We treat OOD detection as a binary classifica-432

tion task, where the OOD class is considered the433

positive sample. Following Hendrycks and Gim-434

pel (2017) and Podolskiy et al. (2021), we used435

standard evaluation metrics AUROC, AUPR, and436

FPR@95. We also used Inference Time (in sec-437

onds) as an additional metric to account for the effi-438

ciency of the OOD detection methods. Appendix E439

provides more details.440

6 OOD Detection Results and Analysis441

Table 1 shows the AUROC of the baselines and our442

proposed methods on the three evaluation datasets.443

AUPR and FPR@95 results are in Appendix A.444

NNK-Means outperforms baselines Overall, 445

we find that NNK-Means and its variants have bet- 446

ter performance than all baselines in most cases 447

(71% of experimental settings1). Furthermore, 448

classifier-based approaches tend to perform worse 449

than clustering and distance-based ones. Classifier- 450

based approaches only had the best performance in 451

one of the tested settings, and consistently achieved 452

the low AUROC in all others. Despite their benefits 453

with regards to efficiency, these approaches do not 454

provide competitive performance. 455

NNK-Means effectively leverages ID labels 456

NNK-Means and kMeans are the only methods that 457

are applicable when no labelled ID data is present, 458

but can also incorporate label information if it is 459

available. Nonetheless, we find that NNK-Means is 460

better able to leverage ID labels when compared to 461

kMeans. The label-aware variants of NNK-Means 462

performed better than their label-blind counterparts 463

in 86% of cases. In contrast, kMeans outperformed 464

C-kMeans in 57% of settings. Therefore, although 465

kMeans can incorporate ID labels, NNK-Means 466

uses this information more effectively. 467

NNK-Means has low storage requirements An 468

advantage of clustering-based methods is that the 469

storage requirement depends on the number of clus- 470

ters, not the size of the dataset. NNK-Means per- 471

forms better than all baselines while only storing 472

2K cluster centers instead of all 15K instances from 473

CLINIC-150. This is 87% less storage than the best 474

of our baselines, KNN. 475

1In 5 out the 7 settings in Table 1, NNK-Means and its
variants have the highest AUROC
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Figure 2: Final number of atoms and AUROC for dif-
ferent values of Entropy Constraint hyper-parameter λ,
and number of starting atoms. Reported on 20 News-
groups with 25% ID classes. EC-NNK-Means can yield
competitive performance with 90% less memory usage.

Figure 2 shows how the proposed entropy con-476

straint can reduce storage requirements even further.477

When working with EC-NNK-Means, the goal is to478

start with a large initial dictionary size and choose479

successively larger values of entropy-constraint hy-480

perparameter λ until the final dictionary is of the481

desired size. We find that with λ = 0.1, less than482

100 atoms remain in the final dictionary, but the483

OOD detection AUROC is comparable or better484

than a dictionary with 2K atoms and λ = 0. There-485

fore, we show that EC-NNK-Means can achieve486

comparable or better performance than NNK-487

20 NG Banking CLINIC

L
ab

el
-B

lin
d KNN 1.41 1.68 7.01

kMeans 0.25 0.49 0.72

NNK-Means† 0.23 0.44 0.60
EC-NNK-Means† 0.23 0.40 0.59

L
ab

el
-A

w
ar

e Mahalanobis 0.04 0.37 0.64
C-kMeans 2.27 15.79 79.32

C-NNK-Means† 2.27 16.68 85.67
C-EC-NNK-Means† 2.24 15.51 85.89

Table 2: OOD detection Inference Time in seconds,
measured on the test set and averaged over all runs
for each dataset. The best (↓) label-aware and label-
blind methods in each column are bolded. We don’t
report this metric for MSP, Energy, D2U and BLOOD as
explained in Appendix E. NNK-Means and its variants,
marked with †, are our methods.

55 60 65 70 75 80 85
AUROC

Pr
e-

tra
in

ed
M

ar
gi

n-
ba

se
d 

Co
nt

ra
st

iv
e 

Lo
ss

Cr
os

s E
nt

ro
py

 L
os

s
Re

pr
es

en
ta

tio
n 

Ty
pe

69.11

77.50

81.40

68.59

78.21

81.94

72.49

77.70

81.00

70.42

77.60

80.76

58.77

74.08

73.16

68.56

78.27

82.01

72.76

78.12

81.96

71.71

78.42

82.45

Method Type
Baseline - Label-Blind
Ours - Label-Blind
Baseline - Label-Aware
Ours - Label-Aware

KNN
kMeans
NNK-Means
EC-NNK-Means
Mahalanobis
C-kMeans
C-NNK-Means
C-EC-NNK-Means

Method Type
Baseline - Label-Blind
Ours - Label-Blind
Baseline - Label-Aware
Ours - Label-Aware

KNN
kMeans
NNK-Means
EC-NNK-Means
Mahalanobis
C-kMeans
C-NNK-Means
C-EC-NNK-Means

Figure 3: OOD Detection AUROC on 20 Newsgroups
with 50% ID classes, with different Sentence-BERT
embeddings. Results are averaged over 5 random seeds.

Means and KNN while using 95% and 97% less 488

memory, respectively. This reduced memory re- 489

quirement is particularly useful when working with 490

large datasets - where storing and running computa- 491

tions on the entire ID train set may be challenging. 492

NNK-Means has reduced inference time Ta- 493

ble 2 shows that NNK-Means is significantly faster 494

than KNN as operating on the smaller, learned dic- 495

tionaries is quicker than working with the entire 496

ID train dataset. In particular, on the CLINIC-150 497

dataset, EC-NNK-Means provides an 11× reduc- 498

tion in inference time relative to KNN. Class-wise 499

variants of NNK-Means have higher inference time 500

because they involve iterating through one dictio- 501

nary per ID class, an operation that is not paral- 502

lelized like the computations in NNK-Means. 503

Competitive performance with different embed- 504

dings A key benefit of NNK-Means is its appli- 505

cability in various settings, independent of the em- 506

beddings being used. To empirically validate the 507

performance of our methods when using different 508

representations, we evaluate OOD detection per- 509

formance using two different types of embeddings, 510

as presented in Table 7. We report results on the 511

20 Newsgroups dataset, comparing pre-trained em- 512

beddings and embeddings from a Sentence-BERT 513
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20 NG Document Label OOD / ID Error

Here it is Zoom 14.4k FAX/DATA v.32bis modem. I have evreything only purchased in January. Will
happily provide the Fax/Comm. software and BOX and manuals. I am selling this for ONLY $125+s/h COD.
[Name] [Phone Number] FEEL FREE TO CALL for quickest service.

misc.forsale ID 0.09

NAPA remanufactured large 4 barrel carburetor for 78-80 big-block 360/440 Dodge. Part #4-244. New in
box w/manifold gasket. Retail: $345.00 NAPA price: $250.00 Your price $100.00 + shipping

misc.forsale ID 0.17

If you’d like to find a home for that beekeeping equipment you’ll never use again, here’s a likely victim, uh,
customer. To make a deal, call: [Name] [Phone Number]

misc.forsale ID 0.44

I have several isolation amplifier boards that are the ideal interface for EEG and ECG. Isolation is essential
for safety when connecting line-powered equipment to electrodes on the body. These boards incorporate the
Burr-Brown 3656 isolation module that currently sells for $133, plus other op amps to produce an overall
voltage gain of 350-400. They are like new and guaranteed good. $20 postpaid, schematic included. Please
email me for more data.

sci.med OOD 0.20

The title says it all. Contact me via EMAIL if you would can help me out... [Name] University of Louisville
P.S. I KNOW IT IS DISCONTINUED. I want someone who would like to sell an old copy.

sci.electronics OOD 0.24

For all people that are interested in every aspect of the 2600 try the zine: 2600 connection $1 cash to :
[Name] [Address] for sample

sci.electronics OOD 0.16

Table 3: Example of OOD instances overlapping with ID data from the visualization in Figure 4, with identical
label colors. Last column represents the NNK-Means Error, as presented in (9). All ID and OOD instances mention
the purchase or sale of a product, despite belonging to different classes. Bolded text is edited from the original to
preserve anonymity.

Figure 4: 2D visualization of 20 Newsgroups validation
dataset and learned clusters, with 25% ID classes.

model fine-tuned with margin-based contrastive514

loss, as in Zhou et al. (2021b).515

We find that NNK-Means provides competi-516

tive performance, outperforming all baselines even517

when different representations are used (see Fig-518

ure 3). In particular, when using pre-trained rep-519

resentations, NNK-Means performs significantly520

better than all other baselines (4 AUROC points bet-521

ter than best baseline, KNN). Appendix A provides522

further results with different types of embeddings.523

Qualitative analysis of clustering Figure 4 uses524

UMAP (McInnes et al., 2020) to visualize the re-525

sults of our clustering process. We find that our526

clustering works as expected: when a dictionary 527

learned on the training set is used to cluster the 528

validation data, instances with the same class la- 529

bel are assigned to the same clusters. We also see 530

separate clusters of OOD data when their class la- 531

bels are substantially different from the ID labels. 532

In some cases, there is overlap between OOD in- 533

stances and ID data, such as the blue “misc.forsale” 534

class. Analysing the text of these OOD documents 535

shows that this overlap occurs because the OOD 536

and ID instances are similar (see Table 3). 537

7 Conclusion 538

We address the problem of OOD detection using 539

NNK-Means, a soft-clustering algorithm. NNK- 540

Means achieves state-of-the-art performance across 541

4 benchmark datasets, while requiring lower stor- 542

age and improving computational efficiency rela- 543

tive to previous approaches that perform compara- 544

bly. We introduce EC-NNK-Means, an extension 545

of NNK-Means, and show that it can lead to fur- 546

ther improvements in efficiency while matching or 547

improving OOD detection performance. Our meth- 548

ods provide competitive performance regardless of 549

the availability of labels or the type of embeddings 550

used, and yield intuitive clustering of input data. 551

Future work will explore applying our algorithms 552

to analyze large pretrained datasets. 553
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Ethical Considerations554

Our work aims to enable the robust and reliable555

deployment of Language Models by appropriately556

flagging OOD data and preventing inaccurate or un-557

predictable output. We do not anticipate any risks558

or harmful consequences stemming from our work.559

Our code and models will be publicly released in560

the future to ensure our work is reproducible. All561

datasets used in this paper are publicly available.562

Limitations563

There is a multitude of approaches for OOD de-564

tection, however, we were only able to compare565

against a subset of these approaches. Further-566

more, our datasets, models, and experiments are all567

English-only. Finally, our experiments used data568

from classes that were unseen during training to569

simulate OOD data. In practice, there are many570

different ways a system may encounter OOD in-571

stances, and our experiments may not have covered572

them all.573
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A Additional Results816

We provide additional results on AUPR (see Ta-817

ble 4) and FPR@95 (see Table 5) for the 3 main818

datasets aligned with Table 1. To demonstrate that819

our methods perform relatively better on larger820

datasets, we also include results on AG News; see821

Table 6 for more details. Additionally, to show822

the competitive performance of our proposed meth- 823

ods with different representations (detailed anal- 824

ysis in Section 6), we also provide the AUROC 825

results with Pre-Trained Embeddings and Margin- 826

based Contrastive Loss Embeddings (see Table 7), 827

which are reported for 50% ID classes ratio using 828

label-blind and label-aware methods on 20 News- 829

groups. 830

B Datasets 831

In this section, we specifically introduce the 832

four datasets we used and how they were par- 833

titioned. Each dataset was divided into train- 834

ing/validation/test sets. In Table 8, we provide 835

the statistical details of these datasets before distin- 836

guishing between ID and OOD classes. 837

20 Newsgroups (Lang, 1995) 20 Newsgroups 838

is a widely used benchmark for text classification, 839

consisting of approximately 18000 newsgroup doc- 840

uments organized into 20 classes, each representing 841

a specific topic such as politics, religion, science, 842

and technology. We utilized the 20 Newsgroups 843

dataset provided by scikit-learn and removed 844

headers, signature blocks, and quotation blocks 845

respectively as suggested. Following Zhou et al. 846

(2021b), we divided the whole dataset into train- 847

ing/validation/test sets in an 80/10/10 ratio using 848

stratified sampling based on class labels. For the 849

training set, we randomly selected 25%, 50%, and 850

75% of the classes as ID classes and removed the 851

remaining classes, resulting in the dataset DIN . In 852

the validation and test sets, these selected classes 853

were considered as IN class during the OOD detec- 854

tion phase, while the other classes were treated as 855

OOD class. 856

Banking77 (Casanueva et al., 2020) Banking77 857

is a specialized dataset for intent classification in 858

the banking domain. It consists of 13083 customer 859

service queries categorized into 77 distinct classes, 860

each representing a specific banking-related intent. 861

We used the HuggingFace version of this dataset, 862

which includes 10003 user queries in the training 863

set and 3080 queries in the test set. We split its train- 864

ing set into training and validation sets in a 90/10 865

ratio and applied the same preprocessing steps to 866

the training set as we did with the 20 Newsgroups. 867

CLINC150 (Larson et al., 2019) CLINC150 is 868

a dataset tailored for OOD intent detection. It in- 869

cludes 150 distinct intent classes from various do- 870

mains and one designated OOD class for evaluation. 871
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20 Newsgroups Banking77 CLINIC-150
% ID Classes → 25% 50% 75% 25% 50% 75%

L
ab

el
-B

lin
d KNN 50.26 77.40 90.93 85.72 92.27 97.04 99.47

kMeans 50.72 77.91 91.53 85.73 92.27 97.09 99.47

NNK-Means† 51.11 76.88 90.88 85.69 92.68 97.22 99.53
EC-NNK-Means† 50.75 76.76 90.79 85.63 92.72 97.07 99.53

L
ab

el
-A

w
ar

e

MSP 53.66 82.41 93.44 72.08 87.73 95.70 99.01
Energy 47.42 81.98 94.21 72.60 88.17 95.95 99.19
D2U 51.16 82.43 94.08 70.42 88.36 95.92 99.21
BLOOD 39.69 72.87 86.08 48.86 85.65 95.65 96.52
Mahalanobis 47.72 70.61 88.98 85.23 92.50 97.27 99.44
C-kMeans 50.21 77.80 91.30 85.05 91.83 97.00 99.45

C-NNK-Means† 51.26 77.71 91.21 85.73 92.53 97.26 99.49
C-EC-NNK-Means† 51.11 77.82 91.19 86.12 92.74 97.25 99.50

Table 4: AUPR for OOD detection on 3 datasets with fine-tuned Sentence-BERT representations. Label-aware
methods incorporate ID labels during training, while label-blind methods are unable to do so. Results are averaged
over 5 random seeds. The best (↑) label-aware and label-blind methods in each column are bolded. NNK-Means
and its variants, marked with †, are our methods.

20 Newsgroups Banking77 CLINIC-150
% ID Classes → 25% 50% 75% 25% 50% 75%

L
ab

el
-B

lin
d KNN 71.36 75.25 72.42 33.99 33.69 37.65 10.90

kMeans 69.65 71.12 68.59 33.39 33.77 37.95 10.78

NNK-Means† 70.50 75.43 74.61 31.98 33.28 37.75 8.74
EC-NNK-Means† 71.03 75.45 76.25 33.08 33.31 39.32 8.60

L
ab

el
-A

w
ar

e

MSP 87.13 85.18 82.92 50.41 54.47 55.92 17.00
Energy 85.74 83.58 81.17 44.55 46.82 46.27 12.90
D2U 85.44 84.00 81.05 45.21 45.95 46.47 12.70
BLOOD 91.50 86.37 90.15 77.46 80.88 83.22 58.38
Mahalanobis 77.37 86.09 87.19 34.40 33.83 36.33 9.60
C-kMeans 70.54 72.06 69.80 34.17 34.23 37.62 10.88

C-NNK-Means† 70.20 72.45 69.52 32.43 32.65 36.25 10.04
C-EC-NNK-Means† 70.98 70.59 69.65 33.64 32.44 36.15 10.00

Table 5: FPR@95 for OOD detection on 3 datasets with fine-tuned Sentence-BERT representations. Label-aware
methods incorporate ID labels during training, while label-blind methods are unable to do so. Results are averaged
over 5 random seeds. The best (↓) label-aware and label-blind methods in each column are bolded. NNK-Means
and its variants, marked with †, are our methods.

AUROC (↑) AUPR (↑) FPR@95 (↓) Infer. Time (↓)
% ID Classes → 50% 75% 50% 75% 50% 75%

L
ab

el
-B

lin
d KNN 83.75 93.09 83.03 97.23 46.47 31.71 18.50

kMeans 83.54 93.49 82.74 97.30 47.35 27.61 0.89

NNK-Means† 83.91 93.22 82.70 97.30 45.33 30.45 1.44
EC-NNK-Means† 84.07 93.43 83.64 97.31 46.01 28.36 0.95

L
ab

el
-A

w
ar

e

MSP 82.84 86.07 83.97 94.78 53.58 55.80 -
Energy 79.90 86.68 79.01 94.81 55.13 46.68 -
D2U 82.84 87.72 84.06 95.25 53.56 46.68 -
BLOOD 77.95 86.16 75.35 93.73 53.62 51.45 -
Mahalanobis 83.42 92.10 83.79 96.79 53.54 34.08 0.02
C-kMeans 83.72 93.42 82.96 97.25 47.59 27.74 2.03

C-NNK-Means† 83.26 93.37 82.20 97.31 46.92 28.72 2.18
C-EC-NNK-Means† 86.30 94.47 86.47 97.98 45.87 26.80 1.98

Table 6: OOD detection performance on AG News are reported for AUROC, AUPR, FPR@95 and Inference
Time in seconds with fine-tuned Sentence-BERT representations. Label-aware methods incorporate ID labels
during training, while label-blind methods are unable to do so. Results are averaged over 5 random seeds. The best
label-aware and label-blind methods in each column are bolded. We do not report Inferece Time for MSP, Energy,
D2U, and BLOOD as discussed in Appendix E. NNK-Means and its variants, marked with †, are our methods.
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Pre-Trained Margin-based Contrastive Loss
% ID Classes → 25% 50% 75% 25% 50% 75%

L
ab

el
-B

lin
d KNN 71.75 69.11 67.63 79.95 77.50 78.82

kMeans 70.35 68.59 67.43 80.32 78.21 80.07

NNK-Means† 75.52 72.49 69.52 80.27 77.70 79.10
EC-NNK-Means† 75.01 70.42 67.82 80.15 77.60 79.01

L
ab

el
-A

w
ar

e

MSP - - - 78.26 75.59 77.36
Energy - - - 78.55 75.46 78.42
D2U - - - 79.19 76.37 78.77
BLOOD - - - 69.02 73.64 65.74
Mahalanobis 62.75 58.77 57.64 76.07 74.08 72.91
C-kMeans 70.29 68.56 68.45 80.29 78.27 79.73

C-NNK-Means† 75.08 72.76 70.48 80.42 78.12 79.67
C-EC-NNK-Means† 76.49 71.71 70.20 80.53 78.42 79.55

Table 7: AUROC comparison with Pre-Trained Embeddings and Margin-based Contrastive Loss Embeddings.
Results are reported for 50% ID classes ratio using label-blind and label-aware methods on 20 Newsgroups. The
best (↑) label-aware and label-blind methods in each column are bolded. We do not report Pre-Trained Embedding
results for MSP, Energy, D2U, and BLOOD as discussed in Appendix C. NNK-Means and its variants, marked with
†, are our methods.

Dataset # Training # Validation # Test # Classes

20 Newsgroups 15076 1885 1885 20
Banking77 9002 1001 3080 77
CLINC150 15000 3100 5500 150+1
AG News 112800 7200 7600 4

Table 8: Dataset summary with statistical details about
the training, validation, and test sets along with the
number of classes. Note that the number of training
examples is initial.

The dataset consists of a total of 22500 ID queries872

and 1200 OOD queries. We used the ID training873

data directly as our training set and combined the874

ID validation and test data with the OOD validation875

and test data to form our validation and test sets,876

respectively.877

AG News (Zhang et al., 2015) AG News is a878

topic classification dataset collected from various879

news sources, encompassing a total of four topics.880

We used the HuggingFace version of this dataset,881

which includes 120000 entries in the training set882

and 7600 entries in the test set. We extracted 6%883

of the training data to form a validation set. When884

selecting 25% of the classes as ID classes, AG885

News only includes one class, making it unsuitable886

for classification tasks. Therefore, we only used887

the 50% and 75% settings for our experiments. The888

rest of the processing is similar to that applied to889

the 20 Newsgroups dataset.890

C Baselines and Models891

In this section, we provide a more detailed intro-892

duction to our baselines. Mathematical notations893

follow the conventions established in Section 4.1. 894

Maximum Softmax Probability (MSP) 895

Hendrycks and Gimpel (2017) propose this method 896

as the baseline for detecting OOD examples which 897

has been widely adopted. For MSP, O(x;E′) is 898

the maximum softmax probability among any of 899

the classes: 900

O(x;E′) = max
c∈{1,...,C}

pc(E
′(x)) (11) 901

where pc(·) refers to the softmax probability for 902

class c. Note that this method is applicable only 903

when using fine-tuned encoder E′. 904

Energy Liu et al. (2020) introduces the free en- 905

ergy function to detect OOD samples, which can 906

replace the Softmax Confidence Score to avoid the 907

overconfidence problem of the softmax function. 908

The ID data tends to have low energy scores while 909

OOD data tends to have high scores. The free en- 910

ergy function is formulated as follows: 911

Energy(x) =
C∑
i=1

efi(E
′(x)) (12) 912

where fi(·) represents the output logits for the i- 913

th class, and C is the number of all classes. The 914

score O(x;E′) is then defined as the negative of 915

the energy: 916

O(x;E′) = −Energy(x) (13) 917

Note that this method is also applicable only when 918

using fine-tuned encoder E′. 919
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Distance to Uniform (D2U) Based on the idea920

that output distributions of OOD samples get closer921

to the uniform distribution than that of ID samples,922

Yilmaz and Toraman (2022) introduces Distance-923

to-Uniform (D2U), which utilizes the shape of the924

entire output distribution and calculates its distance925

to the uniform distribution as a metric to evaluate926

the likelihood of an example being OOD:927

O(x;E′) = dst(p(E′(x)), U) (14)928

where p(·) is the output softmax distribution and929

U refers to the uniform distribution. We follow930

Yilmaz and Toraman (2022)’s setting to use the KL931

divergence as the distance function. Note that this932

method is also applicable only when using fine-933

tuned encoder E′.934

BLOOD The BLOOD score proposed by Jelenić935

et al. (2023) is a method for detecting OOD data936

in Transformer-based models by examining the937

smoothness of transformations between interme-938

diate layers. It utilizes the tendency of between-939

layer representation transformations of ID data to940

be smoother than the corresponding transforma-941

tions of OOD data. The smoothness of the trans-942

formation between layers l and l + 1 for an input943

x is quantified using the Frobenius norm of the944

Jacobian matrix for l = 1, . . . , L− 1. This is given945

by:946

ϕl(x) = ∥J l(hl)∥2F =

dl+1∑
i=1

dl∑
j=1

(
∂(fl+1)i
∂(hl)j

)2

(15)947

where J l(hl) is the Jacobian matrix of the transfor-948

mation from layer l to l+1, hl is the representation949

at layer l, and f l : Rdl−1 → Rdl is the intermediate950

network layers, while fL corresponds to the last951

layer, mapping to a vector of logits. To reduce com-952

putational complexity, in practice, BLOOD uses953

an unbiased estimator of the smoothness measure954

with r pairs of random vectors vl ∼ N (0n, In)955

and wl ∼ N (0m, Im):956

ϕ̂l(x) =
1

r

r∑
i=1

(
w⊤

l,iJ l(hl)vl,i

)2
(16)957

The final BLOOD score for an input x can be com-958

puted as either the average smoothness score across959

all layers:960

BLOODM =
1

L− 1

L−1∑
l=1

ϕ̂l(x) (17)961

or the smoothness score at the last layer: 962

BLOODL = ϕ̂L−1(x) (18) 963

We follow Jelenić et al. (2023) to use BLOODL as 964

the uncertainty score of an instance x for its higher 965

performance. Finally, the OOD score is defined as: 966

O(x;E′) = −BLOODL (19) 967

Note that this method is also applicable only when 968

using fine-tuned encoder E′. 969

Mahalanobis The Mahalanobis distance detector 970

proposed by Lee et al. (2018) is a widely used OOD 971

detection method that calculates the OOD score 972

O(x;E) based on the distance of a test sample 973

to the nearest ID class in the embedding space 974

determined by M . It can be formulated as: 975

O(x;E) = min
c∈{1,...,C}

(E(x)− µc)
⊤ 976

Σ−1(E(x)− µc) (20) 977

where µc is the mean of all of the representations 978

of the instances in class c and Σ is the covariance 979

matrix. µc and Σ can be estimated by: 980

µ̂c =
1

Nc

∑
x∈Dc

IN

E(x) (21) 981

Σ̂ =
1

N

∑
c∈{1,...,C}

∑
x∈Dc

IN

(E(x)− µc)(E(x)− µc)
⊤

(22) 982

where Dc
IN = {x | (x, y) ∈ DIN , y = c} repre- 983

sents for the training data belonging to the class c, 984

N denotes the size of the training set, and Nc is the 985

number of training data belonging to the class c. 986

k-Nearest Neighbors (KNN) Sun et al. (2022) 987

investigate the effectiveness of using non- 988

parametric nearest-neighbor distances for OOD de- 989

tection on visual OOD detection benchmarks. We 990

applied this approach to text data, where O(x;E) 991

represents the distance from the test sample to its 992

k-th nearest ID training sample in the normalized 993

feature space. In our experiments, we set k = 1. 994

kMeans & C-kMeans We also compare our ap- 995

proaches to the standard kMeans algorithm and 996

its class-wise variant, C-kMeans, similar to the 997

C-NNK-Means. In both cases, we use the recon- 998

struction error as the OOD score O(x;E). The 999

number of clusters is a hyper-parameter, and their 1000

selection will be discussed in Appendix F. 1001
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D Implementation Details1002

Fine-tuning We fine-tuned the PLM for clas-1003

sification on the ID dataset and used the1004

all-distilroberta-v1 checkpoint from Hug-1005

gingFace. In all cases, we used mean-pooling on1006

token representations from the penultimate layer to1007

generate sentence-level representations. We used1008

5 different random seeds and reported the average1009

results to limit the effect of randomness for each1010

setting. All models were optimized with Cross1011

Entropy Loss and AdamW (Loshchilov and Hutter,1012

2017) as the optimizer, using a weight decay rate of1013

0.01 and a learning rate of 1× 10−5, with a linear1014

learning rate decay. We used a batch size of 4 and1015

fine-tuned the model for 5 epochs.1016

OOD Detection After extracting embeddings,1017

we ran our baselines and proposed methods on1018

a single NVIDIA Tesla V100 GPU to ensure con-1019

sistent measurement of inference time. We tuned1020

hyper-parameters based on the validation set and1021

reported the final results on the test set of each1022

dataset. Appendix F provides more details of our1023

hyper-parameter tuning.1024

E Evaluation Metrics1025

Here, we introduce 3 standard metrics for OOD1026

detection and the Inference Time in seconds we1027

used to compare the complexity:1028

AUROC The Area Under the Receiver Operating1029

Characteristic Curve, plots the True Positive Rate1030

(TPR) against the False Positive Rate (FPR) at var-1031

ious thresholds. A higher AUROC value indicates1032

better performance.1033

AUPR The Area Under the Precision-Recall1034

Curve, evaluates the model’s precision and recall1035

by plotting precision against recall for different1036

thresholds. A higher AUPR value indicates better1037

identification of OOD samples while maintaining1038

high precision.1039

FPR@95 The False Positive Rate at 95% True1040

Positive Rate, measures the FPR when the TPR is1041

fixed at 95%. A lower FPR@95 value indicates1042

fewer ID samples being misclassified as OOD, sig-1043

nifying a more reliable OOD detection model.1044

Inference Time It serves as an additional metric1045

to account for the complexity of the OOD detection1046

methods. We measured the time taken to obtain1047

the OOD score of a given query q after extracting1048

its representation from a PLM. Note that we do 1049

not report this for MSP, Energy, and D2U, as their 1050

inference involves minimally processing the logits, 1051

and so they have negligible inference time. We 1052

also do not report this for BLOOD since its infer- 1053

ence process is significantly affected by the batch 1054

size. Additionally, BLOOD requires representa- 1055

tions extracted from every layer of the model. So, 1056

despite doing limited processing after embeddings 1057

have been extracted, in practice, the complexity 1058

of this method is much higher than that of other 1059

classifier-based ones. 1060

We provide the results of AUROC and Inference 1061

Time in Section 6, and AUPR and FPR@95 results 1062

in Appendix A. 1063

F Hyper-parameter Tuning 1064

KMeans, NNK-Means, and EC-NNK-Means 1065

select the number of dictionary atoms from 1066

{500, 1000, 2000, 4000}. For the class-wise ver- 1067

sions, C-kMeans, C-NNK-Means, and C-EC-NNK- 1068

Means, due to the smaller size of each class com- 1069

pared to the overall dataset, the selection range 1070

is {50, 150, 250, 350} instead. Additionally, for 1071

EC-NNK-Means and C-EC-NNK-Means, we also 1072

need to choose Entropy Constraint hyper-parameter 1073

λ from {50, 150, 250, 350}. We tuned the hyper- 1074

parameters on the validation set of each dataset, 1075

selecting the optimal hyper-parameters based on 1076

AUROC for each dataset (and each known classes 1077

ratio), and obtained the final results on the test set. 1078

We applied the same hyper-parameter tuning pro- 1079

cess for the Pre-trained Embedding setting and the 1080

Margin-based Contrastive Loss Embedding setting. 1081

Detailed hyper-parameter choices for each setting 1082

can be found in Table 9 and Table 10. 1083
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20 Newsgroups Banking77 AG News CLINC150
% ID Classes → 25% 50% 75% 25% 50% 75% 50% 75%

M
et

ho
ds

kMeans 1000 500 500 2000 4000 1000 4000 500 2000
C-kMeans 250 50 50 32 32 32 350 50 50
NNK-Means 2000 2000 4000 1000 2000 4000 4000 4000 2000
C-NNK-Means 350 350 350 32 32 32 350 50 25
EC-NNK-Means (2000, 0.03) (2000, 0.03) (2000, 0.03) (2000, 0.03) (4000, 0.01) (2000, 0.03) (4000, 0.03) (500, 0.01) (2000, 0.05)
C-EC-NNK-Means (350, 0.01) (350, 0.07) (350, 0.03) (32, 0.01) (32, 0.01) (32, 0.01) (50, 0.07) (150, 0.07) (50, 0.01)

Table 9: Hyper-parameter settings for different methods with Cross Entropy Loss Embeddings on 4 datasets. This is
used for our main results in Section 6. For EC-NNK-Means and C-EC-NNK-Means, the hyper-parameters are in
the format of (M,λ) where M is the initial number of dictionary atoms and λ is the hyper-parameter that controls
the influence of entropy-constrained term, while others are only using M .

Pre-trained Margin-based Contrastive Loss
% ID Classes → 25% 50% 75% 25% 50% 75%

M
et

ho
ds

kMeans 2000 4000 4000 500 1000 500
C-kMeans 350 350 350 50 50 50
NNK-Means 2000 4000 4000 2000 2000 4000
C-NNK-Means 350 350 350 350 350 350
EC-NNK-Means (2000, 0.03) (2000, 0.03) (2000, 0.03) (1000, 0.03) (1000, 0.01) (4000, 0.03)
C-EC-NNK-Means (350, 0.05) (350, 0.05) (350, 0.05) (250, 0.05) (350, 0.03) (350, 0.03)

Table 10: Hyper-parameter settings for different methods with Pre-trained Embeddings and Margin-based Con-
trastive Loss Embeddings on 20 Newsgroup. This is used for our additional analysis in Section 6 to show the
competitive performance of our methods with different embeddings. For EC-NNK-Means and C-EC-NNK-Means,
the hyper-parameters are in the format of (M,λ) where M is the initial number of dictionary atoms and λ is the
hyper-parameter that controls the influence of entropy-constrained term, while others are only using M .

Text Label NNK-Means Error

I know nothing about Sun’s but replacing pieces of libraries,shared or not, is straight forward on
RS/6000’s (all releases) Extract the appropriate pierce with ar; rebind the .o; and replace with ar. See
Info for details.

ID: comp.windows.x 0.19

This is incorrect. Sun has made no such claim regarding Devguide, and as manager of the Devguide
engineering group I can state with authority that work on Devguide is continuing apace. We had
quite a strong show of interest from the Devguide user community at last week’s Solaris Developer’s
Conference. Devguide is being advocated not only as a valuable future builder tool, but as an
important bit of transition technology that will help sustain current customers and facilitate their
migration to the COSE Desktop Environment. If you have specific questions about Devguide
availability, etc., you can contact [Name], our Devguide Product Marketing person, at [Phone
Number].

ID: comp.windows.x 0.24

I was wondering if anyone knew of an interface to od ( octal dump ), I assume it would be called xod.
Actually, any viewer for a core file will do. I looked at export ( @ mit ) in the index of /contrib, but
didn’t find anything relevant.

ID: comp.windows.x 0.19

libXaw3d, the 3D Athena widget set will greatly improve the "sculptured" look. In Linux, with
its shared, jump-table libs, you don’t even have to recompile or relink. you merely have to: ln -sf
/lib/libXaw3d.so.3.0 /lib/libXaw.so.3

ID: comp.windows.x 0.14

Table 11: Example of data from an ID cluster from the visualization in Figure 4, with identical label colors. Last
column represents the NNK-Means Error, as presented in (9). Bolded text is edited from the original to preserve
anonymity.
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